
This document contains information from NCAR Software Engineers working on the SingleTrack            
project regarding requirements for the NCAR Physics Driver Framework. These requirements           
were built on the CCPP requirements, following this color code: 

● Black: requirements previously formally accepted by the NGGPS Program Office.  
● Green: Rewording of requirements previously formally accepted by the NGGPS Program           

Office 
● Blue: NCAR-contributed requirements that were implicit in the initial design of the CCPP             

framework and CCPP v1 release. 
● Magenta: NCAR-contributed requirements that were not planned for in the initial           

requirement set of the CCPP. These requirements were reviewed by GMTB staff and             
considered to represent useful enhancements to the UFS in support of R2O. 

 
Last modified May 2018 
 

ID Item Reason 

D1 The driver shall allow 
parameterizations to be agnostic of 
host application. 

Well-established convention facilitates data 
mapping. 

D2 
 

The driver shall provide an easily 
configurable entry point for passing 
information to/from physics 
parameterizations.  

Enhances portability and simplifies the interface for 
community contributions. 

D3 
 

The driver shall be expandable to 
include new variables. 

Newly added parameterizations may need 
information not already provided by host application. 

D4 
 

The driver shall provide the ability to 
select different parameterizations of 
the same category via an external 
option selection.  

Provides flexibility and ease-of-use; allows direct 
comparison between schemes, possibly within an 
existing suite. 

D5 
 
 
 

The driver shall allow 
parameterizations to be used as 
suites or be selected individually.  

Suites are useful in both an operational and 
research environment; the ability to choose 
individual schemes is important for testing and 
development. 

D6 
 
 

The driver shall allow the order and 
frequency of calls to individual 
parameterizations to be configurable. 

Allows for sensitivity testing of different physics 
configurations. 

D7 
 
 

The driver shall provide the capability 
to share the same instance of 
physical constants with all model 

Maintains consistency among model components. 



components (host application and 
parameterizations). 

D8 
 

The driver shall include 
documentation including references, 
functional descriptions of code, 
guidance for how to call 
parameterizations as suites or 
individually in any order, and 
guidance on how to connect new 
parameterizations or  host 
applications. 

Community code should be well-documented for 
users and developers. 

D9 
 

The driver shall be developed using 
modern and robust coding standards 
balancing portability, computational 
performance, usability, 
maintainability, and flexibility, and 
follow coding guidelines listed here. 

Following Kalnay rules (Kalnay et al., 1989, BAMS 
and 
Doyle, J. D, M. Iredell, P. Tripp, J. Dudhia, T. 
Henderson, J. Michalakes, J. A. Ridout, J. Rosinski, S. 
Rugg, R. Adams Selin, T. R. Whitcomb, K. Lutz, and 
D. McCarren, 2015. Revisiting Kalnay rules for physics 
interoperability: 25 years later. AMS Eugenia Kalnay 
Simposium, Jan 5-8, Phoenix, AZ) 

D10 
 
 

The driver shall allow the ability to 
drive parameterizations or suites in 
“offline mode”.  

Offline mode allows for sensitivity and 
process-based studies; removes response from 
other components to focus on impact from 
parameterizations. 

D11 
 

The driver shall provide the ability to 
pass arbitrary collections of column 
variables to parameterizations. 

Follows modified Kalnay rules 6, 7. Increases 
computational performance. 

D12 
 

The driver shall provide the ability to 
deliver variables computed by, or for, 
use within any parameterization for 
diagnostic purposes to the model I/O 
component. 

Important for testing, development, and evaluation. 
Note that the delivery to model I/O component will 
be done at the host application level. 

D13 
 

The driver shall provide the ability to 
deliver variables computed by, or for, 
use within any parameterization to 
external models. 

Facilitates consistency with other Earth System 
models (e.g. ability to share roughness length 
between parameterizations and LSM). Note that 
coupling to external models will be done at the host 
application level. 

D14 
 

The driver shall not modify answers 
produced by the parameterizations. 

