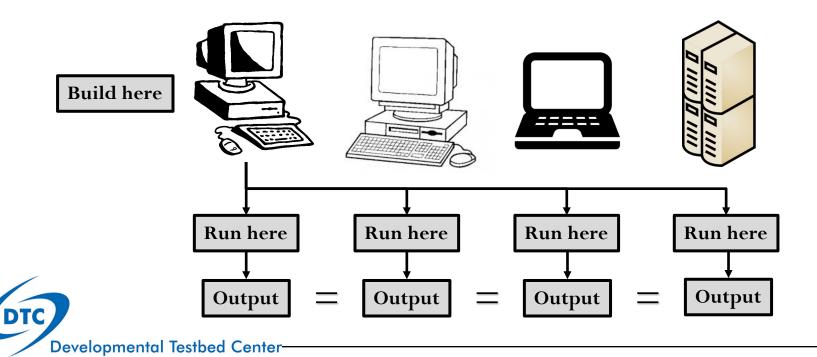
SIMPLIFYING END-TO-END NUMERICAL MODELING USING SOFTWARE CONTAINERS

Users' Page:

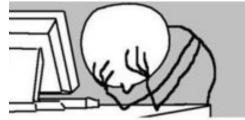
https://dtcenter.org/community-code/numerical-weatherprediction-nwp-containers

Online Tutorial:


https://dtcenter.org/container_nwp_tutorial/index.php

Why use containers?

Introduction to Docker


What is a container?

- A container is a self-contained "box" that allows you to essentially build software once and run it anywhere
- Similar to a virtual machine but much more lightweight and portable

Why use containers?

- Software systems require substantial set-up to get all the necessary code, including external libraries, compiled on a specific platform \rightarrow *Containers help solve this problem!*
 - Efficient, lightweight, secure, and self-contained (including operating system, libraries, code, and executables) systems
 - Everything required is packaged into isolated components, ready for development, shipment, and deployment directly to users
 - Software should always run the same, regardless of where it is deployed
 - Eliminates possible frustrations with up-front system setup
 - Facilitates cloud computing, classroom use, etc.

Developmental Testbed Center

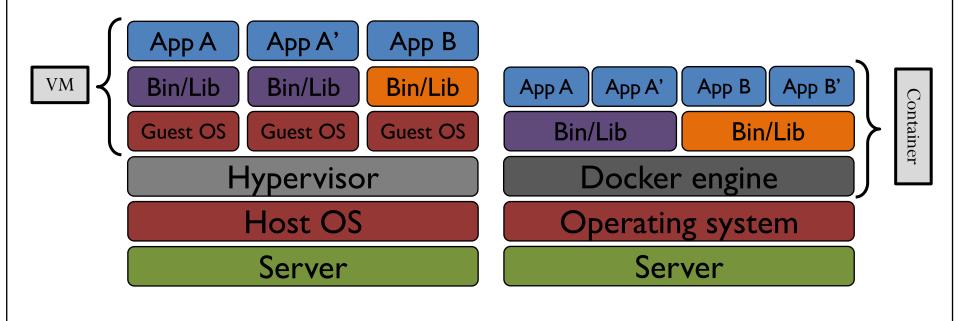
Someone trying to compile WRF

What is a Docker container?

- Docker is one of the leading software containerization platforms
 - Home page: https://www.docker.com
 - Documentation: https://docs.docker.com
- A Docker container
 - is open source +
 - docker is an easy way to build a development environment +
 - can hold applications "inside the container" +
 - is portable across Linux, Mac, and Windows machines +
 - is much smaller than a virtual machine +
 - sets up a partition between the host machine and "container land" +
 - allows "root" inside the container but doesn't alter permissions on + the host machine
 - requires root access to install and update Docker
 - running on more than a single node is cumbersome

Docker disadvantages, Singularity solutions?

- A newer container software Singularity sets out to eliminate these issues:
 - Designed for HPC applications
 - Has easy support for cross-node MPI applications
 - Docker containers can be converted for use with Singularity
 - Charlieloud and Shifter
 - Designed for HPC applications
 - Based on Docker, but less user-friendly



Virtual machine vs. containers

• Containers vs. virtual machines: VMs bundle a full operating system, whereas containers only contain necessary libraries and dependencies

Why use containers for NWP?

Advantages:

- Reduces spin-up time to build necessary code components
- ✓ Highly portable
- ✓ Easily sharable with other collaborators
- ✓ Use in cloud computing
- Easy to replicate procedures and results

Who can benefit from containers?

- ✓ Graduate and undergrad students
- ✓ University faculty
- ✓ Researchers
- ✓ Tutorial participants
- \checkmark Use for community support

Ultimately, containers will substantially reduce the spin-up time with setting up software systems, which promotes greater efficiency in producing model and statistical output!

