CCPP Training College Park, MD, March 12-13, 2019

Governance

Ligia Bernardet Global Model Test Bed (GMTB)

Two CCPP Codebases to Govern: CCPP-Physics and CCPP-Framework

Reason to govern them separately:

• Physics

- CCPP can have multiple sets of parameterizations and suites
- Various organizations can contribute physics and decide what they want to support to meat their mission

Framework

- Goal is to have a single framework that can be used by various organizations (NCAR, Navy? etc.)
- There needs to be joint governance

Both code have public authoritative repositories in GitHub

CCPP Physics

This governance is under development and practices are expected to evolve

Process for Creating Governance

- Discussion at NGGPS Physics Workshop: 2016
- Presentation to Unified Forecast System (UFS) Steering Committee and follow-up: April 2018
- Began draft document: September 2018
- Iterations with NGGPS program office, EMC, OAR: met four times in late 2018
- More work and wrap up needed on draft

CCPP-Physics Draft Governance

CCPP-Physics Developer's Committee

- Who: Representatives of the institutions engaged in development, plus GMTB rep
- What:
 - Define criteria for acceptance of new schemes and phasing out of existing schemes
 - Define release content and calendar

CCPP-Physics Code Managers

- Who: Reps of the institutions responsible for code management, releases, support
- What: Coordinate/oversee technical aspects of code management, release, support

CCPP-Physics Developers

- Who: Anybody that contributes code
- What: Contribute innovations using governance and code management protocols, merge pull requests after they have been approved by reviewers

Criteria for Acceptance of parameterizations to master

• Current

• NOAA programmatic interest

Potential

- Scientific
 - Has demonstrated merit as a mature development
 - Is sufficiently different from other schemes already in CCPP
 - NOAA/EMC interested for use of scheme in UFS
- Technical
 - Meets the CCPP requirements and coding standards
 - Includes complete documentation
 - Passes the CCPP standard regression test suites
 - Considers run time performance and memory footprint

UFS Physics Working Group

- Is a community group focused on improving the UFS
- Provides guidance to NOAA as to where to focus its priorities in physics development and testing
- Does not have a direct role in the technical management of the CCPP
- Has a synergistic relationship with the CCPP Developers' Committee
- Similarly to the CCPP Developers' Committee, has representatives from UFS physics developers

CCPP-Compliant versus Supported

A physical parameterization is deemed

- **CCPP-compliant** when it meets the software standards that allow it to be used with the CCPP Framework
- **Supported by NOAA** when it is accepted for the subset of NOAA-supported parameterizations The light blue area

The light blue area represents the subset of CCPP-compliant physical parameterizations supported by NOAA to the community (operational + ~3y of planned development)

Tiers of Support

	Tier 1 (operational)	Tier 2 (developmental)
Support	Full	Partial
Included in master	Yes	Yes
Distributed in public release	Yes	Possibly; depending on developer and agreement on providing support
Pre-release testing	Yes	Yes; for distributed schemes/suites
Follows code standards	Yes	Yes
Fully documented	Yes	Yes
Help requests answered	By GMTB and parameterization developers	Highly dependent on parameterization developers

Support by GMTB

Support provided

- Access to code and prebuild/build with the UFS and the GMTB SCM
- How to make a parameterization CCPP-compliant
- How to contribute to the CCPP-Physics
- How to construct a new suite
- Information on the *host model caps* for using FV3 with the UFS or GMTB SCM
- Information on how to connect CCPP to a new host model
- Scientific aspects of the parameterizations or suites

Support not provided by GMTB

- Support to other UFS components, such as FV3, NEMS etc.
- Actively connect CCPP to a new host model
- Use of CCPP-Physics without the CCPP-Framework

CCPP Framework

The Rationale for Separate Governance for the Framework

- Several organizations may share the CCPP framework (NCAR MOA, Navy etc.) so governance needs to be larger than NOAA.
- This is a smaller project than the physics advancement enterprise
- There will be a smaller group of developers, but they are highly specialized
- The developers need to work together toward a common product (unlike physical parameterizations, which can be developed somewhat independently up to a certain point)

CCPP-framework Governance

Overview

- https://github.com/NCAR/ccpp-framework/wiki
- <u>https://github.com/NCAR/ccpp-framework/wiki/CCPP-Framework-Governance</u>

Developer's Committee

- Who: Reps of funding agencies (currently NCAR and NOAA)
- What:
 - Review, provide feedback on, and approve new design documents and design changes
 - Review, provide feedback on, and approve code changes
 - Provide test cases and testing resources as necessary to ensure compatibility, viability, and correctness of all proposed code changes

Hierarchical Governance & Testing

Tests

Current: Prior to changes to master

- NEMSfv3gfs regression tests (RTs) is run on Theia
 - EMC official RTs must pass (do not use CCPP)
 - GMTB RTs that invoke CCPP must pass

Upcoming

- Hurricane Supplemental project to develop a robust unit and regression test for CCPP
 - Multiple computational platforms
 - Multiple UFS applications

A Hierarchy of Governance

CCPP is one of many UFS elements. Examples of others are

- Atmospheric component dycore (FV3)
- Other components (ocean, sea ice etc.)
- Scripts and Workflow

Governance is needed to coordinate the use of all elements for the various applications (GFS, SFS etc.)

• Hierarchical governance is needed

Governance needs to be coordinates with other groups that also use these elements

• CCPP-Framework is used by NCAR

