METplus Introduction

Tara Jensen

July 30 – August 1, 2019 Tutorial Monterey, CA

MET Package

- MET is community code supported by DTC that is free to download (registration required)
 - Approximately 3800+ registered users
 - 124 countries
 - Universities, Government, Private Companies, Non-Profits
- Free Download MET release and compile locally.
 - Register and download: <u>www.dtcenter.org/met/users</u>
- Language:
 - Primarily in C++ with calls to some Fortran libraries
- Supported Platforms and Compilers:
 - Linux with GNU compilers
 - Linux with Portland Group (PGI) compilers
 - Linux with Intel compilers
- On-line tutorial available
- In-person tutorials generally given yearly

- Being Adopted by NOAA, NRL, AF
 - In operation in South Africa, Under
 Consideration by the Met Office, and ECMWF

Why Unification

Forecasters

Government Centers

University and National Lab Researchers

Comprehensive and unified verification tool - Make R20 more efficient - Provide a consistent set of metrics

Allows Researchers and Operational Scientists to speak a "common verification" language

User Support of unified package provides greater opportunity to train all on verification best practices

MET

A Verification Toolkit Designed for Flexible Yet Systematic Evaluation

(supported to the community via the DTC)

Model Evaluation Tools

- Originally developed to replicated the EMC mesoscale verification system
- Over 85 traditional statistics using both point and gridded datasets
- 15 interpolation methods
- Computation of confidence intervals
- Able to read in GRIB1, GRIB2 and CFcompliant NetCDF
- Applied to many spatial and temporal scales
- 3500+ users, both US & Int'l

Object Based and Spatial Methods

PROB_96(APCPs-1,70000) in APCP_96(S)(12.17) miss(_20110511 002, e. lor fixel

Bad forecast or Good forecast with displacement error?

Geographical Representation of Errors

90th Percentile of difference between two models

METplus Overview

General Concept of METplus

Python wrappers around:

- MET (core)
- METviewer (core)
- Plotting
 - METviewer User Interface
 - METviewer Batch Engine
 - Python plotting scripts
- Communication between MET & python algorithms

Near Term: After Global - CAM, Ensembles and Aerosols/Air Qual Longer Term: Earth System "Components"

Components

MET Overview v8.1

Laundry List of Statistics

Туре	Statistics
Continuous	Forecast and Observation mean, Standard deviation of the forecast and observations,
	Mean error (F-O), Standard deviation of the error, Anomaly Correlation, Pearson
	correlation coefficient, Spearman's rank correlation coefficient, Kendall's tau statistic,
	Multiplicative bias, Mean absolute error, Mean squared error, Bias-corrected mean
	squared error, Root mean squared error, 10th, 25th, 50th, 75th, and 90th percentiles
	of the error, Interquartile Range, Median Absolute Deviation, Square of the mean error,
	Mean squared error skill score, Root mean squared forecast anomaly, Root mean
	squared observation anomaly, Mean of absolute value of forecast and observed
	gradients, Mean of maximum of absolute values of forecast and observed gradients,
	Mean of absolute value of forecast minus observed gradients, S1 score, S1 score with
	respect to observed gradient, Ratio of forecast and observed gradients, Scalar Partial
	Sums, Vector Partial Sums, Anomaly Partial Sums
Categorical	Base rate, Forecast mean, Accuracy, Frequency Bias, Probability of detecting yes,
	Probability of detecting no, Probability of false detection, False alarm ratio, Critical
	Success Index, Gilbert Skill Score, Hanssen-Kuipers Discriminant, Heidke Skill Score,
	Odds Ratio, Logarithm of the Odds Ratio, Odds Ratio Skill Score, Extreme
	Dependency Score, Symmetric Extreme Dependency Score, Extreme Dependency
	Index, Symmetric Extremal Dependency Index, Bias Adjusted Gilbert Skill Score,
	Gerrity Score for multi-categorical statistics