Understanding the lingo: Images & containers

• Image:

- Inert, immutable snapshot
- Created with the build command
- Will produce a container when started with run command
- Container:
 - Instance of an image
 - Created with the run command
 - Can have many running containers of the same image

Example of containerized end-to-end system

Container – End-to-end NWP

Image – Model(+pre/post)

Image – Visualization

Image – Verification

Base Image – CentOS

Kernel

Building, saving, and loading images

- Images can be...
 - Built from scratch (slower, but offers customization!)
 - Saved to a tar file, which can then be loaded for faster deployment

Helpful Docker commands

- docker build -t my-name . : builds image
- docker images : see what images are built
- docker rmi : remove image
- docker save my-name > my-name.tar.gz : save an image
- docker load < my-name.tar.gz : load a saved image
- docker run --rm -it --volumes-from -v --name : run a command in a new container
 - --rm: Automatically remove the container when it exits
 - -it: create an interactive bash shell in the container
 - --volumes-from: Mount volumes from the specified container(s)
 - -v: Bind mount a volume
 - --name: Assign a name to the container
- docker ps -a : see what containers are running; obtain container ID
- docker rm : remove container using ID

HPC and cloud computing

dWS

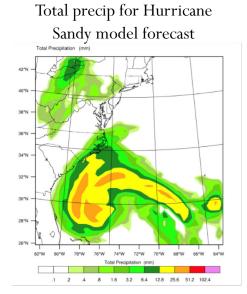
- Models keep trending toward higher resolution and the use of ensembles is becoming more prevalent
 - Computational resources and increases in data volumes make it difficult to run containerized NWP systems with Docker on a single node → Running containers on HPC and cloud-computing platforms is becoming more appealing
- HPC and cloud computing offers excellent opportunity for providing a sandbox to the community to share output and datasets, allowing for cross-community interactions

C Google Cloud

DTC containers

Available containers

Case study overview


What is in the DTC containers?

- DTC containers package everything that is needed to build and run the model and produce graphics and verification, including code and data
 - Initial capability heavily leveraged from Big Weather Web (<u>http://bigweatherweb.org/</u>) initiative to containerize WRF (Hacker et al. 2017)
 - Uses gfortran; can be run serially or with distributed memory
- README files with explicit instructions for building and running WPS, WRF, GSI, UPP, NCL, MET, and METViewer
- Necessary namelist and configuration files
 - Vtable.GFS
 - namelist.wps and namelist.input
 - MET configuration files
- Case-specific data
 - GFS files for ICs/LBCs
 - Observation data for gridded (Stage II) and point (NDAS prepbufr) verification and data assimilation



What cases are provided?

- Three cases with full datasets are provided in current inventory
 - Hurricane Sandy (Initialized on 27 Oct. 2012)
 - 40-km domain centered over East Coast (6-h forecast)
 - Derecho event over the Eastern CONUS (Initialized on 29 June 2012)
 - 12-km parent domain with 3-km nest over southern Ohio (24-h forecast)
 - Snow case across the mid-Atlantic region (Initialized on 23 Jan. 2016)
 - 30-km CONUS domain (24-h forecast)

Derecho case domain configuration

What does this look like for the end-to-end DTC container?

Contains necessary build and run commands to run end-to-end NWP workflow Container – WPS GEOG

