
Common Community Physics Package
(CCPP)

Developers’ Guide
v2.0

August 2018

Dom Heinzeller, Ligia Bernardet
CIRES/CU at NOAA/ESRL Global Systems Division and Developmental Testbed Center

Laurie Carson, Grant Firl
National Center for Atmospheric Research and Developmental Testbed Center

Acknowledgement

If significant help was provided via the GMTB helpdesk for work resulting in a
publication, please acknowledge the Developmental Testbed Center GMTB Team.

For referencing this document please use:

Heinzeller, D., L. Bernardet, L. Carson, and G. Firl, 2018. Common Community
Physics Package (CCPP) v2.0 Developers’ Guide. 19pp. Available at
https://dtcenter.org/gmtb/users/ccpp/docs/CCPP-DevGuide-v2.pdf

Contents

Preface iv

1 Introduction 1

2 CCPP-compliant physics schemes 3
2.1 Writing a CCPP-compliant physics scheme 3
2.2 Adding a new scheme to the CCPP pool 7

3 Integrating CCPP with a host model 9
3.1 Checking variable requirements on host model side 9
3.2 Adding metadata variable tables for the host model 11
3.3 Writing a host model cap for the CCPP 11
3.4 Configuring and running the CCPP prebuild script 15
3.5 Building the CCPP framework and physics library 17

3.5.1 Preface . 17
3.5.2 Standalone ccpp-framework build 18
3.5.3 Integration with host model build system 18

iii

Preface

Meaning of typographic changes and symbols

Table 1 describes the type changes and symbols used in this book.

Typeface or Symbol Meaning Example
AaBbCc123 The names of commands, Edit your .bashrc

files, and directories; Use ls -a to list all files.
on-screen computer output host$ You have mail!.

AaBbCc123 What you type, contrasted host$ su
with on-screen computer
output

AaBbCc123 Command line placeholder: To delete a file, type
replace with a real name rm filename
or value

Table 1: Typographic Conventions

iv

1 Introduction

The Common Community Physics Package (CCPP) is designed to facilitate the imple-
mentation of physics innovations in state-of-the-art atmospheric models, the use of various
models to develop physics, and the acceleration of transition of physics innovations to
operational NOAA models. The CCPP consists of two separate software packages, the
pool of CCPP-compliant physics schemes (ccpp-physics) and the framework (driver)
that connects the physics schemes with a host model (ccpp-framework).

The connection between the host model and the physics schemes through the CCPP
framework is realized with caps on both sides as illustrated in Fig. 3.1 in Chapter 3. While
the caps to the individual physics schemes are auto-generated, the cap that connects the
framework (Physics Driver) to the host model must be created manually. The CCPP
framework generates a large fraction of code that can be included in the host model cap to
facilitate this process. For more information about the CCPP design and implementation,
see the CCPP Design Overview at https://dtcenter.org/gmtb/users/ccpp/docs/.

This document serves two purposes, namely to describe the technical work of writing
a CCPP-compliant physics scheme and adding it to the pool of CCPP physics schemes
(Chapter 2), and to explain in detail the process of connecting an atmospheric model
(host model) with the CCPP (Chapter 3). For further information and an example for
integrating CCPP with a host model, the reader is referred to the GMTB Single Column
Model (SCM) User and Technical Guide v2.1 available at https://dtcenter.org/gmtb/
users/ccpp/docs.

At the time of writing, the CCPP is supported for use with the GMTB Single Column
Model (SCM). Support for use of CCPP with the experimental version of NCEP’s Global
Forecast System (GFS) that employs the Finite-Volume Cubed-Sphere dynamical core
(FV3GFS) is available as an internal release for the developers. A public release of
FV3GFS with CCPP is planned for early 2019.

The GMTB welcomes contributions to CCPP, whether those are bug fixes, improvements
to existing parameterizations, or new parameterizations. There are two aspects of adding
innovations to the CCPP: technical and programmatic. This Developer’s Guide explains
how to make parameterizations technically compliant with the CCPP. Acceptance in
the master branch of the CCPP repositories, and elevation of a parameterization to
supported status, depends on a set of scientific and technical criteria that are under
development as part of the incipient CCPP Governance. Contributions can be made
in form of git pull requests to the development repositories. Before initiating a major
development for the CCPP please contact GMTB at gmtb-help@ucar.edu to create an
integration and transition plan. For further information, see the Developer’s Corner
for CCPP at https://dtcenter.org/gmtb/users/ccpp/developers/index.php. Note

1

https://dtcenter.org/gmtb/users/ccpp/docs/
https://dtcenter.org/gmtb/users/ccpp/docs
https://dtcenter.org/gmtb/users/ccpp/docs
gmtb-help@ucar.edu
https://dtcenter.org/gmtb/users/ccpp/developers/index.php

1 Introduction

that while the pool of CCPP physics and the CCPP framework are managed by the
Global Model Test Bed (GMTB) and governed jointly with partners (e.g., NCAR), the
code governance for the host models lies with their respective organizations. Therefore,
inclusion of CCPP within those models should be brought up to their governing bodies.

2

2 CCPP-compliant physics schemes

2.1 Writing a CCPP-compliant physics scheme

The rules for writing a CCPP-compliant scheme are summarized in the following. List-
ing 2.1 contains a Fortran template for a CCPP-compliant scheme, which can also be
found in ccpp-framework/doc/DevelopersGuide/scheme_template.F90.

General rules:

• Scheme must be in its own module (module name = scheme name) and must
have three entry points (subroutines) starting with the name of the module: mod-
ule scheme_template → subroutines scheme_template_{init,finalize,run}. The
_init and _finalize routines are run automatically when the CCPP physics are
initialized. These routines may be called more than once, depending on the host
model’s parallelization strategy, and as such must be idempotent (that is, multiple
calls must not change the answer).

• Empty schemes (e. g. scheme_template_init in listing 2.1) need no argument table.
• Schemes in use require an argument table as below, the order of arguments in the

table must be the same as in the argument list of the subroutine.
• An argument table must precede the subroutine, and must start with

!> \ section arg_table_subroutine_name Argument Table

and end with a line containing only
!!

• All external information required by the scheme must be passed in via the argument
list, i.e. no external modules (except if defined in the Fortran standards 95–2003).

• If the width of an argument table exceeds 250 characters, wrap the argument table
in CPP preprocessor directives:
#if 0
!> \ section arg_table_scheme_template_run Argument Table
...
!!
#endif

• Module names, scheme names and subroutine names are case sensitive.
• For better readability, it is suggested to align the columns in the metadata table.