Eliminates inadvertent errors.  

https://docs.google.com/document/d/1bjnyJpJ7T3XeW3zCnhRLTL5a3m4_3XIAUeThUPWD9Tg/edit#heading=h.21je8qtnh1hj
https://ams.confex.com/ams/95Annual/webprogram/Paper260152.html
http://journals.ametsoc.org/doi/abs/10.1175/1520-0477%281989%29070%3C0620%3ARFIOPP%3E2.0.CO%3B2
https://ams.confex.com/ams/95Annual/webprogram/Paper260152.html
https://ams.confex.com/ams/95Annual/webprogram/Paper260152.html
https://ams.confex.com/ams/95Annual/webprogram/Paper260152.html
https://ams.confex.com/ams/95Annual/webprogram/Paper260152.html
https://ams.confex.com/ams/95Annual/webprogram/Paper260152.html
https://ams.confex.com/ams/95Annual/webprogram/Paper260152.html


D15 
 

The driver shall allow run-time 
specification of parameters (possibly 
greater than 1D). 

Allows rapid tuning and sensitivity experimentation. 

D16 
 

The driver shall ensure that more than 
one scheme variable with the same 
physical meaning but different names 
cannot exist. 

Minimizes ambiguity. 

D17 
 

The driver code management and 
support shall be designed so 
community scientists can use and 
propose contributions. 

Meets the NCEP goals for community modeling and 
enhances R2O. 

D18 Parameterizations can specify to the 
driver what fields it requires, which it 
generates (or modifies), and which 
fields it ‘owns’ (if any). 

Some parameterizations provide data for other 
parameterizations. but require that other 
parameterizations do not modify the field.(This is 
analogous to the Fortran protected idea). 

D19 Parameterizations and physics driver 
must be able to communicate 
information to allow the host model to 
write state to restart, restart from 
previously written files, and to reset 
the parameterization internal state 
during a run from restart files. 

The restart requirement is essential both to long 
runs and to CESM data assimilation. 

D20 The physics driver must be able to be 
multiply-instantiated (i.e., one run 
supports multiple, independent 
physics suites). 

This allows a model to call, for example, a chemistry 
package on a different time scale and possibly 
different grid than the mainline physics suite. 

D21 The physics driver must be able to 
receive error codes from any 
parameterization and pass them to 
the host model for output and model 
termination. 

If we are discouraging parameterizations from doing 
I/O and from stopping the model, we must pass this 
information to the host model 

D22 The physics driver must enable 
scientists and performance engineers 
to inspect the code that is part of the 
model run. 

Provides traceability. 

D23 The physics driver must support the 
dynamic generation of tracing 
information 

Scientists and developers need a way to see 
procedure calling sequence and data flow.  

D24 The physics driver must be able to Many chemistry packages operate on arrays of 



communicate arrays of variables 
(e.g., an array of tracers) whose 
extent is only known at compile time. 

species which may only be known at compile time. 
The metadata for each species must be passed 
through the driver from this host model to the 
parameterizations. 

D25 The physics driver system must be 
able to handle fields with multiple time 
levels. 

For example the dynamics may have two 
time-levels, and the physics may have before and 
after values of a variable. 

D26 The physics driver system must be 
able to collect data at a specified 
point (e.g., before a target 
parameterization) and pass this data 
to the host model for output. 

Offline studies are extremely useful for 
parameterization development and tuning. 

D27 Run-time selection of physics suites 
and schemes 

Regression testing, multi-physics ensembles 

D28 The physics driver system must be 
able to operate both on systems that 
support and do not support dynamic 
library loading. 

We need to allow for either capability to ensure that 
the framework can be run on systems to that do not 
support dynamic libraries. 

D29 The driver must support passing of 
derived types between host model 
and physics schemes 

When porting new physics that originally used DDTs 
in their argument list, it may be helpful to call the 
schemes exactly as they were called. Also, schemes 
may call libraries that store, e.g., state in a derived 
type. 

D30 Driver supports multiple kind-types for 
integers and reals 

Mixed-precision physics 

D31 Driver supports calling of generic 
physical parameterizations (including 
land-surface, simple ocean, combined 
schemes, purely diagnostic schemes) 

Capability to call land-surface model is required for 
stand-alone WRF and MPAS. Some schemes are 
not easily binned into a traditional physical 
parameterization scheme taxonomy. 