Container – End-to-end NWP

Image – WPS GEOG

Image – Case Data

Image – WPS/WRF

Image – GSI

Image – UPP

Image – NCL

Image – MET

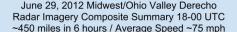
Image – METViewer

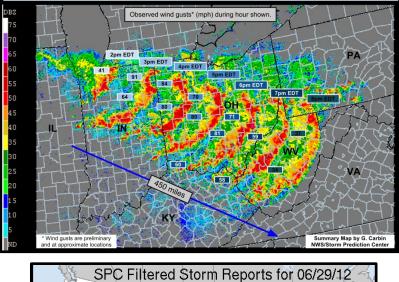
Image – MySQL

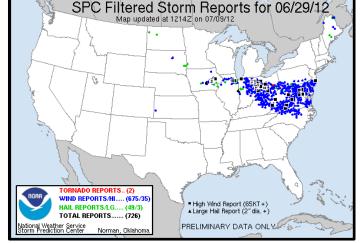
Base Image – CentOS

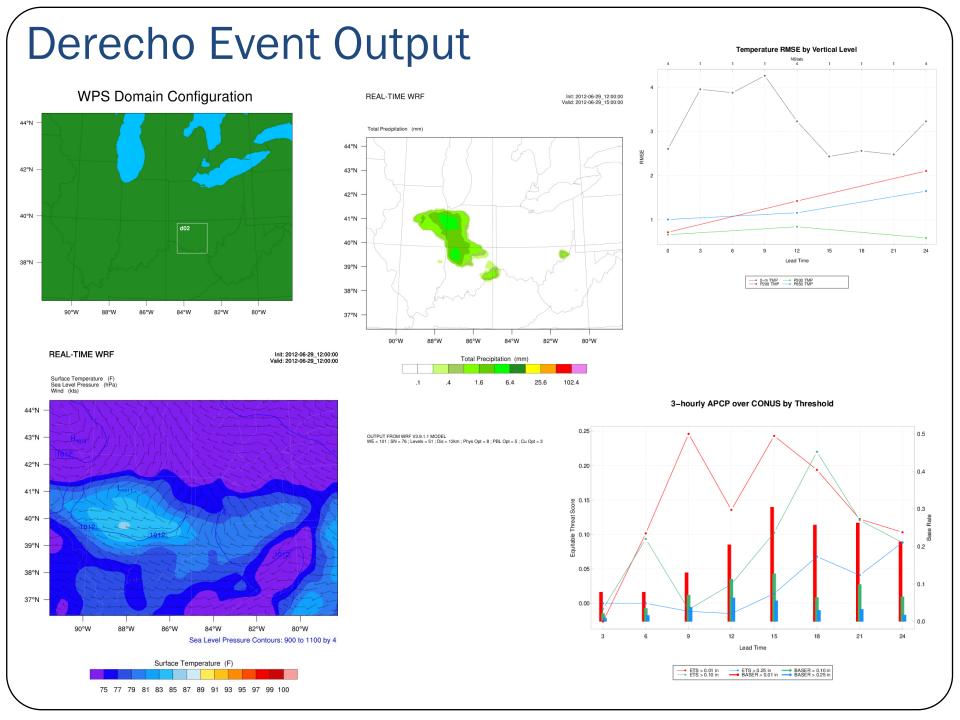
Kernel

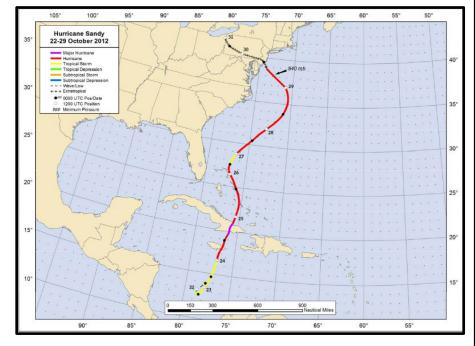
[nitro:~/container	-dtc-nwp/components]	jwolff% docker imag	es	
REPOSITORY	TAG	IMAGE ID	CREATED	SIZE
dtc-metviewer	latest	fc273bd81190	10 minutes ago	1.36GB
dtc-met	latest	508632a48833	22 minutes ago	2.21GB
dtc-ncl	latest	08c71acdf75c	32 minutes ago	823MB
dtc-upp	latest	3e2d7080f56a	About an hour ago	1.55GB
dtc-gsi	latest	4ced2dc524d1	About an hour ago	1.23GB
dtc-wps_wrf	latest	5c5a8a3e0efa	2 hours ago	2.22GB
dtc-nwp-sandy	latest	a0af074f50df	2 hours ago	778MB
dtc-nwp-derecho	latest	cfff4dcc5cdb	2 hours ago	820MB
dtc-nwp-snow	latest	ac76f8f426c7	2 hours ago	1.17GB
dtc-nwp-gsi_data	latest	804b0b0eadf7	2 hours ago	2.73GB
dtc-nwp-wps_geog	latest	b8a6c832188e	2 hours ago	2.5GB
ubuntu	latest	ea4c82dcd15a	7 weeks ago	85.8MB
centos	latest	75835a67d134	2 months ago	200MB

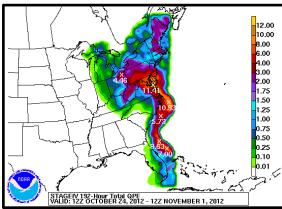

DTC Container Links

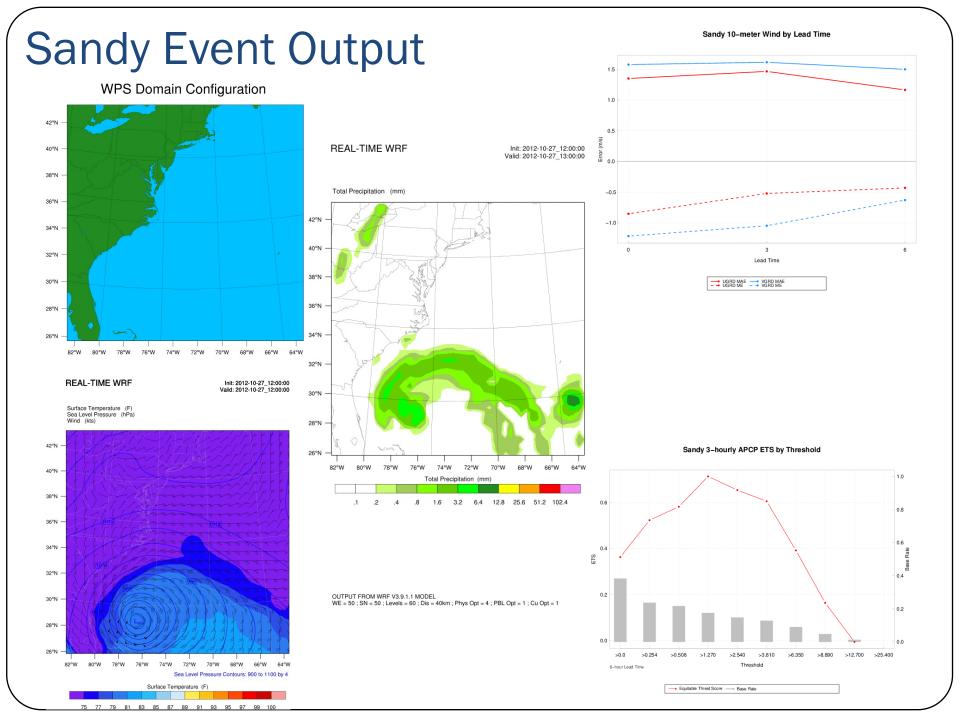

- DTC end-to-end components
 - <u>https://github.com/NCAR/container-dtc-nwp/</u>
- MET
 - <u>https://github.com/NCAR/container-dtc-met/</u>
 - <u>https://dtcenter.org/met/users/downloads/docker_container.php</u> (Instructions for installing and running pre-built container)
- **METViewer** (Containers for MySQL and METViewer)
 - <u>https://github.com/NCAR/container-dtc-metviewer/</u>
- End-to-end NWP container online tutorial
 - https://dtcenter.org/met/docker-nwp/tutorial/container_nwp_tutorial/index.php


Derecho Event Background


- Progressive derecho originated in Midwest, moved ESE across the Ohio Valley into the Mid-Atlantic
 - Traversed over 700 miles over 10 states
 - 13 deaths directly associated with storm
 - 4 million lost power
- Operational forecast guidance:
 - Global Forecast System (GFS) and NAM did not provide much forecast assistance more than 24 hours out from the event
 - High-Resolution Rapid Refresh (HRRR) model forecast an MCS to move through impacted area on morning of 29 June 2012 → however, previous performance by HRRR did not allow for much confidence in forecast

