## User's Guide for the NMM Core of the Weather Research and Forecast (WRF) Modeling System Version 3

## **Chapter 7: Post Processing Utilities**

### **Table of Contents**

NCEP Unified Post Processor (UPP)

- <u>UPP Introduction</u>
- <u>UPP Required Software</u>
- Obtaining the UPP Code
- <u>UPP Directory Structure</u>
- Installing the UPP Code
- <u>UPP Functionalities</u>
- <u>Setting up the WRF model to interface with UPP</u>
- <u>UPP Control File Overview</u>
  - <u>Controlling which variables unipost outputs</u>
  - o <u>Controlling which levels unipost outputs</u>
- <u>Running UPP</u>
  - Overview of the scripts to run UPP
- Visualization with UPP
  - o <u>GEMPAK</u>
  - o <u>GrADS</u>
- Fields Produced by unipost

#### <u>RIP4</u>

- <u>RIP Introduction</u>
- <u>RIP Software Requirements</u>
- <u>RIP Environment Settings</u>
- Obtaining the RIP Code
- <u>RIP Directory Structure</u>
- Installing the RIP Code
- **RIP** Functionalities
- <u>RIP Data Preparation (RIPDP)</u>
  - o <u>RIPDP Namelist</u>
  - o <u>Running RIPDP</u>
- <u>RIP User Input File (UIF)</u>
- <u>Running RIP</u>
  - o Calculating and Plotting Trajectories with RIP
  - o Creating Vis5D Datasets with RIP

# **NCEP Unified Post Processor (UPP)**

## **UPP Introduction**

The NCEP Unified Post Processor has replaced the WRF Post Processor (WPP). The UPP software package is based on WPP but has enhanced capabilities to post-process output from a variety of NWP models, including WRF-NMM, WRF-ARW, Nonhydrostatic Multi-scale Model on the B grid (NMMB), Global Forecast System (GFS), and Climate Forecast System (CFS). At this time, community user support is provided for the WRF-based systems only. UPP interpolates output from the model's native grids to National Weather Service (NWS) standard levels (pressure, height, etc.) and standard output grids (AWIPS, Lambert Conformal, polar-stereographic, etc.) in NWS and World Meteorological Organization (WMO) GRIB format. There is also an option to output fields on the model's native vertical levels. With the release of UPPv2.0, preliminary code has been introduced to output in GRIB Edition 2 (GRIB2) format. While capabilities for outputting in GRIB2 format exist within the code, these capabilities are not yet fully functional. Introductory information regarding this new output format is provided due to the influence the additions have had on the UPP package; upon full implementation of GRIB2 output capabilities, more comprehensive information will be provided. In addition, UPP incorporates the Joint Center for Satellite Data Assimilation (JCSDA) Community Radiative Transfer Model (CRTM) to compute model derived brightness temperature (T<sub>B</sub>) for various instruments and channels. This additional feature enables the generation of simulated GOES and AMSRE products for WRF-NMM, Hurricane WRF (HWRF), WRF-ARW and GFS. For CRTM documentation, refer to http://www.orbit.nesdis.noaa.gov/smcd/spb/CRTM.

The adaptation of the original WRF Post Processor package and User's Guide (by Mike Baldwin of NSSL/CIMMS and Hui-Ya Chuang of NCEP/EMC) was done by Lígia Bernardet (NOAA/ESRL/DTC) in collaboration with Dusan Jovic (NCEP/EMC), Robert Rozumalski (COMET), Wesley Ebisuzaki (NWS/HQTR), and Louisa Nance (NCAR/RAL/DTC). Upgrades to WRF Post Processor versions 2.2 and higher were performed by Hui-Ya Chuang, Dusan Jovic and Mathew Pyle (NCEP/EMC). Transitioning of the documentation from the WRF Post Processor to the Unified Post Processor was performed by Nicole McKee (NCEP/EMC), Hui-ya Chuang (NCEP/EMC), and Jamie Wolff (NCAR/RAL/DTC). Implementation of the Community Unified Post Processor was performed by Tricia Slovacek (NCAR/RAL/DTC).

### **UPP Software Requirements**

The Community Unified Post Processor requires the same Fortran and C compilers used to build the WRF model. In addition, the netCDF library, the JasPer library, the PNG library, Zlib, and the WRF I/O API libraries, which are included in the WRF model tar file, are also required. The JasPer library, PNG library, and Zlib are new requirements with the release of UPPv2.0, due to the addition GRIB2 capabilities. NCEP provides these necessary codes for download: <u>http://www.nco.ncep.noaa.gov/pmb/codes/GRIB2/</u>

The UPP has some sample visualization scripts included to create graphics using either GrADS (<u>http://grads.iges.org/grads/grads.html</u>) or GEMPAK (<u>http://www.unidata.ucar.edu/software/gempak/index.html</u>). These are not part of the UPP installation and need to be installed separately if one would like to use either plotting package.

The Unified Post Processor has been tested on IBM (with XLF compiler) and LINUX platforms (with PGI, Intel and GFORTRAN compilers).

### **Obtaining the UPP Code**

The Unified Post Processor package can be downloaded from: http://www.dtcenter.org/wrf-nmm/users/downloads/.

*Note:* Always obtain the latest version of the code if you are not trying to continue a preexisting project. UPPV2.1 is just used as an example here.

Once the *tar* file is obtained, *gunzip* and *untar* the file.

tar -zxvf UPPV2.1.tar.gz

This command will create a directory called UPPV2.1.

### **UPP Directory Structure**

Under the main directory of *UPPV2.1* reside seven subdirectories (\* indicates directories that are created after the configuration step):

arch: Machine dependent configuration build scripts used to construct *configure.upp* 

**bin\***: Location of executables after compilation.

scripts: contains sample running scripts

run\_unipost: run unipost, ndate and copygb.

run\_unipost andgempak: run *unipost*, *copygb*, and GEMPAK to plot various fields.

**run\_unipost andgrads**: run *unipost*, *ndate*, *copygb*, and GrADS to plot various fields.

**run\_unipost \_frames**: run *unipost*, *ndate* and *copygb* on a single *wrfout* file containing multiple forecast times.

**run\_unipost \_gracet**: run *unipost*, *ndate* and *copygb* on *wrfout* files with non-zero minutes/seconds.

**run\_unipost \_minute**: run *unipost*, *ndate* and *copygb* for sub-hourly *wrfout* files.

include\*: Source include modules built/used during compilation of UPP

lib\*: Archived libraries built/used by UPP

**parm**: Contains the parameter files, which can be modified by the user to control how the post processing is performed.

src: Contains source codes for: copygb: Source code for *copygb* ndate: Source code for ndate unipost: Source code for unipost lib: Contains source code subdirectories for the UPP libraries bacio: Binary I/O library crtm2: Community Radiative Transfer Model library **g2:** GRIB2 support library **g2tmpl:** GRIB2 table support library gfsio: GFS I/O routines **ip**: General interpolation library (see *lib/ip/iplib.doc*) nemsio: NEMS I/O routines sfcio: API for performing I/O on the surface restart file of the global spectral model sigio: API for performing I/O on the sigma restart file of the global spectral model **sp**: Spectral transform library (see *lib/sp/splib.doc*) w3emc: Library for coding and decoding data in GRIB1 format w3nco: Library for coding and decoding data in GRIB1 format wrfmpi stubs: Contains some C and FORTRAN codes to genereate *libmpi.a* library used to replace MPI calls for serial compilation. **xml**: XML support – GRIB2 parameter file

#### **Installing the UPP Code**

UPP uses a build mechanism similar to that used by the WRF model. There are two environment variables which must be set before beginning the installation: a variable to define the path to a similarly compiled version of WRF and a variable to a compatible version of netCDF. If the environment variable *WRF\_DIR* is set by (for example),

setenv WRF\_DIR /home/user/WRFV3

this path will be used to reference WRF libraries and modules. Otherwise, the path

#### ../WRFV3

will be used.

In the case neither method is set, the configure script will automatically prompt you for a pathname.

To reference the netCDF libraries, the configure script checks for an environment variable (*NETCDF*) first, then the system default (*/user/local/netcdf*), and then a user supplied link (*./netcdf\_links*). If none of these resolve a path, the user will be prompted by the configure script to supply a path.

If WRF was compiled with the environment variable:

#### setenv HWRF 1

This must also be set when compiling UPP.

Type *configure*, and provide the required info. For example:

#### ./configure

You will be given a list of choices for your computer.

Choices for LINUX operating systems are as follows:

- 1. Linux x86\_64, PGI compiler (serial)
- 2. Linux x86\_64, PGI compiler (dmpar)
- 3. Linux x86\_64, Intel compiler (serial)
- 4. Linux x86\_64, Intel compiler (dmpar)
- 5. Linux x86\_64, Intel compiler, SGI MPT (serial)
- 6. Linux x86\_64, Intel compiler, SGI MPT (dmpar)
- 7. Linux x86\_64, gfortran compiler (serial)
- 8. Linux x86\_64, gfortran compiler (dmpar)

*Note:* If UPP is compiled with distributed memory, it must be linked to a dmpar compilation of WRF.

Choose one of the configure options listed. Check the *configure.upp* file created and edit for compile options/paths, if necessary. For debug flag settings, the configure script can be run with a -d switch or flag.

To compile UPP, enter the following command:

#### ./compile >& compile\_upp.log &

When compiling with distributed memory (serial) this command should create 13 (14) UPP libraries in UPPV2.1/lib/ (libbacio.a, libCRTM.a, libg2.a, libg2tmpl.a, libgfsio.a, libip.a, (libmpi.a), libnemsio.a, ibsfcio.a, libsigio.a, libsp.a, libw3emc.a, libw3nco.a, libxmlparse.a) and three UPP executables in bin/ (unipost.exe, ndate.exe, and copygb.exe).

To remove all built files, as well as the *configure.upp*, type:

#### ./clean

This action is recommended if a mistake is made during the installation process or a change is made to the configuration or build environment. There is also a *clean* -a option which will revert back to a pre-install configuration.

### **UPP Functionalities**

The Unified Post Processor,

- is compatible with WRF v3.3 and higher.
- can be used to post-process WRF-ARW, WRF-NMM, NMMB, GFS, and CFS forecasts (community support provided for WRF-based forecasts).
- can ingest WRF history files (*wrfout*\*) in two formats: netCDF and binary.

The Unified Post Processor is divided into two parts:

#### 1. Unipost

• Interpolates the forecasts from the model's native vertical coordinate to NWS standard output levels (e.g., pressure, height) and computes mean sea level pressure. If the requested parameter is on a model's native level, then no vertical interpolation is performed.

