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CCPP Within the Model System
Model without CCPP
• Physics Schemes

• Host-specific interface
• Physics Driver

• Manually coded and host-specific
• Suite Control

• NML and IF statements
• Memory Allocation

• Spread between host, driver, 
schemes as necessary

• Documentation
• Variable?

• Build System
• “Normal”

Model with CCPP
• Physics Schemes

• Standardized interface
• 5 phases possible
• Arguments described and 

documented
• Physics Driver

• Autogenerated for given suites
• Suite Control

• External XML files
• Memory Allocation

• Host-only
• Documentation

• Standardized, in-line
• Build System

• Includes “hand-shake” step and 
code autogeneration 3



CCPP Within the Model System
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• Host repository
• …

• ccpp
• ccpp-physics
• ccpp-framework

• Contains all physics code
• “entry points”
• Dependencies
• Metadata
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CCPP Within the Model System



• Host repository
• …

• ccpp
• ccpp-physics
• ccpp-framework

• Contains Python scripts that 
autogenerates physics drivers

• Needs configuration file (stored in 
host repository) that points to 
information about host and physics 
schemes

• Autogenerates information needed 
by host’s build system to compile 
physics and autogenerated drivers
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CCPP Within the Model System



“CCPP-compliant” Physics

• FORTRAN module (F90+)
• Filename same as module
• Contains at least 1 subroutine corresponding to 1 of 5 phases

1. *_init
2. *_timestep_init
3. *_run
4. *_timestep_finalize
5. *_finalize
• *_init and *_finalize must have the same result when called more than once

• Can make use of is_initialized flag
• Contains Doxygen “hook” prior to subroutine definition

• !> \section arg_table_X_run Argument Table 
!! \htmlinclude X_run.html

   !!

7

Structure (File 1 of 2)



“CCPP-compliant” Physics
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Structure (File 1 of 2)

scheme_template.F90



“CCPP-compliant” Physics

• Needs accompanying X.meta file describing the scheme
• Required contents

• [ccpp-table-properties]
  name = X
  type = scheme 
  dependencies = X_dependency1.F90, X_dependency2.F90

• [ccpp-arg-table]
  name = X_run
  type = scheme
[errmsg] 
  standard_name = ccpp_error_message
  long_name = error message for error handling in CCPP 
  units = none 
  dimensions = () 
  type = character 
  kind = len=* 
  intent = out  
  9

Structure (File 2 of 2)

Applies to 
entire scheme

Applies to one subroutine; 
can be more than one



“CCPP-compliant” Physics

• Pass all data needed by the scheme through the argument list
• Don’t put use external_module to pass data

• Use assumed-shape array declarations for argument variables
 
real(kind=kind_phys), dimension(:,:), intent(inout) :: foo
real(kind=kind_phys), dimension(its:,kts:), intent(inout) :: foo

Not

real(kind=kind_phys), dimension(ni,nk), intent(inout) :: foo

• This allows the compiler to perform bounds checking and detect errors that 
otherwise may go unnoticed.

• This also avoids segmentation faults for variables that may be 
conditionally-allocated in the host.
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Scheme Coding Rules/Concepts (1)



“CCPP-compliant” Physics

• Pass physical constants through the argument list using either of these 
methods:
1. Direct: pass in physical constants via the argument list and propagate them down to any 

subroutines that need them
2. Scheme-level module: 

1. Pass the physical constants once through the argument list for the 
top-level *_init subroutine for the scheme. This top-level _init subroutine also imports 
scheme-specific constants from the scheme-level module.

2. Set the scheme-level module constants from the those passed in from the host model via the 
argument list.

3. Import constants where they are needed in the scheme from the scheme-level module.

• Use of the physcons module (ccpp-physics/physics/physcons.F90) is not 
recommended, since it is specific to FV3 and will be removed in the future.
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Scheme Coding Rules/Concepts (2)



“CCPP-compliant” Physics

• Labeled end statements should be used for modules, subroutines, functions, 
and type definitions; 
e.g.  module scheme_template → end module scheme_template

• Variables that contain domain-dependent data cannot be kept using 
the save attribute