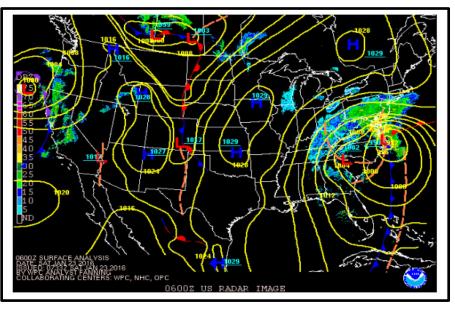


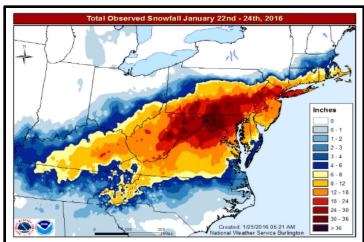


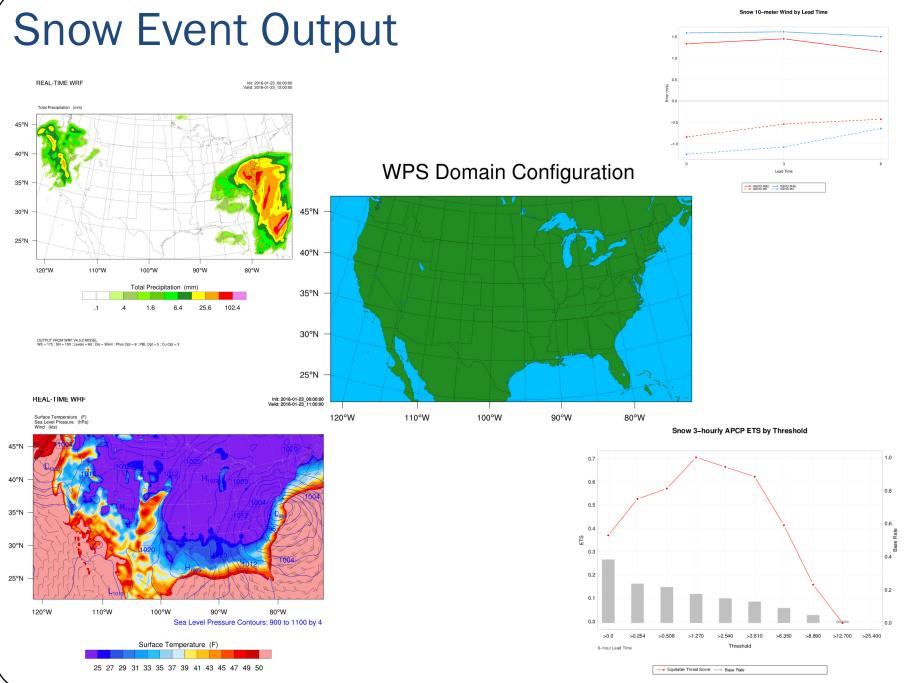


Sandy Event Background

- Most deadly and destruction hurricane during the 2012 Atlantic hurricane season
 - 230 direct/indirect fatalities
 - Category 1 over Jamaica
 - Impacted Cuba as a Category 3
 - Weakened to a Category 1 over the Bahamas
 - Curved northwest and came onshore in New Jersey with hurricane force winds (no longer tropical)

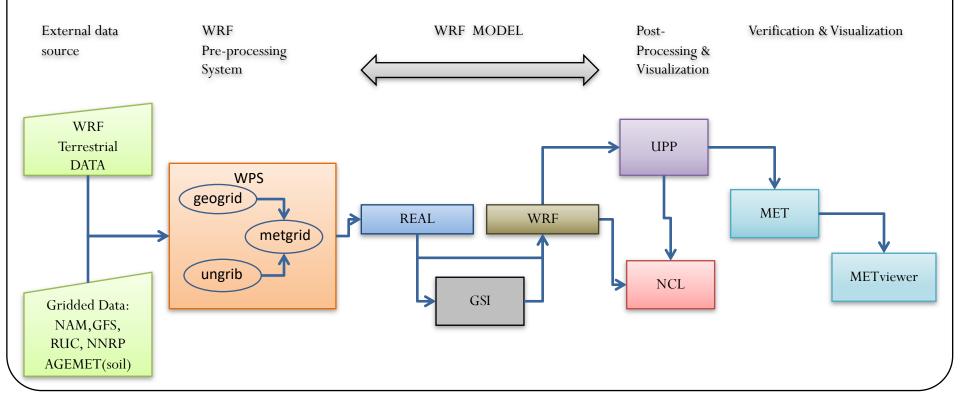






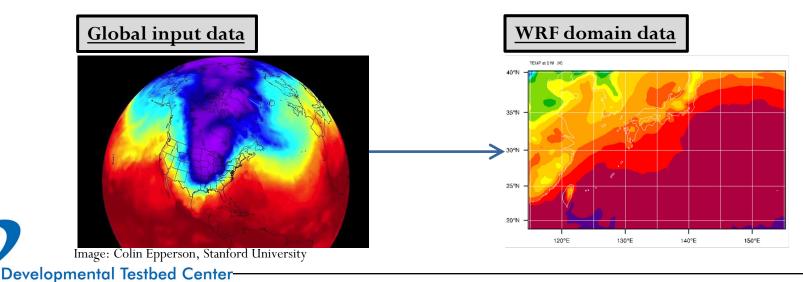
Snow Event Background

- Classic set-up for a major winter storm
 - Developed near the Gulf Coast and strengthened rapidly as it moved slowly up the coast
 - Produced significant amounts of snow, sleet, and freezing rain
 - Maximum amounts of 30-42" of snow in the mountains near the border of VA/WV/MD