D32 Host model and driver may 
interrogate each other during a 
“handshaking” phase 

At run-time, the host model may need information 
about physics choices in order to properly allocate 
memory; the driver may need information on which 
fields are available in the host model 

D33 The driver shall provide “hooks” to 
facilitate debugging and general 
scheme development 

For example: A developer can call a 
developer-defined function before and after each 
call to a physics scheme to enable checking of field 
values. 

D34 Recommendation: Internally, the This would facilitate, e.g., range checks on fields 



driver should support the association 
of arbitrary (and extensible) metadata 
with fields 

before and after calls to schemes (through hooks), 
tracking of data flow in the driver, and it may be 
used to implement matching of units, long_name, 
etc. of fields 

D35 The driver system must support 
processing (e.g., averaging, max/min 
selection) of diagnostic fields which 
may be output multiple times during a 
run. 

Parameterizations are often called multiple times 
during a suite time step. Since the host model is not 
active during this time, the driver (and / or 
parameterizations) must be able to handle multiple 
diagnostic outputs. 

CCPP physical parameterization requirements 
The primary purpose for each of the physical parameterizations within a model is to advance the                
solution of specified tendencies or state variable. The CCPP relies on a separation of concerns               
between physics and dynamics, and it is recommended that parameterizations do not deviate             
from this primary purpose. 

Note is that the operational FY17 GFS suite has been grandfathered and is not required to meet                 
these requirements. 

 

 

ID Item Reason 

C1  Physics schemes shall conform to 
standard variables. 

Common variables facilitate scheme portability. 
We eventually need a list of acceptable variables. 
 

C2 
 

The CCPP shall allow multiple 
parameterizations that represent a 
physical process or processes to 
coexist in the CCPP. 
 

The CCPP can support all NCEP needs (including 
research and development). 
 

C3 
 

Transparent criteria shall be used to 
guide number and choice of 
parameterizations included in CCPP. 

A Change Review Board reviews test results and 
ensures quality control of parameterizations and 
has authority over portfolio of supported 
parameterizations. Maintenance is kept to a 
manageable level while focusing on operational 
and research applications.  

C4a  The CCPP schemes shall have 
standard and documented testing 
procedures and metrics applied by all 

The Change Review Board defines minimum 
testing procedures and metrics. This may include 
specific codes/tools to be employed in the test 



physics developers. harness. 

C4b CCPP compliancy is verified with 
provided tools. Guidance is provided 
concerning how to add new 
parameterizations. 

 

C5 
 

The CCPP schemes shall have 
standard and documented observation 
and model databases for testing. 

Both observation and model-generated datasets 
need to be selected and available for testing. This 
ensures that the Change Review Board has 
material that is easy to judge. Tools to subset or 
process data may be part of this, as necessary. 

C6 
 

The CCPP schemes shall permit 
parameterizations to expose all tunable 
parameters  

Tunable aspects of parameterizations will be 
configurable by run-time settings, e.g. Fortran 
namelists, allowing a  single software instance of a 
parameterization to satisfy all foreseeable models 
and applications. 

C7 
 
 

The CCPP schemes shall permit a 
capability to share same instance of 
physical constants with all model 
components (host application and 
parameterizations). 

Maintains consistency among model components. 

C8 
 

The CCPP schemes code management 
shall be designed so community 
scientists can use and propose 
contributions. 

Meets the NCEP goals for community modeling 
and enhances R2O. 

C9 
 

The CCPP schemes shall have 
documentation including references, 
functional descriptions of code, 
information on inputs/outputs to 
parameterizations. 

Community code should be well-documented for 
users and developers. 

C10 
 

The CCPP schemes shall employ 
modern and robust coding standards 
supporting portability, computational 
performance, usability, maintainability, 
and flexibility and follow coding 
guidelines listed in the Coding 
Standards. 

Follows modified Kalnay rules. 