• Schemes are not allowed to abort/stop execution
• All intent(out) variables must be set inside the subroutine
• The implicit none statement is mandatory and is preferable at the 

module-level so that it applies to all the subroutines in the module.
• Schemes are not allowed to perform I/O operations except for reading lookup 

tables or other information needed to initialize the scheme, including stdout 
and stderr. Diagnostic messages are tolerated, but should be minimal.
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Scheme Coding Rules/Concepts (3)



“CCPP-compliant” Physics

• Errors are handled by the host model using the two mandatory 
arguments errmsg and errflg. In the event of an error, a meaningful error 
message should be assigned to errmsg and errflg set to a value other 
than 0. For example:

 errmsg = ‘Logic error in scheme xyz: ...’

 errflg = 1 

 return
• Code must comply to modern Fortran standards (Fortran 90 or newer), where 

possible.
• Uppercase file endings (.F, .F90) are preferred to enable preprocessing by 

default.
• The use of goto statements is discouraged.
• common blocks are not allowed.
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Scheme Coding Rules/Concepts (4)



“CCPP-compliant” Physics

Recall that there are will be (at least) 2 sections of each 
metadata file.

1. [ccpp-table-properties]
• type, e.g. (scheme, module, ddt)
• name

• If type is module or ddt, name must match 
single associated ccpp-arg-table name

• Otherwise, use the “root” scheme name
• dependencies

• Comma-separated list of files that the 
scheme depends on (to be compiled first)

• Full relative path from scheme’s location
• relative_path

• Can be used in conjunction with the 
dependencies list – relative_path gets 
prepended to all files

[ccpp-table-properties]
  name = X
  type = scheme 
  dependencies = X_dependency1.F90, …

[ccpp-arg-table]
  name = X_run
  type = scheme
[errmsg] 
  standard_name = ccpp_error_message
  long_name = error message for …
  units = none 
  dimensions = () 
  type = character 
  kind = len=* 
  intent = out
[errflg]
  …

Metadata (1)



“CCPP-compliant” Physics

Recall that there are will be (at least) 2 sections of each 
metadata file.

2. [ccpp-arg-table]
• type, e.g. (scheme, module, ddt)
• name

• If type is module or ddt, name must match 
ccpp-table-properties

• Otherwise, use the subroutine name (e.g. 
X_init, X_run, …)

• every argument is listed with the following 
attributes:

• [local_name]
• standard_name
• long_name
• units
• dimensions
• type
• kind
• intent

[ccpp-table-properties]
  name = X
  type = scheme 
  dependencies = X_dependency1.F90, …

[ccpp-arg-table]
  name = X_run
  type = scheme
[errmsg] 
  standard_name = ccpp_error_message
  long_name = error message for …
  units = none 
  dimensions = () 
  type = character 
  kind = len=* 
  intent = out
[errflg]
  …

Metadata (2)



“CCPP-compliant” Physics

• [local_name]
• What the variable is called in the code
• Doesn’t have to match across 

schemes/hosts
• standard_name

• Used as a variable’s “key”
• Uniquely identifies a variable for all 

CCPP-compliant hosts and schemes
• Extension of the CF Standard Names
• There is a repository of standard names:

• https://github.com/ESCOMP/CCPPStandard
Names

• Contains list of names and rules for 
generating new names

• Currently, there is no checking between the 
standard name repo and what is used in 
ccpp-physics or host models

• Reducing name ambiguity is more 
important than name length

• Needs:
• Search tool
• Cross-checking
• Consolidation

[ccpp-table-properties]
  name = X
  type = scheme 
  dependencies = X_dependency1.F90, …

[ccpp-arg-table]
  name = X_run
  type = scheme
[errmsg] 
  standard_name = ccpp_error_message
  long_name = error message for …
  units = none 
  dimensions = () 
  type = character 
  kind = len=* 
  intent = out
[errflg]
  …

Metadata (3)

http://cfconventions.org/Data/cf-standard-names/current/build/cf-standard-name-table.html
https://github.com/ESCOMP/CCPPStandardNames
https://github.com/ESCOMP/CCPPStandardNames


“CCPP-compliant” Physics

• long_name
• more descriptive name (if necessary)

• units
• aX bY-Z format (e.g. m2 s-2)
• Automatic conversion possible

• dimensions
• () = scalar
• (ccpp_constant_one:horizontal_loop_extent)
• (standard_name_of_dimension)
• (standard_dim1, standard_dim2)
• Implied 1 if no dimension start supplied

