Tara Jensen

METplus Tutorial

Jul 31 – August 2, 2019

Monterey, CA



### **Example Design of a Verification System**



### **METviewer Components**



http://www.dtcenter.org/met/ metviewer/metviewer1.jsp



### Examples of plots you can make

**Time Series** 



**Box Plots** 



**Bar Plots** 



#### Histograms



### DTC's METviewer Instance

- http://www.dtcenter.org/met/metviewer.jsp
- Always Select :
  - 1. Database
  - 2. Plot Type
  - 3. Variable (Y1 Dependent variable)
  - 4. What the lines are (Y1 Series variable)
  - 5. Any stratifications like forecast levels and verification masking regions (FCST\_LV, VX\_MASK)
  - 6. X-axis (Independent variable)
  - 7. Aggregation Statistics: CTC (FHO) or SL1L2
  - 8. Whether you want to Mean or Median plotted

Click on down arrow to pick database











#### Scrolled down to see remainder of page



#### Scrolled down to see remainder of page



#### Scrolled down to see remainder of page







Save Plots, Save XML, Save Data based on which tab is selected



### Upload XML scripts from your system









### MET Probability Output (line-types)

- Output written to MET .stat file and, if desired, to individual text files:
  - PCT Probability Contingency Table Counts
  - PSTD Probability Contingency Table Scores
    - · Brier Score, Reliability, Resolution, Uncertainty, Area Under ROC
  - PJC Joint/Continuous Statistics of Probabilistic Variables
    - Calibration, Refinement, Likelihood, Base Rate, Reliability points
  - PRC ROC Curve Points for Probabilistic Variables
  - ECLV Economic Cost Loss Value

**PJC** SREF (32km)





We will use these data for the Verificatio n Exercise

**PRC** 

































# us? Can we camplate selveral models?

Add the two other models



### East vs. West?

Select only Brier Score Remove two models

Add Y1 Series Variable and select

VX Mask -> CON

Remove Fixed Value entry

**Brier Score Example** 



### Explore a little

### Do scores change if stratified East vs. West?

Select only Reliabil

**Brier Score Example** 



### Explore a little

#### **Brier Score Example**

## Do score East vs.

Select only Resoluti



### Reliability (Attribute) diagram

- Analogous to the scatter plot- same intuition holds.
- Data must be binned!
- Hides how much data is represented by each
- Expresses conditional probabilities.
- Confidence intervals can illustrate the problems with small sample sizes.





Reliability
diagram plots
observed
frequency of
event vs
probability
forecasted for
event;

Attribute
diagram adds
lines to show
how connected
line (reliability)
relates to
Resolution and
skill

#### **Reliability Diagram Exercise**





#### **Reliability Diagram Exercise**



#### **Select Rely Tab**





### Select Model, Fcst Var and Region





#### **Generate Plot**

multip\_ens\_prob\_hwt Reliability Curve

#### **Reliability Diagram**





Does the reliability change with different ensemble compositions (multip, singlep, stocachastic)?

Add the other two modes\_ens\_prob\_hwt to the MODEL list Does the reliability change with different preparations.

Change to a different thresholds to the FCST\_VAR drop-down with different regions?

Move VX\_MASTK to Series Variables and Add East, West

## Interpretation of ROC

- Close to upper left corner good resolution
- Close to diagonal little skill
- Area under curve ("ROC area") is a useful summary measure of forecast skill
- Perfect: ROC area = 1
- No skill: ROC area = 0.5
- ROC skill score ROCS = 2(ROCarea-0.5)
- Not sensitive to bias.



- ROC is conditioned on the observations (i.e., given that Y occurred, what was the corresponding forecast?)
- Reliability and ROC diagrams are good companions



#### **Select ROC Tab**







#### **Generate Plot**

#### **ROC Diagram**





# Explore a little

Does the ROC change with different ensemble compositions (multip, singlep, stocachastic)?

Add the other two modes\_ens\_prob\_hwt to the MODEL list

Does the ROC change with

different thresholds?

Change to a different thresholds to the FCST\_VAR drop-down

Does ROC change with different regions?

Move VX\_MASTK to Series Variables and Add East, West

What else?