C11 At initial, restart, or finalize time 
parameterizations may read 
non-decomposed data (such as look-up 
tables)  that do not have scope outside 

Schemes should only perform I/O during identified 
phases. It is preferable that I/O is done in a 
scalable way whenever possible (e.g., read and 
broadcast from one process, rather than have all 

https://docs.google.com/document/d/1bjnyJpJ7T3XeW3zCnhRLTL5a3m4_3XIAUeThUPWD9Tg/edit#heading=h.21je8qtnh1hj
https://docs.google.com/document/d/1bjnyJpJ7T3XeW3zCnhRLTL5a3m4_3XIAUeThUPWD9Tg/edit#heading=h.21je8qtnh1hj


of the physics scheme. processes read the same file). 
If MPI routines are used for parallel I/O or for 
broadcasting information, the code must be 
guarded in CPP directives and provide alternative 
ways for systems/models where MPI is not used. 

C12 Parameterizations must pass a return 
code to the driver to indicate success or 
failure. 

This allows status communication without the 
parameterization trying to write log messages. 

C13 The system that translates the 
parameterization metadata cap into a 
driver-callable interface must produce 
Fortran code as part of the preprocess 
step. 

Scientists and performance engineers must be 
able to inspect the code that is part of the model 
run. 

C14 A physics parameterization must be 
able to conditionally compute a 
diagnostic field depending on whether 
or not the field will be output. 

Some diagnostic calculations are expensive. 

C15 The number of OpenMP threads a 
scheme is allowed to use internally 
must be provided as an input argument 
to the scheme. 

The host application cap (or the upstream calling 
application)  can have OpenMP parallelism and/or 
allow physics schemes to use OpenMP  internal 
regions.  

C16 The physics schemes shall only use 
MPI for broadcasting non-decomposed 
information (such as from a look-up 
table) to the rest of the group on the 
communicator. Furthermore, this 
functionality is restricted to initialization. 

Currently, 3d physics will be enabled by chopping 
scheme in multiple pieces, where the host cap is 
responsible for traditional interprocessor 
communications. 

C17 Every physics scheme entry point 
(interface routine) is documented with 
specially formatted metadata. 

The metadata is used to build “cap” routines to be 
called by the framework. 

C18 No message passing  communication 
between columns is allowed during a 
parameterization’s run-time execution. 
Read-only access is acceptable from 
stencil-defined neighbors. 

Physical parameterization schemes that assume 
3d capabilities will be supported via breaking up 
the scheme into multiple parts. The first part of the 
scheme is handled, the data returns back up to 
the host application, communication is performed, 
and the data is sent back down into scheme part 
#2. As usual, the host application cap and the 
shared driver are involved in the data transfer. 

C19 Schemes must follow standardized 
naming for entry points. 

Calls to schemes may be automatically 
constructed, and we’d need to be able to identify, 



e.g., the init, compute, and finalize entry points 

C20 Parameterizations can specify to the 
driver what fields it requires, which it 
generates (or modifies), and which 
fields it ‘owns’ (if any). 

“Owns” refers to parameterizations that provide 
data for other parameterizations, but require that 
other parameterizations do not modify the field. 
“Requires” refers to fields that must be provided 
as input to the parameterization 
“Generates” refers to fields that must be provided 
as output to the calling driver. 

C21 Each scheme must provide vertical 
index ordering to the driver. 

Models have different vertical index orderings as 
do physics parameterizations. Parameterizations 
must know the vertical ordering of its interface 
fields so that they can convert if they use a 
different vertical ordering. 

C22 Each scheme must communicate index 
ordering (which index is horizontal 
dimension, which index is vertical 
dimension, etc.) to parameterizations. 

Parameterizations must know the ordering of input 
and output data so that it can do data 
rearrangement if necessary. 

C23 A parameterization needs the ability to 
specify to the host model  which species 
will be transported. 

A chemistry package may have species which are 
not to be advected. 

C24 Parameterization metadata should allow 
a field specifying allowed field ranges. 

As an example, a temperature field could generate 
an error if outside the range of 100K -- 345K. 
Could be used with D34. 