• Computes diagnostic output quantities (e.g., convective available potential energy, helicity, radar reflectivity). A full list of fields that can be generated by *unipost* is shown in Table 3.

• Except for new capabilities of post processing GFS/CFS and additions of many new variables, UPP uses the same algorithms to derive most existing variables as were used in WPP. The only three exceptions/changes from the WPP are:

- Computes RH w.r.t. ice for GFS, but w.r.t. water for all other supported models. WPP computed RH w.r.t. water only.
- The height and wind speed at the maximum wind level is computed by assuming the wind speed varies quadratically in height in the location of the maximum wind level. The WPP defined maximum wind level at the level with the maximum wind speed among all model levels.
- The static tropopause level is obtained by finding the lowest level that has a temperature lapse rate of less than 2 K/km over a 2 km depth above it. The WPP defined the tropopause by finding the lowest level that has a mean temperature lapse rate of 2 K/km over three model layers.
- Outputs the results in NWS and WMO standard GRIB1 format (for GRIB documentation, see <a href="http://www.nco.ncep.noaa.gov/pmb/docs/">http://www.nco.ncep.noaa.gov/pmb/docs/</a>).
- Destaggers the WRF-ARW forecasts from a C-grid to an A-grid.
- Outputs two navigation files, *copygb\_nav.txt* (for WRF-NMM output only) and *copygb\_hwrf.txt* (for WRF-ARW andWRF-NMM). These files can

be used as input for *copygb*.

- copygb\_nav.txt: This file contains the GRID GDS of a Lambert Conformal Grid similar in domain and grid spacing to the one used to run the WRF-NMM. The Lambert Conformal map projection works well for midlatitudes.
- >copygb\_hwrf.txt: This file contains the GRID GDS of a Latitude-Longitude Grid similar in domain and grid spacing to the one used to run the WRF model. The latitude-longitude grid works well for tropics.
- 2. Copygb
  - Destaggers the WRF-NMM forecasts from the staggered native E-grid to a regular non-staggered grid. (Since *unipost* destaggers WRF-ARW output from a C-grid to an A-grid, WRF-ARW data can be displayed directly without going through *copygb*.)
  - Interpolates the forecasts horizontally from their native grid to a standard AWIPS or user-defined grid (for information on AWIPS grids, see <a href="http://www.nco.ncep.noaa.gov/pmb/docs/on388/tableb.html">http://www.nco.ncep.noaa.gov/pmb/docs/on388/tableb.html</a>).
  - Outputs the results in NWS and WMO standard GRIB1 format (for GRIB documentation, see <a href="http://www.nco.ncep.noaa.gov/pmb/docs/">http://www.nco.ncep.noaa.gov/pmb/docs/</a>).

In addition to *unipost* and *copygb*, a utility called *ndate* is distributed with the Unified Post Processor tarfile. This utility is used to format the dates of the forecasts to be posted for ingestion by the codes.

### Setting up the WRF model to interface with UPP

The *unipost* program is currently set up to read a large number of fields from the WRF model history files. This configuration stems from NCEP's need to generate all of its required operational products. A list of the fields that are currently read in by *unipost* is provided for the WRF-NMM in Table 1 and WRF-ARW in Table 2. Tables for the GFS and CFS fields will be added in the future. When using the netCDF or mpi binary read, this program is configured such that it will run successfully even if an expected input field is missing from the WRF history file as long as this field is not required to produce a requested output field. If the pre-requisites for a requested output field are missing from the WRF history file abort at run time.

Take care not to remove fields from the *wrfout* files, which may be needed for diagnostic purposes by the UPP package. For example, if isobaric state fields are requested, but the pressure fields on model interfaces (PINT for WRF-NMM, P and PB for WRF-ARW) are not available in the history file, *unipost* will abort at run time. In general, the default fields available in the *wrfout* files are sufficient to run UPP. The fields written to the WRF history file are controlled by the settings in the Registry file (see *Registry.EM* or *Registry.NMM(\_NEST)* files in the *Registry* subdirectory of the main *WRFV3* directory).

UPP is written to process a single forecast hour, therefore, having a single forecast per output file is optimal. However, UPP can be run across multiple forecast times in a

single output file to extract a specified forecast hour.

*Note:* It is necessary to re-compile the WRF model source code after modifying the Registry file.

| Т       | SFCEXC   | NRDSW   |
|---------|----------|---------|
| U       | VEGFRC   | ARDSW   |
| V       | ACSNOW   | ALWIN   |
| Q       | ACSNOM   | ALWOUT  |
| CWM     | СМС      | NRDLW   |
| F_ICE   | SST      | ARDLW   |
| F_RAIN  | EXCH_H   | ALWTOA  |
| F_RIMEF | EL_MYJ   | ASWTOA  |
| W       | THZ0     | TGROUND |
| PINT    | QZ0      | SOILTB  |
| PT      | UZ0      | TWBS    |
| PDTOP   | VZ0      | SFCSHX  |
| FIS     | QS       | NSRFC   |
| SMC     | ZO       | ASRFC   |
| SH2O    | PBLH     | QWBS    |
| STC     | USTAR    | SFCLHX  |
| CFRACH  | AKHS_OUT | GRNFLX  |
| CFRACL  | AKMS_OUT | SUBSHX  |
| CFRACM  | THS      | POTEVP  |
| SLDPTH  | PREC     | WEASD   |
| U10     | CUPREC   | SNO     |
| V10     | ACPREC   | SI      |
| TH10    | CUPPT    | PCTSNO  |
| Q10     | LSPA     | IVGTYP  |
| TSHLTR  | CLDEFI   | ISLTYP  |
| QSHLTR  | HTOP     | ISLOPE  |
| PSHLTR  | HBOT     | SM      |
| SMSTAV  | HTOPD    | SICE    |
| SMSTOT  | HBOTD    | ALBEDO  |
| ACFRCV  | HTOPS    | ALBASE  |
| ACFRST  | HBOTS    | GLAT    |
| RLWTT   | SR       | XLONG   |
| RSWTT   | RSWIN    | GLON    |
| AVRAIN  | CZEN     | DX_NMM  |
| AVCNVC  | CZMEAN   | NPHS0   |
| TCUCN   | RSWOUT   | NCLOD   |
| TRAIN   | RLWIN    | NPREC   |
| NCFRCV  | SIGT4    | NHEAT   |

**Table 1**. List of all possible fields read in by unipost for the WRF-NMM:

| NCFRST | RADOT  |  |
|--------|--------|--|
| SFROFF | ASWIN  |  |
| UDROFF | ASWOUT |  |
| SFCEVP |        |  |

**Note:** For WRF-NMM, the period of accumulated precipitation is controlled by the *namelist.input* variable *tprec*. Hence, this field in the *wrfout* file represents an accumulation over the time period *tprec\*INT[(fhr-\Sigma)/tprec]* to fhr, where fhr represents the forecast hour and  $\Sigma$  is a small number. The GRIB file output by *unipost* and by *copygb* contains fields with the name of accumulation period.

| Т       | MUB    | SFROFF   |
|---------|--------|----------|
| U       | P_TOP  | UDROFF   |
| V       | PHB    | SFCEVP   |
| QVAPOR  | PH     | SFCEXC   |
| QCLOUD  | SMOIS  | VEGFRA   |
| QICE    | TSLB   | ACSNOW   |
| QRAIN   | CLDFRA | ACSNOM   |
| QSNOW   | U10    | CANWAT   |
| QGRAUP  | V10    | SST      |
| W       | TH2    | THZ0     |
| PB      | Q2     | QZ0      |
| Р       | SMSTAV | UZ0      |
| MU      | SMSTOT | VZ0      |
| QSFC    | HGT    | ISLTYP   |
| ZO      | ALBEDO | ISLOPE   |
| UST     | GSW    | XLAND    |
| AKHS    | GLW    | XLAT     |
| AKMS    | TMN    | XLONG    |
| TSK     | HFX    | MAPFAC_M |
| RAINC   | LH     | STEPBL   |
| RAINNC  | GRDFLX | HTOP     |
| RAINCV  | SNOW   | HBOT     |
| RAINNCV | SNOWC  |          |

**Table 2**. List of all possible fields read in by unipost for the WRF-ARW:

**Note:** For WRF-ARW, the accumulated precipitation fields (*RAINC* and *RAINNC*) are run total accumulations.

### **UPP Control File Overview**

*Note*: The information within this section refers exclusively to outputting files in GRIB1 format. Future releases of the UPP package will include the ability to output file in

GRIB2 format, upon which updated overviews will be provided.

The user interacts with *unipost* through the control file, *parm/wrf\_cntrl.parm*. The control file is composed of a header and a body. The header specifies the output file information. The body allows the user to select which fields and levels to process.

The header of the *wrf\_cntrl.parm* file contains the following variables:

- **KGTYPE**: defines output grid type, which should always be 255.
- **IMDLTY:** identifies the process ID for AWIPS.
- **DATSET**: defines the prefix used for the output file name. Currently set to "*WRFPRS*". Note: the run\_\* scripts assume "*WRFPRS*" is used.

The body of the *wrf\_cntrl.parm* file is composed of a series of line pairs similar to the following:

where,

The top line specifies the variable (e.g. PRESS) to process, the level type (e.g. ON MDL SFCS) a user is interested in, and the degree of accuracy to be retained (SCAL=3.0) in the GRIB output.

• SCAL defines the precision of the data written out to the GRIB format. Positive values denote decimal scaling (maintain that number of significant digits), while negative values describe binary scaling (precise to 2^{SCAL}; i.e., SCAL=-3.0 gives output precise to the nearest 1/8). Because *copygb* is unable to handle binary precision at this time, negative numbers are discouraged.

 $\circ$  A list of all possible output fields for *unipost* is provided in Table 3. This table provides the full name of the variable in the first column and an abbreviated name in the second column. The abbreviated names are used in the control file. Note that the variable names also contain the type of level on which they are output. For instance, temperature is available on "model surface" and "pressure surface".

• The second line specifies the levels on which the variable is to be posted. "0" indicates no output at this level and "1" indicates output the variable specified on the top line at the level specified by the position of the digit and the type of level defined for this variable. For flight/wind energy fields, a "2" may be specified, such that "2" requests AGL and "1" requests MSL.

### Controlling which variables unipost outputs

To output a field, the body of the control file needs to contain an entry for the appropriate variable and output for this variable must be turned on for at least one level (see "*Controlling which levels unipost outputs*"). If an entry for a particular field is not yet

available in the control file, two lines may be added to the control file with the appropriate entries for that field.