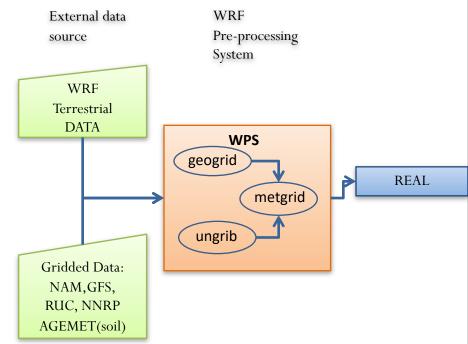
Introduction to containerized NWP, visualization, and verification

WPS, GSI, WRF, UPP, NCL, MET, METviewer

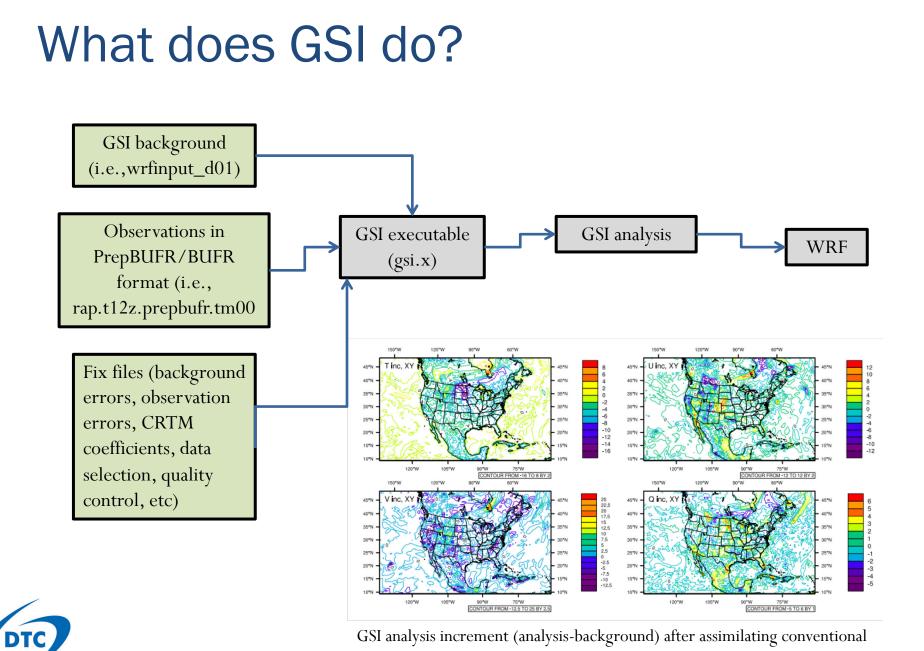

Containerized NWP, visualization, and verification

Introduction to WPS, GSI, WRF, UPP, NCL, MET, METviewer

What is WPS?

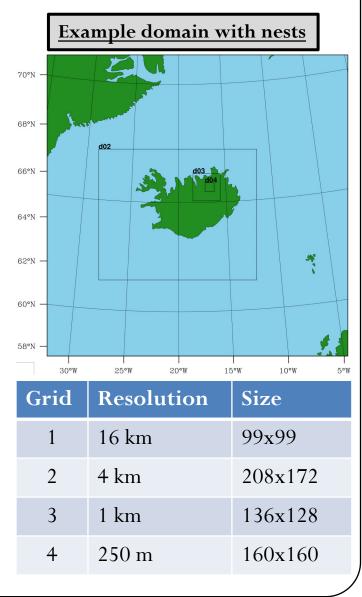

- The WRF Preprocessing System (WPS) takes existing 4-d atmospheric data from GRIB-format files and interpolates it onto the user's specified WRF domain grid.
 - Initial conditions: 3-dimensional wind, temperature, geopotential height and RH, 2-dimensional surface pressure
 - Boundary conditions for the parent domain for the full length of the forecast
 - Commonly used input datasets are forecast output from GFS, or reanalysis datasets from NCEP or ECMWF

Function of WPS components


- geogrid.exe (think <u>geo</u>graphical)
 - Define size/location of coarse domain and interpolate static terrestrial fields to coarsedomain and nested-domain grids
- ungrib.exe
 - Extract meteorological fields from GRIB files
- metgrid.exe (think <u>met</u>eorological)
 - Horizontally interpolate meteorological fields (from ungrib) to coarse grid (defined by geogrid)

What is GSI?

- GSI is the operational data assimilation system being used at NOAA and NCEP-EMC, and can be applied for global and regional analysis, and can also serve as the observation operators for the Ensemble Kalman Filter (EnKF)
- GSI, started as three dimensional variational data assimilation (3DVar), can be run as a data assimilation system of 2DVar (for surface data analysis), 3DVar, 3D ensemble-variational (3D EnVar), 4D ensemble-variational (4D EnVar), 3D/4D hybrid EnVar, or 4DVar
- For WRF applications, GSI can use the output from real.exe (i.e., wrfinput_d01) as the background field, and update it using the various observations. The updated background field so called GSI analysis, can then be used as the initial conditions for WRF forecasts
- GSI can also use the WRF forecast files (i.e., wrfout_d01_<yyyymmdd_hh:mm:ss>) as the background fields and update it for further forecasts.
- The observations can include conventional observations, satellite radiance, GPS radio occultations, etc.