#### **Rank Histograms**



#### Add VX\_MASK to Series; Select FCST\_VAR



### **Plot Rank Histogram**

#### Reliability Diagram



multip\_ens\_hwt Rank Histogram



# Explore a little

Does the rank histogram change with different ensemble compositions (multip, singlep, stocachastic)?

Add the other two modes\_ens\_prob\_hwt to the MODEL list Does the rank histogram change with different thresholds?

Change to a different thresholds to the FCST\_VAR drop-down
Does rank histogram change with different regions?

Move VX MASK to Series Variables and Add East, West

What else?

## Evaluating ensembles

- Select Series Tab
- Y1 Dependent is APCP\_03 -> SSVAR\_RMSE, SSVAR Spread
- Add Y1 Dependent VX\_MASK -> CONUS
- Y1 Series Var MODEL -> multip ens hwt
- FCST LEAD -> Select all leads
- Statistics
- Aggregation (see below)



#### Spread-skill



#### **Scorecards**



#### **MET+ Scorecard**





METViewer CAM Scorecard for GFDLFV3 and NSSLFV3

2018-04-30 00:00:00 - 2018-05-22 00:00:00

METViewer CAM Scorecard for NSSLFV3 and HRRR 2018-04-30 00:00:00 - 2018-05-22 00:00:00

Daily & CONUS 2018-04-30 00:00:00 - 2018-05-22 00:00:00

METViewer CAM Scorecard for HREFv2 and HRRRE

Daily Domain CONUS Daily

| 001100  |
|---------|
| Domains |
| Domains |
|         |
|         |

|         |        | Daily Domain | CONUS |                  |     |         |        | Daily Domain | CONUS |   |
|---------|--------|--------------|-------|------------------|-----|---------|--------|--------------|-------|---|
|         |        | Daily        | ′     |                  |     |         |        | Daily        |       | 1 |
|         | >=0.02 |              |       |                  |     |         | >=0.02 |              | •     |   |
|         | >=0.05 |              |       | 9                |     |         | >=0.05 |              | ▼     |   |
|         | >=0.10 |              | •     |                  |     |         | >=0.10 | *            | ▼     |   |
| NBR 50  | >=0.15 |              | •     | ) ^ (            |     | NBR 50  | >=0.15 | *            | ▼     |   |
|         | >=0.30 |              |       | Se               |     |         | >=0.30 |              | •     | ] |
|         | >=0.45 |              |       | Φ)               |     |         | >=0.45 | *            | •     | ] |
|         | >=0.60 |              |       | atı              |     |         | >=0.60 |              |       |   |
|         | >=0.02 |              | •     | ) G              |     |         | >=0.02 |              | •     |   |
|         | >=0.05 |              | •     | rrc              |     |         | >=0.05 |              | •     |   |
|         | >=0.10 |              | •     | Surrogate Severe |     | NBR 75  | >=0.10 |              | •     |   |
| NBR 75  | >=0.15 |              |       |                  |     |         | >=0.15 | *            | ▼     |   |
|         | >=0.30 |              |       |                  |     |         | >=0.30 | *            | ▼     |   |
|         | >=0.45 |              |       |                  |     |         | >=0.45 | <b>+</b>     | •     |   |
|         | >=0.60 |              |       |                  | CSI |         | >=0.60 |              |       |   |
|         | >=0.02 |              | •     |                  | 3   |         | >=0.02 |              | ▼     |   |
|         | >=0.05 |              | •     | Prob             |     |         | >=0.05 |              | ▼     |   |
|         | >=0.10 |              | •     |                  |     |         | >=0.10 |              | ▼     |   |
| NBR 100 | >=0.15 |              | •     |                  |     | NBR 100 | >=0.15 |              | ▼     |   |
|         | >=0.30 |              | *     |                  |     |         | >=0.30 | +            | ▼     |   |
|         | >=0.45 |              |       | UH -             |     |         | >=0.45 |              | *     |   |
|         | >=0.60 |              |       |                  |     |         | >=0.60 |              |       |   |
|         | >=0.02 |              | *     | exceeding        |     |         | >=0.02 |              | ▼     |   |
|         | >=0.05 |              |       |                  |     |         | >=0.05 |              | ▼     |   |
|         | >=0.10 |              |       |                  |     |         | >=0.10 |              | ▼     |   |
| NBR 125 | >=0.15 |              |       |                  |     | NBR 125 | >=0.15 |              | ▼     |   |
|         | >=0.30 |              | *     |                  |     |         | >=0.30 |              |       |   |
|         | >=0.45 |              |       |                  |     |         | >=0.45 |              |       |   |
|         | >=0.60 |              |       |                  |     |         | >=0.60 | <u> </u>     |       |   |
|         |        |              |       |                  |     |         |        |              |       |   |