#### Controlling which levels *unipost* outputs

The second line of each pair determines which levels *unipost* will output. Output on a given level is turned off by a "0" or turned on by a "1".

- For isobaric output, 47 levels are possible, from 2 to 1013 hPa (2, 5, 7, 10, 20, 30, 50, 70 mb and then every 25 mb from 75 to 1000 mb). The complete list of levels is specified in *sorc/unipost/CTLBLK.f*.
  - Modify specification of variable LSMDEF to change the number of pressure levels: LSMDEF=47
  - Modify specification of SPLDEF array to change the values of pressure levels:

(/200.,500.,700.,1000.,2000.,3000.

**&**,5000.,7000.,7500.,10000.,12500.,15000.,17500.,20000., .../)

- For model-level output, all model levels are possible, from the highest to the lowest.
- When using the Noah LSM, the *soil layers* are 0-10 cm, 10-40 cm, 40-100 cm, and 100-200 cm.
- When using the RUC LSM, the *soil levels* are 0 cm, 5 cm, 20 cm, 40 cm, 160 cm, and 300 cm. For the RUC LSM it is also necessary to turn on two additional output levels in the *wrf\_cntrl.parm* to output 6 levels rather than the default 4 layers for the Noah LSM.
- For PBL layer averages, the levels correspond to 6 layers with a thickness of 30 hPa each.
- For flight level, the levels are 30 m, 50 m, 80 m, 100 m, 305 m, 457 m, 610 m, 914 m, 1524 m, 1829 m, 2134 m, 2743 m, 3658 m, 4572 m, and 6000 m.
- For AGL RADAR Reflectivity, the levels are 4000 and 1000 m.
- For surface or shelter-level output, only the first position of the line needs to be turned on.

• For example, the sample control file *parm/wrf\_cntrl.parm* has the following entry for surface dew point temperature:

Based on this entry, surface dew point temperature will not be output by *unipost*. To add this field to the output, modify the entry to read:

### **Running UPP**

Six scripts for running the Unified Post Processor package are included in the tar file: run\_unipost run\_unipostandgrads run\_unipostandgempak run\_unipost\_frames run\_unipost\_gracet run\_unipost\_minute

Before running any of the above listed scripts, perform the following instructions:

- 1. *cd* to your *DOMAINPATH* directory.
- 2. Make a directory to put the UPP results.

#### mkdir postprd

3. Make a directory to put a copy of *wrf\_cntrl.parm* file.

#### mkdir parm

4. Copy over the default *UPPV2.1/parm/wrf\_cntrl.parm* to your working directory to customize *unipost*.

- 5. Edit the *wrf\_cntrl.parm* file to reflect the fields and levels you want *unipost* to output.
- 6. Copy over the (UPPV2.1/scripts/run\_unipost\*) script of your choice to the postprd/.
- 7. Edit the run script as outlined below.

Once these directories are set up and the edits outlined above are completed, the scripts can be run interactively from the *postprd* directory by simply typing the script name on the command line.

#### Overview of the scripts to run the UPP

Note: It is recommended that the user refer to the *run\_unipost*\* scripts in the *script*/ while reading this overview.

1. Set up variables:

TOP\_DIR: top level directory for source codes (UPPV2.1 and WRFV3)
DOMAINPATH: directory where UPP will be run from
WRFPATH: path to your WRFV3 build; defaults to the environment variable used during the installation with the configure script
UNI\_POST\_HOME: path to your UPPV2.1 build
POSTEXEC: path to your UPPV2.1 executables

*Note:* The scripts are configured such that *unipost* expects the WRF history files (*wrfout*\* files) to be in *wrfprd*/, the *wrf\_cntrl.parm* file to be in *parm*/ and the postprocessor working directory to called *postprd*/, all under *DOMAINPATH*.

- 2. Specify dynamic core being run ("NMM" or "ARW")
- 3. Specify the forecast cycles to be post-processed startdate: YYYYMMDDHH of forecast cycle fhr: first forecast hour lastfhr: last forecast hour incrementhr: increment (in hours) between forecast files (Do not set to 0 or the script will loop continuously)
- 4. Set naming convention for prefix and extension of output file name *comsp* is the initial string of the output file name (by default it is not set (and the prefix of the output file will be the string set in *wrf\_cntrl.parm*DATSET), if set it will concatenate the setting to the front of the string specified in *wrf\_cntrl.parm* DATSET) *tmmark* is used for the file extension (in *run\_unipost*, *tmmark=tm00*, if not set it is set to .*GrbF*)
- 5. Set up how many domains will be post-processed For runs with a single domain, use "for domain d01". For runs with multiple domains, use "for domain d01 d02 .. dnn"
- 6. Create namelist *itag* that will be read in by *unipost.exe* from stdin (unit 5). This namelist contains 5 lines:
  - i. Name of the WRF output file to be posted.
  - ii. Format of WRF model output (netcdf, binary or binarympiio).
  - iii. Format of UPP output (grib1 or grib2)
  - iv. Forecast valid time (not model start time) in WRF format (the forecast time desired to be post-processed).
  - v. Dynamic core used (NMM or NCAR).

*Note*: With the addition of GRIB2 output capabilities, a fifth line has been added to the namelist. If the third line (i.e., UPP output type) is not set, UPP will default the output file format to "grib1".

- 7. Run *unipost* and check for errors.
  - The execution command in the distributed scripts is for a single processor: ./*unipost.exe* > *outpost* 2>&1.

• To run *unipost* using mpi (dmpar compilation), the command line should be:

LINUX-MPI systems: *mpirun -np N unipost.exe > outpost 2>&1* (Note: on some systems a host file also needs to be specified: – *machinefile "host"*)

- IBM: *mpirun.lsf unipost.exe < itag > outpost*
- 8. Set up grid to post to (see full description under "Run *copygb*" below) *copygb* is run with a pre-defined AWIPS grid *gridno*: standard AWIPS grid to interpolate WRF model output to *copygb* ingests a kgds definition on the command line *copygb* ingests the contents of file *copygb\_gridnav.txt* or *copygb\_hwrf.txt* through variable *nav*
- Run *copygb* and check for errors. *copygb.exe –xg"grid [kgds]" input\_file output\_file* where *grid* refers to the output grid to which the native forecast is being interpolated.

The output grid can be specified in three ways:

i. As the grid id of a pre-defined AWIPS grid:

#### copygb.exe -g\${gridno} -x input\_file output\_file

For example, using grid 218: copygb.exe -xg"218" WRFPRS\_\$domain.\${fhr} wrfprs\_\$domain .\${fhr}

ii. As a user defined standard grid, such as for grid 255:

#### copygb.exe -xg"255 kgds" input\_file output\_file

where the user defined grid is specified by a full set of kgds parameters determining a GRIB GDS (grid description section) in the *W3fi63* format. Details on how to specify the kgds parameters are documented in file *lib/w3lib/w3fi71.f.* For example:

#### copygb.exe -xg" 255 3 109 91 37719 -77645 8 -71000 10433 9966 0 64 42000 42000" WRFPRS\_\$domain.\${fhr} wrfprs\_\$domain.\${fhr}

iii. Specifying output grid as a file: When WRF-NMM output in is processed by *unipost*, two text files *copygb\_gridnav.txt* and *copygb\_hwrf.txt* are created. These files contain the GRID GDS of a Lambert Conformal Grid (file *copygb\_gridnav.txt*) or lat/lon grid (*copygb\_hwrf.txt*) similar in domain and grid spacing to the one used to run the WRF-NMM model. The contents of one of these files are read into variable *nav* and can be used as input to *copygb.exe*.

#### copygb.exe -xg"\$nav" input\_file output\_file

For example, when using "*copygb\_gridnav.txt*" for an application the steps include:

read nav < 'copygb\_gridnav.txt'
export nav
copygb.exe -xg''\${nav}'' WRFPRS\_\$domain.\${fhr}
wrfprs\_\$domain.\${fhr}</pre>

If scripts *run\_unipostandgrads* or *run\_unipostandgempak* are used, additional steps are taken to create image files (see **Visualization** section below).

Upon a successful run, *unipost* and *copygb* will generate output files *WRFPRS\_dnn.hh* and *wrfprs\_dnn.hh*, respectively, in the post-processor working directory, where "*nn*" refers to the domain id and "*hh*" denotes the forecast hour. In addition, the script *run\_unipostandgrads* will produce a suite of gif images named *variablehh\_GrADS.gif*, and the script *run\_unipostandgempak* will produce a suite of gif images named *variablehh\_GrADS.gif*.

If the run did not complete successfully, a log file in the post-processor working directory called *unipost\_dnn.hh.out*, where "*nn*" is the domain id and "*hh*" is the forecast hour, may be consulted for further information.

It should be noted that *copygb* is a flexible program that can accept several command line options specifying details of how the horizontal interpolation from the native grid to the output grid should be performed. Complete documentation of *copygb* can be found at: <a href="http://www.dtcenter.org/met/users/support/online\_tutorial/METv4.0/copygb/copygb.txt">http://www.dtcenter.org/met/users/support/online\_tutorial/METv4.0/copygb/copygb.txt</a>

### Visualization with UPP

### GEMPAK

The GEMPAK utility *nagrib* is able to decode GRIB files whose navigation is on any non-staggered grid. Hence, GEMPAK is able to decode GRIB files generated by the Unified Post Processing package and plot horizontal fields or vertical cross sections.

A sample script named *run\_unipostandgempak*, which is included in the *scripts* directory of the tar file, can be used to run *unipost*, *copygb*, and plot the following fields using GEMPAK:

- *Sfcmap\_dnn\_hh.gif:* mean SLP and 6 hourly precipitation
- *PrecipType\_dnn\_hh.gif:* precipitation type (just snow and rain)
- 850mbRH\_dnn\_hh.gif: 850 mb relative humidity
- 850mbTempandWind\_dnn\_hh.gif: 850 mb temperature and wind vectors
- 500mbHandVort\_dnn\_hh.gif: 500 mb geopotential height and vorticity
- **250mbWindandH\_dnn\_hh.gif:** 250 mb wind speed isotacs and geopotential height

This script can be modified to customize fields for output. GEMPAK has an online users

guide at

http://www.unidata.ucar.edu/software/gempak/help\_and\_documentation/manual/.

In order to use the script *run\_unipostandgempak*, it is necessary to set the environment variable *GEMEXEC* to the path of the GEMPAK executables. For example,

#### setenv GEMEXEC /usr/local/gempak/bin

**Note:** For GEMPAK, the precipitation accumulation period for WRF-NMM is given by the variable *incrementhr* in the *run\_unipostandgempak* script.