C25 Metadata for certain fields (e.g., 
pressure, constituent mixing ratios) 
must indicate whether they are wet or 
dry and, if wet, which water phases are 
included.  

Physics parameterizations need to either make 
calculations based on the nature of the pressure 
field or to convert the pressure field (e.g., to dry) 
before doing calculations. This requirement 
applies to any field whose numerical value 
depends on the use of water vapor and 
condensed water species. 
 

 

Host application cap requirements 
Note that the host application cap (FV3GFS cap) used in the first release of CCPP already                
meets the requirement below 

ID Item Reason 



H1  The host cap must be able to 
interface directly with both the 
host application and the physics 
driver. The host model cap must 
be able to register variables in 
the driver's data structure 
(including the location of the 
variable in memory and other 
metadata).  

The physics driver assumes various C to Fortran 
constructs, and assumes Fortran module constructs. 
Currently, the host applications that are targeted are 
written in Fortran. Note that this replaces the previous 
H1, as it is is an extension of previous NGGPS H1 
requirement for additional flexibility. 

H2 
 

The host application cap (or the 
upstream calling application) 
shall manage all variables that 
are arguments to individual 
parameterizations.  Manage 
includes, but is not limited to, 
allocation, distributed 
communication, initialization, 
I/O, correct numbers of scalars, 
and metadata. 

For consistency, it is the task of the upstream systems 
to manage the variables in the subroutine argument 
lists.  
 

H3 
 

The host application cap (or the 
upstream calling application) 
shall perform all required I/O, 
except for a few notable cases 
(see C 11 ).  

The fundamental purpose of a physical 
parameterizations is to compute some specific 
physical process. The more the parameterizations 
stay aligned with this standard, the more portable the 
schemes are. Allowing complicated I/O systems to be 
introduced into parameterizations reduces the chance 
at simple portability of those schemes with a new Host 
Application. The original requirement was trimmed for 
clarity. 

H4  The host application cap (or the 
upstream calling application) 
shall handle all required 
run-time distributed memory 
processing for decomposed 
arrays, if any is required. Upon 
entry into each 
parameterization, each input 
field in the argument list is 
assumed to be the correct value 
to use.  

The physical parameterizations do not carry 
information that allows them to determine neighboring 
grid columns. The parameterizations are all assumed 
to be 1d columns of independent data, though for 
performance purposes, blocks of those 1d columns 
may be bundled into arrays. The original requirement 
was trimmed for clarity. 
 

H5 
 

The host application cap (or the 
upstream calling application) 
shall handle all processing that 
requires that the 

For ease of portability, the parameterizations only 
know the arrays provided in the argument lists, the 
provided array sizes, and the computational extent for 
each of the arrays. The parameterizations are not 



parameterizations be computed 
on a grid or resolution different 
than the upstream calling 
application. 

aware if the incoming arrays are indeed the original 
size of the grid that the Host Application is running. 

H6 
 

The host application cap (or the 
upstream calling application) 
shall handle all processing that 
requires that the 
parameterizations be run 
concurrently. 

The physical parameterizations have no information 
about the sequential nature of their own processing, 
other than the list of arguments defined as either input 
or output. Because all information for a 
parameterization comes through the argument list, the 
parameterization is well suited to being insulated from 
external processing techniques. The upstream calling 
application has the necessary software infrastructure 
tools to set up concurrent parameterization 
processing. 

H7 
 
 

The host application cap (or the 
upstream calling application) 
can have OpenMP parallelism 
and/or allow physics schemes 
to use OpenMP internally. The 
number of OpenMP threads a 
scheme is allowed to use 
internally must be provided as 
an input argument to the 
scheme. 

The cap for the physical parameterizations is 
automatically manufactured. For timing performance 
and portability, all OpenMP threading for a particular 
scheme is controlled by each scheme’s cap. 

H8 
 

The host application cap shall 
use Fortran array syntax that is 
valid for arguments that have an 
explicit interface. 

Taking advantage of argument mismatch for type, 
kind, and rank is only available with explicit interfaces. 
Given that the purpose of the effort is to include 
additional schemes, allowing the compilers to find 
argument mismatches is a benefit. 

