
CCPP prebuild

Dom Heinzeller
Global Model Test Bed

CCPP Training
College Park, MD, March 12-13, 2019



Outline of Talk

2

� CCPP prebuild versus actual build
� Usage
� CCPP prebuild in the dynamic build
� CCPP prebuild in the static build
� How to modify CCPP prebuild config (for physics developers)
� Extra credit
� Wrap up



CCPP prebuild versus actual build

3

CCPP prebuild ...
� is a set of Python scripts in ccpp/framework/scripts/
� requires a host-model dependent configuration file
� runs before ccpp-framework and ccpp-physics are compiled
� is called by NEMS builder before CCPP component is built
� establishes the link between the variables provided by the 

host model and the variables required by the physics schemes
� creates files required by the build system, auto-generates 

code that is used in the host model, generates caps for 
running the physics (different for dynamic/static build)



CCPP prebuild script: usage

4

ccpp_prebuild.py is called from the NEMSfv3gfs top-level directory

� dynamic build

./ccpp/framework/scripts/ccpp_prebuild.py [--debug] \
--config=ccpp/config/ccpp_prebuild_config.py

� static build, requires a suite definition file

./ccpp/framework/scripts/ccpp_prebuild.py [--debug] \
--config=ccpp/config/ccpp_prebuild_config.py \
--static \
--suite=ccpp/suites/suite_FV3_CPT.xml



CCPP prebuild in the dynamic build

5

ccpp_prebuild.py
� requires metadata tables on both sides
� checks requested vs provided variables

by standard_name
� checks units, rank, type (more to come)
� creates Fortran code that adds

pointers to the host model variables
and stores them in the ccpp-data
structure (ccpp_fields_*.inc)

� creates caps for physics schemes
� populates makefiles with schemes and caps

metadata tables:
variables requested

metadata tables:
variables provided

CCPP prebuild



CCPP prebuild in the dynamic build

6



Files generated for dynamic build

7

ccpp/framework/doc/DevelopersGuide/CCPP_VARIABLES_FV3.tex
# variables provided by host model and required by physics,
# run ‘make’ in this dir to get PDF (also creates Dev. Guide)

ccpp/physics/CCPP_CAPS.{cmake,mk}
# makefile snippets that contain all caps to be compiled

ccpp/physics/CCPP_SCHEMES.{cmake,mk}
# makefile snippets that contain all schemes to be compiled

ccpp/physics/CCPP_VARIABLES_FV3.html
# variables provided by host model

ccpp/physics/*_cap.F90
# one cap per physics scheme



Files generated for dynamic build

8

FV3/atmos_cubed_sphere/driver/fvGFS/ccpp_modules_fast_physics.inc
FV3/atmos_cubed_sphere/driver/fvGFS/ccpp_modules_slow_physics.inc
FV3/atmos_cubed_sphere/driver/fvGFS/ccpp_fields_fast_physics.inc
FV3/atmos_cubed_sphere/driver/fvGFS/ccpp_fields_slow_physics.inc

FV3/ipd/ccpp_modules_fast_physics.inc
FV3/ipd/ccpp_modules_slow_physics.inc
FV3/ipd/ccpp_fields_fast_physics.inc
FV3/ipd/ccpp_fields_slow_physics.inc

# auto-generated code to include in host model caps (called
# TARGET FILES) via CPP (preprocessor) directives:
#   FV3/ipd/IPD_CCPP_driver.F90 for slow physics
#   FV3/atmos_cubed_sphere/driver/fvGFS/atmosphere.F90
#                               for fast physics
# *.inc files contain module use and ccpp_field_add statements
# that populate the ccpp data type (cdata) with the necessary
# information on where (in memory) to find required variables