### GrADS

The GrADS utilities *grib2ctl.pl* and *gribmap* are able to decode GRIB files whose navigation is on any non-staggered grid. These utilities and instructions on how to use them to generate GrADS control files are available from: <u>http://www.cpc.ncep.noaa.gov/products/wesley/grib2ctl.html</u>.

The GrADS package is available from: <u>http://grads.iges.org/grads/grads.html</u>. GrADS has an online User's Guide at: <u>http://grads.iges.org/grads/gadoc/</u> and a list of basic commands for GrADS can be found at: <u>http://grads.iges.org/grads/gadoc/reference\_card.pdf</u>.

A sample script named *run\_unipostandgrads*, which is included in the *scripts* directory of the Unified Post Processing package, can be used to run *unipost*, *copygb*, and plot the following fields using GrADS:

- *Sfcmaphh\_dnn\_GRADS.gif*: mean SLP and 6-hour accumulated precipitation.
- *850mbRHhh\_dnn\_GRADS.gif*: 850 mb relative humidity
- 850mbTempandWindhh\_dnn\_GRADS.gif: 850 mb temperature and wind vectors
- *500mbHandVorthh\_dnn\_GRADS.gif*: 500 mb geopotential heights and absolute vorticity
- **250mbWindandHhh\_dnn\_GRADS.gif**: 250 mb wind speed isotacs and geopotential heights

In order to use the script *run\_unipostandgrads*, it is necessary to:

1. Set the environmental variable *GADDIR* to the path of the GrADS fonts and auxiliary files. For example,

#### setenv GADDIR /usr/local/grads/data

2. Add the location of the GrADS executables to the *PATH*. For example

#### setenv PATH /usr/local/grads/bin:\$PATH

3. Link script *cbar.gs* to the post-processor working directory. (This scripts is provided in UPP package, and the *run\_unipostandgrads* script makes a link from *scripts*/ to *postprd*/.) To generate the plots above, GrADS script *cbar.gs* is invoked. This script can also be obtained from the GrADS library of scripts at <a href="http://grads.iges.org/grads/gadoc/library.html">http://grads.iges.org/grads/gadoc/library.html</a>.

**Note:** For GrADS, the precipitation accumulation period for WRF-NMM is plotted over the subintervals of the *tprec* hour (set in *namelist.input*).

### Fields produced by unipost

Table 3 lists basic and derived fields that are currently produced by *unipost*. The abbreviated names listed in the second column describe how the fields should be entered in the control file (*wrf\_cntrl.parm*).

**Table 3**: Fields produced by unipost (column 1), abbreviated names used in thewrf\_cntrl.parm file (column 2), corresponding GRIB identification number for the field(column 3), and corresponding GRIB identification number for the vertical coordinate(column 4).

| Field Name                      | Name In Control File | Grib<br>ID | Vertical<br>Level |
|---------------------------------|----------------------|------------|-------------------|
| Radar reflectivity on model     | RADAR REFL MDL SFCS  | 211        | 109               |
| surface                         |                      |            |                   |
| Pressure on model surface       | PRESS ON MDL SFCS    | 1          | 109               |
| Height on model surface         | HEIGHT ON MDL SFCS   | 7          | 109               |
| Temperature on model surface    | TEMP ON MDL SFCS     | 11         | 109               |
| Potential temperature on model  | POT TEMP ON MDL SFCS | 13         | 109               |
| surface                         |                      |            |                   |
| Dew point temperature on model  | DWPT TEMP ON MDL     | 17         | 109               |
| surface                         | SFC                  |            |                   |
| Specific humidity on model      | SPEC HUM ON MDL SFCS | 51         | 109               |
| surface                         |                      |            |                   |
| Relative humidity on model      | REL HUM ON MDL SFCS  | 52         | 109               |
| surface                         |                      |            |                   |
| Moisture convergence on model   | MST CNVG ON MDL      | 135        | 109               |
| surface                         | SFCS                 |            |                   |
| U component wind on model       | U WIND ON MDL SFCS   | 33         | 109               |
| surface                         |                      |            |                   |
| V component wind on model       | V WIND ON MDL SFCS   | 34         | 109               |
| surface                         |                      |            |                   |
| Cloud water on model surface    | CLD WTR ON MDL SFCS  | 153        | 109               |
| Cloud ice on model surface      | CLD ICE ON MDL SFCS  | 58         | 109               |
| Rain on model surface           | RAIN ON MDL SFCS     | 170        | 109               |
| Snow on model surface           | SNOW ON MDL SFCS     | 171        | 109               |
| Cloud fraction on model surface | CLD FRAC ON MDL SFCS | 71         | 109               |

| Omega on model surface            | OMEGA ON MDL SFCS    | 39  | 109 |
|-----------------------------------|----------------------|-----|-----|
| Absolute vorticity on model       | ABS VORT ON MDL SFCS | 41  | 109 |
| surface                           |                      |     |     |
| Geostrophic streamfunction on     | STRMFUNC ON MDL      | 35  | 109 |
| model surface                     | SFCS                 |     |     |
| Turbulent kinetic energy on       | TRBLNT KE ON MDL SFC | 158 | 109 |
| model surface                     |                      |     |     |
| Richardson number on model        | RCHDSN NO ON MDL     | 254 | 109 |
| surface                           | SFC                  |     |     |
| Master length scale on model      | MASTER LENGTH SCALE  | 226 | 109 |
| surface                           |                      |     |     |
| Asymptotic length scale on model  | ASYMPT MSTR LEN SCL  | 227 | 109 |
| surface                           |                      |     |     |
| Radar reflectivity on pressure    | RADAR REFL ON P SFCS | 211 | 100 |
| surface                           |                      |     |     |
| Height on pressure surface        | HEIGHT OF PRESS SFCS | 7   | 100 |
| Temperature on pressure surface   | TEMP ON PRESS SFCS   | 11  | 100 |
| Potential temperature on pressure | POT TEMP ON P SFCS   | 13  | 100 |
| surface                           |                      |     |     |
| Dew point temperature on          | DWPT TEMP ON P SFCS  | 17  | 100 |
| pressure surface                  |                      |     |     |
| Specific humidity on pressure     | SPEC HUM ON P SFCS   | 51  | 100 |
| surface                           |                      |     |     |
| Relative humidity on pressure     | REL HUMID ON P SFCS  | 52  | 100 |
| surface                           |                      |     |     |
| Moisture convergence on pressure  | MST CNVG ON P SFCS   | 135 | 100 |
| surface                           |                      |     |     |
| U component wind on pressure      | U WIND ON PRESS SFCS | 33  | 100 |
| surface                           |                      |     |     |
| V component wind on pressure      | V WIND ON PRESS SFCS | 34  | 100 |
| surface                           |                      |     |     |
| Omega on pressure surface         | OMEGA ON PRESS SFCS  | 39  | 100 |
| Absolute vorticity on pressure    | ABS VORT ON P SFCS   | 41  | 100 |
| surface                           |                      |     |     |
| Geostrophic streamfunction on     | STRMFUNC ON P SFCS   | 35  | 100 |
| pressure surface                  |                      |     |     |
| Turbulent kinetic energy on       | TRBLNT KE ON P SFCS  | 158 | 100 |
| pressure surface                  |                      |     |     |
| Cloud water on pressure surface   | CLOUD WATR ON P SFCS | 153 | 100 |
| Cloud ice on pressure surface     | CLOUD ICE ON P SFCS  | 58  | 100 |
| Rain on pressure surface          | RAIN ON P SFCS       | 170 | 100 |
| Snow water on pressure surface    | SNOW ON P SFCS       | 171 | 100 |
| Total condensate on pressure      | CONDENSATE ON P SFCS | 135 | 100 |
| surface                           |                      |     |     |
| Mesinger (Membrane) sea level     | MESINGER MEAN SLP    | 130 | 102 |

| pressure                          |                      |       |     |
|-----------------------------------|----------------------|-------|-----|
| Shuell sea level pressure         | SHUELL MEAN SLP      | 2     | 102 |
| 2 M pressure                      | SHELTER PRESSURE     | 1     | 105 |
| 2 M temperature                   | SHELTER              | 11    | 105 |
| L                                 | TEMPERATURE          |       |     |
| 2 M specific humidity             | SHELTER SPEC HUMID   | 51    | 105 |
| 2 M mixing ratio                  | SHELTER MIX RATIO    | 53    | 105 |
| 2 M dew point temperature         | SHELTER DEWPOINT     | 17    | 105 |
| 2 M RH                            | SHELTER REL HUMID    | 52    | 105 |
| 10 M u component wind             | U WIND AT ANEMOM HT  | 33    | 105 |
| 10 M v component wind             | V WIND AT ANEMOM HT  | 34    | 105 |
| 10 M potential temperature        | POT TEMP AT 10 M     | 13    | 105 |
| 10 M specific humidity            | SPEC HUM AT 10 M     | 51    | 105 |
| Surface pressure                  | SURFACE PRESSURE     | 1     | 1   |
| Terrain height                    | SURFACE HEIGHT       | 7     | 1   |
| Skin potential temperature        | SURFACE POT TEMP     | 13    | 1   |
| Skin specific humidity            | SURFACE SPEC HUMID   | 51    | 1   |
| Skin dew point temperature        | SURFACE DEWPOINT     | 17    | 1   |
| Skin Relative humidity            | SURFACE REL HUMID    | 52    | 1   |
| Skin temperature                  | SFC (SKIN) TEMPRATUR | 11    | 1   |
| Soil temperature at the bottom of | BOTTOM SOIL TEMP     | 85    | 111 |
| soil layers                       |                      |       |     |
| Soil temperature in between each  | SOIL TEMPERATURE     | 85    | 112 |
| of soil layers                    |                      |       |     |
| Soil moisture in between each of  | SOIL MOISTURE        | 144   | 112 |
| soil layers                       |                      |       |     |
| Snow water equivalent             | SNOW WATER           | 65    | 1   |
|                                   | EQUIVALNT            |       |     |
| Snow cover in percentage          | PERCENT SNOW COVER   | 238   | 1   |
| Heat exchange coeff at surface    | SFC EXCHANGE COEF    | 208   | 1   |
| Vegetation cover                  | GREEN VEG COVER      | 87    | 1   |
| Soil moisture availability        | SOIL MOISTURE AVAIL  | 207   | 112 |
| Ground heat flux - instantaneous  | INST GROUND HEAT FLX | 155   | 1   |
| Lifted index—surface based        | LIFTED INDEX—SURFCE  | 131   | 101 |
| Lifted index—best                 | LIFTED INDEX—BEST    | 132   | 116 |
| Lifted index—from boundary        | LIFTED INDEX—        | 24    | 116 |
| layer                             | BNDLYR               |       |     |
| CAPE                              | CNVCT AVBL POT       | 157   | 1   |
|                                   | ENRGY                |       |     |
| CIN                               | CNVCT INHIBITION     | 156   | 1   |
| Column integrated precipitable    | PRECIPITABLE WATER   | 54    | 200 |
| water                             |                      | 1.2.5 | 200 |
| Column integrated cloud water     | TOTAL COLUMN CLD     | 136   | 200 |
|                                   | WTR                  | 105   | 200 |
| Column integrated cloud ice       | TOTAL COLUMN CLD     | 137   | 200 |