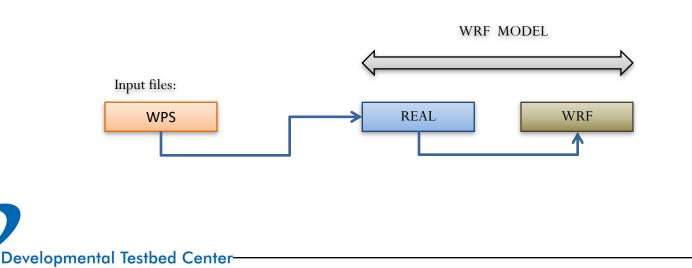


Developmental Testbed Center

GSI analysis increment (analysis-background) after assimilating conventional observations

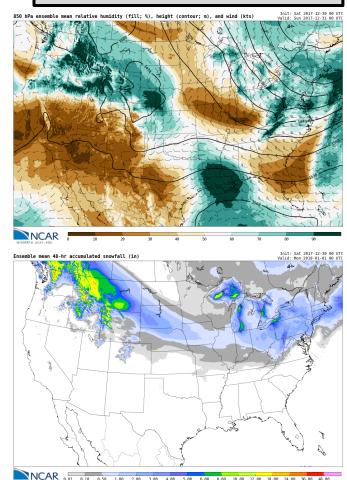

What is WRF?

- The Weather Research and Forecasting (WRF) model is a numerical weather prediction model for weather research and forecasting
- Two dynamical cores, both non-hydrostatic
 - Advanced Research WRF (ARW), most commonly used
 - Nonhydrostatic Mesoscale Model (NMM), used in some operational forecasting systems
- Highly configurable, but also caters to less advanced users
 - e.g. 26 different microphysics schemes, 10 surface layer schemes, etc.
 - "Suites" of widely-used and tested scheme combinations are provided for casual users
 - Most options can be easily changed at runtime (no re-compilation required)

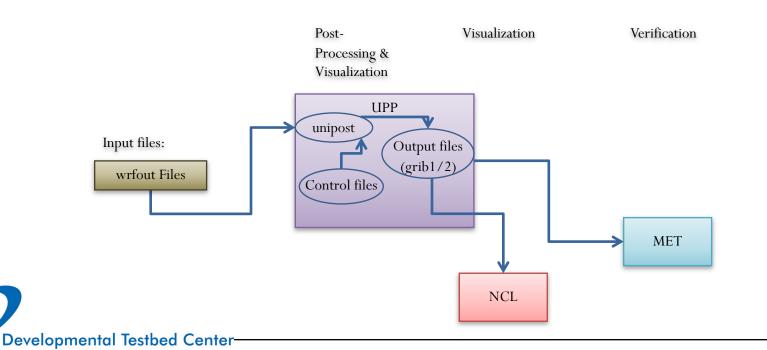

What is WRF?

- Typically run for regional domains, although a global capability exists
 - One parent domain gets its initial and boundary conditions from the WRF Preprocessing System (WPS)
 - Can also have one or more child domains that get their boundary conditions from the parent domain
- Can be run for specialized applications such as regional climate and atmospheric chemistry (WRF-CHEM) as well

Function of WRF components


- real.exe
 - Generation of initial state for each of the requested domains
 - Creation of a lateral boundary file for the most coarse domain
 - Vertical interpolation for 3d meteorological fields and for subsurface soil data
- wrf.exe
 - Forecast model integration through time

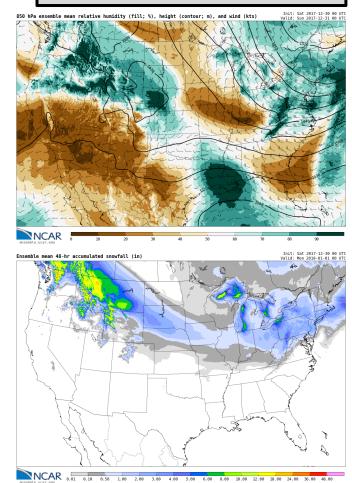
What is UPP?


- The Unified Post-Processor (UPP) is a post-processor for WRF and other models
 - Developed at the National Centers for Environmental Prediction (NCEP) for use in its operational forecasting
 - Now offered for community use and development with WRF
- Processes raw model output to more useful forms
 - Produces hundreds of products like those used operationally
 - Creates output that can be plotted with your favorite visualization tool

Example plots from NCAR Ensemble

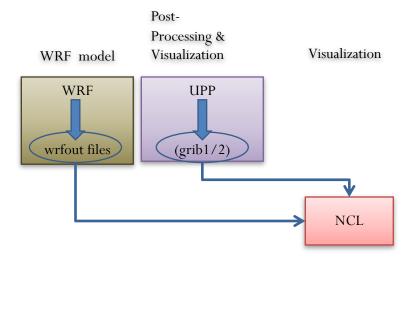
Function of UPP component

- unipost.exe
 - Performs vertical interpolation from model levels/surfaces onto isobaric, height, and other levels/surfaces
 - Calculated derived quantities/diagnostic fields
 - Destaggers wind onto mass points



What is NCL?

