CCPP Technical Overview

Grant Firl
Cooperative Institute for Research in the Atmosphere, NOAA Global Systems Laboratory,

Developmental Testbed Center

August 15, 2023 — CCPP Visioning Workshop

‘ DTC’ Developmental Testbed Center

https://dtcenter.org/

Outline

o0 b=

CCPP Within the Model System
“CCPP-compliant” Physics
Assembling Physics Suites
Host-side Coding and the CCPP
API

Framework Scripts and Building
Miscellanea

CCPP Within the Model System

Model without CCPP Model with CCPP
* Physics Schemes * Physics Schemes
* Host-specific interface e Standardized interface
* Physics Driver * 5 phases possible
« Manually coded and host-specific * Arguments described and
« Suite Control documented
« NML and IF statements * Physics Driver
 Memory Allocation Autogenerated for given suites
« Spread between host, driver, e Suite Control
schemes as necessary « External XML files
* Documentation Memory Allocation
* Variable? * Host-only
* Build System « Documentation
 “Normal” o Standardized, in-line
* Build System

* |ncludes “hand-shake” step and
code autogeneration

CCPP Within the Model System

l Atmosphere Driver \

4 A

i C;p) C;p
| I

Dycore] [Other]

I

Metadata tables
of variables
provided

parses

\

hysics caps'

D ____generates
P

A

' __ generates

CCPP
Framework

[Physics capsf

Iparses

[Sfc]l PBL MConv.]E\Mcrophysﬂ[Rad.]][Chem.

CCPP Physics

of variables
requested

[Metadatatables

CCPP Within the Model System

[] H OSt re pOS i to ry = O ufs-community / cepp-physics Q Type /) to search e +~-[|O]I0] & @

<> Code (O Issues 21 19 Pull requests 5 () Discussions () Actions [Projects [Wiki (O Security [~ Insights & Settings

[48 ccpp-physics Public < EditPins ~+ ®Watch 10 -~ % Fork 134 ¥y Star 0

forked from NCAR/ccpp-physics

* CCpp
¥ ufs/dev ~ ¥ 4pranches © 2tags Go to file Add file ~ About
H UFS fork for CCPP
° cc p p -p h ys I cs This branch is 86 commits ahead, 133 commits behind NCAR:main. 1 Contribute v+ O Sync fork ~

[Readme
&8 View license
. -fram k
CCp p ra eWO r @ grantfirl Merge pull request #88 from grantfirl/strat_warm_b... .. X 9b69974 2 weeks ago ‘O 4,874 commits A~ Activity
¢ Ostars
W github Bug fix for Cl tests. 9 months ago
®© 10 watching
B physics Merge branch 'ufs/dev' into strat_warm_bias_fix_cheng 3 weeks ago % 134 forks
B tools Remove debug print statements from tools/check_encoding.... 3 years ago Report repository
3 .gitignore Required changes to enable IPD-only, CCPP-only and CCPP... 6 years ago
« Contains all physics code o e -
p y [CMakeLists.txt Remove lower optimization used in rte-rrtmgp module 3 months ago © 2tags
13] 11 [CODEOWNERS update CODEOWNERS 2 months ago Greate:a:new;iulesse
« “ent oints
[LICENSE Add a license file - Apache V2.0 (#50) 5 years ago
. [) README.md Update README.md last year Packages
« Dependencies
. Publish your first package

README.md 7

 Metadata CCPP Physics

® Fortran 98.3% @ TeX 1.2%
® CSS0.4% ® CMake 0.1%
JavaScript 0.0% ® HTML 0.0%

The Common Community Physics Package (CCPP) is designed to facilitate the implementation of
physics innovations in state-of-the-art atmospheric models, the use of various models to develop
physics, and the acceleration of transition of physics innovations to operational NOAA models.

Please see more information about the CCPP at the locations below.

CCPP Within the Model System

= O NCAR / ccpp-framework

<> Code

(@ Issues

k%5 ccpp-framework Public

¥ main ~

0 michalakes Support multiple concurrent instances per MPI tas...

.github

doc

logging
schema
scripts

src

stub

test

tests
.codecov.yml
.gitignore
travis.yml
CMakelLists.txt
CODEOWNERS
LICENSE
README.md

pytest.ini

]
a)
]
B
ta
&
]
)
D
5]
D
D
D
D
D
D
D

requirements.txt

¥ 9branches © 15 tags

51 19 Pullrequests () Discussions () Actions

<2 Edit Pins ~

Go to file

Add new runtime info routine, ccpp_physics_suite_schemes

Change unit of errmsg from '1' to 'none’

First pass at working ccpp_capgen using version 2 metadata

Removed standard names dictionary, moved to ESCOMP/CC...

