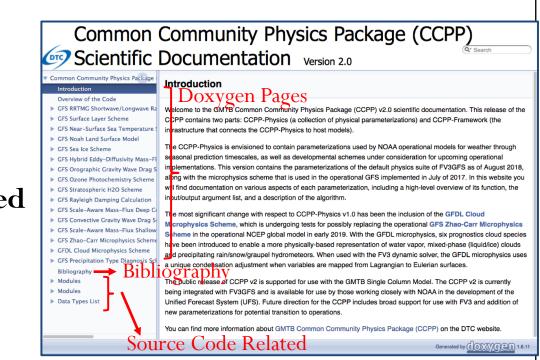
CCPP Training College Park, MD, March 12-13, 2019

CCPP Scientific Documentation

Man Zhang and Grant Firl Global Model Test Bed


Outline of Talk

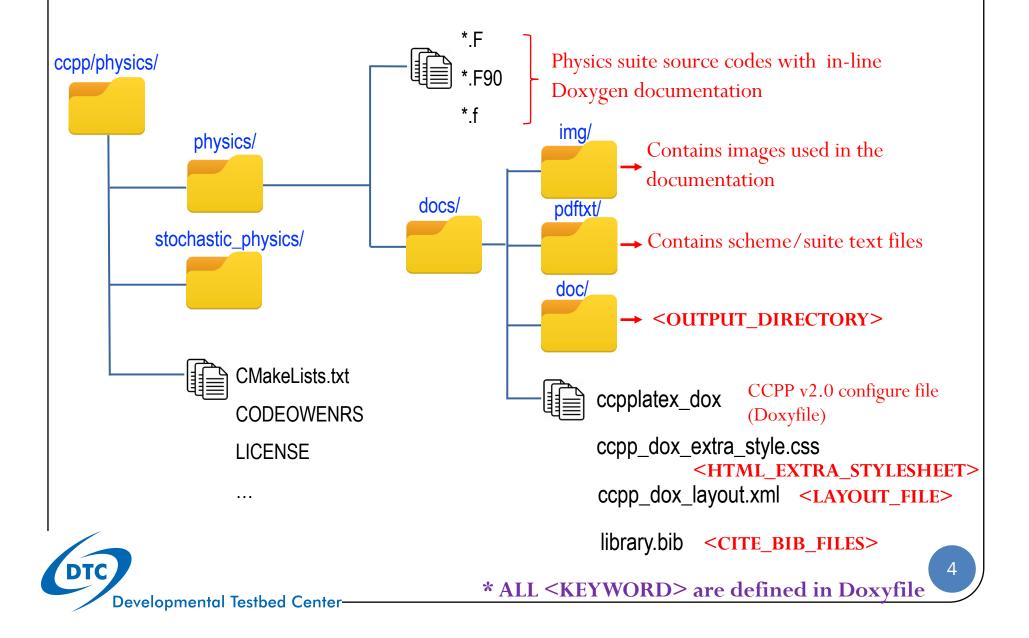
- Big Picture
- Where is it
 - Directory Structure

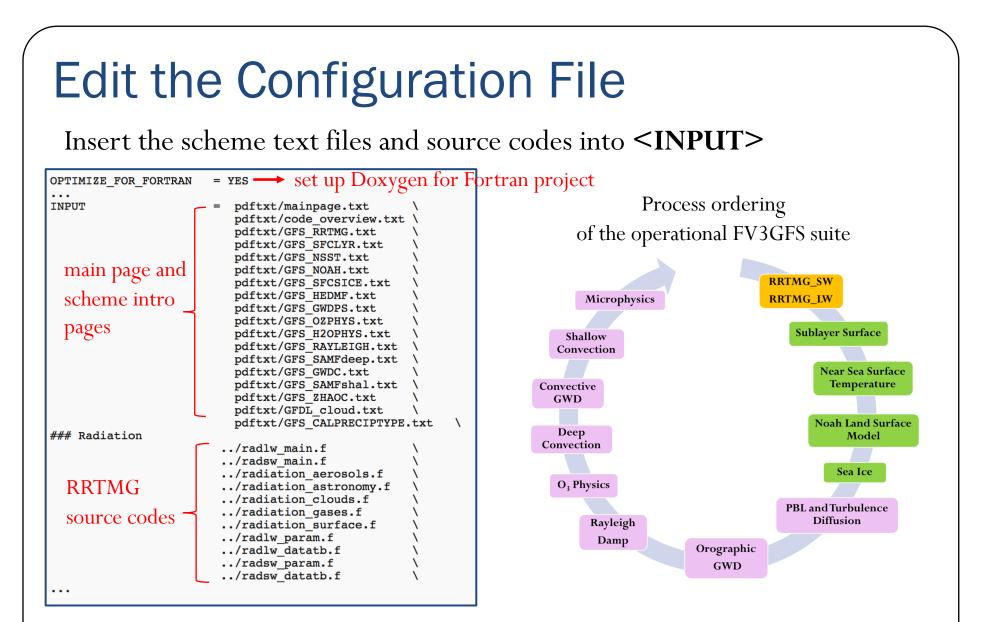
• What should be documented

- Edit Configuration File
- Document a Physics Suite

• Wrap Up

<u>CCPPV2.0 scientific documentation</u> includes FV3GFS physics suite


Big Picture


Doxygen + GitHub :