|                                    | ICE                  |     |     |
|------------------------------------|----------------------|-----|-----|
| Column integrated rain             | TOTAL COLUMN RAIN    | 138 | 200 |
| Column integrated snow             | TOTAL COLUMN SNOW    | 139 | 200 |
| Column integrated total            | TOTAL COL            | 140 | 200 |
| condensate                         | CONDENSATE           |     |     |
| Helicity                           | STORM REL HELICITY   | 190 | 106 |
| U component storm motion           | U COMP STORM MOTION  | 196 | 106 |
| V component storm motion           | V COMP STORM MOTION  | 197 | 106 |
| Accumulated total precipitation    | ACM TOTAL PRECIP     | 61  | 1   |
| Accumulated convective             | ACM CONVCTIVE        | 63  | 1   |
| precipitation                      | PRECIP               |     |     |
| Accumulated grid-scale             | ACM GRD SCALE PRECIP | 62  | 1   |
| precipitation                      |                      |     |     |
| Accumulated snowfall               | ACM SNOWFALL         | 65  | 1   |
| Accumulated total snow melt        | ACM SNOW TOTAL       | 99  | 1   |
|                                    | MELT                 |     |     |
| Precipitation type (4 types) –     | INSTANT PRECIP TYPE  | 140 | 1   |
| instantaneous                      |                      |     |     |
| Precipitation rate - instantaneous | INSTANT PRECIP RATE  | 59  | 1   |
| Composite radar reflectivity       | COMPOSITE RADAR      | 212 | 200 |
|                                    | REFL                 |     |     |
| Low level cloud fraction           | LOW CLOUD FRACTION   | 73  | 214 |
| Mid level cloud fraction           | MID CLOUD FRACTION   | 74  | 224 |
| High level cloud fraction          | HIGH CLOUD FRACTION  | 75  | 234 |
| Total cloud fraction               | TOTAL CLD FRACTION   | 71  | 200 |
| Time-averaged total cloud          | AVG TOTAL CLD FRAC   | 71  | 200 |
| fraction                           |                      |     |     |
| Time-averaged stratospheric        | AVG STRAT CLD FRAC   | 213 | 200 |
| cloud fraction                     |                      |     |     |
| Time-averaged convective cloud     | AVG CNVCT CLD FRAC   | 72  | 200 |
| fraction                           |                      |     |     |
| Cloud bottom pressure              | CLOUD BOT PRESSURE   | 1   | 2   |
| Cloud top pressure                 | CLOUD TOP PRESSURE   | 1   | 3   |
| Cloud bottom height                | CLOUD BOTTOM         | 7   | 2   |
| (above MSL)                        | HEIGHT               |     |     |
| Cloud top height                   | CLOUD TOP HEIGHT     | 7   | 3   |
| (above MSL)                        |                      |     |     |
| Convective cloud bottom pressure   | CONV CLOUD BOT       | 1   | 242 |
|                                    | PRESS                |     |     |
| Convective cloud top pressure      | CONV CLOUD TOP       | 1   | 243 |
|                                    | PRESS                |     |     |
| Shallow convective cloud bottom    | SHAL CU CLD BOT PRES | 1   | 248 |
| pressure                           |                      |     |     |
| Shallow convective cloud top       | SHAL CU CLD TOP PRES | 1   | 249 |
| pressure                           |                      |     |     |

| Deep convective cloud bottom       | DEEP CU CLD BOT PRES  | 1   | 251 |
|------------------------------------|-----------------------|-----|-----|
| pressure                           |                       |     |     |
| Deep convective cloud top          | DEEP CU CLD TOP PRES  | 1   | 252 |
| pressure                           |                       |     |     |
| Grid scale cloud bottom pressure   | GRID CLOUD BOT PRESS  | 1   | 206 |
| Grid scale cloud top pressure      | GRID CLOUD TOP PRESS  | 1   | 207 |
| Convective cloud fraction          | CONV CLOUD FRACTION   | 72  | 200 |
| Convective cloud efficiency        | CU CLOUD EFFICIENCY   | 134 | 200 |
| Above-ground height of LCL         | LCL AGL HEIGHT        | 7   | 5   |
| Pressure of LCL                    | LCL PRESSURE          | 1   | 5   |
| Cloud top temperature              | CLOUD TOP TEMPS       | 11  | 3   |
| Temperature tendency from          | RADFLX CNVG TMP       | 216 | 109 |
| radiative fluxes                   | TNDY                  |     |     |
| Temperature tendency from          | SW RAD TEMP TNDY      | 250 | 109 |
| shortwave radiative flux           |                       |     |     |
| Temperature tendency from          | LW RAD TEMP TNDY      | 251 | 109 |
| longwave radiative flux            |                       |     |     |
| Outgoing surface shortwave         | INSTN OUT SFC SW RAD  | 211 | 1   |
| radiation - instantaneous          |                       |     |     |
| Outgoing surface longwave          | INSTN OUT SFC LW RAD  | 212 | 1   |
| radiation - instantaneous          |                       |     |     |
| Incoming surface shortwave         | AVE INCMG SFC SW RAD  | 204 | 1   |
| radiation - time-averaged          |                       |     |     |
| Incoming surface longwave          | AVE INCMG SFC LW RAD  | 205 | 1   |
| radiation - time-averaged          |                       |     |     |
| Outgoing surface shortwave         | AVE OUTGO SFC SW      | 211 | 1   |
| radiation - time-averaged          | RAD                   |     |     |
| Outgoing surface longwave          | AVE OUTGO SFC LW      | 212 | 1   |
| radiation - time-averaged          | RAD                   |     | _   |
| Outgoing model top shortwave       | AVE OUTGO TOA SW      | 211 | 8   |
| radiation - time-averaged          | RAD                   |     |     |
| Outgoing model top longwave        | AVE OUTGO TOA LW      | 212 | 8   |
| radiation - time-averaged          |                       | 204 | 1   |
| Incoming surface shortwave         | INSTN INC SFC SW RAD  | 204 | 1   |
| radiation - instantaneous          |                       | 205 | 1   |
| Incoming surface longwave          | INSTIN INC SFC LW RAD | 205 | 1   |
| Parahuran langth                   | DOLICINESS LENCTH     | 02  | 1   |
| Rougnness length                   | KOUGHNESS LENGTH      | 83  | 1   |
| Friction velocity                  | FRICTION VELOCITY     | 253 | 1   |
| Surface drag coefficient           | SFC DRAG COEFFICIENT  | 252 | 1   |
| Surface u wind stress              | SFU U WIND STRESS     | 124 | 1   |
| Surface v wind stress              | SFU V WIND STRESS     | 125 | 1   |
| Surface sensible neat flux - time- | AVE SFC SENHEAT FX    | 122 | 1   |
| averaged                           |                       | 155 | 1   |
| Ground neat flux - time-averaged   | AVE GROUND HEAT FX    | 100 | 1   |

| Surface latent heat flux - time-  | AVE SFC LATHEAT FX   | 121 | 1   |
|-----------------------------------|----------------------|-----|-----|
| averaged                          |                      |     |     |
| Surface momentum flux - time-     | AVE SFC MOMENTUM     | 172 | 1   |
| averaged                          | FX                   |     |     |
| Accumulated surface evaporation   | ACC SFC EVAPORATION  | 57  | 1   |
| Surface sensible heat flux –      | INST SFC SENHEAT FX  | 122 | 1   |
| instantaneous                     |                      |     |     |
| Surface latent heat flux -        | INST SFC LATHEAT FX  | 121 | 1   |
| instantaneous                     |                      |     |     |
| Latitude                          | LATITUDE             | 176 | 1   |
| Longitude                         | LONGITUDE            | 177 | 1   |
| Land sea mask (land=1, sea=0)     | LAND/SEA MASK        | 81  | 1   |
| Sea ice mask                      | SEA ICE MASK         | 91  | 1   |
| Surface midday albedo             | SFC MIDDAY ALBEDO    | 84  | 1   |
| Sea surface temperature           | SEA SFC TEMPERATURE  | 80  | 1   |
| Press at tropopause               | PRESS AT TROPOPAUSE  | 1   | 7   |
| Temperature at tropopause         | TEMP AT TROPOPAUSE   | 11  | 7   |
| Potential temperature at          | POTENTL TEMP AT TROP | 13  | 7   |
| tropopause                        |                      |     |     |
| U wind at tropopause              | U WIND AT            | 33  | 7   |
|                                   | TROPOPAUSE           |     |     |
| V wind at tropopause              | V WIND AT            | 34  | 7   |
|                                   | TROPOPAUSE           |     |     |
| Wind shear at tropopause          | SHEAR AT TROPOPAUSE  | 136 | 7   |
| Height at tropopause              | HEIGHT AT            | 7   | 7   |
|                                   | TROPOPAUSE           |     |     |
| Temperature at flight levels      | TEMP AT FD HEIGHTS   | 11  | 103 |
| U wind at flight levels           | U WIND AT FD HEIGHTS | 33  | 103 |
| V wind at flight levels           | V WIND AT FD HEIGHTS | 34  | 103 |
| Freezing level height (above      | HEIGHT OF FRZ LVL    | 7   | 4   |
| mean sea level)                   |                      |     |     |
| Freezing level RH                 | REL HUMID AT FRZ LVL | 52  | 4   |
| Highest freezing level height     | HIGHEST FREEZE LVL   | 7   | 204 |
| Pressure in boundary layer        | PRESS IN BNDRY LYR   | 1   | 116 |
| (30 mb mean)                      |                      |     |     |
| Temperature in boundary layer     | TEMP IN BNDRY LYR    | 11  | 116 |
| (30 mb mean)                      |                      |     |     |
| Potential temperature in boundary | POT TMP IN BNDRY LYR | 13  | 116 |
| layers (30 mb mean)               |                      |     |     |
| Dew point temperature in          | DWPT IN BNDRY LYR    | 17  | 116 |
| boundary layer (30 mb mean)       |                      |     |     |
| Specific humidity in boundary     | SPC HUM IN BNDRY LYR | 51  | 116 |
| layer (30 mb mean)                |                      |     |     |
| RH in boundary layer              | REL HUM IN BNDRY LYR | 52  | 116 |
| (30 mb mean)                      |                      |     |     |

