
Dustin Swales

CCPP Code Management and Testing

NOAA GLOBAL SYSTEMS LABORATORY & DEVELOPMENTAL TESTBED CENTER

August 15, 2023 – CCPP Visioning Workshop

https://dtcenter.org/


GitHub Repositories
There are three authoritative CCPP repositories (public):

● https://github.com/NCAR/ccpp-scm 

● https://github.com/NCAR/ccpp-physics

● https://github.com/NCAR/ccpp-framework

All use main as the default branch.

The main branch of ccpp-scm points to the main branches in both ccpp-physics and 
ccpp-framework

https://github.com/NCAR/ccpp-scm
https://github.com/NCAR/ccpp-physics
https://github.com/NCAR/ccpp-framework


Code Management (forks)
The CCPP development practices make use of the GitHub forking workflow. (See this website for some 
background information.)

The following steps describe how to create a fork for CCPP development.

1. Go to the repository you wish to fork, and make sure you are signed in to your GitHub account.

● For CCPP-SCM changes, this should be the authoritative repository 
(https://github.com/NCAR/ccpp-scm) 

● For CCPP-Framework changes, this should be the authoritative repository 
(https://github.com/NCAR/ccpp-framework)

● For CCPP-Physics changes, this could be the authoritative repository OR the Application Fork 
corresponding to your host model of interest

○ UFS Fork* (https://github.com/ufs-community/ccpp-physics)
○ CCPP-SCM (https://github.com/NCAR/ccpp-physics)

2. Select the “fork” button in the upper right corner.

*More on the UFS fork of the ccpp-physics later…

https://www.earthdatascience.org/workshops/intro-version-control-git/about-forks/
https://github.com/NCAR/ccpp-scm
https://github.com/NCAR/ccpp-framework
https://github.com/ufs-community/ccpp-physics
https://github.com/NCAR/ccpp-physics


Code Management (forks)
Authoritative

Personal Fork

134 forks



Code Management (branches)
Code development occurs on branches in your personal forked repository.
When innovations are ready, a pull-request is created from your branch/fork into the authoritative 
repositories to incorporate these changes.
For example, using the CCPP-SCM, say I want to change some source code to fix a bug in a physics 
parameterization:

> git clone --recursive https://github.com/NCAR/ccpp-scm.git

> cd ccpp-scm/ccpp/physics

> git remote add dustinswales https://github.com/dustinswales/ccpp-physics.git

> git checkout -b bugfix_for_somefile

> vi physics/somefile.F90

> git add physics/somefile.F90

> git commit -m “Address bug found in physics/somefile.F90”

> git push dustinswales bugfix_for_somefile

In this simple example I made some changes to a source file, created a new branch on my forked ccpp-physics repository, 
and pushed these changes to GitHub.

- Clone ccpp-scm repository, and dependencies

- Go to physics directory

- Add personal forked repository as remote

- Create branch in ccpp-physics.

- Modify source file

- Add changes to be committed.

- Commit changes

- Push changes to forked ccpp-physics repository.

https://github.com/NCAR/ccpp-scm.git
https://github.com/dustinswales/ccpp-physics.git


Code Management (branches)

Personal development branches



Code Management (pull-requests)
Once changes are ready to be included in the authoritative repositories, GitHub pull requests (PRs) are 
opened into the impacted repositories.
To create a PR, go to the github.com web interface, and navigate to your repository fork and branch. In 
most cases, this will be in the ccpp-physics repository, hence the following example:

● Navigate to: https://github.com/<yourusername>/ccpp-physics
● Use the drop-down menu on the left-side to select a branch to view your development branch
● Use the button just right of the branch menu, to start a “New Pull Request”
● Fill in a short title (one line)
● Fill in a detailed description, including reporting on any testing you did
● Click on “Create pull request”

If your development also requires changes in other repositories, you must open PRs in those repositories 
as well.
Several people (aka CODEOWNERS) are automatically added to the list of reviewers on the right hand 
side.

https://github.com/
https://github.com/NCAR/ccpp-physics/blob/main/CODEOWNERS


Code Management (pull-requests)

Is personal fork up-to-date 
with merge target?

List of commits included in 
pull-request

Differences (highlighted) in 
files.



Code Management (CI)
Continuous-Integration and Continuous-Deployment (CI/CD) are used throughout the authoritative 
repositories to streamline pull-requests.
Each time a PR is opened, a set of tests are automatically run to ensure the code changes are working 
as expected.
For the ccpp-physics, we have CI tests to inform us when corresponding host model changes are 
needed. For example, in the case when a new interstitial variable is added to ccpp-physics, we have a CI 
test will alert us that host-model changes are also needed.
For the ccpp-scm we have a wide variety of CI tests that are triggered when a PR is created:

- Build SCM w/ GNU fortran 10/11/12 and python 3.7/3.9 for DEBUG/RELEASE modes (12 tests)
- Build SCM and run regression tests for DEBUG/RELEASE modes (2 tests)
- Test CCPP prebuild step for supported hosts (1 test)
- Build and Run SCM using cases from DEPHY repository (1 test)
- Test SCM with UFS-replay scripts using staged UFS output (1 test)

17 tests
At the moment we don’t have any CI testing in the ccpp-framework repository, but this will change in the 
near future.



Code Management (CI)
Testing triggered when pull 
request opened.