Support multiple concurrent instances per MPI task (#463)
Support multiple concurrent instances per MPI task (#463)
Update CCPP error code variable in stub/stub.meta

Add more unit tests for routines in common.py (#465)

Fix Cl test failures in tests/test_metadata_parser.py

Adding coverage information/badges.

Add .pyc (compiled Python modules) to list of files ignored b...

Remove Julie from email notifications in .travis.yml

Update CMakelLists.txt: update authors, remove custom 'Bitf...

Remove Laurie from CODEOWNERS
Add a license file - Apache V2.0
Update README.md

Fix pytest.ini

Specify pythonpath env var in github actions

Q Type (/] to search

B Projects 2

0 wiki

¢ Unwatch 23

+/ 57d268c onJun20 O 1,398 commits

2 years ago
last year

4 years ago
3 years ago

2 months ago
2 months ago
last year

4 months ago
2 years ago
6 years ago
6 years ago
2 years ago
last year

2 years ago
5 years ago
last year

3 years ago

3 years ago

@ Security

> 1 [+ -](e)[n](e]@®

|~ Insights 3 Settings

-~ % Fork 59 ¥7 Star 20

Common Community Physics Package
(CCPP)

& www.d

Readme
View license
Activity

20 stars

23 watching
59 forks

Report repository

Releases 8

© ve00 ()

on Aug 4, 2022

+7 releases

Packages

No packages published
Publish your first package

Contributors 21
NLTOHSO0%
296a

Host repository

* CCpp
» ccpp-physics
e ccpp-framework

Contains Python scripts that
autogenerates physics drivers

» Needs configuration file (stored in
host repository) that points to
information about host and physics
schemes

* Autogenerates information needed
by host’s build system to compile
physics and autogenerated drivers

“CCPP-compliant” Physics

Structure (File 1 of 2)

« FORTRAN module (F90+)
* Filename same as module
« Contains at least 1 subroutine corresponding to 1 of 5 phases

1.
2.
3.
4.
5.

* 1nit

* timestep 1init

* run

* timestep finalize

* finalize

* init and * finalize must have the same result when called more than once
* Canmakeuseof is initialized flag

« Contains Doxygen “hook” prior to subroutine definition

!> \section arg table X run Argument Table

I'l' \htmlinclude X run.html
I

"CCPP-compliant” Physics

Structure (File 1 of 2)

scheme template.F90

module scheme_template

contains

!> \section arg table scheme template run Argument Table
!! \htmlinclude scheme template run.html

subroutine scheme_template run (errmsg, errflg)

implicit none

l!=== arguments

! add your arguments here
character(len=+*), intent(out) t: errmsg
integer, intent (out) :: errflg

!=-- local variables
! add your local variables here

continue

!--- initialize CCPP error handling variables

errmsg =
errflg = 0

!--- initialize intent(out) variables
! initialize all intent(out) variables here

!=-- actual code
! add your code here

! in case of errors, set errflg to a value != 0,
! assign a meaningful message to errmsg and return

return
end subroutine scheme_template_ run

end module scheme_template

"CCPP-compliant” Physics

Structure (File 2 of 2)

 Needs accompanying X.meta file describing the scheme

* Required contents | _
* [ccpp-table-properties]™ ‘ en?f:!i?\et:?ne
name = X
type = scheme

dependencies = X dependencyl.F90, X dependency2.F90

. Applies to one subroutine;
[ccpp-arg-table] can be more than one

name = X run
type = scheme
[errmsg]
standard name = ccpp error message
long name = error message for error handling in CCPP
units = none
dimensions = ()
type = character
kind = len=%*
intent = out

“CCPP-compliant” Physics

Scheme Coding Rules/Concepts (1)

» Pass all data needed by the scheme through the argument list
* Don't putuse external module to pass data
» Use assumed-shape array declarations for argument variables

real (kind=kind phys), dimension(:,:), 1ntent (inout) :: foo

real (kind=kind phys), dimension(its:,kts:), intent (inout) :: foo
Not

real (kind=kind phys), dimension(ni,nk), intent (inout) :: foo

- This allows the compiler to perform bounds checking and detect errors that
otherwise may go unnoticed.
- This also avoids segmentation faults for variables that may be
69 conditionally-allocated in the host.

10

“CCPP-compliant” Physics

Scheme Coding Rules/Concepts (2)

« Pass physical constants through the argument list using either of these
methods:
1. Direct: pass in physical constants via the argument list and propagate them down to any
subroutines that need them
2. Scheme-level module:

1. Passthe physical constants once through the argument list for the
top-level * init subroutine for the scheme. This top-level init subroutine also imports
scheme-specific constants from the scheme-level module.