• type
• e.g. integer, real, character, DDT

• kind
• real precision or character length

• intent
• in, in/out, out
• scheme metadata only

[ccpp-table-properties]
  name = X
  type = scheme 
  dependencies = X_dependency1.F90, …

[ccpp-arg-table]
  name = X_run
  type = scheme
[errmsg] 
  standard_name = ccpp_error_message
  long_name = error message for …
  units = none 
  dimensions = () 
  type = character 
  kind = len=* 
  intent = out
[errflg]
  …

Metadata (4)



“CCPP-compliant” Physics

• Hosts with large horizontal domains may decompose the domain into 
smaller chunks for parallel processing, often in multiple different 
ways.

1. Divide entire domain into smaller subdomains for each MPI process
2. Call physics on some subset of the MPI subdomain at a time

• The horizontal dimension referring to the size of the current MPI process subdomain has a 
standard name of horizontal_dimension
• The init, timestep_init, timestep_finalize, and finalize phases have 

access to the entire MPI subdomain so variables with a horizontal dimension should 
use this standard name during these phase.

• The horizontal dimension referring to the computational “block/chunk” size in the horizontal 
dimension has the standard name of horizontal_loop_extent.
• The run phase only has access to this (potentially) smaller sub-subdomain so this 

standard name is used within. 18

Domain Decomposition and Parallelization (1)



“CCPP-compliant” Physics

• Most often, shared memory (OpenMP: Open Multi-Processing) and distributed 
memory (MPI: Message Passing Interface) communication is done outside the 
physics, in which case the loops and arrays already take into account the sizes 
of the threaded tasks through their input indices and array dimensions.

• Further parallelization within physics schemes must follow certain rules:
1. See previous slide RE: which CCPP phases expect entire MPI subdomains.
2. The run phase may be further threaded, making use of smaller horizontal blocks.
3. openMP threading is allowed within schemes, but must use the passed-in number of 

threads.
4. MPI communication is allowed in the init, timestep_init, timestep_finalize, and finalize 

phases for the purpose of computing, reading or writing scheme-specific data that is 
independent of the host model’s data decomposition.

5. If MPI is used, it is restricted to global communications: barrier, broadcast, gather, 
scatter, reduction. Point-to-point communication is not allowed. Use MPI 
communicator provided by host model, not MPI_COMM_WORLD.

6. Calls to MPI and OpenMP functions, and the import of the MPI and OpenMP libraries, 
must be guarded by C preprocessor directives.
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Domain Decomposition and Parallelization (2)



“CCPP-compliant” Physics

• Compliance to the “mechanical” rules is the first step for a new scheme to be 
accepted into the CCPP-physics authoritative repository
• Once any new variables are added to the host, this should allow a scheme to “function”, 

but considerable work must be done to verify that the scheme behaves as expected 
within an entire suite of physics.

• The CCPP Physics Management Committee, comprising individuals from 
multiple institutions should weigh in on the inclusion of new schemes.

• Non-authoritative forks of ccpp-physics may have their own rules for new 
scheme inclusion.

• CODEOWNERS

20

Repository Acceptance



“CCPP-compliant” Physics

• CCPP schemes use in-line Doxygen 
comments to generate the scientific 
documentation that is posted on the 
web.

• See 
https://ccpp-techdoc.readthedocs.io/e
n/latest/CompliantPhysicsParams.ht
ml#scientific-documentation-rules for 
details for documentation generation.

• Documentation should ideally be 
updated and pushed to the 
authoritative repository whenever 
changes are made to scientific 
algorithms.
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Scientific Documentation Considerations

https://ccpp-techdoc.readthedocs.io/en/latest/CompliantPhysicsParams.html#scientific-documentation-rules
https://ccpp-techdoc.readthedocs.io/en/latest/CompliantPhysicsParams.html#scientific-documentation-rules
https://ccpp-techdoc.readthedocs.io/en/latest/CompliantPhysicsParams.html#scientific-documentation-rules


Pause for Questions…
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Assembling Physics Suites

Individual CCPP-compliant physics parameterizations are assembled and 
controlled via an XML file called a 

    “Suite Definition File” (SDF)

• The SDF XML schema has the following hierarchy:
• Suite

• Group

• Subcycle

• Scheme

23

Suite Definition File (SDF)

Top-level element; defines the suite name and SDF schema version

Schemes under one group always get called together in-sequence; 
non-physics code can be executed between physics groups

Schemes within a subcycle element are executed N times according 
to the element’s “loop” variable

Each scheme element contains the name of the scheme to run.