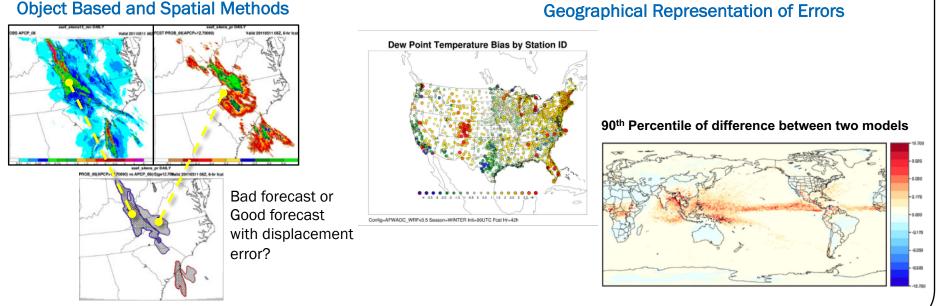
- The NCAR Command Language
 - An interpreted (scripting) language for creating visualizations of geoscientific data
 - Designed and maintained by the Computational & Information Systems Laboratory (CISL)
 - Can read and write a bunch of different formats (netCDF, HDF4, binary, and ASCII data) and can read many more (HDF5, GRIB1/GRIB2)
 - Supports calling of C and Fortran external routines
 - More info:


https://www.ncl.ucar.edu/overview.shtml

Example plots from NCAR Ensemble

Function of NCL component

- ncl
 - Reads wrfout files created by WRF
 - Calculates derived/accumulated variables (if necessary)
 - Creates plots of one or more variables
 - Can also read grib files created by UPP

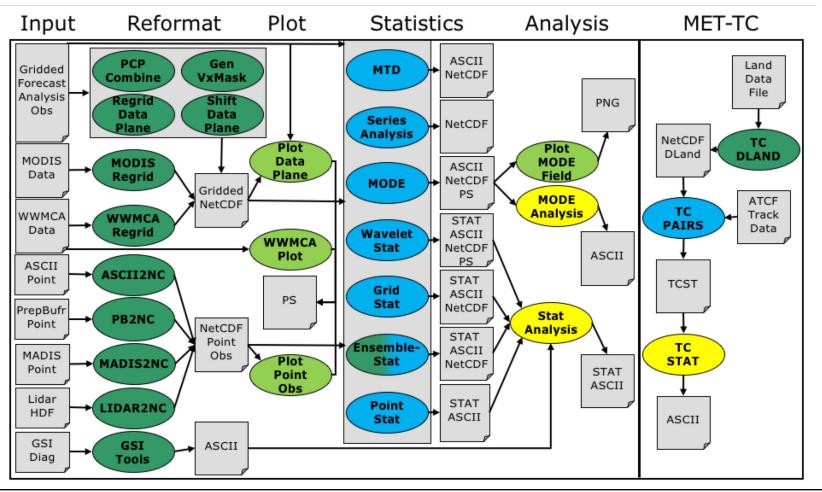


What is MET?

- MET is freely available community code supported by the DTC (must register to download)
 - State-of-the-art suite of verification tools
 - Approximately 3400+ registered users spanning 125+ countries
 - Users from universities, government, private companies, and non-profits
- Download MET release and compile locally
 - Register and download: <u>www.dtcenter.org/met/users</u>
 - C++ with calls to some Fortran libraries, GSL, netCDF4 and HDF5
 - Can be compiled with with GNU, Portland Group (PGI), or Intel
- Support
 - Online tutorial and in-person tutorials given yearly
 - <u>met_help@ucar.edu</u> help desk
 - 250+ support tickets in past year

A verification toolkit designed for flexible yet systematic evaluation (supported to the community via the DTC) el Evaluation Tools

- **Over 70 statistics** using both point and gridded datasets
- Full suite of standard statistics with cutting-edge statistics regularly added
- Computation of confidence intervals
- Able to read in GRIB1, GRIB2 and CF-compliant NetCDF
- Applied to many spatial and temporal scales
- Multiple interpolation methods
- Regridding within the tools and ability to apply complex masking



Geographical Representation of Errors

Function of MET

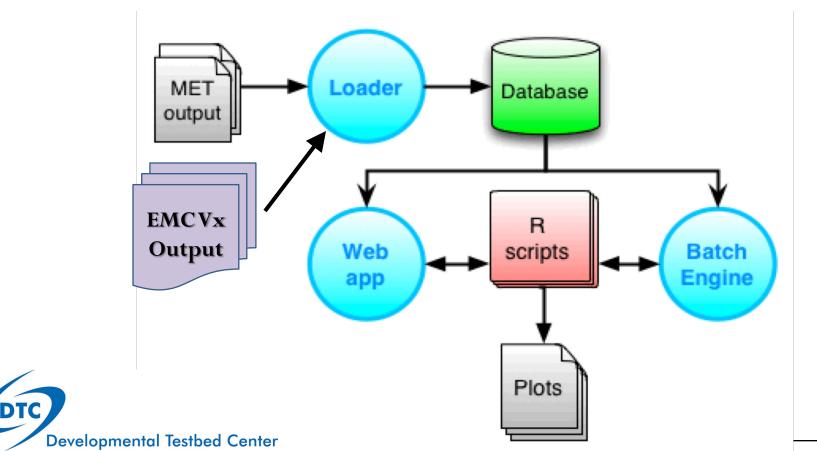
MET includes tools for:

- reformatting (dark green)
- plotting (light green)
- calculating statistics (blue)
- statistical analysis (yellow)
- tropical cyclone verification (MET-TC)