- Provides history tracking and branching that no Wiki can provide
- Provides the same development workflow for your documentation as well as for your source code
- Makes information easily accessible, facilitates stakeholder communication and helps cut support costs

Directory Structure of CCPP-Physics

The order in which schemes are listed determines the order in the html output. Currently schemes are listed in order of the operational FV3GFS suite

Edit the Configuration File

GENERATE_HTML	= YES
HTML_OUTPUT	= html Define HTML as output format
HTML FILE EXTENSION	= .html
HTML HEADER	=
HTML FOOTER	=
HTML STYLESHEET	=
HTML EXTRA STYLESHEET	= ccpp dox extra style.css
HTML EXTRA FILES	=
HTML COLORSTYLE HUE	= 220
HTML COLORSTYLE SAT	= 100 Color customization of the output
HTML COLORSTYLE GAMMA	= 80

<HTML_EXTRA_STYLESHEET> contains CSS formatting over and above
 the standard Doxygen CSS

Running Doxygen

Doxygen is prebuilt on Theia. Add the following line into *.cshrc* file under your home directory:

alias doxygen /scratch4/BMC/gmtb/doxygen-1.8.10/bin/doxygen

Source your .*cshrc* file. Then under ./*docs*/, type:

\$doxygen ccpplatex_dox

The generated HTML documentation can be viewed by pointing a HTML browser to the *index.html* file in the ./*docs/doc/html/* directory

Documenting a Physics Suite

A broad array of information should be included in order to serve both software engineering and scientific purposes.

The documentation style could be divided into three categories:

- **Doxygen Pages**: external text files that generate scheme/suite pages with a high-level scientific overview
- In-line Documentation: describing scheme arguments and algorithm
- A Bibliography File: in BibTex format

Creating the Suite/Scheme Pages

Doxygen pages (.*pdftxt**.*txt*) are used for documentation that is not directly attached to the Fortran codes:

- **Physics suite main page ("\mainpage"**): the place to describe the project, background, and any history that might be useful for a reader to be aware of. You can refer to any source code entity from within the page if required.
- **Physics scheme page ("\page")** will often describe the following:
 - Description
 - Scientific origin and scheme history ("\cite")
 - Key features and differentiating points
 - A picture is sometimes worth a thousand words ("\image")
 - Intraphysics Communication
 - Insert a link to in-line [SCHEME]_run Argument Table ("\ref")
 - General Algorithm
 - Insert a link to in-line [SCHEME]_run General Algorithm ("\ref")

Doxygen Pages: GFS Zhao-Carr MP Scheme

```
/**
1
                                                             "\page" - indicate this is a free floating page
     \page GFS ZHAOC GFS Zhao-Carr Microphysics Scheme
2
3
     \section des zhao Description
4
      This is the GFS scheme for grid-scale condensation and precipitation which is
5
      based on Zhao and Carr (1997) \cite zhao and carr 1997 and
6
      Sundqvist et al. (1989) \cite sundqvist et al 1989 .
7
                                                                 "\image" - insert an image file located
8
       . . . . . .
      Figure 1 shows a schematic illustration of this scheme.under <IMAGE_PATH> in config file
9
10
      \image html GFS zhaocarr schematic.png "Figure 1: Schematic illustration of the
11
       precipitation scheme" width=10cm
12
13
                                                        "\section" – divide a Doxygen page into sections
      \section intra zhao Intraphysics Communication
14
      + For grid-scale condensation and evaporation of cloud process
15
      (\ref arg table zhaocarr gscond run)
16
      + For precipitation (snow or rain) production (\ref arg table zhaocarr precpd run)
17
18
      \section Gen zhao General Algorithm
19
      + \ref general gscond
20
                                 "\ref"-- insert a link to the specified
      + \ref general precpd
21
22
                                  page in this section
23
      */
24
```

The symbols "/**" and "*/" need to be the first and last entries of the page

Link to the HTML Result

In-line Documentation Style

In the first line of each Fortran file, brief one sentence overview of the file purpose following "\file":

!> \file gwdps.f
!! This file is the parameterization of orographic gravity wave
!! drag and mountain blocking.