Input/output variable (argument) rules:

• Variables available for CCPP physics schemes are identified by their unique
standard_name. While an effort is made to comply with existing standard_name

3

2 CCPP-compliant physics schemes

definitions of the CF conventions (http://cfconventions.org), additional names
are introduced by CCPP (see below for further information).

• A standard_name cannot be assigned to more than one local variable (local_name).
The local_name of a variable can be chosen freely and does not have to match the
local_name in the host model.

• All information (units, rank) must match the specifications on the host model side.
• The two mandatory variables that every scheme must accept as intent(out) argu-

ments are errmsg and errflg (see also coding rules).
• At present, only two types of variable definitions are supported by the CCPP frame-

work:
– Standard Fortran variables (character, integer, logical, real). For

character variables, the length should be specified as ∗. All others can have
a kind attribute of a kind type defined by the host model.

– Derived data types (DDTs). While the use of DDTs is discouraged in general,
some use cases may justify their application (e.g. DDTs for chemistry that
contain tracer arrays, information on whether tracers are advected, . . .).

• If a scheme is to make use of CCPP’s subcycling capability in the runtime suite
definition file (SDF; see also GMTB Single Column Model Technical Guide v2.1,
chapter 6.1.3, https://dtcenter.org/gmtb/users/ccpp/docs), the loop counter
can be obtained from CCPP as an intent(in) variable (see Listings 3.1 and 3.2 for
a mandatory list of variables that are provided by the CCPP framework and/or the
host model for this and other purposes).

Coding rules:

• Code must comply to modern Fortran standards (Fortran 90/95/2003)
• Use labeled end statements for modules, subroutines and functions, example:

module scheme_template → end module scheme_template.
• Use implicit none.
• All intent(out) variables must be initialized properly inside the subroutine.
• No permanent state of decomposition-dependent host model data inside the module.
• No goto statements.
• Errors are handled by the host model using the two mandatory arguments errmsg

and errflg. In the event of an error, assign a meaningful error message to errmsg
and set errflg to a value other than 0.

• Schemes are not allowed to abort/stop the program.
• Schemes are not allowed to perform I/O operations (except for reading lookup tables

or other information needed to initialize the scheme)
• Line lengths of 120 characters are suggested for better readibility (exception: CCPP

metadata argument tables).

Parallel programming rules:

• Shared-memory (OpenMP) parallelization inside a scheme is allowed with the re-
striction that the number of OpenMP threads to use is obtained from the host
model through the subroutine’s argument table (Listings 3.1 and 3.2).

• MPI communication is allowed in the _init and _finalize phase for the purpose
of computing, reading or writing scheme-specific data that is independent of the
host model’s data decomposition. An example is the initial read of a lookup table

4

http://cfconventions.org
https://dtcenter.org/gmtb/users/ccpp/docs

2 CCPP-compliant physics schemes

of aerosol properties by one or more MPI processes which is then broadcasted to
all processes. Several restrictions apply:
– Reading and writing of data must be implemented in a scalable way to perform

efficiently from a few to millions of tasks.
– The MPI communicator to use must be received from the host model through

the subroutine’s argument table (Listings 3.1 and 3.2).
– The use of MPI is restricted to global communications, for example barrier,

broadcast, gather, scatter, reduce.
• Calls to MPI and OpenMP functions, and the import of the MPI and OpenMP

libraries, must be guarded by CPP preprocessor directives as illustrated in the
following listing. OpenMP pragmas can be inserted without CPP guards, since
they are ignored by the compiler if the OpenMP compiler flag is omitted.
...

#ifdef MPI
use mpi

#endif
#ifdef OPENMP

use omp_lib
#endif

...

#ifdef MPI
call MPI_BARRIER (mpicomm , ierr)

#endif

#ifdef OPENMP
me = OMP_GET_THREAD_NUM ()

#else
me = 0

#endif

• For Fortran coarrays, consult with the GMTB helpdesk (gmtb-help@ucar.edu).

Scientific Documentation rules:

• Technically, scientific documentation is not needed for a parameterization to work
with the CCPP. However, inclusion of inline scientific documentation is highly rec-
ommended and necessary before a parameterization is submitted for inclusion in
the CCPP.

• Scientific documentation for CCPP parameterizations should be inline within the
Fortran code using markups according to the Doxygen software. Reviewing the
documentation for CCPP v2.0 parameterizations is a good way of getting started
in writing documentation for a new scheme.

• The CCPP Scientific Documentation can be converted to html format (see https:
//dtcenter.org/gmtb/users/ccpp/docs/sci_doc_v2/.

• For precise instructions on creating the scientific documentation, contact the GMTB
helpdesk at gmtb-help@ucar.edu.

5

gmtb-help@ucar.edu
https://dtcenter.org/gmtb/users/ccpp/docs/sci_doc_v2/
https://dtcenter.org/gmtb/users/ccpp/docs/sci_doc_v2/
gmtb-help@ucar.edu

2 CCPP-compliant physics schemes
Li
st
in
g
2.
1:

Fo
rt
ra
n
te
m
pl
at
e
fo
r
a
C
C
PP

-c
om

pl
ia
nt

sc
he
m
e

m
o

d
u

l
e

s
c

h
e

m
e

_
t

e
m

p
l

a
t

e

c
o

n
t

a
i

n
s

s
u

b
r

o
u

t
i

n
e

s
c

h
e

m
e

_
t

e
m

p
l

a
t

e
_

i
n

i
t

(
)

e
n

d
s

u
b

r
o

u
t

i
n

e
s

c
h

e
m

e
_

t
e

m
p

l
a

t
e

_
i

n
i

t

s
u

b
r

o
u

t
i

n
e

s
c

h
e

m
e

_
t

e
m

p
l

a
t

e
_

f
i

n
a

l
i

z
e

(
)

e
n

d
s

u
b

r
o

u
t

i
n

e
s

c
h

e
m

e
_

t
e

m
p

l
a

t
e

_
f

i
n

a
l

i
z

e

!
>

\
s

e
c

t
i

o
n

a
r

g
_

t
a

b
l

e
_

s
c

h
e

m
e

_
t

e
m

p
l

a
t

e
_

r
u

n
A

r
g

u
m

e
n

t
T

a
b

l
e

!
!

|
l

o
c

a
l

_
n

a
m

e
|

s
t

a
n

d
a

r
d

_
n

a
m

e
|

l
o

n
g

_
n

a
m

e
|

u
n

i
t

s
|

r
a

n
k

|
t

y
p

e
|

k
i

n
d

|
i

n
t

e
n

t
|

o
p

t
i

o
n

a
l

|
!

