
What Makes a Parameterization CCPP-compliant?

Grant Firl
Global Model Test Bed

CCPP Training
College Park, MD, March 12-13, 2019



Outline of Talk

2

� CCPP-compliant vs officially supported
� Argument metadata
� Required subroutines
� Error handling
� Other coding rules



Two Tiers of Acceptance

3

� CCPP-compliancy
� lowest bar 

(mechanistic)
� Supported CCPP

� highest bar 
(governance-
related)
� performance and 

memory 
optimized

� full 
scientific/technic
al documentation

� merit
� governance 

process

MASTER

CCPP-compliant in 
user branch/fork

CCPP-compliant + 
pass regression tests

CCPP-compliant + 
fully supported

CCPP-compliant + 
fully supported + 
operational



Physics Scheme Argument Metadata

4

� Metadata for variables needed by physics is KEY to how the 
CCPP works

� Variables provided by the host are matched to those 
needed by physics based on comparing metadata

� Metadata are provided in commented tables that precede a 
subroutine’s code (and do double-duty as documentation)

� Special formatting is required for:
� Doxygen (documentation) parsing
� CCPP framework script parsing



Physics Scheme Argument Metadata

5

� Current metadata attributes
� local_name – what a variable is called in the local subroutine
� standard_name – how a variable is referred to internally to the 

CCPP
� must be unique within the CCPP
� based on CF conventions where possible

� long_name – more verbose description of variable
� units – use standard unit abbreviations and exponents immediately 

follow (m2 s-2)
� rank – variable dimensionality
� type – Fortran intrinsic type or derived type name
� kind – specifies precision or length
� intent – in, out, inout
� optional



Physics Scheme Argument Metadata

6

� Current formatting (align for readability)

� The order of arguments in the table does not have to match 
the order of actual arguments in the subroutine, but it is 
preferred.

required for Doxygen formatting

must match subroutine name mind the format!



Physics Scheme Argument Metadata

7

� Changes in the pipeline:
� metadata will reside in external file with the same root name 

with a different file extension (.meta)
� rank will be replaced by actual dimensions:

� (standard_name_of_dim1, standard_name_of_dim2)

� python config-file-like format (similar to INI for MS Win)
� a converter for the new format will be provided



Physics Scheme Argument Metadata

8

� List of standard names currently being used in the host
� A list of available standard names and an example of naming conventions can be found in 

ccpp/framework/doc/DevelopersGuide/CCPP_VARIABLES_${HOST}.pdf, 
where ${HOST} is the name of the host model. Running the CCPP prebuild script (see 
Chapter 3: Running ccpp_prebuild.py) will generate a LaTeX source file that can be 
compiled to produce a PDF file with all variables defined by the host model and requested 
by the physics schemes. The script will also indicate if additional variables need to be 
added.

� All variable information (units, rank, index ordering) must match the 
specifications on the host model side, but sub-slices can be used/added in the 
host model. For example, in GFS_typedefs.F90, tendencies can be split so they 
can be used in the necessary physics scheme:
� dt3dt(:,:,1) = 

cumulative_change_in_temperature_due_to_longwave_radiation
� dt3dt(:,:,2) = 

cumulative_change_in_temperature_due_to_shortwave_radiation



Required Subroutines

9

� _init, _run, _finalize 
subroutines

� consistency between 
module name and 
subroutine names

� _init and _finalize 
subroutines run during 
ccpp_physics_initialize / 
ccpp_physics_finalize calls

� idempotent
� empty schemes don’t need 

metadata tables



Scheme—specific Interstitial

10

� pre- and post- scheme-specific interstitial code may be placed 
in the same source file as different modules (also need _init, 
_run, and _finalize)



Parameterization Drivers

11

� Although discouraged, it may be necessary to add a driver 
layer on top of some schemes. In this case the driver is the 
CCPP-compliant “scheme”.
� to preserve schemes distributed outside of CCPP (e.g., 

Thompson MP from WRF)
� (temporary) unit conversions and array transformations 

(vertically flip)



Error Handling

12

� Schemes should make use of CCPP error-handling variables 
and not stop/abort/print errors within

� ccpp_error_flag and ccpp_error_message
must be arguments (intent OUT)

� In the event of an error, assign a meaningful error message to 
errmsg and set errflg to a value other than 0:



Other Coding Rules

13

� All external information required by the scheme must be passed in via the argument list.
� No ‘use EXTERNAL_MODULE’ for passing in data
� Physical constants should go through the argument list

� Code must comply to modern Fortran standards (Fortran 90/95/2003).
� Use labeled end statements for modules, subroutines and functions, example:

� module scheme_template→ end module scheme_template.
� Use implicit none.
� All intent(out) variables must be set inside the subroutine, including the mandatory 

variables errflg and errmsg. [Watch out for partially set intent(out) variables.]
� No permanent state of decomposition-dependent host model data inside the module, i.e. 

no variables that contain domain-dependent data using the save attribute.
� No goto statements.
� No common blocks.

Additional coding rules are listed under the Coding Standards section of the NOAA NGGPS Overarching System team 
document on Code, Data, and Documentation Management for NEMS Modeling Applications and Suites (available at 
https://docs.google.com/document/u/1/d/1bjnyJpJ7T3XeW3zCnhRLTL5a3m4_3XIAUeThUPWD9Tg/edit#he
ading=h.97v79689onyd).

https://docs.google.com/document/u/1/d/1bjnyJpJ7T3XeW3zCnhRLTL5a3m4_3XIAUeThUPWD9Tg/edit


Parallel Programming

14

� Shared-memory (OpenMP) parallelization inside a scheme is 
allowed with the restriction that the number of OpenMP threads 
to use is obtained from the host model as an intent(in) argument 
in the argument list

� MPI communication is allowed in the _init and _finalize phase 
for the purpose of computing, reading or writing scheme-specific 
data that is independent of the host model’s data decomposition.

� MPI calls are restricted to global communication at this time, no 
point-to-point; the MPI communicator is also an input argument 
to the scheme

� Calls to MPI and OpenMP functions, and the import of the MPI 
and OpenMP libraries, must be guarded by C preprocessor 
directives.



Wrap Up

15

� CCPP-compliancy vs supported schemes
� Scheme argument variable metadata

� what is included and how to write it

� Required subroutines and scheme-specific interstitial
� Error handling
� Other coding rules, parameterization drivers, and parallel 

programming


