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CCPP prebuild versus actual build
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CCPP prebuild ...
� is a set of Python scripts in ccpp/framework/scripts/
� requires a host-model dependent configuration file
� runs before ccpp-framework and ccpp-physics are compiled
� is called by NEMS builder before CCPP component is built
� establishes the link between the variables provided by the 

host model and the variables required by the physics schemes
� creates files required by the build system, auto-generates 

code that is used in the host model, generates caps for 
running the physics (different for dynamic/static build)



CCPP prebuild script: usage
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ccpp_prebuild.py is called from the NEMSfv3gfs top-level directory

� dynamic build

./ccpp/framework/scripts/ccpp_prebuild.py [--debug] \
--config=ccpp/config/ccpp_prebuild_config.py

� static build, requires a suite definition file

./ccpp/framework/scripts/ccpp_prebuild.py [--debug] \
--config=ccpp/config/ccpp_prebuild_config.py \
--static \
--suite=ccpp/suites/suite_FV3_CPT.xml



CCPP prebuild in the dynamic build
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ccpp_prebuild.py
� requires metadata tables on both sides
� checks requested vs provided variables

by standard_name
� checks units, rank, type (more to come)
� creates Fortran code that adds

pointers to the host model variables
and stores them in the ccpp-data
structure (ccpp_fields_*.inc)

� creates caps for physics schemes
� populates makefiles with schemes and caps

metadata tables:
variables requested

metadata tables:
variables provided

CCPP prebuild



CCPP prebuild in the dynamic build
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Files generated for dynamic build
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ccpp/framework/doc/DevelopersGuide/CCPP_VARIABLES_FV3.tex
# variables provided by host model and required by physics,
# run ‘make’ in this dir to get PDF (also creates Dev. Guide)

ccpp/physics/CCPP_CAPS.{cmake,mk}
# makefile snippets that contain all caps to be compiled

ccpp/physics/CCPP_SCHEMES.{cmake,mk}
# makefile snippets that contain all schemes to be compiled

ccpp/physics/CCPP_VARIABLES_FV3.html
# variables provided by host model

ccpp/physics/*_cap.F90
# one cap per physics scheme



Files generated for dynamic build
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FV3/atmos_cubed_sphere/driver/fvGFS/ccpp_modules_fast_physics.inc
FV3/atmos_cubed_sphere/driver/fvGFS/ccpp_modules_slow_physics.inc
FV3/atmos_cubed_sphere/driver/fvGFS/ccpp_fields_fast_physics.inc
FV3/atmos_cubed_sphere/driver/fvGFS/ccpp_fields_slow_physics.inc

FV3/ipd/ccpp_modules_fast_physics.inc
FV3/ipd/ccpp_modules_slow_physics.inc
FV3/ipd/ccpp_fields_fast_physics.inc
FV3/ipd/ccpp_fields_slow_physics.inc

# auto-generated code to include in host model caps (called
# TARGET FILES) via CPP (preprocessor) directives:
#   FV3/ipd/IPD_CCPP_driver.F90 for slow physics
#   FV3/atmos_cubed_sphere/driver/fvGFS/atmosphere.F90
#                               for fast physics
# *.inc files contain module use and ccpp_field_add statements
# that populate the ccpp data type (cdata) with the necessary
# information on where (in memory) to find required variables



CCPP prebuild in the static build
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ccpp_prebuild.py
� requires metadata tables on both sides
� requires a suite definition file
� checks requested vs provided variables

by standard_name
� checks units, rank, type (more to come)
� filters unused schemes and variables
� creates Fortran code (static API) that

replaces the dynamic API (ccpp-framework)
� creates caps for physics groups and suite
� populates makefiles with schemes and caps

metadata tables:
variables requested

metadata tables:
variables provided

CCPP prebuild



CCPP prebuild in the static build

10



Files generated for static build
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ccpp/framework/doc/DevelopersGuide/CCPP_VARIABLES_FV3.tex
# variables provided by host model and required by physics,
# run ‘make’ in this dir to get PDF (also creates Dev. Guide)

