/ CCPP Training \
College Park, MD, March 12-13, 2019

What Makes a Parameterization CCPP-compliant?

Grant Firl
Global Model Test Bed

1,

Developmental Testbed Center

Outline of Talk

® CCPP-compliant vs officially supported
® Argument metadata

* Required subroutines

® Error handling

e Other coding rules

)

Developmental Testbed Center

Two Tiers of Acceptance

° CCPP—compliancy

® Jowest bar

(meChanlsuc) Common Community Physics Package (CCPP) Ecosystem
°) .
Supported CCPP CCPP—comphant in " open Community, piay
* highest bar user branch/fork ot a0
(governance— MASTER “’*’ZMC
related) Open Community,

2. commit when Universities
performance and Labs
memory EMC
optimized
full
scientific/technic

K EMC controls

al documentation contents of

merit CCPP-compliant + ‘ Haelnipichal

governance pass regression tests

process
CCPP-compliant + CCPP-compliant +
fully supported fully supported +

DTC operational /

Developmental Testbed Center

Physics Scheme Argument Metadata

® Metadata for variables needed by physics is KEY to how the
CCPP works

® Variables provided by the host are matched to those
needed by physics based on Comparing metadata

® Metadata are provided in commented tables that precede a

subroutine’s code (and do double-duty as documentation)

® Special formatting is required for:
* Doxygen (documentation) parsing

e CCPP framework script parsing

)

Developmental Testbed Center

Physics Scheme Argument Metadata

® Current metadata attributes
® local name — what a variable is called in the local subroutine

* standard_name — how a variable is referred to internally to the
CCPP
must be unique within the CCPP
based on CF conventions where possible

® long_name — more verbose description of variable
® units — use standard unit abbreviations and exponents immediately

follow (m2 s-2)
® rank — variable dimensionality
® type — Fortran intrinsic type or derived type name
® kind — specifies precision or length
® intent — in, out, inout

° optional

)

Developmental Testbed Center

Physics Scheme Argument Metadata

¢ Current formatting (align for readability)

mind the format!

must match subroutine name

1 \secti<:\arg_table_scheme_x_run Argument Table

'l | local\name | standard_name | long_name units | rank | type | kind | intent | optional
"o | | | | | | | |
) oim | horizontal_loop_extent | horizontal loop extent | {ount | @ | integer | | in | F |
[levs vertical_dimension | vertical layer dimension | nt | @ | integer | | in | F

[N vdftra vertically_diffused_tracer_gbncentration | tracer concentration diffused by PBL scheme | kg kg-1 | 3 | real | kind_phys | inout | F |

required for Doxygen forrnatting

® The order of arguments in the table does not have to match
the order of actual arguments in the subroutine, but it is

preferred.

)

Developmental Testbed Center

Physics Scheme Argument Metadata
* Changes in the pipeline:

® metadata will reside in external file with the same root name
with a different file extension (.meta)

* rank will be replaced by actual dimensions:
(standard_name_of_dim1, standard_name_of_dim?2)

o python config—file—like format (similar to INI for MS Win)

® 3 converter for the new format will be provided

)

Developmental Testbed Center

Physics Scheme Argument Metadata

e List of standard names currently being used in the host

* A list of available standard names and an example of naming conventions can be found in
ccpp/framework/doc/DevelopersGuide/ CCPP_VARIABLES_$ {HOST}.pdf,
where $ {HOST} is the name of the host model. Running the CCPP prebuild script (see
Chapter 3: Running ccpp_prebuild.py) will generate a LaTeX source file that can be
compiled to produce a PDF file with all variables defined by the host model and requested
by the physics schemes. The script will also indicate if additional variables need to be

added.
® All variable information (units, rank, index ordering) must match the
specifications on the host model side, but sub-slices can be used/added in the
host model. For example, in GFS_typedefs.F90, tendencies can be split so they
can be used in the necessary physics scheme:

o dt3dt(:,:,1) =
cumulative_change_in_temperature_due_to_longwave_radiation
o dt3dt(:,:,2) =

cumulative_change_in_temperature_due_to_shortwave_radiation

)