H9  Host cap metadata shall use the 
same standard names as used 
by parameterization metadata. 

Common variables facilitate scheme portability. 
 

H10 Metadata for certain fields (e.g., 
pressure, constituent mixing 
ratios) must indicate whether 
they are wet or dry and, if wet, 
which water phases are 
included.  

Physics parameterizations need to either make 
calculations based on the nature of the pressure field 
or to convert the pressure field (e.g., to dry) before 
doing calculations. This requirement applies to any 
field whose numerical value depends on the use of 
water vapor and condensed water species. 
 

H11 Host must communicate its 
internal vertical level and 
indexing (e.g., index 1 equals 

Models have different vertical index ordering as do 
physics parameterizations. Parameterizations must 
know the vertical ordering of its interface fields so that 



model top). It must either use 
the model vertical level or 
convert to a ‘standard’ vertical 
level. In either case, this level 
information must be 
communicated to the 
parameterizations in case they 
use a different vertical scheme. 

they can convert if they use a different vertical 
ordering. 

H12 Host must communicate index 
ordering (which index is 
horizontal dimension, which 
index is vertical dimension, etc.) 
to parameterizations. 

Parameterizations must know the ordering of input 
and output data so that it can do data rearrangement if 
necessary. 

H13 The host model system must 
support user access to every 
parameterization’s exposed 
tunable parameters. 

For example, if a parameterization reads a namelist, 
the host model must pass it 

 
 
 

Suite functionalities and the Suite definition file (SDF)  

ID Item Reason 

S1  The SDF is human-readable, 
and also easily parsed by a 
computer. 

 

S2 
 

The SDF identifies the names 
of the schemes to call, and the 
order in which the schemes 
are called. 

 
 

S3 The SDF allows multiple 
levels of grouping and 
partitioning of schemes. 

Physics called in multiple places within the host model, 
sub-cycling, etc. 

S4 The SDF shall differentiate 
between a scheme’s phases 
such as “init”, “run”, and 
“finalize”. 

 



S5 The physics suite definition 
must have explicit support to 
define both process split and 
time split sequences as well 
as shadow parameterizations. 

● In a process-split sequence, two or more 
parameterizations are called on the same initial 
state and their output tendencies are added to 
produce the updated state. 

● In a time-split process, each parameterization is 
called with a state updated by the previous 
parameterization. 

● Shadow parameterizations sample the model 
state but do not update the state or contribute to 
tendencies. 

 
 
 
 
 

Coding standards 

STATUS: The proposed standards here need to be reconciled with Environmental 
Equivalence 2. The section should be updated to reflect the standards that NCEP/EMC 
intends to follow. 
 
The following table specifies coding requirements and recommendations for a parameterization 
to be included in CCPP. The intent is to promote readability, robustness, and portability without 
being too onerous. The Kalnay rules and work by the NUOPC Physics Interoperability Team 
and EMC personnel had a major impact in creating this list. The GSM coding standards 
described at https://svnemc.ncep.noaa.gov/trac/gsm/wiki/GSM%20code%20standards were 
taken into account and incorporated as applicable. Unless specified otherwise, the Fortran 
programming language is assumed. 
 

ID Type Item Reason Source Status 

CS1 Requir
ed 

All modules or subroutines will 
contain “implicit none” 

Assists in writing bug-free code. 
Understanding implicit type rules is difficult 
and arcane. 
Understanding where a variable comes from 
(local, input argument list, module) is more 
difficult with implicit typing 

GMTB, 
GSM 

 

CS2 Requir
ed 

All arguments to subprograms 
will contain the “intent” attribute. 
All intent(out) variables must be 
set in the subprograms. 

Assists readers in understanding whether a 
variable is read-only (intent(in)), read/write 
(intent(inout)), or effectively uninitialized 
(intent(out)). 
A compiler error will result if code attempts to 
use a variable differently than specified in its 
“intent”. 
Declared variables without the “intent” 
attribute can be understood to be local. 