| Moisture convergence in           | MST CNV IN BNDRY LYR | 135 | 116 |
|-----------------------------------|----------------------|-----|-----|
| boundary layer (30 mb mean)       |                      |     |     |
| Precipitable water in boundary    | P WATER IN BNDRY LYR | 54  | 116 |
| layer (30 mb mean)                |                      |     |     |
|                                   |                      |     |     |
| U wind in boundary layer          | U WIND IN BNDRY LYR  | 33  | 116 |
| (30 mb mean)                      |                      |     |     |
| V wind in boundary layer          | V WIND IN BNDRY LYR  |     |     |
| (30 mb mean)                      |                      | 34  | 116 |
| Omega in boundary layer           | OMEGA IN BNDRY LYR   | 39  | 116 |
| (30 mb mean)                      |                      |     |     |
| Visibility                        | VISIBILITY           | 20  | 1   |
| Vegetation type                   | VEGETATION TYPE      | 225 | 1   |
| Soil type                         | SOIL TYPE            | 224 | 1   |
| Canopy conductance                | CANOPY               | 181 | 1   |
|                                   | CONDUCTANCE          |     |     |
| PBL height                        | PBL HEIGHT           | 221 | 1   |
| Slope type                        | SLOPE TYPE           | 222 | 1   |
| Snow depth                        | SNOW DEPTH           | 66  | 1   |
| Liquid soil moisture              | LIQUID SOIL MOISTURE | 160 | 112 |
| Snow free albedo                  | SNOW FREE ALBEDO     | 170 | 1   |
| Maximum snow albedo               | MAXIMUM SNOW         | 159 | 1   |
|                                   | ALBEDO               |     |     |
| Canopy water evaporation          | CANOPY WATER EVAP    | 200 | 1   |
| Direct soil evaporation           | DIRECT SOIL EVAP     | 199 | 1   |
| Plant transpiration               | PLANT TRANSPIRATION  | 210 | 1   |
| Snow sublimation                  | SNOW SUBLIMATION     | 198 | 1   |
| Air dry soil moisture             | AIR DRY SOIL MOIST   | 231 | 1   |
| Soil moist porosity               | SOIL MOIST POROSITY  | 240 | 1   |
| Minimum stomatal resistance       | MIN STOMATAL RESIST  | 203 | 1   |
| Number of root layers             | NO OF ROOT LAYERS    | 171 | 1   |
| Soil moist wilting point          | SOIL MOIST WILT PT   | 219 | 1   |
| Soil moist reference              | SOIL MOIST REFERENCE | 230 | 1   |
| Canopy conductance - solar        | CANOPY COND SOLAR    | 246 | 1   |
| component                         |                      |     |     |
| Canopy conductance -              | CANOPY COND TEMP     | 247 | 1   |
| temperature component             |                      |     |     |
| Canopy conductance - humidity     | CANOPY COND HUMID    | 248 | 1   |
| component                         |                      |     |     |
| Canopy conductance - soil         | CANOPY COND SOILM    | 249 | 1   |
| component                         |                      |     |     |
| Potential evaporation             | POTENTIAL EVAP       | 145 | 1   |
| Heat diffusivity on sigma surface | DIFFUSION H RATE S S | 182 | 107 |
| Surface wind gust                 | SFC WIND GUST        | 180 | 1   |
| Convective precipitation rate     | CONV PRECIP RATE     | 214 | 1   |