!
|

-
-

-
-

-
-

-
-

-
-

-
-|

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-|
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-|
-

-
-

-
-

-
-|

-
-

-
-

-
-|

-
-

-
-

-
-

-
-

-
-

-|
-

-
-

-
-

-
-|

-
-

-
-

-
-

-
-|

-
-

-
-

-
-

-
-

-
-|

!
!

|
e

r
r

m
s

g
|

e
r

r
o

r
_

m
e

s
s

a
g

e
|

C
C

P
P

e
r

r
o

r
m

e
s

s
a

g
e

|
n

o
n

e
|

0
|

c
h

a
r

a
c

t
e

r
|

l
e

n
=

*
|

o
u

t
|

F
|

!
!

|
e

r
r

f
l

g
|

e
r

r
o

r
_

f
l

a
g

|
C

C
P

P
e

r
r

o
r

f
l

a
g

|
f

l
a

g
|

0
|

i
n

t
e

g
e

r
|

|
o

u
t

|
F

|
!

!
s

u
b

r
o

u
t

i
n

e
s

c
h

e
m

e
_

t
e

m
p

l
a

t
e

_
r

u
n

(
e

r
r

m
s

g
,

e
r

r
f

l
g

)

i
m

p
l

i
c

i
t

n
o

n
e

!
-

-
-

a
r

g
u

m
e

n
t

s
!

a
d

d
y

o
u

r
a

r
g

u
m

e
n

t
s

h
e

r
e

c
h

a
r

a
c

t
e

r
(

l
e

n
=

*
)

,
i

n
t

e
n

t
(

o
u

t
)

:
:

e
r

r
m

s
g

i
n

t
e

g
e

r
,

i
n

t
e

n
t

(
o

u
t

)
:

:
e

r
r

f
l

g

!
-

-
-

l
o

c
a

l
v

a
r

i
a

b
l

e
s

!
a

d
d

y
o

u
r

l
o

c
a

l
v

a
r

i
a

b
l

e
s

h
e

r
e

c
o

n
t

i
n

u
e

!
-

-
-

i
n

i
t

i
a

l
i

z
e

C
C

P
P

e
r

r
o

r
h

a
n

d
l

i
n

g
v

a
r

i
a

b
l

e
s

e
r

r
m

s
g

=
’

’
e

r
r

f
l

g
=

0

!
-

-
-

i
n

i
t

i
a

l
i

z
e

i
n

t
e

n
t

(
o

u
t

)
v

a
r

i
a

b
l

e
s

!
i

n
i

t
i

a
l

i
z

e
a

l
l

i
n

t
e

n
t

(
o

u
t

)
v

a
r

i
a

b
l

e
s

h
e

r
e

!
-

-
-

a
c

t
u

a
l

c
o

d
e

!
a

d
d

y
o

u
r

c
o

d
e

h
e

r
e

!
i

n
c

a
s

e
o

f
e

r
r

o
r

s
,

s
e

t
e

r
r

f
l

g
t

o
a

v
a

l
u

e
!

=
0

,
!

a
s

s
i

g
n

a
m

e
a

n
i

n
g

f
u

l
l

m
e

s
s

a
g

e
t

o
e

r
r

m
s

g
a

n
d

r
e

t
u

r
n

r
e

t
u

r
n

e
n

d
s

u
b

r
o

u
t

i
n

e
s

c
h

e
m

e
_

t
e

m
p

l
a

t
e

_
r

u
n

e
n

d
m

o
d

u
l

e
s

c
h

e
m

e
_

t
e

m
p

l
a

t
e

6

2 CCPP-compliant physics schemes

2.2 Adding a new scheme to the CCPP pool

This section describes briefly how to add a new scheme to the CCPP pool and use it with
a host model that already supports the CCPP.

1. Identify the required variables for your target host model: for a list
of variables available for host model XYZ (currently SCM and FV3), see
ccpp-framework/doc/DevelopersGuide/CCPP_VARIABLES_XYZ.pdf. Contact the
GMTB helpdesk at gmtb-help@ucar.edu if you need additional variables that you
believe should be provided by the host model or as part of a pre-/post-scheme
(interstitial scheme) instead of being calculated from existing variables inside your
scheme.

2. Identify if your new scheme requires additional interstitial code that must be run
before/after the scheme and that cannot be part of the scheme itself, for example
because of dependencies on other schemes and/or the order the scheme is run in the
suite definition file. As of now, interstitial schemes should be created in cooperation
with the GMTB helpdesk.

3. Follow the guidelines outlined in the previous section to make your scheme CCPP-
compliant. Make sure to use an uppercase suffix .F90 to enable CPP preprocessing.

4. Locate the CCPP prebuild configuration files for the target host model, for example:
ccpp/ framework / scripts / ccpp_prebuild_config_FV3 .py # for GFDL FV3
ccpp - framework / scripts / ccpp_prebuild_config_SCM .py # FOR GMTB SCM

5. Add the new scheme to the list of schemes using the same path as the existing
schemes:
SCHEME_FILES = [

...
’../ some_relative_path / existing_scheme .F90 ’,
’../ some_relative_path / new_scheme .F90 ’,
...
]

6. If the new scheme uses optional arguments, add information on which ones to use
further down in the configuration file. See existing entries and documentation in
the configuration file for the possible options:
OPTIONAL_ARGUMENTS = {

’SCHEME_NAME ’ : {
’SCHEME_NAME_run ’ : [

list of all optional arguments in use for this model ,
by standard_name

],
instead of list [...] , can also say ’all ’ or ’none ’

},
}

7. Place new scheme in the same location as existing schemes in the CCPP directory
structure, e. g. ../some_relative_path/new_scheme.F90.

8. Edit the runtime suite definition file and add the new scheme at the place it should
be run. SDFs are located in
ccpp/ framework / suites / suite_FV3_GFS_2017_updated *. xml # FV3
ccpp - framework / suites / suite_SCM_GFS_2017_updated *. xml # SCM

7

gmtb-help@ucar.edu

2 CCPP-compliant physics schemes

9. Done. Note that no further modifications of the build system are required, since
the CCPP framework will auto-generate the necessary makefiles that allow the host
model to compile the scheme.

Note: Making a scheme CCPP-compliant is a necessary step for acceptance of the scheme
in the pool of supported CCPP physics schemes, but does not guarantee it. Acceptance
is subject to approval by a Governance committee and depends on scientific innovation,
demonstrated added value, and compliance with the above rules. The criteria for ac-
ceptance of innovations into the CCPP is under development. For further information,
please contact the GMTB helpdesk at gmtb-help@ucar.edu.

8

gmtb-help@ucar.edu

3 Integrating CCPP with a host model

This chapter describes the process of connecting a host model with the pool of CCPP
physics schemes through the CCPP framework. This work can be split into several
distinct steps outlined in the following sections.