GMTB, 
NUOPC 
PI Team, 
GSM 

 

https://svnemc.ncep.noaa.gov/trac/gsm/wiki/GSM%20code%20standards


Not initializing intent(out) variables can lead 
to different answers, depending on the 
system/compiler/optimization level, and make 
debugging difficult. 

CS3 Requir
ed 

No modules or subroutines will 
violate the Fortran 2008 
standard 

Makes porting to a new compiler easier to 
near trivial. 
Example: gfortran by default enforces the 
standard that free-form source lines will not 
exceed 132 characters. Some compilers by 
default allow line lengths to exceed this 
value. Attempts to port codes with line 
lengths greater than 132 may encounter 
difficulty. 

GMTB  

CS4 Requir
ed 

All local and argument list 
variables will have a comment 
explaining the meaning of the 
variable. An in-line comment on 
the declaration line is sufficient 

Allows readers unfamiliar with the code to 
more quickly understand how the code 
works. 

GMTB, 
NUOPC 
PI Team, 
GSM 

 

CS5 Requir
ed 

All modules and subprograms 
will have a documentation block 
describing functionality 

Promotes understanding of algorithms and 
code structure by new users 

GMTB, 
NUOPC 
PI Team, 
GSM 

 

CS6 Requir
ed 

Common blocks are disallowed Deprecated Fortran feature. Modules provide 
all the functionality of common blocks plus 
much more. 

GMTB, 
NUOPC 
PI Team, 
GSM 

 

CS7 Requir
ed 

A package must be compilable 
with the gfortran compiler (or gcc 
for packages coded in C). 
Runnability and validation can 
be provided using whatever 
compiler(s) the developer 
prefers. 

gfortran (and gcc)  is free and ubiquitous, and 
therefore is an ideal choice for canonical 
compiler. 

GMTB  

CS8 Requir
ed 

All Fortran source will be 
free-form 

Fixed-form source is hard to read and 
archaic. 
A 72-column requirement only makes sense 
for punch cards. 

GMTB  

CS9 Requir
ed 

All public subprograms will be 
Fortran-callable 

Fortran is the most commonly used language 
for geophysical models. 

GMTB  

CS10 Requir
ed 

All parameterizations must be 
thread-safe (except for 
initialization and finalization 
methods) 

Many geophysical numerical models are 
threaded these days, and need to be able to 
invoke physical parameterizations 
simultaneously from multiple threads. 
Example code which is NOT thread-safe: 
Declare a variable “first” and initialize it to 
.true. Then test its value and set some static 
variables if it is .true. This will likely result in 
wrong answers when run in threaded mode. 
Solution: Provide an initialization routine 
which sets the static variables outside of 
threaded regions. 
Wikipedia provides a brief overview of 

GMTB, 
NUOPC 
PI Team, 
GSM 

 



thread-safety: 
https://en.wikipedia.org/wiki/Thread_safety 

CS11 Requir
ed 

No parameterization will contain 
a “stop” or “abort” clause 

If an error condition arises, it is better to set a 
flag and let the caller decide how to handle 
the condition. 

GMTB, 
NUOPC 
PI Team, 
GSM 

 

CS12 Requir
ed 

Use of uninitialized variables is 
disallowed 

Readability. 
Not all compilers can be made to initialize 
static or stack variables to a known value 
(e.g. zero). 

GMTB, 
GSM 

 

CS13 Requir
ed 

All array indices must fall within 
their declared bounds. 

Debuggers will fail when “tricks” are 
employed which reference arrays outside of 
their declared bounds. 

GMTB, 
NUOPC 
PI Team, 
GSM 

 

CS14 Requir
ed 

Multiple runs of the same 
compiled parameterization given 
identical input must produce 
identical output.  In the case 
where randomness is part of the 
parameterization, a method 
must be provided to invoke the 
same random sequence for test 
reproducibility. 

Prevents inadvertent errors. GMTB, 
GSM 

 

CS15 Requir
ed 

The use of compiler flags 
specifying default precision is 
disallowed. For example, if 
64-bit precision is required, use 
the “kind=” attribute to specify 
the precision rather than a 
compiler flag such as “-r8” 

The behavior of flags is compiler-specific, 
e.g. if the user specifies real*4 does the -r8 
compiler flag mean the variable is real*4 or 
real*8? 