Assembling Physics Suites
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Suite Definition File (SDF)
<?xml version="1.0" encoding="UTF-8"?>

<suite name="FV3_GFS_v16" version="1">
  <group name="fast_physics">
    <subcycle loop="1">
      <scheme>fv_sat_adj</scheme>
    </subcycle>
  </group>
  <group name="time_vary">
    <subcycle loop="1">
      <scheme>GFS_time_vary_pre</scheme>
      <scheme>GFS_rrtmg_setup</scheme>
      <scheme>GFS_rad_time_vary</scheme>
      <scheme>GFS_phys_time_vary</scheme>
    </subcycle>
  </group>
  <group name="radiation">
    <subcycle loop="1">
      <scheme>GFS_suite_interstitial_rad_reset</scheme>
      <scheme>GFS_rrtmg_pre</scheme>
      <scheme>GFS_radiation_surface</scheme>
      <scheme>rrtmg_sw_pre</scheme>
      <scheme>rrtmg_sw</scheme>
      <scheme>rrtmg_sw_post</scheme>
      <scheme>rrtmg_lw_pre</scheme>
      <scheme>rrtmg_lw</scheme>
      <scheme>rrtmg_lw_post</scheme>
      <scheme>GFS_rrtmg_post</scheme>
    </subcycle>
  </group>
  ...

<group name="physics">
    <subcycle loop="1">
      <scheme>GFS_suite_interstitial_phys_reset</scheme>
      <scheme>GFS_suite_stateout_reset</scheme>
      <scheme>get_prs_fv3</scheme>
      <scheme>GFS_suite_interstitial_1</scheme>
      <scheme>GFS_surface_generic_pre</scheme>
      <scheme>GFS_surface_composites_pre</scheme>
      <scheme>dcyc2t3</scheme>
      <scheme>GFS_surface_composites_inter</scheme>
      <scheme>GFS_suite_interstitial_2</scheme>
    </subcycle>
    <!-- Surface iteration loop -->
    <subcycle loop="2">
      <scheme>sfc_diff</scheme>
      <scheme>GFS_surface_loop_control_part1</scheme>
      <scheme>sfc_nst_pre</scheme>
      <scheme>sfc_nst</scheme>
      <scheme>sfc_nst_post</scheme>
      <scheme>lsm_noah</scheme>
      <scheme>sfc_sice</scheme>
      <scheme>GFS_surface_loop_control_part2</scheme>
    </subcycle>
    <!-- End of surface iteration loop -->
    <subcycle loop="1">
      <scheme>GFS_surface_composites_post</scheme>
      <scheme>sfc_diag</scheme>
      <scheme>sfc_diag_post</scheme>
      <scheme>GFS_surface_generic_post</scheme>
      <scheme>GFS_PBL_generic_pre</scheme>
      <scheme>satmedmfvdifq</scheme>

<scheme>GFS_PBL_generic_post</scheme>
      <scheme>GFS_GWD_generic_pre</scheme>
      <scheme>cires_ugwp</scheme>
      <scheme>cires_ugwp_post</scheme>
      <scheme>GFS_GWD_generic_post</scheme>
      <scheme>GFS_suite_stateout_update</scheme>
      <scheme>ozphys_2015</scheme>
      <scheme>h2ophys</scheme>
      <scheme>get_phi_fv3</scheme>
      <scheme>GFS_suite_interstitial_3</scheme>
      <scheme>GFS_DCNV_generic_pre</scheme>
      <scheme>samfdeepcnv</scheme>
      <scheme>GFS_DCNV_generic_post</scheme>
      <scheme>GFS_SCNV_generic_pre</scheme>
      <scheme>samfshalcnv</scheme>
      <scheme>GFS_SCNV_generic_post</scheme>
      <scheme>GFS_suite_interstitial_4</scheme>
      <scheme>cnvc90</scheme>
      <scheme>GFS_MP_generic_pre</scheme>
      <scheme>gfdl_cloud_microphys</scheme>
      <scheme>GFS_MP_generic_post</scheme>
      <scheme>maximum_hourly_diagnostics</scheme>
    </subcycle>
  </group>
  <group name="stochastics">
    <subcycle loop="1">
      <scheme>GFS_stochastics</scheme>
      <scheme>phys_tend</scheme>
    </subcycle>
  </group>
</suite>