Developmental Testbed Center

Required Subroutines

® _init, _run

, _finalize module

subroutines ‘ T
. implicit none
° con51stency between . £
module name and private
subroutine names public :: scheme init,scheme run,scheme finalize

contains

P . .t d f. 1. - - -
_1nit and __I1nalize @tzne @@D

subroutines run durin : ..
& end subroutine scheme init

ccpp_physics_initialize / <sibroutin e@:h E_ finalize(l—

appJﬂwmaLﬁnduecdh end subroutine scheme finalize

* idempotent subrou tin_run ()

* empty schemes don’tnced end subroutine scheme_ run

metadata tables end module scheme

)

Developmental Testbed Center

Scheme—specific Interstitial

® pre- and post- scheme—specific interstitial code may be placed
in the same source file as difterent modules (also need _init,

_run, and _ finalize)
module scheme pre
implicit none

private

public :: scheme pre init, scheme pre run, &
scheme pre finalize

contains

subroutine scheme pre init()

end subroutine scheme pre init
subroutine scheme pre finalize()
end subroutine scheme pre finalize
subroutine scheme pre run()

end subroutine scheme pre run

end module scheme pre
DTC ,

Developmental Tesioea Cenrer

Parameterization Drivers

* Although discouraged, it may be necessary to add a driver
layer on top of some schemes. In this case the driver is the

CCPP-compliant “scheme”.

® to preserve schemes distributed outside of CCPP (e.g.,
Thompson MP from WRF)

® (temporary) unit conversions and array transformations

(vertically flip)

)

Developmental Testbed Center

Error Handling

e Schemes should make use of CCPP error—handling variables

and not stop/ abort/ print errors within

1! | errflg | ccpp_error_flag | error flag for error handling | flag | @ | integer | | none |F |
Il | errmsg | ccpp_error_message | error message for error handling | none | @ | character | len=512 | none |F |

* ccpp error flag and ccpp error message
must be arguments (intent OUT)

® In the event of an error, assign a meaningful error message to

errmsg and set errﬂg to a value other than O:

r

write (errmsg, ‘(*(a))’) ‘Logic error in scheme xyz: ..
errflg = 1
return

)

Developmental Testbed Center

Other Coding Rules

* All external information required by the scheme must be passed in via the argument list.
* No ‘use EXTERNAL_MODULE’ for passing in data
° Physical constants should go through the argument list

* Code must comply to modern Fortran standards (Fortran 90/95/2003).

* Use labeled end statements for modules, subroutines and functions, example:
* module scheme_template — end module scheme_template.

* Use implicit none.

* All intent(out) variables must be set inside the subroutine, including the mandatory
variables errflg and errmsg. [Watch out for partially set intent(out) variables.

* No permanent state of decomposition-dependent host model data inside the module, i.e.
no variables that contain domain-dependent data using the save attribute.

® No goto statements.

e No common blocks.

Additional coding rules are listed under the Coding Standards section of the NOAA NGGPS Overarching System team
document on Code, Data, and Documentation Management for NEMS Modeling Applications and Suites (available at
https: //docs.google.com/document/u/1/d/1bjny]p]7T3XeW3zCnhRITL5a3m4 3XIAUeThUPWDO9Tg/edit#the
ading=h.97v79689%onyd).

DTC

©

Developmental Testbed Center

https://docs.google.com/document/u/1/d/1bjnyJpJ7T3XeW3zCnhRLTL5a3m4_3XIAUeThUPWD9Tg/edit

Parallel Programming

* Shared-memory (OpenMP) parallelization inside a scheme is
allowed with the restriction that the number of OpenMP threads
to use is obtained from the host model as an intent(in) argument
in the argument list

® MPI communication is allowed in the _init and _finalize phase
for the purpose of computing, reading or writing scheme-specific
data that is independent of the host model’s data decomposition.

® MPI calls are restricted to global communication at this time, no
point-to-point; the MPI communicator is also an input argument
to the scheme

* Calls to MPI and OpenMP functions, and the import of the MPI

and OpenMP libraries, must be guarded by C preprocessor
directives.

)

Developmental Testbed Center

)

Wrap Up
® CCPP-compliancy vs supported schemes

e Scheme argument variable metadata

e what is included and how to write it
® Required subroutines and scheme—specific interstitial
® Error handling

® Other coding rules, parameterization drivers, and parallel

programming

)

Developmental Testbed Center