GMTB  

CS16 Reco
mmen
ded 

With the exception of common 
libraries which use a 
well-defined naming standard for 
variables and subroutines, all 
module “use” statements must 
explicitly state which public 
entities will be referenced. The 
MPI library is an example of an 
acceptable exception: All MPI 
routines start with “MPI”, so a 
blank “use mpi” statement is 
acceptable. 

Assists in understanding where various 
variables and/or functions or subroutines are 
defined. 

GMTB  

CS17 Reco
mmen
ded 

All code intended for debugging 
purposes only should be 
removed prior to submission for 
inclusion 

Readability GMTB, 
GSM 

 

CS18 Requir
ed 

All arrays explicitly allocated, 
must be deallocated when no 
longer needed 

Readability. Minimize memory usage. GMTB, 
GSM 

 

CS19 Reco The default visibility rule for Limiting variable and subprogram scope is GMTB  



mmen
ded 

module variables and 
procedures should be “private” 
(specified by a single “private” 
statement near the beginning of 
the module). The “public” 
attribute is applied to only those 
entities which are needed by 
other subprograms or modules. 

good programming practice 

CS20 Reco
mmen
ded 

Consistent use of case is 
preferred for Fortran code (text 
strings excepted). 

While Fortran is a case-insensitive language, 
variable “aBc” should also be expressed that 
way, and not “aBc” in one place, “abc” in 
another, and “ABC” in another. 

GMTB  

CS21 Reco
mmen
ded 

A parameterization should 
contain “init”, “run”, and “finalize” 
methods. The “run” method must 
be thread-safe. 

Promotes separation of activities which must 
be done only once at startup or shutdown, 
from those which are done on multiple time 
steps. 

GMTB  

CS22 Reco
mmen
ded 

Parameterizations should be 
able to be invoked in “chunks”, 
where the calculations are 
independent of the 
fastest-varying subscript. 

Computational performance is the main 
reason for this preference. Many physical 
parameterizations in geophysical models 
contain a dependence in the vertical, which 
means this dimension is unavailable for 
vectorization. Vectorization can provide up to 
a 16X speedup on modern processors. 
Example: Outer loop over vertical index “k” 
can contain vertical dependence, but if there 
is also an inner loop over horizontal index “i” 
that can be vectorized, the code is likely to 
run much more efficiently.  

GMTB  

CS23 Reco
mmen
ded 

The use of “goto” is strongly 
discouraged, except where no 
better option is available. 

Modern languages provide better 
mechanisms to accomplish the same goal in 
most cases.. 
“goto” promotes “spaghetti” code, which can 
be unreadable. 

GMTB  

CS24 Reco
mmen
ded 

Code and declarations within 
subprograms, loops, and 
conditional tests should be 
indented. Indenting by 2 or 3 or 
4 columns is reasonable. 
Spaces are to be used for 
intents, tabs are disallowed. 

Readability. Particularly important for multiply 
nested loops and/or “if” tests. 

GMTB  

CS25 Reco
mmen
ded 

Test operators <, <=, >, >=, ==, 
/= are preferred vs. their 
deprecated counterparts .lt., .le., 
.gt., .ge., .eq., .ne. 

The modern constructs are easier to read, 
and more understandable for those unfamiliar 
with legacy code. 

GMTB, 
GSM 

 

CS26 Reco
mmen
ded 

The use of bare constants (e.g. 
2.7) inside of computational 
regions is strongly discouraged. 
Instead, a named constant (e.g. 
some_variable = 2.7) should be 
declared at the top of the routine 
or module, along with an in-line 
comment stating its purpose 

Bare constants buried in code is one of the 
biggest contributors to lack of readability and 
understanding of how code works. “What the 
heck does 2.7 mean???” In addition, using a 
named constant makes it easier to specify 
precision, e.g. real*8 some_var = 35.  

GMTB  



 
 