2. Setthe scheme-level module constants from the those passed in from the host model via the
argument list.

3. Import constants where they are needed in the scheme from the scheme-level module.

» Use of the physcons module (ccpp-physics/physics/physcons.F90) is not
recommended, since it is specific to FV3 and will be removed in the future.

'S, !

“CCPP-compliant” Physics

Scheme Coding Rules/Concepts (3)

Labeled end statements should be used for modules, subroutines, functions,
and type definitions;

e.J. module scheme template - end module scheme template
Variables that contain domain-dependent data cannot be kept using

the save attribute

Schemes are not allowed to abort/stop execution

All intent(out) variables must be set inside the subroutine

The implicit none statementis mandatory and is preferable at the
module-level so that it applies to all the subroutines in the module.

Schemes are not allowed to perform I/O operations except for reading lookup
tables or other information needed to initialize the scheme, including stdout
and stderr. Diagnostic messages are tolerated, but should be minimal.

12

“CCPP-compliant” Physics

Scheme Coding Rules/Concepts (4)

Errors are handled by the host model using the two mandatory
arguments errmsg and errflg. In the event of an error, a meaningful error
message should be assigned to errmsgand errflg set to a value other
than 0. For example:

errmsg = ‘Logic error 1n scheme xyz: .../
errflg = 1
return

« Code must comply to modern Fortran standards (Fortran 90 or newer), where
possible.

« Uppercase file endings (.F, .F90) are preferred to enable preprocessing by
default.

* The use of goto statements is discouraged.

« common blocks are not allowed.

13

“CCPP-compliant” Physics
Metadata (1)

Recall that there are will be (at least) 2 sections of each
metadata file.

1. [ccpp-table-properties]
« type, e.g. (scheme, module, ddt)
* name
« If type is module or ddt, name must match
single associated ccpp-arg-table name
 Otherwise, use the “root” scheme name
« dependencies
« Comma-separated list of files that the
scheme depends on (to be compiled first)
« Full relative path from scheme’s location
* relative_path
« Can be used in conjunction with the
dependencies list — relative_path gets
prepended to all files

[ccpp-table-properties]
name = X
type = scheme
dependencies = X dependencyl.F90,

[ccpp—arg—-table]

name = X run
type = scheme

[errmsg]
standard name = ccpp error message
long name = error message for ..
units = none
dimensions = ()
type = character
kind = len=*
intent = out

[errflg]

“CCPP-compliant” Physics
Metadata (2)

Recall that there are will be (at least) 2 sections of each
metadata file.

2. [ccpp-arg-table]

« type, e.g. (scheme, module, ddt)
* name
« If type is module or ddt, name must match
ccpp-table-properties
« Otherwise, use the subroutine name (e.g.
X_init, X_run, ...)
« every argument is listed with the following
attributes:
* [local _name]
standard_name
long_name
units
dimensions
type
kind
intent

[ccpp-table-properties]
name = X
type = scheme
dependencies = X dependencyl.F90,

[ccpp-arg-table]

name = X run
type = scheme

[errmsg]
standard name = ccpp error message
long name = error message for ..
units = none
dimensions = ()
type = character
kind = len=*
intent = out

[errflg]

“CCPP-compliant” Physics
Metadata (3)

« [local _name]
« What the variable is called in the code
* Doesn’t have to match across
schemes/hosts
- standard _name
* Used as a variable’s “key”
« Uniquely identifies a variable for all
CCPP-compliant hosts and schemes
« Extension of the CF Standard Names
* There is a repository of standard names:
* https://qithub.com/ESCOMP/CCPPStandard

Names

* Contains list of names and rules for
generating new names

* Currently, there is no checking between the
standard name repo and what is used in
ccpp-physics or host models

« Reducing name ambiguity is more
important than name length
* Needs:
e Search tool
* Cross-checking

@ e Consolidation

[ccpp-table-properties]
name = X
type = scheme
dependencies = X dependencyl.F90,

[ccpp—arg—-table]

name = X run
type = scheme

[errmsg]
standard name = ccpp_ error message
long name = error message for ..
units = none
dimensions = ()
type = character
kind = len=*
intent = out

[errflg]

http://cfconventions.org/Data/cf-standard-names/current/build/cf-standard-name-table.html
https://github.com/ESCOMP/CCPPStandardNames
https://github.com/ESCOMP/CCPPStandardNames

“CCPP-compliant” Physics
Metadata (4)

- long_name
« more descriptive name (if necessary)
 units
« aXbY-Z format (e.g. m2 s-2)
« Automatic conversion possible
« dimensions
() = scalar
(ccpp_constant_one:horizontal _loop_extent)
(standard_name_of dimension)
(standard_dim1, standard_dim2)
Implied 1 if no dimension start supplied
- type
* e.g. integer, real, character, DDT
- kind
 real precision or character length
* intent
* in, in/out, out
« scheme metadata only