3.1 Checking variable requirements on host model side

The first step consists of making sure that the necessary variables for run-
ning the CCPP physics schemes are provided by the host model. A list
of all variables required for the current pool of physics can be found in
ccpp{-,/}framework/doc/DevelopersGuide/CCPP_VARIABLES_XYZ.pdf (XYZ: SCM, FV3).
While most of the variable requirements come from the CCPP physics schemes, a small
number of variables are required for correct operation of the CCPP and for compliance
with its standards. These variables are described in Listings 3.1 and 3.2. In case a
required variable (that is not mandatory for CCPP) is not provided by the host model,
there are several options:

• If a particular variable is only required by schemes in the pool that will not get used,
these schemes can be commented out in the ccpp prebuild config (see Sect. 2.2).

• If a variable can be calculated from existing variables in the model, an interstitial
scheme (usually called scheme_name_pre) can be created that calculates the missing
variable. However, the memory for this variable must be allocated on the host
model side (i. e. the variable must be defined but not initialized in the host model).
Another interstitial scheme (usually called scheme_name_post) might be required to
update variables used by the host model with the results from the new scheme. At
present, adding interstitial schemes should be done in cooperation with the GMTB
Help Desk (gmtb-help@ucar.edu).

• In some cases, the declaration and calculation of the missing variable can be placed
entirely inside the host model. Please consult with the GMTB Help Desk.

At present, only two types of variable definitions are supported by the CCPP frame-
work:

• Standard Fortran variables (character, integer, logical, real) defined in a module
or in the main program. For character variables, a fixed length is required. All
others can have a kind attribute of a kind type defined by the host model.

• Derived data types (DDTs) defined in a module or the main program. While the
use of derived data types as arguments to physics schemes in general is discouraged
(see Sect. 2.1), it is perfectly acceptable for the host model to define the variables

9

gmtb-help@ucar.edu

3 Integrating CCPP with a host model

Li
st
in
g
3.
1:

M
an

da
to
ry

va
ria

bl
es

th
at

ar
e
pr
ov
id
ed

by
th
e
C
C
PP

fra
m
ew

or
k
(a
nd

m
us
t
no

t
be

de
fin

ed
by

th
e
ho

st
m
od

el
)

!
!

|
l

o
c

a
l

_
n

a
m

e
|

s
t

a
n

d
a

r
d

_
n

a
m

e
|

l
o

n
g

_
n

a
m

e
|

u
n

i
t

s
|

r
a

n
k

|
t

y
p

e
|

k
i

n
d

|
i

n
t

e
n

t
|

o
p

t
i

o
n

a
l

|
!

!
|

-
-

-
-

-
-

-
-

-
-

-
-|

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-|

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-|

-
-

-
-

-
-

-|
-

-
-

-
-

-|
-

-
-

-
-

-
-

-
-

-
-|

-
-

-
-

-
-

-
-

-|
-

-
-

-
-

-
-

-|
-

-
-

-
-

-
-

-
-

-|
!

!
|

e
r

r
f

l
g

|
c

c
p

p
_

e
r

r
o

r
_

f
l

a
g

|
e

r
r

o
r

f
l

a
g

f
o

r
e

r
r

o
r

h
a

n
d

l
i

n
g

|
f

l
a

g
|

0
|

i
n

t
e

g
e

r
|

|
n

o
n

e
|

F
|

!
!

|
e

r
r

m
s

g
|

c
c

p
p

_
e

r
r

o
r

_
m

e
s

s
a

g
e

|
e

r
r

o
r

m
e

s
s

a
g

e
f

o
r

e
r

r
o

r
h

a
n

d
l

i
n

g
|

n
o

n
e

|
0

|
c

h
a

r
a

c
t

e
r

|
l

e
n

=
5

1
2

|
n

o
n

e
|

F
|

!
!

|
l

o
o

p
_

c
n

t
|

c
c

p
p

_
l

o
o

p
_

c
o

u
n

t
e

r
|

l
o

o
p

c
o

u
n

t
e

r
f

o
r

s
u

b
c

y
c

l
i

n
g

l
o

o
p

s
|

i
n

d
e

x
|

0
|

i
n

t
e

g
e

r
|

|
n

o
n

e
|

F
|

!
!

Li
st
in
g
3.
2:

M
an

da
to
ry

va
ria

bl
es

th
at

m
us
t
be

pr
ov

id
ed

by
th
e
ho

st
m
od

el
(lo

ca
ln

am
e
is

no
t
fix

ed
)

!
!

|
l

o
c

a
l

_
n

a
m

e
|

s
t

a
n

d
a

r
d

_
n

a
m

e
|

l
o

n
g

_
n

a
m

e
|

u
n

i
t

s
|

r
a

n
k

|
t

y
p

e
|

k
i

n
d

|
i

n
t

e
n

t
|

o
p

t
i

o
n

a
l

|
!

!
|

-
-

-
-

-
-

-
-

-
-

-
-|

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-|

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-|

-
-

-
-

-
-

-|
-

-
-

-
-

-|
-

-
-

-
-

-
-

-
-

-
-|

-
-

-
-

-
-

-
-

-|
-

-
-

-
-

-
-

-|
-

-
-

-
-

-
-

-
-

-|
!

!
|

m
p

i
r

a
n

k
|

m
p

i
_

r
a

n
k

|
c

u
r

r
e

n
t

M
P

I
r

a
n

k
|

i
n

d
e

x
|

0
|

i
n

t
e

g
e

r
|

|
n

o
n

e
|

F
|

!
!

|
m

p
i

r
o

o
t

|
m

p
i

_
r

o
o

t
|

m
a

s
t

e
r

M
P

I
r

a
n

k
|

i
n

d
e

x
|

0
|

i
n

t
e

g
e

r
|

|
n

o
n

e
|

F
|

!
!

|
m

p
i

c
o

m
m

|
m

p
i

_
c

o
m

m
|

M
P

I
c

o
m

m
u

n
i

c
a

t
o

r
|

i
n

d
e

x
|

0
|

i
n

t
e

g
e

r
|

|
n

o
n

e
|

F
|

!
!

|
m

p
i

s
i

z
e

|
m

p
i

_
s

i
z

e
|

n
u

m
b

e
r

o
f

M
P

I
t

a
s

k
s

i
n

c
o

m
m

u
n

i
c

a
t

o
r

|
c

o
u

n
t

|
0

|
i

n
t

e
g

e
r

|
|

n
o

n
e

|
F

|
!

!
|

n
t

h
r

e
a

d
s

|
o

m
p

_
t

h
r

e
a

d
s

|
n

u
m

b
e

r
o

f
t

h
r

e
a

d
s

f
o

r
u

s
e

b
y

p
h

y
s

i
c

s
|

c
o

u
n

t
|

0
|

i
n

t
e

g
e

r
|

|
n

o
n

e
|

F
|

10

3 Integrating CCPP with a host model

requested by physics schemes as components of DDTs and pass these components
to CCPP by using the correct local_name (see Listing 3.3 for an example).