|     |         | >=0.02 |          |   |
|-----|---------|--------|----------|---|
|     | NBR 50  | >=0.05 |          |   |
|     |         | >=0.10 |          |   |
|     |         | >=0.15 |          |   |
|     |         | >=0.30 |          |   |
|     |         | >=0.45 |          |   |
|     |         | >=0.60 |          |   |
|     |         | >=0.02 |          |   |
|     |         | >=0.05 |          |   |
|     |         | >=0.10 |          |   |
|     | NBR 75  | >=0.15 |          |   |
|     |         | >=0.30 |          |   |
|     |         | >=0.45 |          |   |
| CSI |         | >=0.60 | *        | 4 |
| 031 |         | >=0.02 |          |   |
|     | NBR 100 | >=0.05 |          |   |
|     |         | >=0.10 |          |   |
|     |         | >=0.15 |          | 4 |
|     |         | >=0.30 |          | * |
|     |         | >=0.45 |          |   |
|     |         | >=0.60 |          |   |
|     | NBR 125 | >=0.02 |          | * |
|     |         | >=0.05 |          |   |
|     |         | >=0.10 |          |   |
|     |         | >=0.15 |          |   |
|     |         | >=0.30 |          |   |
|     |         | >=0.45 |          |   |
|     |         | >=0.60 | <b>A</b> | * |

- ▲ GFDLFV3 is better than NSSLFV3 at the 99.9% significance level
- GFDLFV3 is better than NSSLFV3 at the 99% significance level

GFDLFV3 is better than NSSLFV3 at the 95% significance level

No statistically significant difference between GFDLFV3 and NSSLFV3

- GFDLFV3 is worse than NSSLFV3 at the 95% significance level GFDLFV3 is worse than NSSLFV3 at the 99% significance level
- GFDLFV3 is worse than NSSLFV3 at the 99.9% significance level

Not statistically relevant

- NSSLFV3 is better than HRRR at the 99.9% significance level
- NSSLFV3 is better than HRRR at the 99% significance level

NSSLFV3 is better than HRRR at the 95% significance level

No statistically significant difference between NSSLFV3 and HRRR NSSLFV3 is worse than HRRR at the 95% significance level

NSSLFV3 is worse than HRRR at the 99% significance level

Not statistically relevant

NSSLFV3 is worse than HRRR at the 99.9% significance level

- ▲ HREFv2 is better than HRRRE at the 99.9% significance level
- HREFv2 is better than HRRRE at the 99% significance level

HREFv2 is better than HRRRE at the 95% significance level

No statistically significant difference between HREFv2 and HRRRE

HREFv2 is worse than HRRRE at the 95% significance level

- HREFv2 is worse than HRRRE at the 99% significance level
- ▼ HREFv2 is worse than HRRRE at the 99.9% significance level
- Not statistically relevant

#### METViewer CAM Scorecard

for HREFv2 and HRRRE

2018-04-30 00:00:00 - 2018-06-01 00:00:00

To eliminate biases
Percentile Thresholding
applied

Specific Threshold

Threshold used is associated with Percentiles (75, 80, 85, 90, 95) computed from climatology