Assembling Physics Suites

• SDFs are part of the host model repository
• Control is still “shared” with physics namelists

• Physics code often still relies on logicals that denote whether a scheme is active; there 
must be a consistency check

• CCPP phases follow order of SDF too
• SDF groups allow any computation to happen in between

• E.g. externally-coupled process in the middle of a physics suite, advanced 
time-stepping schemes

• Order is easily changeable, but one needs to understand repercussions, 
both numerically and code-wise (will inputs have values?)

• Schemes can be called more often via SDF subcycles or internally (e.g. 
Thompson MP)

25

Suite Definition File (SDF)



Assembling Physics Suites

• Primary Scheme

• A parameterization, such as PBL, 
microphysics, convection, and 
radiation, that fits the 
traditionally-accepted definition.

• These often change the state 
variables in some way.

• Interstitial Scheme

• A modularized piece of code to perform 
data preparation, diagnostics, or other 
“glue” functions that allows primary 
schemes to work together as a suite.

• This code is typically found in physics 
drivers in non-CCPP models, but it 
needs to exist as a “scheme” in the 
CCPP.

Primary vs. Interstitial Schemes

Schemes in the CCPP are NOT required to be categorized. However, it is 
useful to make the following distinction.



Assembling Physics Suites

Original organizing principle (may not be valid for all hosts):

1. Scheme-specific: for code that is only needed for one specific scheme, but 
doesn’t belong in the scheme itself (e.g. mp_thompson_pre)

2. Scheme-generic: for code that is needed for all schemes in a group/class 
(e.g. GFS_MP_generic_pre)

3. Suite-level: for code that is applicable to one or more scheme groups (e.g. 
GFS_suite_interstitial_4)

Goals: Primary scheme interoperability, suite configurability, future 
maintainability, strict reproducibility

27

Interstitial Scheme Organization



Assembling Physics Suites
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Interstitial Scheme Organization



Host-side Coding and the CCPP API

• Metadata is needed on the host side 
in order to describe what data is 
available for the physics to use.

• Should have a metadata file for every 
host file that allocates memory used by 
physics

• No restrictions on hosts using DDTs to 
store data

• OK to have DDT definition and 
declaration in same module

Host-side Metadata (1)



Host-side Coding and the CCPP API

• Example of host module where variables 
are declared and DDTs defined

• Notice:
• Type = module
• Intrinsic types declared here
• DDT type definition has metadata
• DDT instance has metadata

Host-side Metadata (2)



Host-side Coding and the CCPP API

• Example of DDT definition 
metadata

• Notice:
• Local name is as the variable is 

referenced in module 
(DDT_instance%component)

• Use horizontal_ 
loop_extent for horizontal 
dimension

• No intent attribute
• Active attribute

• Expression using standard 
names for when a variable is 
conditionally allocated or 
available

• True by default if omitted
• With the CCPP, it is possible to 

not only refer to components of 
DDTs, but also to slices of 
arrays with provided metadata 
as long as these are contiguous 
in memory

Host-side Metadata (3)



Host-side Coding and the CCPP API

The CCPP API is autogenerated at build-time for the given suites. It consists of 
5 methods and a few utility variables.

Methods
1. ccpp_physics_init(cdata, suite_name, [group_name], ierr=ierr)

• Calls init phase of given SDF group or entire suite (once per model run)

• E.g. reading lookup tables, reading input datasets, computing derived quantities, broadcasting information to 
all MPI ranks, etc

• For entire domain (access to all data an MPI task owns)

2. ccpp_physics_finalize(cdata, suite_name, [group_name], ierr=ierr)

• Calls finalize phase of given SDF group or entire suite (once per model run)

• E.g. deallocating variables, resetting flags from initialized to non-initialized, etc

• For entire domain (access to all data an MPI task owns)

32

CCPP API (1)



Host-side Coding and the CCPP API

The CCPP API is autogenerated at build-time for the given suites. It consists of 
5 methods and a few utility variables.