Upon successful completion 
of the tests.

Individual test results.

Screenshot from pull-request into ccpp-scm.



Code Management (UFS fork)
The CCPP-SCM uses the authoritative ccpp-physics repository, whereas the UFS Weather Model (UWM) 
uses a forked copy of the ccpp-physics repository, https://github.com/ufs-community/ccpp-physics. 

Contributions to the ccpp-physics can come from many sources:

- If the development is targeted for UFS applications, then it is suggested that PRs should be opened 
into the ufs-community ccpp-physics fork.

- For physics development coming from outside the UFS, the authoritative NCAR repository should 
be used.

ccpp-physics code managers are responsible for keeping the authoritative NCAR ccpp-physics repository 
up-to-date with development occurring in the UFS fork. PRs are created into NCAR:ccpp-physics each 
time something is merged into ufs-community:ccpp-physics.

Going the other way, if contributions are added to NCAR:ccpp-physics, and are of interest to the UWM, 
the code managers will open up PRs into ufs-community:ccpp-physics.

https://github.com/ufs-community/ccpp-physics


12

UFS fork: github.com/ufs-community/ccpp-physics

Authoritative repo: github.com/NCAR/ccpp-physics

main branch

Responsibility: EMC+DTC, DTC

ufs/dev branch

feature branches & 
pre/post op branches

Code Management (UFS fork)



Submodules in ccpp-physics
Much like other NWP/GSM applications, it’s possible for schemes to have external 
dependencies in the ccpp-physics. These dependencies are imported into the ccpp-physics 
using “submodules”

In some cases the entire parametrization could be external to the ccpp, and only an 
interface to the scheme, or driver, exists in the ccpp-physics repository (e.g. rte-rrtmgp).

ufs-community

FV3atm

UWM:ccpp-physics

ccpp-scm

NCAR:ccpp-physics

External physics Shared across host applications



Submodules in ccpp-physics
Using submodules can be useful from a code management perspective:

- There are clear lines of responsibility (e.g. this belongs to the host and this is part of 
the scheme). 

- Distributed development. Parameterization and ccpp development are decoupled.
- Scheme advancements are added as needed.

Adding a submodule to the ccpp-physics repository is straightforward, see 
https://git-scm.com/book/en/v2/Git-Tools-Submodules



15

Code Who Test

MODEL Model X Model X team RTs for Model X

CCPP
ccpp-physics main CCPP team RTs for all models

ccpp-physics model X fork/branch Model X team* RTs for Model X

SCHEME
scheme main Developer Simple tests

scheme model X fork/branch Model X team RTs for Model X

Responsibility: Model team, CCPP team, developer

Simple tests: Unit tests that verify software integrity using CCPP single-column model: answers do 
not change unless supposed to, portability (works with needed compilers), threading, etc.

Model Regression Tests (RTs): Integration tests using relevant configurations and platforms

*As a special case, DTC will co-manage the UFS fork/branch

Testing



Testing
In general, physics contributions need to be tested by their respective host-model before 
opening a pull-request into the authoritative repository. 

For the ccpp-scm, since it is so lightweight, this can all be handled via CI (described above).

The UWM requires access to HPC for its testing, and runs many tests, making automation 
more challenging. A hundred or so(?) simulations are run using several compilers across 
several supported platforms. 

For changes that come into the authoritative ccpp-physics repository from the UWM fork, 
the DTC also runs the UWM regression tests with the authoritative code base. *The DTC 
receives support to run these tests.



Code Releases
CCPP releases include up-to-date documentation for the ccpp-scm and ccpp-physics.

These releases occur about ~1/year (Last one was June 2022). 

The ccpp-physics and ccpp-scm are updated often throughout the year, but not the 
documentation.

If there is a UFS application release, we will tag the code base for posterity, but the DTC 
does not (always) update documentation for these releases.

https://dtcenter.org/community-code/common-community-physics-package-ccpp/ccpp-scm-version-6-0-0


Tagging
Tags are used to reference a stable/static code base on github.
The authoritative ccpp-physics and ccpp-scm repositories apply tags to the following events:

- CCPP releases (e.g. v6.0.0)
- UFS application releases (e.g. GFSv17.HR1)

- When a UFS application has an official release and applies a tag, the code 
managers for the CCPP will propagate this from ufs-community:ccpp-physics to 
NCAR:ccpp-physics, and NCAR:ccpp-scm.

CCPP-SCM tags: https://github.com/NCAR/ccpp-scm/tags
CCPP-Physics tags: 

- NCAR https://github.com/NCAR/ccpp-physics/tags 
- ufs-community https://github.com/ufs-community/ccpp-physics/tags 

There are no obstacles, or objections, to adding more tags to the codebase.

https://github.com/NCAR/ccpp-scm/tags
https://github.com/NCAR/ccpp-physics/tags
https://github.com/ufs-community/ccpp-physics/tags


Scheme Versioning
Currently the individual parameterizations are NOT versioned within the CCPP.

However, there’s nothing preventing scheme developers to use scheme versioning.

One possibility is to use semantic versioning, where given a version number 
MAJOR.MINOR.PATCH, increment the:

1. MAJOR version when you make incompatible API changes
2. MINOR version when you add functionality in a backward compatible manner
3. PATCH version when you make backward compatible bug fixes