With the CCPP, it is possible to not only refer to components of derived types, but also
to slices of arrays in the metadata table as long as these are contiguous in memory (see
Listing 3.3 in the following section for an example).

3.2 Adding metadata variable tables for the host model

To establish the link between host model variables and physics scheme variables, the host
model must provide metadata tables similar to those presented in Sect. 2.1. The host
model can have multiple metadata tables or just one. For each variable required by the
pool of CCPP physics schemes, one and only one entry must exist on the host model
side. The connection between a variable in the host model and in the physics scheme is
made through its standard_name.

The following requirements must be met when defining variables in the host model meta-
data tables (see also listing 3.3 for examples of host model metadata tables).

• The standard_name must match that of the target variable in the physics scheme.
• The type, kind, shape and size of the variable (as defined in the host model Fortran

code) must match that of the target variable.
• The attributes units, rank, type and kind in the host model metadata table must

match those in the physics scheme table.
• The attributes optional and intent must be set to F and none, respectively.
• The local_name of the variable must be set to the name the host model cap (see

Sect. 3.3) uses to refer to the variable.
• The name of the metadata table must match the name of the module or program

in which the variable is defined, or the name of the derived data type if the variable
is a component of this type.

• Metadata tables describing module variables must be placed inside the module.
• Metadata tables describing components of derived data types must be placed im-

mediately before the type definition.

3.3 Writing a host model cap for the CCPP

The purpose of the host model cap is to abstract away the communication between the
host model and the CCPP physics schemes. While CCPP calls can be placed directly
inside the host model code, it is recommended to separate the cap in its own module for
clarity and simplicity. The host model cap is responsible for:

Allocating memory for variables needed by physics. This is only required if the vari-
ables are not allocated by the host model, for example for interstitial variables used
exclusively for communication between the physics schemes.

11

3 Integrating CCPP with a host model

Li
st
in
g
3.
3:

Ex
am

pl
e
m
et
ad

at
a
ta
bl
e
fo
r
a
ho

st
m
od

el
m

o
d

u
l

e
e

x
a

m
p

l
e

_
v

a
r

d
e

f
s

i
m

p
l

i
c

i
t

n
o

n
e

!
>

\
s

e
c

t
i

o
n

a
r

g
_

t
a

b
l

e
_

e
x

a
m

p
l

e
_

v
a

r
d

e
f

s
!

!
|

l
o

c
a

l
_

n
a

m
e

|
s

t
a

n
d

a
r

d
_

n
a

m
e

|
l

o
n

g
_

n
a

m
e

|
u

n
i

t
s

|
r

a
n

k
|

t
y

p
e

|
k

i
n

d
|

i
n

t
e

n
t

|
o

p
t

i
o

n
a

l
|

!
!

|
-

-
-

-
-

-
-

-
-

-
-

-|
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-|

-
-

-
-

-
-

-
-

-
-

-|
-

-
-

-
-

-
-|

-
-

-
-

-
-|

-
-

-
-

-
-

-
-

-
-

-|
-

-
-

-
-

-
-

-|
-

-
-

-
-

-
-

-|
-

-
-

-
-

-
-

-
-

-|
!

!
|

e
x

_
i

n
t

|
e

x
a

m
p

l
e

_
i

n
t

|
e

x
.

i
n

t
|

n
o

n
e

|
0

|
i

n
t

e
g

e
r

|
|

n
o

n
e

|
F

|
!

!
|

e
x

_
r

e
a

l
1

|
e

x
a

m
p

l
e

_
r

e
a

l
1

|
e

x
.

r
e

a
l

|
m

|
2

|
r

e
a

l
|

k
i

n
d

=
8

|
n

o
n

e
|

F
|

!
!

|
e

r
r

m
s

g
|

e
r

r
o

r
_

m
e

s
s

a
g

e
|

e
r

r
.

m
s

g
.

|
n

o
n

e
|

0
|

c
h

a
r

a
c

t
e

r
|

l
e

n
=

6
4

|
n

o
n

e
|

F
|

!
!

|
e

r
r

f
l

g
|

e
r

r
o

r
_

f
l

a
g

|
e

r
r

.
f

l
g

.
|

f
l

a
g

|
0

|
l

o
g

i
c

a
l

|
|

n
o

n
e

|
F

|
!

!

i
n

t
e

g
e

r
,

p
a

r
a

m
e

t
e

r
:

:
r

1
5

=
s

e
l

e
c

t
e

d
_

r
e

a
l

_
k

i
n

d
(

1
5

)
i

n
t

e
g

e
r

:
:

e
x

_
i

n
t

r
e

a
l

(
k

i
n

d
=

8
)

,
d

i
m

e
n

s
i

o
n

(
:

,
:

)
:

:
e

x
_

r
e

a
l

1
c

h
a

r
a

c
t

e
r

(
l

e
n

=
6

4
)

:
:

e
r

r
m

s
g

l
o

g
i

c
a

l
:

:
e

r
r

f
l

g

!
D

e
r

i
v

e
d

d
a

t
a

t
y

p
e

s

!
>

\
s

e
c

t
i

o
n

a
r

g
_

t
a

b
l

e
_

e
x

a
m

p
l

e
_

d
d

t
!

!
|

l
o

c
a

l
_

n
a

m
e

|
s

t
a

n
d

a
r

d
_

n
a

m
e

|
l

o
n

g
_

n
a

m
e

|
u

n
i

t
s

|
r

a
n

k
|

t
y

p
e

|
k

i
n

d
|

i
n

t
e

n
t

|
o

p
t

i
o

n
a

l
|

!
!

|
-

-
-

-
-

-
-

-
-

-
-

-|
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-|

-
-

-
-

-
-

-
-

-
-

-|
-

-
-

-
-

-
-|

-
-

-
-

-
-|

-
-

-
-

-
-

-
-

-
-

-|
-

-
-

-
-

-
-

-|
-

-
-

-
-

-
-

-|
-

-
-

-
-

-
-

-
-

-|
!