O o o o o o

[ccpp-table-properties]
name = X
type = scheme
dependencies = X dependencyl.F90,

[ccpp—arg—-table]

name = X run
type = scheme
[errmsg]

standard name = ccpp error message
long name = error message for ..
units = none
dimensions = ()
type = character
kind = len=*
intent = out
[errflg]

"CCPP-compliant” Physics

Domain Decomposition and Parallelization (1)

« Hosts with large horizontal domains may decompose the domain into
smaller chunks for parallel processing, often in multiple different

ways.

1. Divide entire domain into smaller subdomains for each MPI process
2. Call physics on some subset of the MPI subdomain at a time

The horizontal dimension referring to the size of the current MPI process subdomain has a

standard name of horizontal dimension
* Theinit, timestep init, timestep finalize, and finalize phases have

access to the entire MPI subdomain so variables with a horizontal dimension should
use this standard name during these phase.
The horizontal dimension referring to the computational “block/chunk” size in the horizontal

dimension has the standard name of horizontal loop extent.
The run phase only has access to this (potentially) smaller sub-subdomain so this

standard name is used within.

o

"CCPP-compliant” Physics

Domain Decomposition and Parallelization (2)

* Most often, shared memory (OpenMP: Open Multi-Processing) and distributed
memory (MPI: Message Passing Interface) communication is done outside the
physics, in which case the loops and arrays already take into account the sizes
of the threaded tasks through their input indices and array dimensions.

* Further parallelization within physics schemes must follow certain rules:
1.

2.
3.
4

See previous slide RE: which CCPP phases expect entire MPIl subdomains.

The run phase may be further threaded, making use of smaller horizontal blocks.
openMP threading is allowed within schemes, but must use the passed-in number of
threads.

MPI communication is allowed in the init, timestep init, timestep finalize, and finalize
phases for the purpose of computing, reading or writing scheme-specific data that is
independent of the host model’s data decomposition.

If MPI is used, it is restricted to global communications: barrier, broadcast, gather,
scatter, reduction. Point-to-point communication is not allowed. Use MPI
communicator provided by host model, not MPT COMM WORLD.

Calls to MPI and OpenMP functions, and the import of the MPIl and OpenMP libraries,
must be guarded by C preprocessor directives.

“CCPP-compliant” Physics

Repository Acceptance

Compliance to the “mechanical” rules is the first step for a new scheme to be
accepted into the CCPP-physics authoritative repository

* Once any new variables are added to the host, this should allow a scheme to “function”,

but considerable work must be done to verify that the scheme behaves as expected
within an entire suite of physics.

The CCPP Physics Management Committee, comprising individuals from
multiple institutions should weigh in on the inclusion of new schemes.
Non-authoritative forks of ccpp-physics may have their own rules for new
scheme inclusion.

CODEOWNERS

20

“CCPP-compliant” Physics

Scientific Documentation Considerations

GFDL Cloud Microphysics Scheme

. CCPP schemes use in-line Doxygen
comments to generate the scientific
documentation that is posted on the
web.

Physical Parameterizations |

S e e Physics Suites
L]
GFS RRTMG Shortwave/Longwave Ra

Description

GFDL cloud microphysics (MP) scheme is a six-category MP scheme to replace Zhao-Carr MP scheme, and moves the GFS from a total cloud water variable to five

predicted hydrometeors (cloud water, cloud ice, rain, snow and graupel). This scheme utilizes the “bulk water" microphysical ization technique in Lin et al.
(1983) [115] and has been significantly improved over years at GFDL (Lord et al. (1984) [121], Krueger et al. (1995) [110], Chen and Lin (2011) [33], Chen and Lin (2013)

CCPP SciD [34]). Physics processes of GFDL cloud MP are described in Figure 1 (also see warm_rain() and icloud()) and are feature with time-split between warm-rain (faster) and
ciDoc

hi (slower) (see 'conversion time scale' in gfdl_cloud_microphys.F90 for default values).

GFDL cloud microphysics (6 species) l

. GFS Scale-aware TKE-based Moist E(=2 Without latent heat release/absorb == With latent heat release/absorb
https://ccpp-techdoc.readthedocs.io/e I e—m—m—" Gt
[L] L] Subgrid-scale Cloud Interstitial Freezing / Ice \ Accretion/
X Aut S
] . GFS Noah Land Surface Model ‘/Mdlmg e / T \ u ommcK
n/latest/CompliantPhysicsParams.ht ’ st [7 o ;
Cloud Melting Sublimation
GFS NoahMP Land Surface Model S Deposi
[] L] [[] o and suriace Hode Water \ Evaporat lkl";“"’“ Accretion Sugl)::::::?n | Smew
ml#scientific-documentation-rules for
- -
GFS SAS-based Mass-Flux Scheme f

Grell-Freitas Scale an
Sedimentation

Thompson Aerosol-

details for documentation generation. =

- Documentation should ideally be e ——
updated and pushed to the e
authoritative repository whenever
changes are made to scientific

algorithms.