| Radar reflectivity at certain above                                                                                                                                                                                                                                                                                                                                                               | RADAR REFL AGL                                                                                                                                                                                                                                                                                                                                                                                                         | 211                                                                                               | 105                                                                                                                                                                                                                                                 |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ground heights                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                   |                                                                                                                                                                                                                                                     |
| MAPS Sea Level Pressure                                                                                                                                                                                                                                                                                                                                                                           | MAPS SLP                                                                                                                                                                                                                                                                                                                                                                                                               | 2                                                                                                 | 102                                                                                                                                                                                                                                                 |
| Total soil moisture                                                                                                                                                                                                                                                                                                                                                                               | TOTAL SOIL MOISTURE                                                                                                                                                                                                                                                                                                                                                                                                    | 86                                                                                                | 112                                                                                                                                                                                                                                                 |
| Plant canopy surface water                                                                                                                                                                                                                                                                                                                                                                        | PLANT CANOPY SFC                                                                                                                                                                                                                                                                                                                                                                                                       | 223                                                                                               | 1                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                   | WTR                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                   |                                                                                                                                                                                                                                                     |
| Accumulated storm surface runoff                                                                                                                                                                                                                                                                                                                                                                  | ACM STORM SFC RNOFF                                                                                                                                                                                                                                                                                                                                                                                                    | 235                                                                                               | 1                                                                                                                                                                                                                                                   |
| Accumulated baseflow runoff                                                                                                                                                                                                                                                                                                                                                                       | ACM BSFL-GDWR RNOFF                                                                                                                                                                                                                                                                                                                                                                                                    | 234                                                                                               | 1                                                                                                                                                                                                                                                   |
| Fraction of frozen precipitation                                                                                                                                                                                                                                                                                                                                                                  | FROZEN FRAC CLD                                                                                                                                                                                                                                                                                                                                                                                                        | 194                                                                                               | 1                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                   | SCHM                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                   |                                                                                                                                                                                                                                                     |
| GSD Cloud Base pressure                                                                                                                                                                                                                                                                                                                                                                           | GSD CLD BOT PRESSURE                                                                                                                                                                                                                                                                                                                                                                                                   | 1                                                                                                 | 2                                                                                                                                                                                                                                                   |
| GSD Cloud Top pressure                                                                                                                                                                                                                                                                                                                                                                            | GSD CLD TOP PRESSURE                                                                                                                                                                                                                                                                                                                                                                                                   | 1                                                                                                 | 3                                                                                                                                                                                                                                                   |
| Averaged temperature tendency                                                                                                                                                                                                                                                                                                                                                                     | AVE GRDSCL RN                                                                                                                                                                                                                                                                                                                                                                                                          | 241                                                                                               | 109                                                                                                                                                                                                                                                 |
| from grid scale latent heat release                                                                                                                                                                                                                                                                                                                                                               | TMPTDY                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                   |                                                                                                                                                                                                                                                     |
| Averaged temperature tendency                                                                                                                                                                                                                                                                                                                                                                     | AVE CNVCT RN TMPTDY                                                                                                                                                                                                                                                                                                                                                                                                    | 242                                                                                               | 109                                                                                                                                                                                                                                                 |
| from convective latent heat                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                   |                                                                                                                                                                                                                                                     |
| release                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                   |                                                                                                                                                                                                                                                     |
| Average snow phase change heat                                                                                                                                                                                                                                                                                                                                                                    | AVE SNO PHSCNG HT FX                                                                                                                                                                                                                                                                                                                                                                                                   | 229                                                                                               | 1                                                                                                                                                                                                                                                   |
| flux                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                   |                                                                                                                                                                                                                                                     |
| Accumulated potential                                                                                                                                                                                                                                                                                                                                                                             | ACC POT EVAPORATION                                                                                                                                                                                                                                                                                                                                                                                                    | 228                                                                                               | 1                                                                                                                                                                                                                                                   |
| evaporation                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                   |                                                                                                                                                                                                                                                     |
| Highest freezing level relative                                                                                                                                                                                                                                                                                                                                                                   | HIGHEST FRZ LVL RH                                                                                                                                                                                                                                                                                                                                                                                                     | 52                                                                                                | 204                                                                                                                                                                                                                                                 |
| humidity                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                   |                                                                                                                                                                                                                                                     |
| Maximum wind pressure level                                                                                                                                                                                                                                                                                                                                                                       | MAX WIND PRESS                                                                                                                                                                                                                                                                                                                                                                                                         | 1                                                                                                 | 6                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                   | LEVEL                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                   |                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                   | LEVEL                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                   |                                                                                                                                                                                                                                                     |
| Maximum wind height                                                                                                                                                                                                                                                                                                                                                                               | MAX WIND HGHT LEVEL                                                                                                                                                                                                                                                                                                                                                                                                    | 7                                                                                                 | 6                                                                                                                                                                                                                                                   |
| Maximum wind height<br>U-component of maximum wind                                                                                                                                                                                                                                                                                                                                                | MAX WIND HGHT LEVEL<br>U COMP MAX WIND                                                                                                                                                                                                                                                                                                                                                                                 | 7<br>33                                                                                           | 6<br>6                                                                                                                                                                                                                                              |
| Maximum wind height<br>U-component of maximum wind<br>V-component of maximum wind                                                                                                                                                                                                                                                                                                                 | MAX WIND HGHT LEVEL<br>U COMP MAX WIND<br>V COMP MAX WIND                                                                                                                                                                                                                                                                                                                                                              | 7<br>33<br>34                                                                                     | 6<br>6<br>6                                                                                                                                                                                                                                         |
| Maximum wind height<br>U-component of maximum wind<br>V-component of maximum wind<br>GSD cloud base height                                                                                                                                                                                                                                                                                        | MAX WIND HGHT LEVEL<br>U COMP MAX WIND<br>V COMP MAX WIND<br>GSD CLD BOT HEIGHT                                                                                                                                                                                                                                                                                                                                        | 7<br>33<br>34<br>7                                                                                | 6<br>6<br>6<br>2                                                                                                                                                                                                                                    |
| Maximum wind height<br>U-component of maximum wind<br>V-component of maximum wind<br>GSD cloud base height<br>GSD cloud top height                                                                                                                                                                                                                                                                | MAX WIND HGHT LEVEL<br>U COMP MAX WIND<br>V COMP MAX WIND<br>GSD CLD BOT HEIGHT<br>GSD CLD TOP HEIGHT                                                                                                                                                                                                                                                                                                                  | 7<br>33<br>34<br>7<br>7                                                                           | 6<br>6<br>6<br>2<br>3                                                                                                                                                                                                                               |
| Maximum wind height<br>U-component of maximum wind<br>V-component of maximum wind<br>GSD cloud base height<br>GSD cloud top height<br>GSD visibility                                                                                                                                                                                                                                              | MAX WIND HGHT LEVEL<br>U COMP MAX WIND<br>V COMP MAX WIND<br>GSD CLD BOT HEIGHT<br>GSD CLD TOP HEIGHT<br>GSD VISIBILITY                                                                                                                                                                                                                                                                                                | 7<br>33<br>34<br>7<br>7<br>20                                                                     | 6<br>6<br>2<br>3<br>1                                                                                                                                                                                                                               |
| Maximum wind height<br>U-component of maximum wind<br>V-component of maximum wind<br>GSD cloud base height<br>GSD cloud top height<br>GSD visibility<br>Wind energy potential                                                                                                                                                                                                                     | MAX WIND HGHT LEVEL<br>U COMP MAX WIND<br>V COMP MAX WIND<br>GSD CLD BOT HEIGHT<br>GSD CLD TOP HEIGHT<br>GSD VISIBILITY<br>INSTN WIND POWER                                                                                                                                                                                                                                                                            | 7<br>33<br>34<br>7<br>7<br>20<br>126                                                              | 6<br>6<br>2<br>3<br>1<br>105                                                                                                                                                                                                                        |
| Maximum wind height<br>U-component of maximum wind<br>V-component of maximum wind<br>GSD cloud base height<br>GSD cloud top height<br>GSD visibility<br>Wind energy potential                                                                                                                                                                                                                     | MAX WIND HGHT LEVEL<br>U COMP MAX WIND<br>V COMP MAX WIND<br>GSD CLD BOT HEIGHT<br>GSD CLD TOP HEIGHT<br>GSD VISIBILITY<br>INSTN WIND POWER<br>AGL                                                                                                                                                                                                                                                                     | 7<br>33<br>34<br>7<br>7<br>20<br>126                                                              | 6<br>6<br>2<br>3<br>1<br>105                                                                                                                                                                                                                        |
| Maximum wind height<br>U-component of maximum wind<br>V-component of maximum wind<br>GSD cloud base height<br>GSD cloud top height<br>GSD visibility<br>Wind energy potential<br>U wind at 80 m above ground                                                                                                                                                                                      | MAX WIND HGHT LEVEL<br>U COMP MAX WIND<br>V COMP MAX WIND<br>GSD CLD BOT HEIGHT<br>GSD CLD TOP HEIGHT<br>GSD VISIBILITY<br>INSTN WIND POWER<br>AGL<br>U WIND AT 80M AGL                                                                                                                                                                                                                                                | 7<br>33<br>34<br>7<br>7<br>20<br>126<br>49                                                        | 6<br>6<br>2<br>3<br>1<br>105<br>105                                                                                                                                                                                                                 |
| Maximum wind height<br>U-component of maximum wind<br>V-component of maximum wind<br>GSD cloud base height<br>GSD cloud top height<br>GSD visibility<br>Wind energy potential<br>U wind at 80 m above ground<br>V wind at 80 m above ground                                                                                                                                                       | MAX WIND HGHT LEVEL<br>U COMP MAX WIND<br>V COMP MAX WIND<br>GSD CLD BOT HEIGHT<br>GSD CLD TOP HEIGHT<br>GSD VISIBILITY<br>INSTN WIND POWER<br>AGL<br>U WIND AT 80M AGL<br>V WIND AT 80M AGL                                                                                                                                                                                                                           | 7<br>33<br>34<br>7<br>7<br>20<br>126<br>49<br>50                                                  | 6<br>6<br>2<br>3<br>1<br>105<br>105<br>105                                                                                                                                                                                                          |
| Maximum wind height<br>U-component of maximum wind<br>V-component of maximum wind<br>GSD cloud base height<br>GSD cloud top height<br>GSD visibility<br>Wind energy potential<br>U wind at 80 m above ground<br>V wind at 80 m above ground<br>Graupel on model surface                                                                                                                           | LEVEL<br>MAX WIND HGHT LEVEL<br>U COMP MAX WIND<br>V COMP MAX WIND<br>GSD CLD BOT HEIGHT<br>GSD CLD TOP HEIGHT<br>GSD VISIBILITY<br>INSTN WIND POWER<br>AGL<br>U WIND AT 80M AGL<br>V WIND AT 80M AGL<br>GRAUPEL ON MDL SFCS                                                                                                                                                                                           | 7<br>33<br>34<br>7<br>7<br>20<br>126<br>49<br>50<br>179                                           | 6<br>6<br>2<br>3<br>1<br>105<br>105<br>105<br>109                                                                                                                                                                                                   |
| Maximum wind height<br>U-component of maximum wind<br>V-component of maximum wind<br>GSD cloud base height<br>GSD cloud top height<br>GSD visibility<br>Wind energy potential<br>U wind at 80 m above ground<br>V wind at 80 m above ground<br>Graupel on model surface<br>Graupel on pressure surface                                                                                            | LEVEL<br>MAX WIND HGHT LEVEL<br>U COMP MAX WIND<br>V COMP MAX WIND<br>GSD CLD BOT HEIGHT<br>GSD CLD TOP HEIGHT<br>GSD VISIBILITY<br>INSTN WIND POWER<br>AGL<br>U WIND AT 80M AGL<br>V WIND AT 80M AGL<br>GRAUPEL ON MDL SFCS<br>GRAUPEL ON P SFCS                                                                                                                                                                      | 7<br>33<br>34<br>7<br>7<br>20<br>126<br>49<br>50<br>179<br>179                                    | 6<br>6<br>2<br>3<br>1<br>105<br>105<br>105<br>109<br>100                                                                                                                                                                                            |
| Maximum wind height<br>U-component of maximum wind<br>V-component of maximum wind<br>GSD cloud base height<br>GSD cloud top height<br>GSD visibility<br>Wind energy potential<br>U wind at 80 m above ground<br>V wind at 80 m above ground<br>Graupel on model surface<br>Graupel on pressure surface<br>Maximum updraft helicity                                                                | LEVEL<br>MAX WIND HGHT LEVEL<br>U COMP MAX WIND<br>V COMP MAX WIND<br>GSD CLD BOT HEIGHT<br>GSD CLD TOP HEIGHT<br>GSD VISIBILITY<br>INSTN WIND POWER<br>AGL<br>U WIND AT 80M AGL<br>V WIND AT 80M AGL<br>GRAUPEL ON MDL SFCS<br>GRAUPEL ON P SFCS<br>MAX UPDRAFT                                                                                                                                                       | 7<br>33<br>34<br>7<br>7<br>20<br>126<br>49<br>50<br>179<br>179<br>236                             | 6<br>6<br>2<br>3<br>1<br>105<br>105<br>105<br>109<br>100<br>106                                                                                                                                                                                     |
| Maximum wind heightU-component of maximum windV-component of maximum windGSD cloud base heightGSD cloud top heightGSD visibilityWind energy potentialU wind at 80 m above groundV wind at 80 m above groundGraupel on model surfaceGraupel on pressure surfaceMaximum updraft helicity                                                                                                            | LEVEL<br>MAX WIND HGHT LEVEL<br>U COMP MAX WIND<br>V COMP MAX WIND<br>GSD CLD BOT HEIGHT<br>GSD CLD TOP HEIGHT<br>GSD VISIBILITY<br>INSTN WIND POWER<br>AGL<br>U WIND AT 80M AGL<br>V WIND AT 80M AGL<br>GRAUPEL ON MDL SFCS<br>GRAUPEL ON P SFCS<br>MAX UPDRAFT<br>HELICITY                                                                                                                                           | 7<br>33<br>34<br>7<br>7<br>20<br>126<br>49<br>50<br>179<br>179<br>236                             | 6         6         2         3         1         105         105         105         109         100         106                                                                                                                                   |
| Maximum wind heightU-component of maximum windV-component of maximum windGSD cloud base heightGSD cloud top heightGSD visibilityWind energy potentialU wind at 80 m above groundV wind at 80 m above groundGraupel on model surfaceGraupel on pressure surfaceMaximum updraft helicityMaximum 1km reflectivity                                                                                    | LEVEL<br>MAX WIND HGHT LEVEL<br>U COMP MAX WIND<br>V COMP MAX WIND<br>GSD CLD BOT HEIGHT<br>GSD CLD TOP HEIGHT<br>GSD VISIBILITY<br>INSTN WIND POWER<br>AGL<br>U WIND AT 80M AGL<br>V WIND AT 80M AGL<br>V WIND AT 80M AGL<br>GRAUPEL ON MDL SFCS<br>GRAUPEL ON P SFCS<br>MAX UPDRAFT<br>HELICITY<br>MAX 1km REFLECTIVITY                                                                                              | 7<br>33<br>34<br>7<br>7<br>20<br>126<br>49<br>50<br>179<br>179<br>236<br>235                      | 6         6         2         3         1         105         105         105         109         100         106         105                                                                                                                       |
| Maximum wind heightU-component of maximum windV-component of maximum windGSD cloud base heightGSD cloud top heightGSD visibilityWind energy potentialU wind at 80 m above groundV wind at 80 m above groundGraupel on model surfaceGraupel on pressure surfaceMaximum updraft helicityMaximum 1km reflectivityMaximum wind speed at 10m                                                           | LE VEL<br>MAX WIND HGHT LEVEL<br>U COMP MAX WIND<br>V COMP MAX WIND<br>GSD CLD BOT HEIGHT<br>GSD CLD TOP HEIGHT<br>GSD VISIBILITY<br>INSTN WIND POWER<br>AGL<br>U WIND AT 80M AGL<br>V WIND AT 80M AGL<br>V WIND AT 80M AGL<br>GRAUPEL ON MDL SFCS<br>GRAUPEL ON P SFCS<br>MAX UPDRAFT<br>HELICITY<br>MAX 1km REFLECTIVITY<br>MAX 10m WIND SPEED                                                                       | 7<br>33<br>34<br>7<br>7<br>20<br>126<br>49<br>50<br>179<br>179<br>236<br>235<br>229               | 6         6         6         2         3         1         105         105         105         105         105         105         105         105         105         105         105         105         105         105         105         105 |
| Maximum wind heightU-component of maximum windV-component of maximum windGSD cloud base heightGSD cloud top heightGSD visibilityWind energy potentialU wind at 80 m above groundV wind at 80 m above groundGraupel on model surfaceGraupel on pressure surfaceMaximum updraft helicityMaximum 1km reflectivityMaximum wind speed at 10mMaximum updraft vertical                                   | LE VEL<br>MAX WIND HGHT LEVEL<br>U COMP MAX WIND<br>V COMP MAX WIND<br>GSD CLD BOT HEIGHT<br>GSD CLD TOP HEIGHT<br>GSD VISIBILITY<br>INSTN WIND POWER<br>AGL<br>U WIND AT 80M AGL<br>V WIND AT 80M AGL<br>V WIND AT 80M AGL<br>GRAUPEL ON MDL SFCS<br>GRAUPEL ON P SFCS<br>MAX UPDRAFT<br>HELICITY<br>MAX 1km REFLECTIVITY<br>MAX 10m WIND SPEED<br>MAX UPDRAFT VERT                                                   | 7<br>33<br>34<br>7<br>7<br>20<br>126<br>49<br>50<br>179<br>179<br>236<br>235<br>229<br>237        | 6         6         2         3         1         105         105         109         100         106         105         105         105         100         106         105         105         105         101                                   |
| Maximum wind heightU-component of maximum windV-component of maximum windGSD cloud base heightGSD cloud top heightGSD visibilityWind energy potentialU wind at 80 m above groundV wind at 80 m above groundGraupel on model surfaceGraupel on pressure surfaceMaximum updraft helicityMaximum 1km reflectivityMaximum updraft verticalvelocity                                                    | LEVEL<br>MAX WIND HGHT LEVEL<br>U COMP MAX WIND<br>V COMP MAX WIND<br>GSD CLD BOT HEIGHT<br>GSD CLD TOP HEIGHT<br>GSD VISIBILITY<br>INSTN WIND POWER<br>AGL<br>U WIND AT 80M AGL<br>V WIND AT 80M AGL<br>V WIND AT 80M AGL<br>GRAUPEL ON MDL SFCS<br>GRAUPEL ON P SFCS<br>MAX UPDRAFT<br>HELICITY<br>MAX 1km REFLECTIVITY<br>MAX 10m WIND SPEED<br>MAX UPDRAFT VERT<br>VEL                                             | 7<br>33<br>34<br>7<br>7<br>20<br>126<br>49<br>50<br>179<br>179<br>236<br>235<br>229<br>237        | 6         6         2         3         1         105         105         105         105         105         105         105         105         105         105         105         100         105         105         101                       |
| Maximum wind heightU-component of maximum windV-component of maximum windGSD cloud base heightGSD cloud top heightGSD visibilityWind energy potentialU wind at 80 m above groundV wind at 80 m above groundGraupel on model surfaceGraupel on pressure surfaceMaximum updraft helicityMaximum 1km reflectivityMaximum wind speed at 10mMaximum updraft verticalvelocityMaximum downdraft vertical | LEVEL<br>MAX WIND HGHT LEVEL<br>U COMP MAX WIND<br>V COMP MAX WIND<br>GSD CLD BOT HEIGHT<br>GSD CLD TOP HEIGHT<br>GSD VISIBILITY<br>INSTN WIND POWER<br>AGL<br>U WIND AT 80M AGL<br>V WIND AT 80M AGL<br>V WIND AT 80M AGL<br>GRAUPEL ON MDL SFCS<br>GRAUPEL ON P SFCS<br>MAX UPDRAFT<br>HELICITY<br>MAX 1km REFLECTIVITY<br>MAX 1km REFLECTIVITY<br>MAX 10m WIND SPEED<br>MAX UPDRAFT VERT<br>VEL<br>MAX DNDRAFT VERT | 7<br>33<br>34<br>7<br>7<br>20<br>126<br>49<br>50<br>179<br>179<br>236<br>235<br>229<br>237<br>238 | 6         6         2         3         1         105         105         105         109         100         106         105         105         105         101                                                                                   |