Laundry List of Statistics

Туре	Statistics
Probability	Base Rate, Reliability, Brier Score, Resolution, Uncertainty, Climatological Brier Score,
	Brier Skill Score, Receiver Operating Characteristic (ROC) Curve, Area under the
	ROC curve, Reliability Diagram points, Economic Cost/Loss Relative Value Diagram
	points), Calibration, Refinement, Likelihood
Ensemble	Continuous Ranked Probability Score and Skill Score, Ignorance Score, Rank
	Histogram, Probability Integral Transform, Relative Position, Spread, Skill, Spread and
	Skill of members perturbed to represent observation error, Spread+obs error
Skill by Spatial	Fourier Decomposition of fields prior to computation of scores or use Wavelet_Stat
Scale	tool which computes for each scale: Mean squared error, Intensity scale skill score,
	Forecast energy squared, Observed energy squared, Frequency Bias. Not scale
	dependent: Base rate
Neighborhood	Same as categorical statistics plus Fractions Brier Score, Fractions Skill Score,
	Asymptotic Fractions Skill Score, Uniform Fractions Skill Score, HiRA methods for
	neighborhoods around point observations
Tuesial	Mana Canadand dariation Minimum Value Demonstiles Manimum Value Instrumentile
Tropical	Mean, Standard deviation, Minimum Value, Percentiles, Maximum Value, Interquartile
Cyclones	Range, Range, Sum, Independence time, Frequency of superior performance,
	contingency tables counts for Rapid Intensification and Rapid Weakening, contingency
	tables counts for Probability of Rapid Intensification and Rapid Weakening

Туре	Statistics
2D Objects	For each object: Location of the centroid in grid units, Location of the centroid in lat/lon degrees,
	Axis angle, Length of the enclosing rectangle, Width of the enclosing rectangle, Object area, Radius
	of curvature of the object defined in terms of third order moments, Center of curvature, Ratio of
	the difference between the area of an object and the area of its convex hull divided by the area of the
	complex hull, percentiles of intensity of the raw field within the object, Percentile of intensity
	chosen for use in the percentile intensity ratio, Sum of the intensities of the raw field within the
	object,
	For paired objects: Distance between two objects centroids, Minimum distance between the
	boundaries of two objects, Minimum distance between the convex hulls of two objects, Difference
	between the axis angles of two objects, Ratio of the areas of two objects, Intersection area of two
	objects, Union area of two objects, Symmetric difference of two objects, Ratio of intersection areas,
	Ratio of complexities, Ratio of the nth percentile of intensity, Total interest value computed for a
	pair of simple objects, NetCDF files with the objects and raw data for further processing
Objects through	For 3D objects: x,y and t coordinates of centroid, Latitude and Longitude of centroid, x,y
time	component of object velocity, Angle that the axis plane of an object makes with the grid x direction,
	Integer count of the number of 3D "cells" in an object, Object start time, Object end time, Total
	great circle distance travelled by the 2D spatial centroid over the lifetime of the 3D object,
	percentiles of intensity of the raw field within the object
	For 3D object pairs: Spatial distance between coordinates of object space-time centroid, Difference
	in index of object spacetime centroid, Difference in spatial axis plane angles, Difference in object
	speeds, Difference in object direction of movement, Ratio of object volumes, Difference in object
	start times, Difference in object end times, "Volume" of object intersection, Difference in the
	lifetimes of the two objects, Total interest for this object pair, NetCDF files with the objects and raw
	data for further processing

METviewer Database and Display

METviewer Plot Templates

METviewer Contour Plots

Wind Speed RMSE (NoVAD-CTRL)

This Year:

Scorecarding using METviewer

Working Towards Easy Usability: METplus Use Case Example

Observed AOD Observed 1-min **Wavelet** 6-hr mean, max, stdev, range Stat **AOD** Data **MODE-TD Plotting ASCII Script** 2NC MODE **STAT ASCII Grid** WMO SDS-WAS N.Africa-Middle East-Europe RC **Stat** Forecasted Aerosol Optical **Series** Stat Depth (AOD): **Analysis Analysis** 6-hr mean, max **Ensemble** WMO SDS-WAS N.Africa-Middle East-Europe RC stdev, range Stat **Point STAT** Stat **ASCII** 16

Working Towards Easy Usability: METplus Use Case Example

Observed 1-min AOD Data

Observed AOD
6-hr mean, max, stdev, range

Use-case includes

- METplus .conf file
- MET config files
- Python scripts to:
 - Call Ascii2NC
 - Call Point-Stat
 - Call Stat-Analysis
 - Make statistics plot
 - Make plot of fields

Developing a Strategy: METplus Authoritative Repository

What Does Wrapped by Python Mean?