|     |     |                                                | Dally Domain | CONUS    |
|-----|-----|------------------------------------------------|--------------|----------|
|     |     |                                                | Daily        |          |
|     |     | >=0.02                                         |              | •        |
|     |     | >=0.05                                         |              |          |
|     |     | >=0.10                                         |              |          |
|     | 75% | >=0.15                                         |              |          |
|     |     | >=0.30                                         |              |          |
|     |     | >=0.45                                         |              |          |
|     |     | >=0.60                                         |              |          |
|     |     | >=0.02                                         |              |          |
|     |     | >=0.05                                         |              |          |
|     |     | >=0.10                                         |              |          |
|     | 80% | >=0.15                                         |              |          |
|     |     | >=0.30                                         |              |          |
|     |     | >=0.45                                         |              |          |
|     |     | >=0.60                                         |              |          |
|     |     | >=0.02                                         |              |          |
|     |     | >=0.05                                         |              |          |
|     | 85% | 0.10                                           |              |          |
| CSI |     | >=0.15                                         |              |          |
|     |     | >=0.30                                         | *            |          |
|     |     | >=0.45                                         | *            | *        |
|     |     | >=0.60                                         |              |          |
|     |     | >=0.02                                         |              |          |
|     |     | >=0.05                                         | *            |          |
|     |     | >=0.10                                         | <b>A</b>     |          |
|     | 90% | >=0.15                                         |              |          |
|     |     | >=0.30                                         | *            | *        |
|     |     | >=0.45                                         | *            | *        |
|     |     |                                                |              |          |
|     |     | >=0.60                                         |              |          |
|     |     | >=0.02                                         | A            |          |
|     |     | >=0.02<br>>=0.05                               | A            | <b>A</b> |
|     |     | >=0.02<br>>=0.05<br>>=0.10                     |              | *        |
|     | 95% | >=0.02<br>>=0.05<br>>=0.10<br>>=0.15           | A<br>A       | A        |
|     | 95% | >=0.02<br>>=0.05<br>>=0.10<br>>=0.15<br>>=0.30 |              | *        |
|     | 95% | >=0.02<br>>=0.05<br>>=0.10<br>>=0.15           | A<br>A       | A        |

■ HREFv2 is better than HRRRE at the 99% significance level
HREFv2 is better than HRRRE at the 95% significance level
No statistically significant difference between HREFv2 and HRRRE
HREFv2 is worse than HRRRE at the 95% significance level

HREFv2 is worse than HRRRE at the 99% significance level
Not statistically relevant



2018-04-30 00:00:00 - 2018-05-22 00:00:00

|     |         |        | Daily Domain | CONUS    |
|-----|---------|--------|--------------|----------|
|     |         |        | Dail         | y        |
|     | NBR 50  | >=0.02 |              |          |
|     |         | >=0.05 |              |          |
|     |         | >=0.10 |              |          |
|     |         | >=0.15 |              |          |
|     |         | >=0.30 |              |          |
|     |         | >=0.45 |              |          |
|     |         | >=0.60 |              |          |
|     |         | >=0.02 |              |          |
|     |         | >=0.05 |              |          |
|     | NBR 75  | >=0.10 |              |          |
|     |         | >=0.15 |              |          |
|     |         | >=0.30 |              |          |
|     |         | >=0.45 |              |          |
| CSI |         | >=0.60 | 4            | *        |
| 5   | NBR 100 | >=0.02 |              |          |
|     |         | >=0.05 |              |          |
|     |         | >=0.10 |              |          |
|     |         | >=0.15 |              |          |
|     |         | >=0.30 |              |          |
|     |         | >=0.45 |              |          |
|     |         | >=0.60 |              |          |
|     | NBR 125 | >=0.02 |              | *        |
|     |         | >=0.05 |              |          |
|     |         | >=0.10 |              |          |
|     |         | >=0.15 |              |          |
|     |         | >=0.30 |              |          |
|     |         | >=0.45 |              |          |
|     |         | >=0.60 | <b>A</b>     | <b>A</b> |

- HREFv2 is better than HRRRE at the 99.9% significance level
- HREFv2 is better than HRRRE at the 99% significance level

HREFv2 is better than HRRRE at the 95% significance level

No statistically significant difference between HREFv2 and HRRRE

- HREFv2 is worse than HRRRE at the 95% significance level
- ▼ HREFv2 is worse than HRRRE at the 99% significance level
- ▼ HREFv2 is worse than HRRRE at the 99.9% significance level

Not statistically relevant