Components Overview

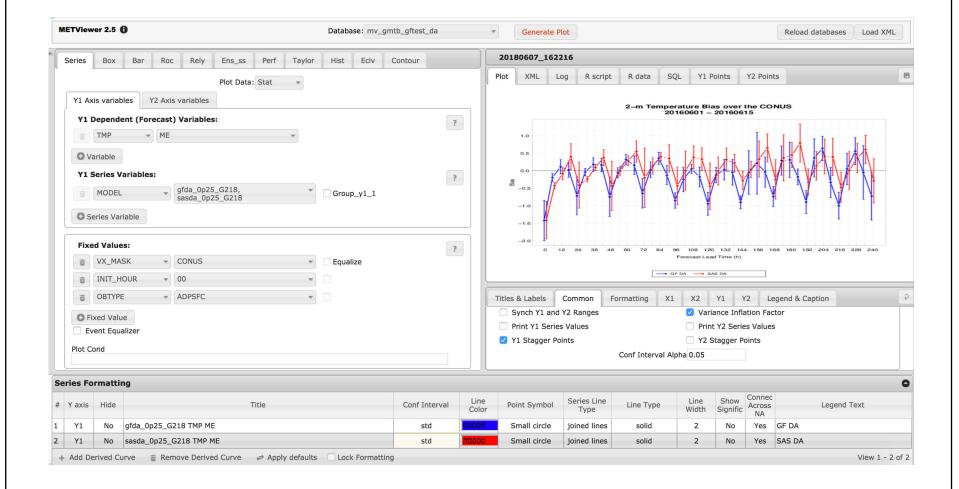
MET data formats & tools

MET components highly-configurable:

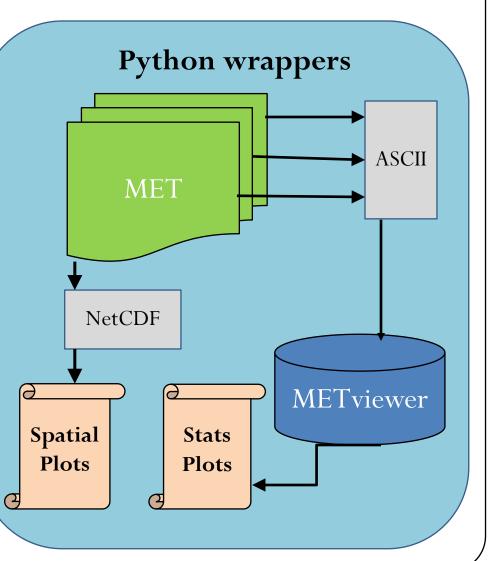

- Verify over specified fields and/or levels
- Apply thresholds
- Apply various interpolation methods
- Verify over user-specified regions

Data	METTool					
Gridded Forecasts	Grid-Stat					
Gridded Observations	Ensemble-Stat					
(CPIP1 / CPIP2 / CE compliant NotCDE /	Wavelet-Stat					
(GRIB1 / GRIB2 / CF-compliant NetCDF / WWMCA / MODIS)	MODE / MODE-TD					
	Series-Analysis					
Gridded Forecasts	Point-Stat					
Point Observations	Ensemble-Stat					
(ASCII formats / Bufr / PrepBufr / MADIS / Lidar)						
Point Forecasts	TC-Pairs					
Point Observations	TC-Stat					
(ATCF file format)	GSITools					

What is METviewer?


- Database and display analysis tool
 - <u>Packages</u>: Java, Apache/Tomcat, MySQL, R statistics

METviewer Customization options


METViewer 2.5 🚺	Database: mv_gmt	tb_gftest_da	-	Gener	ate Plot						Reload databases	Load XML	
Series Box Bar Roc Rely Ens_ss Perf	Taylor Hist Eclv C	Contour		N/A									
Plot Data: Stat	*			Plot XML	Log	R script	R data	SQL	Y1 Points	Y2 Points			•
Y1 Axis variables Y2 Axis variables													
Y1 Dependent (Forecast) Variables:		?											
APCP_06 Select attribute stat	•												
O Variable													
Y1 Series Variables:		?											
MODEL Select value	Group_y1_1												
Series Variable													
Fixed Values:													
C Fixed Value		?											
Event Equalizer													
Plot Cond						Υ.						(Ş
				Titles & Label Title	test title		ormatting	X1 X2	Y1	Y2 Leg	end & Caption		4
Independent Variable:		?		X label	test x_la								
FCST_LEAD	▼ Equalize			Y1 label	test y_la	bel							
Statistics:				Y2 label									
Summary		?		Caption									
Series Formatting													0
# Y axis Hide Title		Conf Interval	Line Color	Point Sym	ibol Se	ries Line Type	Line Type	Lin Wid	e Shov th Signif		Legend 1	ēxt	
+ Add Derived Curve 👘 Remove Derived Curve 🛹 App	ly defaults 🗌 Lock Formatting										No	records to vi	w
													_

METviewer Plotting example

Moving toward METplus Unified verification package Available on GitHub: https://github.com/NCAR/METplus

- Python wrappers around MET and METviewer:
 - Simple to set-up and run
 - Automated plotting of 2D fields and statistics
 - Communication between MET & python algorithms (Cython)
 - Several use cases already established

Software Packages Links

- WPS and WRF
 - Users' Page: <u>http://www2.mmm.ucar.edu/wrf/users/</u>
 - Online Tutorial: <u>http://www2.mmm.ucar.edu/wrf/OnLineTutorial/index.htm</u>
- GSI
 - Users' Page: <u>https://dtcenter.org/com-GSI/users/</u>
 - Online Tutorial: <u>https://dtcenter.org/com-GSI/users/tutorial/index.php</u>
- UPP
 - Users' Page: <u>https://dtcenter.org/upp/users/</u>
 - Online Tutorial: <u>https://dtcenter.org/upp/users/support/online_tutorial/UPPv3.2/index.php</u>
- NCL
 - Users' Page: <u>http://www.ncl.ucar.edu/</u>
- MET
 - Users' Page: <u>https://dtcenter.org/met/users/</u>
 - Online Tutorial: <u>https://dtcenter.org/met/users/support/online_tutorial/index.php</u>