21

https://ccpp-techdoc.readthedocs.io/en/latest/CompliantPhysicsParams.html#scientific-documentation-rules
https://ccpp-techdoc.readthedocs.io/en/latest/CompliantPhysicsParams.html#scientific-documentation-rules
https://ccpp-techdoc.readthedocs.io/en/latest/CompliantPhysicsParams.html#scientific-documentation-rules

Pause for Questions...

Assembling Physics Suites
Suite Definition File (SDF)

Individual CCPP-compliant physics parameterizations are assembled and
controlled via an XML file called a

“Suite Definition File” (SDF)

 The SDF XML schema has the following hierarchy:

* Suite

Top-level element; defines the suite name and SDF schema version

* Group

Schemes under one group always get called together in-sequence;
non-physics code can be executed between physics groups

¢ Subcycle

Schemes within a subcycle element are executed N times according
to the element’s “loop” variable

® Scheme

Each scheme element contains the name of the scheme to run.

Assembling Physics Suites
Suite Definition File (SDF)

<?xml version="1.0" encoding="UTF-8"?>

<suite name="FV3 GFS v16" version="1">
<group name="fast physics'">
<subcycle loop="1">
<scheme>fv_sat_adj</scheme>
</subcycle>
</group>
<group name="time vary'"s>
<subcycle loop="1">
<scheme>GFS_time_vary pre</scheme>
<scheme>GFS_rrtmg_setup</scheme>
<scheme>GFS_rad_time vary</scheme>
<scheme>GFS_phys_time vary</scheme>
</subcycle>
</group>
<group name="radiation'"s>
<subcycle loop="1">
<scheme>GFS_suite_interstitial rad_reset</sc
<scheme>GFS_rrtmg_pre</scheme>
<scheme>GFS_radiation_surface</scheme>
<scheme>rrtmg sw_pre</scheme>
<scheme>rrtmg_sw</scheme>
<scheme>rrtmg sw_post</scheme>
<scheme>rrtmg lw_pre</scheme>
<scheme>rrtmg_lw</scheme>
<scheme>rrtmg lw_post</scheme>
<scheme>GFS_rrtmg_post</scheme>
</subcycle>
</group>

&

<group name="physics'">
<subcycle loop="1">

<scheme>GFS_suite stateout reset</scheme>
<scheme>get prs fv3</scheme>
<scheme>GFS_suite interstitial 1</scheme>
<scheme>GFS_surface generic pre</scheme>
<scheme>GFS_surface composites pre</scheme>
<scheme>dcyc2t3</scheme>

<scheme>GFS_suite interstitial 2</scheme>
</subcycle>
<!-- Surface iteration loop -->
<subcycle loop="2">

<scheme>sfc diff</scheme>

<scheme>sfc nst pre</scheme>
<scheme>sfc nst</scheme>
<scheme>sfc nst post</scheme>
<scheme>1sm noah</scheme>
<scheme>sfc sice</scheme>

neme >

</subcycle>

<!-- End of surface iteration loop -->

<subcycle loop="1">
<scheme>GFS_surface composites post</scheme>
<scheme>sfc_diag</scheme>
<scheme>sfc diag post</scheme>
<scheme>GFS_surface generic post</scheme>
<scheme>GFS_PBL generic pre</scheme>

<scheme>satmedmfvdifg</scheme>

<scheme>GFS_suite interstitial phys reset</scheme>

<scheme>GFS_surface composites_inter</scheme>

<scheme>GFS_surface loop control partl</scheme>

<scheme>GFS_surface loop control part2</scheme>

<scheme>GFS_ PBL generic post</scheme>
<scheme>GFS_GWD_generic pre</scheme>
<scheme>cires ugwp</scheme>
<scheme>cires ugwp post</schemex>
<scheme>GFS_GWD_generic post</scheme>

<scheme>GFS_suite stateout update</scheme>

<scheme>ozphys 2015</scheme>
<scheme>h2ophys</scheme>
<scheme>get phi fv3</scheme>