CCPP prebuild in the static build

9

ccpp_prebuild.py
� requires metadata tables on both sides
� requires a suite definition file
� checks requested vs provided variables

by standard_name
� checks units, rank, type (more to come)
� filters unused schemes and variables
� creates Fortran code (static API) that

replaces the dynamic API (ccpp-framework)
� creates caps for physics groups and suite
� populates makefiles with schemes and caps

metadata tables:
variables requested

metadata tables:
variables provided

CCPP prebuild



CCPP prebuild in the static build

10



Files generated for static build

11

ccpp/framework/doc/DevelopersGuide/CCPP_VARIABLES_FV3.tex
# variables provided by host model and required by physics,
# run ‘make’ in this dir to get PDF (also creates Dev. Guide)

ccpp/framework/src/ccpp_suite_static.inc
# contains name of suite used at compile time, which
# is compared to name of suite used at run time

ccpp/physics/CCPP_CAPS.{cmake, mk}
# makefile snippets that contain all caps to be compiled

ccpp/physics/CCPP_SCHEMES.{cmake,mk}
# makefile snippets that contain all schemes to be compiled

ccpp/physics/CCPP_VARIABLES_FV3.html
# variables provided by host model

ccpp/physics/ccpp_group_*_cap.F90
# one cap per physics group

ccpp/physics/ccpp_suite_cap.F90
# cap for the entire suite



Files generated for static build

12

FV3/gfsphysics/CCPP_layer/ccpp_static_api.F90 

# auto-generated API for static build that replaces
# the dynamic API (aka ccpp-framework), the interface
# is identical between the two APIs
# TARGET FILES as before:
#   FV3/ipd/IPD_CCPP_driver.F90 for slow physics
#   FV3/atmos_cubed_sphere/driver/fvGFS/atmosphere.F90
#                               for fast physics





Modifying CCPP prebuild config

14

CCPP prebuild is complex, but physics developers don’t need to fiddle with 
all the details (host model developers need to, but only once)!

What to change in ccpp/config/ccpp_prebuild_config.py when 
adding new physics or modifying existing physics:

� add new scheme (CCPP entry point) to SCHEME_FILES dictionary, 
choose correct set of physics (most likely ‘slow physics’)

� add any dependencies to SCHEME_FILES_DEPENDENCIES list
� if optional arguments are used, add name of scheme and subroutine

to OPTIONAL_ARGUMENTS and choose either ‘all’ or ‘none’
or provide a list of optional arguments to use (standard names)

� use existing entries and in-line documentation as guidance



Wrap up

15

� CCPP prebuild is the work horse of the CCPP
� needs to run before CCPP framework and physics are built
� is run automatically by NEMS build system
� does different things for dynamic and static builds
� single configuration file in Python format

ccpp/config/ccpp_prebuild_config.py

� physics developers need to change three options at most

SCHEME_FILES
SCHEME_FILES_DEPENDENCIES
OPTIONAL_ARGUMENTS



16



Behind the scenes
(extra credit: cdata in the dynamic and static build)

17



Extra credit: cdata in dyn/stat build

18

� cdata is a CCPP internal data type, defined in
ccpp/framework/src/ccpp_types.F90

� cdata has five internal variables required by the static and dynamic build
integer            :: errflg
character(len=512) :: errmsg
# for error handling: assign error message,
# set errflg to /=0 and return from scheme

integer            :: loop_cnt
# supports subcycling capability (default 1)

integer            :: blk_no
# stores block number (def. 1 if no blocking)

integer            :: thrd_no
# stores thread number (def. 1 if no threading)



Extra credit: cdata in dyn/stat build

19

� cdata is a CCPP internal data type, defined in
ccpp/framework/src/ccpp_types.F90 

� cdata has five internal variables required by the static and dynamic build
� CCPP physics calls are made with a scalar cdata (i.e. element of a cdata 

array if blocking and/or threading are used)

!$OMP parallel do
do nb = 1,nblks

nt = omp_get_thread_num()+1
call ccpp_physics_run(cdata_block(nb,nt), ierr=ierr)
if (ierr/=0) ...

end do

➔ that’s how CCPP knows about block/thread numbers



Extra credit: cdata in dyn/stat build

20

� cdata is a CCPP internal data type, defined in
ccpp/framework/src/ccpp_types.F90

� cdata has five internal variables required by the static and dynamic build
� CCPP physics calls are made with a scalar cdata (i.e. element of a cdata 

array if blocking and/or threading are used) à CCPP knows blk/thrd no
� For the dynamic build, cdata also contains a lookup table that instructs 

CCPP where (in memory) to find a variable with a given standard_name
air_temperature :

c_loc(GFS_Data(cdata%blk_no)%Statein%tgrs)
water_vapor_specific_humidity_at_lowest_model_layer :

c_loc(GFS_Data(cdata%blk_no)%Statein%qgrs(:,1,1))

this information comes from host model metadata