ccpp/framework/src/ccpp_suite_static.inc
# contains name of suite used at compile time, which
# is compared to name of suite used at run time

ccpp/physics/CCPP_CAPS.{cmake, mk}
# makefile snippets that contain all caps to be compiled

ccpp/physics/CCPP_SCHEMES.{cmake,mk}
# makefile snippets that contain all schemes to be compiled

ccpp/physics/CCPP_VARIABLES_FV3.html
# variables provided by host model

ccpp/physics/ccpp_group_*_cap.F90
# one cap per physics group

ccpp/physics/ccpp_suite_cap.F90
# cap for the entire suite



Files generated for static build
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FV3/gfsphysics/CCPP_layer/ccpp_static_api.F90 

# auto-generated API for static build that replaces
# the dynamic API (aka ccpp-framework), the interface
# is identical between the two APIs
# TARGET FILES as before:
#   FV3/ipd/IPD_CCPP_driver.F90 for slow physics
#   FV3/atmos_cubed_sphere/driver/fvGFS/atmosphere.F90
#                               for fast physics





Modifying CCPP prebuild config
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CCPP prebuild is complex, but physics developers don’t need to fiddle with 
all the details (host model developers need to, but only once)!

What to change in ccpp/config/ccpp_prebuild_config.py when 
adding new physics or modifying existing physics:

� add new scheme (CCPP entry point) to SCHEME_FILES dictionary, 
choose correct set of physics (most likely ‘slow physics’)

� add any dependencies to SCHEME_FILES_DEPENDENCIES list
� if optional arguments are used, add name of scheme and subroutine

to OPTIONAL_ARGUMENTS and choose either ‘all’ or ‘none’
or provide a list of optional arguments to use (standard names)

� use existing entries and in-line documentation as guidance



Wrap up
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� CCPP prebuild is the work horse of the CCPP
� needs to run before CCPP framework and physics are built
� is run automatically by NEMS build system
� does different things for dynamic and static builds
� single configuration file in Python format

ccpp/config/ccpp_prebuild_config.py

� physics developers need to change three options at most

SCHEME_FILES
SCHEME_FILES_DEPENDENCIES
OPTIONAL_ARGUMENTS
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Behind the scenes
(extra credit: cdata in the dynamic and static build)
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Extra credit: cdata in dyn/stat build
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� cdata is a CCPP internal data type, defined in
ccpp/framework/src/ccpp_types.F90

� cdata has five internal variables required by the static and dynamic build
integer            :: errflg
character(len=512) :: errmsg
# for error handling: assign error message,
# set errflg to /=0 and return from scheme

integer            :: loop_cnt
# supports subcycling capability (default 1)

integer            :: blk_no
# stores block number (def. 1 if no blocking)

integer            :: thrd_no
# stores thread number (def. 1 if no threading)



Extra credit: cdata in dyn/stat build
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� cdata is a CCPP internal data type, defined in
ccpp/framework/src/ccpp_types.F90 

� cdata has five internal variables required by the static and dynamic build
� CCPP physics calls are made with a scalar cdata (i.e. element of a cdata 

array if blocking and/or threading are used)

!$OMP parallel do
do nb = 1,nblks

nt = omp_get_thread_num()+1
call ccpp_physics_run(cdata_block(nb,nt), ierr=ierr)
if (ierr/=0) ...

end do

➔ that’s how CCPP knows about block/thread numbers



Extra credit: cdata in dyn/stat build
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� cdata is a CCPP internal data type, defined in
ccpp/framework/src/ccpp_types.F90

� cdata has five internal variables required by the static and dynamic build
� CCPP physics calls are made with a scalar cdata (i.e. element of a cdata 

array if blocking and/or threading are used) à CCPP knows blk/thrd no
� For the dynamic build, cdata also contains a lookup table that instructs 

CCPP where (in memory) to find a variable with a given standard_name
air_temperature :

c_loc(GFS_Data(cdata%blk_no)%Statein%tgrs)
water_vapor_specific_humidity_at_lowest_model_layer :

c_loc(GFS_Data(cdata%blk_no)%Statein%qgrs(:,1,1))

this information comes from host model metadata