<scheme>GFS_suite interstitial 3</scheme>

<scheme>GFS DCNV_generic pre</scheme>
<scheme>samfdeepcnv</scheme>
<scheme>GFS DCNV_generic post</scheme>
<scheme>GFS_SCNV_generic pre</scheme>
<scheme>samfshalcnv</scheme>
<scheme>GFS_ SCNV_generic post</scheme>

<scheme>GFS_suite interstitial 4</scheme>

<scheme>cnvc90</scheme>
<scheme>GFS_MP generic pre</scheme>
<scheme>gfdl cloud microphys</scheme>
<scheme>GFS_MP generic post</scheme>

<scheme>maximum hourly diagnostics</scheme>

</subcycles>
</group>
<group name="stochastics">
<subcycle loop="1">
<scheme>GFS_stochastics</scheme>
<scheme>phys tend</scheme>
</subcycles>

</group>
</suite>

24

Assembling Physics Suites
Suite Definition File (SDF)

SDFs are part of the host model repository

Control is still “shared” with physics namelists

* Physics code often still relies on logicals that denote whether a scheme is active; there
must be a consistency check

CCPP phases follow order of SDF too

SDF groups allow any computation to happen in between

« E.g. externally-coupled process in the middle of a physics suite, advanced
time-stepping schemes

Order is easily changeable, but one needs to understand repercussions,
both numerically and code-wise (will inputs have values?)

Schemes can be called more often via SDF subcycles or internally (e.g.
Thompson MP)

25

Assembling Physics Suites
Primary vs. Interstitial Schemes

Schemes in the CCPP are NOT required to be categorized. However, it is
useful to make the following distinction.

- Primary Scheme - Interstitial Scheme
- A parameterization, such as PBL, - A modularized piece of code to perform
microphysics, convection, and data preparation, diagnostics, or other
radiation, that fits the "glue” functions that allows primary
traditionally-accepted definition. schemes to work together as a sulite.
. These often change the state - This code is typically found in physics

drivers in non-CCPP models, but it

needs to exist as a “scheme” in the
CCPP.

variables in some way.

Assembling Physics Suites

Interstitial Scheme Organization

Original organizing principle (may not be valid for all hosts):

1. Scheme-specific: for code that is only needed for one specific scheme, but
doesn’t belong in the scheme itself (e.g. mp_thompson_pre)

2. Scheme-generic: for code that is needed for all schemes in a group/class
(e.g. GFS_MP_generic_pre)

3. Suite-level: for code that is applicable to one or more scheme groups (e.g.
GFS_suite_interstitial 4)

Goals: Primary scheme interoperability, suite configurability, future
maintainability, strict reproducibility

27

Assembling Physics Suites

Interstitial Scheme Organization

maximally split

< UFS is here?
a0

(-

Q

—

&2

A UFS wants
& to be here?

“hidden” interstitials

primary schemes only

Extremely explicit interstitials SDFs look like code

SDFs look like a short list

minimized

namelist control

more namelist
control

28

Host-side Coding and the CCPP API
Host-side Metadata (1)

module example_ vardefs

- Metadata is needed on the host side AL
In order to describe what data is I1> \section arg_table example_vardefs
avallable fOI’ the phyS|CS tO use. ” \htmlinclude example vardefs.html
- Should have a metadata file for every ' _
host file that allocates memory used by et e
phySiCS real(kind=8), dimension(:,:) :: ex:reall
- No restrictions on hosts using DDTs to ST ey
store data 7= P BEEEY
- OK to have DDT definition and !1> \section arg table example ddt
declaration in same module :: \htmlinclude example ddt.html
type ex_ddt
logical g2 1
real, dimension(:,:) :: r

end type ex ddt
type(ex_ddt) :: ext

end module example_ vardefs

Host-side Coding and the CCPP API

HHHARHHHAHHHHAHHH AR HH AR TR AR H A A HAHTH AR AT

Host-side Metadata (2) [copp-table-properties]
name = arg table example vardefs
type = module

- Example of host module where variables (ccpp-arg-tabie;

are declared and DDTs defined e e
- Notice: [ex_int]
. Type = module Ve
- Intrinsic types declared here units = none
- DDT type definition has metadata fimzniici’gi:ei)
. DDT instance has metadata fes teary

standard name = example real
long name = ex. real
units = m
dimensions = (horizontal_ loop_extent,vertical_ layer dimension)
type = real
kind = kind=8
[ex_ddt]
standard name = example_ddt
long name = ex. ddt
units = DDT

dimensions = ()
type = ex_ddt
[ext]

standard name = example_ ddt_instance
long name = ex. ddt inst

units = DDT

dimensions = ()

type = ex_ddt

Host-side Coding and the CCPP API

Host-side Metadata (3)

« Example of DDT definition

metadata
« Notice:

+ Local name is as the variable is
referenced in module
(DDT _instance%component)