Methods
3. ccpp_physics_timestep_init(cdata, suite_name, [group_name], ierr=ierr)

• Calls timestep_init phase of given SDF group or entire suite (once per physics timestep)
• E.g. updating quantities that depend on the valid time, for example solar insolation angle, 

aerosol emission rates and other values obtained from climatologies
• For entire domain (access to all data an MPI task owns)

4. ccpp_physics_timestep_finalize(cdata, suite_name, [group_name], 
ierr=ierr)
• Calls timestep_finalize phase of given SDF group or entire suite (once per physics timestep)
• For entire domain (access to all data an MPI task owns)

33

CCPP API (2)



Host-side Coding and the CCPP API

The CCPP API is autogenerated at build-time for the given suites. It consists of 
5 methods and a few utility variables.

Methods
5. ccpp_physics_run(cdata, suite_name, [group_name], ierr=ierr)

• Calls run phase of given SDF group or entire suite (called during integration time loop)
• For each chunk/block (can be different than all horizontal points owned by MPI task)

Variables
• Error code for handling in CCPP (errmsg)

• Error message associated with the error code (errflg)

• Loop counter for subcycling loops (loop_cnt)

• Loop extent for subcycling loops (loop_max)

• Number of block for explicit data blocking in CCPP (blk_no)

• Number of thread for threading in CCPP (thrd_no)

34

CCPP API (3)



Host-side Coding and the CCPP API

Prior to using the CCPP API, the host model needs to declare and initialize a variable 
of ccpp_t (often referred to as cdata).

use ccpp_types,     only: ccpp_t

type(ccpp_t) :: cdata

cdata%blk_no = 1 

cdata%thrd_no = 1

Note: One can have an array of ccpp_t for each block/thread depending on the 
domain decomposition and threading strategy.
Deallocation of the ccpp_t can optionally be done at the end of the run.

35

Preparing to use the CCPP API



Host-side Coding and the CCPP API

• The CCPP SCM interfaces directly with the CCPP API within its original 
source code.
• Declares the ccpp_t with all other model data in scm_type_defs.F90
• Initializes ccpp_t and calls all non-run phases of the CCPP in the ”main” section of 
scm.F90

• Calls ccpp_physics_run for the entire suite at once from subroutines within 
scm_time_integration.F90, that is called during the main time loop

• The UFS adds an additional abstraction layer between the existing host code 
and the CCPP.

• CCPP_data.F90 contains the ccpp_t variables
• CCPP_driver.F90 does all interfacing with the CCPP API and initializes the ccpp_t 

variables
• All phases are called from subroutines known by existing host code (using the correct 

domain decomposition for each phase) and error checking is performed after returning 
from the CCPP phases.

36

Examples



Framework Scripts and Building

• The CCPP “ecosystem” relies on a 
set of python scripts in order to:
1. Collect and compare information 

about data needed by the physics 
and supplied by the host

2. Generate “caps” (AKA custom 
physics drivers) for a given set of 
suites that provides the data 
coupling and call sequences.

3. Generate the API for the host to 
interact with

4. Help the host’s build system to 
compile the autogenerated code and 
physics

37

ccpp_prebuild.py (1)
standard_name, units, 
dimensions, type, kind



Framework Scripts and Building

• Each host needs a configuration file 
to provide the main script with:

• Path to host Fortran files that define 
what variables are available to the 
physics

• Path to physics scheme files
• Build path
• Paths of where to put script outputs
• Path to SDFs
• Information for how host module and 

DDT variables are referenced in the 
code

38

ccpp_prebuild.py (2)
ccpp_prebuild_config.py



Framework Scripts and Building

39

ccpp_prebuild.py outputs

We will look at examples 
in another session.



Framework Scripts and Building

In practice, models have integrated the call to ccpp_prebuild.py in their build 
systems.

./ccpp/framework/scripts/ccpp_prebuild.py \ 
--config=./ccpp/config/ccpp_prebuild_config.py \ 
[--suites=suite1,suite2] \
[--verbose] \
[--clean] \
[--debug]

40

Using ccpp_prebuild.py

Internal name in the 
SDF (not filename)

Where the script is called 
from varies by host

Inserts additional 
checks on array sizes

INFO: CCPP prebuild step completed successfully.



Framework Scripts and Building
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After compilation…

ccpp_static_api