!
|

e
x

t
%

l
|

e
x

a
m

p
l

e
_

f
l

a
g

|
e

x
.

f
l

a
g

|
f

l
a

g
|

0
|

l
o

g
i

c
a

l
|

|
n

o
n

e
|

F
|

!
!

|
e

x
t

%
r

|
e

x
a

m
p

l
e

_
r

e
a

l
3

|
e

x
.

r
e

a
l

|
k

g
|

2
|

r
e

a
l

|
r

1
5

|
n

o
n

e
|

F
|

!
!

|
e

x
t

%
r

(
:

,
1

)
|

e
x

a
m

p
l

e
_

s
l

i
c

e
|

e
x

.
s

l
i

c
e

|
k

g
|

1
|

r
e

a
l

|
r

1
5

|
n

o
n

e
|

F
|

!
!

t
y

p
e

e
x

a
m

p
l

e
_

d
d

t
l

o
g

i
c

a
l

:
:

l
re

al
,

d
i

m
e

n
s

i
o

n
(

:
,

:
)

:
:

r
e

n
d

t
y

p
e

e
x

a
m

p
l

e
_

d
d

t

t
y

p
e

(
e

x
a

m
p

l
e

_
d

d
t

)
:

:
e

x
t

e
n

d
m

o
d

u
l

e
e

x
a

m
p

l
e

_
v

a
r

d
e

f
s

12

3 Integrating CCPP with a host model

Allocating the cdata structure. The cdata structure handles the data exchange between
the host model and the physics schemes and must be defined in the host model
cap or another suitable location in the host model. The cdata variable must be
persistent in memory. Note that cdata is not restricted to being a scalar but can be
a multi-dimensional array, depending on the needs of the host model. For example,
a model that uses a 1-dimensional array of blocks for better cache-reuse may require
cdata to be a 1-dimensional array of the same size. Another example of a multi-
dimensional array of cdata is in the GMTB SCM, which uses a 1-dimensional cdata
array for N independent columns.

Calling the suite initialization subroutine. The suite initialization subroutine takes two
arguments, the name of the runtime suite definition file (of type character) and
the name of the cdata variable that must be allocated at this point. Note. The
suite initialization routine ccpp_init parses the suite definition file and initializes
the state of the suite and its schemes. This process must be repeated for every
element of a multi-dimensional cdata. For performance reasons, it is possible to
avoid repeated reads of the suite definition file and to have a single state of the
suite shared between the elements of cdata. This is a developmental feature and
has implications on the physics initialization. Host model developers interested in
this feature should contact the GMTB Help Desk (gmtb-help@ucar.edu).

Populating the cdata structure. Each variable required by the physics schemes must be
added to the cdata structure – or to each element of a multi-dimensional cdata –
on the host model side. This is an automated task and accomplished by inserting
a preprocessor directive
include ccpp_modules .inc

at the top of the cap (before implicit none) to load the required modules (e. g.
module example_vardefs in listing 3.3), and a second preprocessor directive
include ccpp_fields .inc

after the cdata variable and the variables required by the physics schemes are
allocated.
Note. The CCPP framework supports splitting physics schemes into different sets
that are used in different parts of the host model. An example therefore is the
separation between slow and fast physics processes for the GFDL microphysics
implemented in FV3GFS: while the slow physics are called as part of the usual model
physics, the fast physics are integrated in the dynamical core. The separation of
physics into different sets is part of the CCPP prebuild configuration (see Sect. 3.4),
which allows to create multiple include files (e.g. ccpp_fields_slow_physics.inc
and ccpp_fields_fast_physics.inc that can be used by different cdata structures
in different parts of the model). Please contact the GMTB Help Desk (gmtb-help@
ucar.edu) if you would like to use this feature.

Providing interfaces to call CCPP for the host model. The cap must provide func-
tions or subroutines that can be called at the appropriate places in the host
model time integration loop and that internally call ccpp_init, ccpp_physics_init,
ccpp_physics_run, ccpp_physics_finalize and ccpp_finalize, and handle any er-
rors returned.

Listing 3.4 contains a simple template of a host model cap for CCPP, which can also be
found in ccpp-framework/doc/DevelopersGuide/host_cap_template.F90.

13

gmtb-help@ucar.edu
gmtb-help@ucar.edu
gmtb-help@ucar.edu

3 Integrating CCPP with a host model

Listing 3.4: Fortran template for a CCPP host model cap
module example_ccpp_host_cap

use ccpp_api , only : ccpp_t , ccpp_field_add , ccpp_init , ccpp_finalize , &
ccpp_physics_init , ccpp_physics_run , ccpp_physics_finalize

use iso_c_binding , only : c_loc
! Include auto - generated list of modules for ccpp
include " ccpp_modules .inc"

implicit none

! CCPP data structure
type (ccpp_t), save , target :: cdata

public :: physics_init , physics_run , physics_finalize

contains

subroutine physics_init (ccpp_suite_name)
character (len =*) , intent (in) :: ccpp_suite_name
integer :: ierr
ierr = 0

! Initialize the CCPP framework , parse SDF
call ccpp_init (ccpp_suite_name , cdata , ierr=ierr)
if (ierr /=0) then

write (*,’(a)’) "An error occurred in ccpp_init "
stop

end if
! Include auto - generated list of calls to ccpp_field_add
include " ccpp_fields .inc"

! Initialize CCPP physics (run all _init routines)
call ccpp_physics_init (cdata , ierr=ierr)
! error handling as above

end subroutine physics_init

subroutine physics_run (group , scheme)
! Optional arguments group and scheme can be used
! to run a group of schemes or an individual scheme
! defined in the SDF. Otherwise , run entire suite .
character (len =*) , optional , intent (in) :: group
character (len =*) , optional , intent (in) :: scheme

integer :: ierr
ierr = 0

if (present (scheme)) then
call ccpp_physics_run (cdata , scheme_name =scheme , ierr=ierr)

else if (present (group)) then
call ccpp_physics_run (cdata , group_name =group , ierr=ierr)

else
call ccpp_physics_run (cdata , ierr=ierr)

end if
! error handling as above

end subroutine physics_run

subroutine physics_finalize ()
integer :: ierr
ierr = 0

! Finalize CCPP physics (run all _finalize routines)
call ccpp_physics_finalize (cdata , ierr=ierr)
! error handling as above
call ccpp_finalize (cdata , ierr=ierr)
! error handling as above

end subroutine physics_finalize

end module example_ccpp_host_cap

14

3 Integrating CCPP with a host model

Metadata tables:
variables requested

Metadata tables:
variables provided

� Metadata tables in FV3 in GFS_typedefs.F90 and
physcons.f90

Metadata tables on host model side

2

CCPP
prebuild

cdata

Figure 3.1: Role of the CCPP prebuild script and the cdata structure in the software
architecture of an atmospheric modeling system.