« Usehorizontal
loop extent for horizontal
dimension

+ No intent attribute

« Active attribute
- Expression using standard
names for when a variable is
conditionally allocated or
available
True by default if omitted

. Wlth the CCPP, it is possible to
not only refer to components of
DDTs, but also to slices of
arrays with provided metadata
as long as these are contiguous
in memory

e
[ccpp-table-properties]

name arg_table example ddt

type ddt

[ccpp-arg-table]
name = arg_table_example_ddt
type = ddt

[ext%1]
standard_name = example flag
long_name = ex. flag
units = flag

dimensions =
type = logical
[ext%r]

standard name = example_real3
long name = ex. real
units = kg
dimensions = (horizontal loop_ extent,vertical_layer_dimension)
type = real
kind = rl5

[ext3r(;,1)]
standard_name = example_slice
long name = ex. slice
units = kg
dimensions = (horizontal_ loop_extent,vertical layer dimension)
type = real
kind = ril5

[nwfa2d]
standard name = tendency of water_ friendly aerosols_at surface
long _name = instantaneous water-friendly sfc aerosol source
units = kg-1 s-1
dimensions = (horizontal loop_extent)
type = real
kind = kind_phys

active = (flag_for microphysics_scheme == flag for thompson microphysics_scheme

.and. flag for aerosol_physics

Host-side Coding and the CCPP API
CCPP API (1)

The CCPP APl is autogenerated at build-time for the given suites. It consists of
5 methods and a few utility variables.

Methods

1. ccpp physics init (cdata, sulte name, [group name], lerr=ierr)
e Calls init phase of given SDF group or entire suite (once per model run)

* E.g.reading lookup tables, reading input datasets, computing derived quantities, broadcasting information to
all MPI ranks, etc

* For entire domain (access to all data an MPI task owns)

2. ccpp physics finalize (cdata, sulte name, [group name], lerr=ierr)
* (Calls finalize phase of given SDF group or entire suite (once per model run)
* E.g. deallocating variables, resetting flags from initialized to non-initialized, etc

* For entire domain (access to all data an MPI task owns)

'S, ;

Host-side Coding and the CCPP API
CCPP API (2)

The CCPP APl is autogenerated at build-time for the given suites. It consists of
5 methods and a few utility variables.

Methods

3.

ccpp physics timestep 1init(cdata, suite name, [group name], lerr=ierr)
« Calls timestep init phase of given SDF group or entire suite (once per physics timestep)

E.g. updating quantities that depend on the valid time, for example solar insolation angle,
aerosol emission rates and other values obtained from climatologies

* For entire domain (access to all data an MPI task owns)

ccpp physics timestep finalize(cdata, sulte name, [group name],
lerr=ierr)

Calls timestep_finalize phase of given SDF group or entire suite (once per physics timestep)
* For entire domain (access to all data an MPI task owns)

33

Host-side Coding and the CCPP API
CCPP API (3)

The CCPP APl is autogenerated at build-time for the given suites. It consists of
5 methods and a few utility variables.

Methods

D. ccpp physics run(cdata, suite name, [group name], lerr=ierr)
* Calls run phase of given SDF group or entire suite (called during integration time loop)
* For each chunk/block (can be different than all horizontal points owned by MPI task)

Variables

® Error code for handling in CCPP (errmsqg)

® Error message associated with the error code (errf1g)
® Loop counter for subcycling loops (1oop cnt)

® Loop extent for subcycling loops (1oop max)

@ * Number of block for explicit data blocking in CCPP (b1k no) i

Host-side Coding and the CCPP API

Preparing to use the CCPP API

Prior to using the CCPP API, the host model needs to declare and initialize a variable
of ccpp t (often referred to as cdata).

use ccpp types, only: ccpp t
type (ccpp t) :: cdata
cdatasblk no = 1

cdatasthrd no = 1

Note: One can have an array of ccpp _t for each block/thread depending on the
domain decomposition and threading strategy.

Deallocation of the ccpp_t can optionally be done at the end of the run.

35

Host-side Coding and the CCPP API

Examples

« The CCPP SCM interfaces directly with the CCPP API within its original

source code.
* Declares the ccpp t with all other model data in scm type defs.F90

* Initializes ccpp t and calls all non-run phases of the CCPP in the "main” section of

scm.F90
* Calls ccpp physics run for the entire suite at once from subroutines within

scm time integration.F90, thatis called during the main time loop
 The UFS adds an additional abstraction layer between the existing host code

and the CCPP.

CCPP data.F90 contains the ccpp t variables
* CCPP driver.F90 does all interfacing with the CCPP API and initializes the ccpp t

variables
« All phases are called from subroutines known by existing host code (using the correct

domain decomposition for each phase) and error checking is performed after returning
from the CCPP phases.