The Doxygen code block begins with "!>", and subsequent lines begin with "!!" The parameter definition begin with "!<"

```
integer, parameter, public :: NF_VGAS = 10  !< number of gas species
integer, parameter  :: IMXCO2 = 24  !< input CO2 data longitude points
integer, parameter  :: JMXCO2 = 12  !< input CO2 data latitude points
integer, parameter  :: MINYEAR = 1957 !< earlist year 2D CO2 data available</pre>
```

Doxygen Modules

CCPP v2.0 has structured documentation based on modules, and tag each child subroutine or function with the parent module name. A module implements a particular parameterization functionality.

In each subroutine that is a CCPP entry point to the scheme, a module is defined using "\defgroup ", e.g., to define a parent module "GFS radsw Main":

```
1> \defgroup module_radsw_main GFS radsw Main
11 This module includes NCEP's modifications of the RRTMG-SW radiation
11 code from AER.
11 ...
11 \author Eli J. Mlawer, emlawer@aer.com
11\author Jennifer S. Delamere, jdelamer@aer.com
11\author Michael J. Iacono, miacono@aer.com
11\author Shepard A. Clough
11\version NCEP SW v5.1 Nov 2012 -RRTMG-SW v3.8
11
```

Later in the source code or a separated code, you can associate a subroutine or function with this module by using "\ingroup":

12

In-line Documentation Style

For each subroutine that is an entry point to the scheme, further documentation will include:

• An argument table section

CCPP functional significance: see Grant's CCPP-compliant parameterizations slides)

Argument Table	
-----------------------	--

local_name	standard_name	long_name	units	rank	type	kind	intent	optional
Isidea	flag_idealized_physics	flag for idealized physics	flag	0	logical		in	F
im	horizontal_loop_extent	horizontal loop extent	count	0	integer		in	F
ix	horizontal_dimension	horizontal dimension	count	0	integer		in	F
km	vertical_dimension	number of vertical layers	count	0	integer		in	F
	horizontal_dimension			-	integer			

- The scheme general algorithm section "\section"
 - list in-line calculation step by using "-#" markers
- The In-line detail algorithm section usually includes:
 - convert existing Fortran comments to Doxygen comments
 - using Latex formulas in the Doxygen comment is recommended "\f[" and "\f]"

GFS precpd Scheme General Algorithm

The following two equations can be used to calculate the precipitation rates of rain and snow at each model level:

$$Pr(\eta) = \frac{P_s - P_t}{g\eta s} \int_{\eta}^{\eta} (P_{raut} + P_{racw} + P_{sacw} + P_{sm} + P_{sm} - E_{rr}) d\eta$$

Developmental Testbed Center

In-line Documentation Style

For each subroutine that is *not* the entry point to the scheme:

- Using "\ingroup" to associate it with the parent module
- A brief one-sentence description "\brief"
- Using "\param" to define each parameter with local name, a short description and unit

```
!> \ingroup HEDMF
   \brief This subroutine is used for calculating the mass flux and updraft properties.
11
11
   \param[in] im
                      number of used points
11
   \param[in] ix
                      horizontal dimension
   \param[in] km
                      vertical layer dimension
   \param[in] ntrac number of tracers
11
11
   \section general mfpbl mfpbl General Algorithm
   -# Determine ...
11
   -# Calculate ...
   -# ...
   \section detailed_mfpbl mfpbl Detailed Algorithm
      subroutine mfpbl(im,ix,km,ntrac,delt,cnvflg,
         zl,zm,thvx,ql,tl,ul,vl,hpbl,kpbl,
         sflx, ustar, wstar, xmf, tcko, qcko, ucko, vcko)
    ... your code goes here
    end subroutine mfpbl
11 01
                                                                      Link to the HTML Result
```

Developmental Testbed Center

Bibliography/Citation

Doxygen can handle in-line paper citations and link to an automatically created <u>bibliography page</u>

• A *library.bib* (i.e., **<cite_bib_files>** in doxyfile>) for FV3GFS physics in BibTex format is provided in the repository.

```
@article{han_et_al_2017,
Author = {J. Han and W. Wang and Y. C. Kwon and S.-Y. Hong and V. Tallapragada and F. Yang},
Date-Added = {2018-01-24 18:48:52 +0000},
Date-Modified = {2018-01-24 18:53:21 +0000},
Journal = {Weather and Forecasting},
Pages = {2005-2017},
Title = {Updates in the NCEP GFS cumulus convective schemes with scale and aerosol awareness},
Volume = {32},
Year = {2017}}
```

• To use citations within the comment text, use Doxygen command:

\cite bibtex_key_to_paper

Wrap Up

- Reviewing CCPPv2 scientific documentation provide a good start point for advanced CCPP physics suites documentation.
- The procedure outlined herein is not unique, but following it will provide a level of continuity with previously documented schemes.
- For precise instruction on creating the scientific documentation:
 - <u>http://www.doxygen.nl/manual/</u>
 - contact the GMTB helpdesk: gmtb-help@ucar.edu