What is Wrapped by Python Right Now

What does wrapped by Python mean?

At https://github.com/NCAR/METplus/

What does wrapped by Python mean?

METplus/parm/use_cases/grid_to_grid/examples/precip.conf

```
# Grid to Grid Precipitation Example
```

[config]
time looping - options are INIT, VALID,
RETRO, and REALTIME
LOOP_BY = VALID

Format of VALID_BEG and VALID_END VALID_TIME_FMT = %Y%m%d%H

Start time for METplus run VALID_BEG = 2017061300

End time for METplus run VALID_END = 2017061300 # Increment between METplus runs
May be in seconds-hours
VALID_INCREMENT = 86400 or 24H

List of applications to run
PROCESS_LIST = PcpCombine, GridStat

run pcp_combine on forecast data FCST_PCP_COMBINE_RUN = True

mode of pcp_combine to use (SUM, ADD, SUBTRACT)

 $FCST_PCP_COMBINE_METHOD = SUM$

list of variables to compare FCST_VAR1_NAME = APCP FCST_VAR1_LEVELS = A24

METplus Use-Cases

METplus Use-Cases


```
// Stratify by the AMODEL o
19
                                  60
                                        // Stratify by the INIT times.
     //
20
                                   61
                                        // Model initialization time windows to include or exclude
     //amodel = [];
21
                                        // May modify using the "-init_beg", "-init_end", "-init_inc",
                                   62
     //bmodel = [];
22
                                   63
                                        // and "-init exc" job command options.
23
     amodel = ${AMODEL};
                                   64
                                        //
     bmodel = ${BMODEL};
24
                                   65
                                        //init beg = "";
25
                                        //init end = "";
                                   66
     //
26
                                   67
                                        //init_inc = [];
27
     // Stratify by the DESC col
                                  68
                                        //init_exc = [];
     //
28
                                   69
                                        init_beg = "${INIT_BEG}";
29
     //desc = [];
                                        init_end = "${INIT_END}";
                                   70
     desc = ${DESC};
30
                                        init_inc = ${INIT_INCLUDE};
                                   71
31
                                        init_exc = ${INIT_EXCLUDE};
                                  72
     //
32
                                  73
33
     // Stratify by the STORM_ID
                                   74
                                        //
34
     //
                                        // Stratify by the VALID times.
                                   75
     //storm id = [];
35
                                   76
                                        //
     storm_id = ${STORM_ID};
                                        //valid_beg = "";
                                   77
37
                                        //valid_end = "";
                                   78
     //
                                  79
                                        //valid_inc = [];
     // Stratify by the BASIN co
39
                                  80
                                        //valid_exc = [];
     // May add using the "-basi
40
                                  81
                                        valid_beg = "${VALID_BEG}";
     //
41
                                        valid_end = "${VALID_END}";
                                   82
     //basin = [];
42
                                        valid_inc = ${VALID_INCLUDE};
                                   83
     basin = ${BASIN};
43
                                   84
                                        valid_exc = ${VALID_EXCLUDE};
```


Support

Repositories and Support

Supporting the Community: Current Releases and Resources

METv8.1.1

- Downloadable Tarballs on DTC website
- Support for NCAR and NOAA HPC platforms
- In Container
- User's Guide available
- Online Tutorial
- Will move to GitHub by end of year

METviewer 2.11

- On GitHub User Guide out soon
- In Container Limited Online Tutorial
- Support for NOAA network

- METplus 2.2 User Guide now available
- On GitHub Limited Online Tutorial
- Support for NCAR and NOAA **HPC** platforms

All help requests go through MET Helpdesk: met help@ucar.edu

MET Users Page: www.dtcenter.org/met/users/

METplus GitHub: github.com/NCAR/METplus

MET GitHub: github.com/NCAR/MET

METviewer GitHub: github.com/NCAR/METviewer

Container MET GitHub: github.com/NCAR/container-dtc-met

Container METviewer Github: github.com/NCAR/container-dtc-metviewer

Contacts: Tara Jensen — <u>jensen@ucar.edu</u> and John Halley Gotway — <u>johnhg@ucar.edu</u>

METplus work is funded by the DTC partners (NOAA, Air Force, NCAR and NSF), NGGPS program office, and USWRP R2O grants