36

Framework Scripts and Building
ccpp_prebuild.py (1)

standard_name, units,

The CCPP “ecosystem” relies on a dimensions, type, kind

set of python scripts in order to:

1. Collect and compare information
about data needed by the physics
and supplied by the host

2. Generate “caps” (AKA custom
physics drivers) for a given set of
suites that provides the data
coupling and call sequences.

3. Generate the API for the host to
interact with

4. Help the host’s build system to
compile the autogenerated code and
physics

37

Framework Scripts and Building seop prebuild conti.oy
CCpp_prebU||dpy (2) # Host model identifier

HOST MODEL IDENTIFIER = "SCM"
. . . # Add all files with metadata tables on the host model side,
® EaCh hOSt needS a COﬂfIgUFathn flle # relative to basedir = top-level directory of host model
to provide the main script with: i v sy e)
- Path to host Fortran files that define Remensisey physicel; ronstantestilty
what variables are available to the , , ,
. # How parent variables (module variables, derived data types)
phyS|CS # are referenced in the model

- Path to physics scheme files e T

- Build path R

- Paths of where to put script outputs Yoo '

° Path tO SDFS 'GFSTéggii;;ZAe;s? s

- Information for how host module and i EeR eSS b RS Rt
DDT variables are referenced in the)
code # Add all physics scheme files relative to basedir

SCHEME_FILES = {
'ccpp/physics/physics/GFS_DCNV_generic.f90’ ,
'ccpp/physics/physics/sfc_sice.f’,

}

Default build dir, relative to current working directory,
if not specified as command-line argument
DEFAULT BUILD DIR = 'scm/bin'

Inputs

| SDF(s)

ccpp_prebuivld_config.py

SUITES_DIR

VARIABLE_DEFINITION_FILES

TYPEDEFS_NEW_METADATA

HTML_VARTABLE_FILE

SCHEME_FILES

YY)

=w

[LATEX_VARTABLE_FILE

i

TYPEDEFS_[C]MAKEFILE/SOURCEFILE

—

SCHEME_FILE_DEPENDENCIES

SCHEMES_[C]MAKEFILE/SOURCEFILE

| S —

1=

Framework Scripts and Building
ccpp_prebuild.py outputs

ccpp_prebuild.py functions

collect physics schemes' variables and
metadata

[filter the physics schemes' variables by the
input SDFs

generate list of schemes and their
dependencies to compile

A

Y
A

e

write LATEX table of provided/requested
L variables

(create a set of matched variables given the
list provided by the host model and the list
requested by the physics schemes

A

\
create cmake/gnumake/shell code for type
definition files

<
&

'
.

create cmake/gnumake/shell code for

CAPS_DIR

STATIC_API_DIR

I

STATIC_API_SRCFILE

S e e

CAPS_[C]MAKEFILE/SOURCEFILE

i

physics schemes

create software caps for the physics suite and|
physics groups defined in the SDFs

generate the static API

create cmake/gnumake/shell code

parse SDFs]

|

> |

_ .

<
R (
s

for software caps and API

Outputs

We will look at examples
in another session.

collect host model's variables and metadata]—> HTML table of all host-

provided variables

* LATEX table of host-

provided variables and
physics-requested
variables

build system code for typé

definitions

build system code for |
schemes

suite and group caps m

static CCPP API

build system code for ‘
caps and API

39

Framework Scripts and Building
Using ccpp_prebuild.py

In practice, models have integrated the call to ccpp_prebuild.py in their build

systems. |

./ccpp/framework/scripts/ccpp prebuild.py \
--config=./ccpp/config/ccpp prebuild config.py \

\

Where the script is called
from varies by host

[-—sulites=suiltel, suiteZ]—
—-—-verbose] \

Internal name in the
SDF (not filename)

[
[-—-clean] \
[——debuqg]

INFO: CCPP prebuild step completed successfully.

Inserts additional

checks on array sizes

40

o

Framework Scripts and Building
After compilation...

~ Metadata: Variables
" Provided

| Suite Definition File |

| Metadata: Variables
Requested

]

During Build Step

generates

Atmosphere Driver

Cép

Dycore

Part 1
e ey

Cép

Dycore
Part 2

(c

=

-___________-___________________________-_____.
~ "

ccpp_static_api

Suite Cap
Group 1 Cap Group 2 Cap Group 3 Cap
" .[scheme 1 " .[scheme 4 ~[scheme 7
~/Scheme 2 ~|Scheme 5 ~|Scheme 8
~+|Scheme 3 ~|Scheme 6
_ CCPP J

Single Timestep Execution Sequence i

41