3.4 Configuring and running the CCPP prebuild script

The CCPP prebuild script ccpp-framework/scripts/ccpp_prebuild.py is the central
piece of code that connects the host model with the CCPP physics schemes (see Fig-
ure 3.1). This script must be run before compiling the CCPP physics library and the
host model cap. The CCPP prebuild script automates several tasks based on the infor-
mation collected from the metadata tables on the host model side and from the individual
physics schemes:

• Compiles a list of variables required to run all schemes in the CCPP physics pool.
• Compiles a list of variables provided by the host model.
• Matches these variables by their standard_name, checks for missing variables and

mismatches of their attributes (e. g., units, rank, type, kind) and processes infor-
mation on optional variables (see also Sect. 2.1).

• Creates Fortran code (ccpp_modules.inc, ccpp_fields.inc) that stores pointers to
the host model variables in the cdata structure.

• Auto-generates the caps for the physics schemes.
• Populates makefiles with schemes and caps.

In order to connect the CCPP with a host model XYZ, a Python-based configuration file
for this model must be created in the directory ccpp-framework/scripts. The easiest
way is to copy an existing configuration file in this directory, for example
cp ccpp_prebuild_config_SCM .py ccpp_prebuild_config_XYZ .py

The configuration in ccpp_prebuild_config_XYZ.py depends largely on (a) the directory
structure of the host model itself, (b) where the ccpp-framework and the ccpp-physics
directories are located relative to the directory structure of the host model, and (c) from
which directory the ccpp_prebuild.py script is executed before/during the build process
(this is referred to as basedir in ccpp_prebuild_config_XYZ.py).

Listing 3.5 contains an example for the SCM CCPP prebuild config. Here, it is assumed
that both ccpp-framework and ccpp-physics are located in the top-level directory of the
host model, and that ccpp_prebuild.py is executed from the same top-level directory.

15

3 Integrating CCPP with a host model

Listing 3.5: CCPP prebuild config for SCM (shortened)
Add all files with metadata tables on the host model side ,
relative to basedir = top - level directory of host model
VARIABLE_DEFINITION_FILES = [

’scm/src/ gmtb_scm_type_defs .f90 ’,
’scm/src/ gmtb_scm_physical_constants .f90 ’
]

Add all physics scheme dependencies relative to basedir - note that the CCPP
rules stipulate that dependencies are not shared between the schemes !
SCHEME_FILES_DEPENDENCIES = [] # can be empty

Add all physics scheme files relative to basedir
SCHEME_FILES = {

Relative path : [list of sets in which scheme may be called]
’ccpp - physics / physics / GFS_DCNV_generic .f90 ’ : [’physics ’],
’ccpp - physics / physics / sfc_sice .f’ : [’physics ’],
}

Auto - generated makefile / cmakefile snippets that contains all schemes
SCHEMES_MAKEFILE = ’ccpp - physics / CCPP_SCHEMES .mk ’
SCHEMES_CMAKEFILE = ’ccpp - physics / CCPP_SCHEMES . cmake ’

CCPP host cap in which to insert the ccpp_field_add statements ;
determines the directory to place ccpp_ {modules , fields }. inc
TARGET_FILES = [

’scm/src/ gmtb_scm .f90 ’,
]

Auto - generated makefile / cmakefile snippets that contains all caps
CAPS_MAKEFILE = ’ccpp - physics / CCPP_CAPS .mk ’
CAPS_CMAKEFILE = ’ccpp - physics / CCPP_CAPS . cmake ’

Directory where to put all auto - generated physics caps
CAPS_DIR = ’ccpp - physics / physics ’

Optional arguments - only required for schemes that use optional arguments .
ccpp_prebuild .py will throw an exception if it encounters a scheme subroutine
with optional arguments if no entry is made here. Possible values are:
OPTIONAL_ARGUMENTS = {

#’subroutine_name_1 ’ : ’all ’,
#’subroutine_name_2 ’ : ’none ’,
#’subroutine_name_3 ’ : [’var1 ’, ’var2 ’],
}

HTML document containing the model - defined CCPP variables
HTML_VARTABLE_FILE = ’ccpp - physics / CCPP_VARIABLES .html ’

LaTeX document containing the provided vs requested CCPP variables
LATEX_VARTABLE_FILE = ’ccpp - framework /doc/ DevelopersGuide / CCPP_VARIABLES .tex ’

Template code to generate include files

Name of the CCPP data structure in the host model cap;
in the case of SCM , this is a vector with loop index i
CCPP_DATA_STRUCTURE = ’cdata (i)’

Modules to load for auto - generated ccpp_field_add code
in the host model cap (e.g. error handling)
MODULE_USE_TEMPLATE_HOST_CAP = \
’’’
use ccpp_errors , only: ccpp_error
’’’

Modules to load for auto - generated ccpp_field_get code
in the physics scheme cap (e.g. derived data types)
MODULE_USE_TEMPLATE_SCHEME_CAP = \
’’’

use machine , only: kind_phys
use GFS_typedefs , only: GFS_statein_type , ...

’’’

EOF
16

3 Integrating CCPP with a host model

Once the configuration in ccpp_prebuild_config_XYZ.py is complete, run
./ccpp - framework / scripts / ccpp_prebuild .py --model=XYZ [--debug]

from the top-level directory. Without the debugging flag, the output should look like
INFO: Logging level set to INFO
INFO: Parsing metadata tables for variables provided by host model ...
INFO: Parsed variable definition tables in module gmtb_scm_type_defs
INFO: Parsed variable definition tables in module gmtb_scm_physical_constants
INFO: Parsed variable definition tables in module ccpp_types
INFO: Metadata table for model SCM written to ccpp - physics / CCPP_VARIABLES_SCM .html
INFO: Parsing metadata tables in physics scheme files ...
INFO: Parsed tables in scheme rrtmg_lw
...
INFO: Checking optional arguments in physics schemes ...
INFO: Metadata table for model SCM written to ccpp - framework /doc/ DevelopersGuide /

CCPP_VARIABLES_SCM .tex
INFO: Comparing metadata for requested and provided variables ...
INFO: Generating module use statements for set physics ...
INFO: Generated module use statements for 4 module (s)
INFO: Generating ccpp_field_add statements for set physics ...
INFO: Generated ccpp_field_add statements for 606 variable (s)
INFO: Generating include files for host model cap scm/src/ gmtb_scm .f90 ...
INFO: Generated module -use include file scm/src/ ccpp_modules .inc
INFO: Generated fields -add include file scm/src/ ccpp_fields .inc
INFO: Generating schemes makefile / cmakefile snippet ...
INFO: Added 81 schemes to ccpp - physics / CCPP_SCHEMES .mk and ccpp - physics / CCPP_SCHEMES .

cmake
INFO: Generating caps makefile / cmakefile snippet ...
INFO: Added 64 auto - generated caps to ccpp - physics / CCPP_CAPS .mk and ccpp - physics /

CCPP_CAPS . cmake
INFO: CCPP prebuild step completed successfully .

3.5 Building the CCPP framework and physics library

3.5.1 Preface

It is highly recommended to build the CCPP physics library and software framework
as part of the host model. Both ccpp-framework and ccpp-physics use a cmake build
system, which can be integrated in the host model’s cmake build system, as it is the
case for the SCM. For the example of FV3GFS, which employs a traditional make build
system, the cmake build for the CCPP framework and physics are triggered by the host
model’s compile.sh script.

Note. It is possible to build the CCPP framework standalone, for example for testing
purposes. It is generally not possible to build the CCPP physics library without running
the CCPP prebuild script, since the build system relies on the auto-generated cmake code
snippets that define the physics schemes and caps to compile. Further, any thirdparty
libraries required by the physics schemes must be compiled and installed separately and
the appropriate compiler and linker flags must be set manually. For example, the CCPP
physics used by GMTB’s SCM require several of NCEP’s libraries (bacio, sp, w3nco);
FV3GFS in addition requires the ESMF libraries and, depending on the operating system,
also the Intel Math Kernel Library MKL (currently MacOSX only).

17

3 Integrating CCPP with a host model

3.5.2 Standalone ccpp-framework build

The instructions laid out below demonstrate how to build the CCPP framework indepen-
dently of the host model. It is assumed that the Github repository is checked out into a
local directory ccpp-framework.

Set environment variables. In general, CCPP requires the CC and FC variables to point
to the correct compilers. If threading (OpenMP) will be used inside the CCPP
physics or the host model calling the CCPP physics, OpenMP-capable compilers
must be used.

Build the CCPP framework. Use the following steps to build the CCPP framework.
cd ccpp - framework
mkdir build && cd build
cmake -DCMAKE_INSTALL_PREFIX =$PWD ..
add -DOPENMP =ON before .. for OpenMP build
add -DCMAKE_BUILD_TYPE =Debug before .. for ’Debug ’ build
make
add VERBOSE =1 for verbose output
make install
add VERBOSE =1 after install for verbose output

Update environment variables. The previous install step creates directories include
and lib inside the build directory. These directories and the newly built library
libccpp.so need to be added to the environment variables FFLAGS and LDFLAGS,
respectively (example for bash, assuming the current directory is still the above
build directory):
export FFLAGS ="-I$PWD/ include /ccpp $FFLAGS "
export LDFLAGS ="-L$PWD/lib -lccpp $LDFLAGS "

Testing the CCPP framework. Several unit tests are provided by the CCPP framework.
These cover basic functionality and will be expanded to increase the test coverage
in future releases. The unit tests are run from the build directory using
export LD_LIBRARY_PATH =$PWD/ schemes /check/src/check -build:

$LD_LIBRARY_PATH
make test

3.5.3 Integration with host model build system

To allow for a flexible configuration of the CCPP framework and physics with multiple
models, the CMakeLists.txt configuration files for both packages use a cmake variable
PROJECT. This variable can be set as part of the cmake call (cmake -DPROJECT=XYZ) or
by a CMakeLists.txt that integrates ccpp-framework and ccpp-physics. If not specified,
PROJECT is set to ’Unknown’.

The basic steps to build the CCPP framework and physics for a specific host model are
outlined in the following.

Recommended directory structure. As mentioned in Section 3.4, we recommend plac-
ing the two directories (repositories) ccpp-framework and ccpp-physics in the top-

18

3 Integrating CCPP with a host model

level directory of the host model, and to adapt the CCPP prebuild config such that
it can be run from the top-level directory. For FV3GFS, a slightly different directory
structure is used that places ccpp-framework in ccpp/framework and ccpp-physics
in ccpp/physics, and uses a shell script ccpp/build_ccpp.sh and a top-level cmake
configuration ccpp/CMakeLists.txt for the build process.

Set environment variables. In addition to the compiler variables CC and FC, the CCPP
physics require further enviroment variables for thirdparty libraries used by the
physics schemes. The setup scripts for SCM (in scm/etc) or FV3GFS (in conf or
modulefiles) provide useful examples for the correct environment settings.

Build the CCPP framework. See previous section on how to build the CCPP frame-
work. The cmake variable PROJECT can be set to customize the build using
ccpp-framework/CMakeLists.txt. This includes preprocessor flags such as -DMPI.

Update environment variables. See previous section on how to update the compiler and
linker flags.

Build CCPP physics library. Before building ccpp-physics, its top-level cmake configu-
ration ccpp-physics/CMakeLists.txt must be customized for the host model. This
includes compiler flags, preprocessor flags etc. The user is referred to the existing
configurations. The CCPP physics library is built starting from the build directory
ccpp-framework/build:
cd ../.. # back to top -level directory
cd ccpp - physics
mkdir build && cd build
cmake ..
add -DOPENMP =ON before .. for OpenMP build
note that OpenMP build requires finding
detect_openmp .cmake from ccpp - framework /cmake
make
add VERBOSE =1 after install for verbose output

Following these steps, the include files and the library libccpp.so that the host model
needs to be compiled and linked against are located in ccpp-framework/build/include
and ccpp-framework/build/lib. Note that there is no need to link the host model to the
CCPP physics library in ccpp-physics/build, as long as it is in the search path of the
dynamic loader of the OS (for example by adding the directory ccpp-physics/build to
the LD_LIBRARY_PATH environment variable). This is because the CCPP physics library
is loaded dynamically by the CCPP framework using the library name specified in the
runtime suite definition file (see the GMTB Single Column Model Technical Guide v2.1,
Chapter 6.1.3, (https://dtcenter.org/gmtb/users/ccpp/docs/) for further informa-
tion). Setting the environment variables FFLAGS and LDFLAGS as described for the CCPP
framework standalone build in Sect. 3.5.2 should be sufficient to compile the host model
with its newly created host model cap (Sect. 3.3) and connect to the CCPP library and
framework.

For a complete integration of the CCPP infrastructure and physics library build systems
in the host model build system, users are referred to the existing implementations in
GMTB SCM and FV3GFS.

19

https://dtcenter.org/gmtb/users/ccpp/docs/

	Preface
	1 Introduction
	2 CCPP-compliant physics schemes
	2.1 Writing a CCPP-compliant physics scheme
	2.2 Adding a new scheme to the CCPP pool

	3 Integrating CCPP with a host model
	3.1 Checking variable requirements on host model side
	3.2 Adding metadata variable tables for the host model
	3.3 Writing a host model cap for the CCPP
	3.4 Configuring and running the CCPP prebuild script
	3.5 Building the CCPP framework and physics library
	3.5.1 Preface
	3.5.2 Standalone ccpp-framework build
	3.5.3 Integration with host model build system