| Mean vertical velocity           | MEAN VERT VEL        | 40  | 108 |
|----------------------------------|----------------------|-----|-----|
| Radar echo top in KDT            | ECHO TOPS IN KFT     | 7   | 105 |
| Updraft helicity                 | UPDRAFT HELICITY PRM | 227 | 106 |
| Column integrated graupel        | VERT INTEG GRAUP     | 179 | 200 |
| Column integrated maximum        | MAX VERT INTEG       | 228 | 200 |
| graupel                          | GRAUP                |     |     |
| U-component of 0-1km level       | U COMP 0-1 KM SHEAR  | 230 | 106 |
| wind shear                       |                      |     |     |
| V-component of 0-1km level       | V COMP 0-1 KM SHEAR  | 238 | 106 |
| wind shear                       |                      |     |     |
| U-component of 0-6km level       | U COMP 0-6 KM SHEAR  | 239 | 106 |
| wind shear                       |                      |     |     |
| V-component of 0-6km level       | V COMP 0-6 KM SHEAR  | 241 | 106 |
| wind shear                       |                      |     |     |
| Total precipitation accumulated  | BUCKET TOTAL PRECIP  | 61  | 1   |
| over user-specified bucket       |                      |     |     |
| Convective precipitation         | BUCKET CONV PRECIP   | 63  | 1   |
| accumulated over user-specified  |                      |     |     |
| bucket                           |                      |     |     |
| Grid-scale precipitation         | BUCKET GRDSCALE      | 62  | 1   |
| accumulated over user-specified  | PRCP                 |     |     |
| bucket                           |                      |     |     |
| Snow accumulated over user-      | BUCKET SNOW PRECIP   | 65  | 1   |
| specified bucket                 |                      |     |     |
| Model level fraction of rain for | F_rain ON MDL SFCS   | 131 | 109 |
| Ferrier's scheme                 |                      |     |     |
| Model level fraction of ice for  | F_ice ON MDL SFCS    | 132 | 109 |
| Ferrier's scheme                 |                      |     |     |
| Model level riming factor for    | F_RimeF ON MDL SFCS  | 133 | 109 |
| Ferrier's scheme                 |                      |     |     |
| Model level total condensate for | CONDENSATE MDL SFCS  | 135 | 109 |
| Ferrier's scheme                 |                      | _   |     |
| Height of sigma surface          | HEIGHT OF SIGMA SFCS | 7   | 107 |
| Temperature on sigma surface     | TEMP ON SIGMA SFCS   | 11  | 107 |
| Specific humidity on sigma       | SPEC HUM ON S SFCS   | 51  | 107 |
| surface                          |                      |     | 10- |
| U-wind on sigma surface          | U WIND ON SIGMA SFCS | 33  | 107 |
| V-wind on sigma surface          | V WIND ON SIGMA SFCS | 34  | 107 |
| Omega on sigma surface           | OMEGA ON SIGMA SFCS  | 39  | 107 |
| Cloud water on sigma surface     | CLOUD WATR ON S SFCS | 153 | 107 |
| Cloud ice on sigma surface       | CLOUD ICE ON S SFCS  | 58  | 107 |
| Rain on sigma surface            | RAIN ON S SFCS       | 170 | 107 |
| Snow on sigma surface            | SNOW ON S SFCS       | 171 | 107 |
| Condensate on sigma surface      | CONDENSATE ON S SFCS | 135 | 107 |
| Pressure on sigma surface        | PRESS ON SIG SFCS    | 1   | 107 |

| Turbulent kinetic energy on sigma | TRBLNT KE ON S SFCS  | 158 | 107 |
|-----------------------------------|----------------------|-----|-----|
| surface                           |                      |     |     |
| Cloud fraction on sigma surface   | CLD FRAC ON SIG SFCS | 71  | 107 |
| Graupel on sigma surface          | GRAUPEL ON S SFCS    | 179 | 107 |
| LCL level pressure                | LIFT PCL LVL PRESS   | 141 | 116 |
| LOWEST WET BULB ZERO              | LOW WET BULB ZERO    | 7   | 245 |
| HEIGHT                            | HT                   |     |     |
| Leaf area index                   | LEAF AREA INDEX      | 182 | 1   |
| Accumulated land surface model    | ACM LSM PRECIP       | 154 | 1   |
| precipitation                     |                      |     |     |
| In-flight icing                   | IN-FLIGHT ICING      | 186 | 100 |
| Clear air turbulence              | CLEAR AIR            | 185 | 100 |
|                                   | TURBULENCE           |     |     |
| Wind shear between shelter level  | 0-2000FT LLWS        | 136 | 106 |
| and 2000 FT                       |                      |     |     |
| Ceiling                           | CEILING              | 7   | 215 |
| Flight restritction               | FLIGHT RESTRICTION   | 20  | 2   |
| Instantaneous clear sky incoming  | INSTN CLR INC SFC SW | 161 | 1   |
| surface shortwave                 |                      |     |     |
| Pressure level riming factor for  | F_RimeF ON P SFCS    | 133 | 100 |
| Ferrier's scheme                  |                      |     |     |
| Model level vertical volocity     | W WIND ON MDL SFCS   | 40  | 109 |
| Brightness temperature            | BRIGHTNESS TEMP      | 213 | 8   |
| Average albedo                    | AVE ALBEDO           | 84  | 1   |
| Ozone on model surface            | OZONE ON MDL SFCS    | 154 | 109 |
| Ozone on pressure surface         | OZONE ON P SFCS      | 154 | 100 |
| Surface zonal momentum flux       | SFC ZONAL MOMEN FX   | 124 | 1   |
| Surface meridional momentum       | SFC MERID MOMEN FX   | 125 | 1   |
| flux                              |                      |     |     |
| Average precipitation rate        | AVE PRECIP RATE      | 59  | 1   |
| Average convective precipitation  | AVE CONV PRECIP RATE | 214 | 1   |
| rate                              |                      |     |     |
| Instantaneous outgoing longwave   | INSTN OUT TOA LW RAD | 212 | 8   |
| at top of atmosphere              |                      | 110 | 0   |
| Total spectrum brightness         | BRIGHTNESS TEMP      | 118 | 8   |
| temperature                       | NCAR                 | 1   | 0   |
| Model top pressure                | MODEL TOP PRESSURE   | 1   | 8   |
| Composite rain radar reflectivity | COMPOSITE KAIN REFL  | 165 | 200 |
| Composite ice radar reflectivity  | COMPOSITE ICE REFL   | 166 | 200 |
| Composite radar reflectivity from | COMPOSITE CONV REFL  | 167 | 200 |
| Convection                        |                      | 165 | 105 |
| Kain radar reflecting angle       | KAIN KADAK KEFL AGL  | 165 | 105 |
| Ice radar reflecting angle        | ICE KADAK KEFL AGL   | 100 | 105 |
| Convection radar reflecting angle | UNV KADAK KEFL AGL   | 16/ | 105 |
| Nidel level vertical velocity     | W WIND ON P SFCS     | 40  | 100 |

| Column integrated super cool       | TOTAL COLD LIQUID    | 168 | 200 |
|------------------------------------|----------------------|-----|-----|
| liquid water                       | -                    |     |     |
| Column integrated melting ice      | TOTAL MELTING ICE    | 169 | 200 |
| Height of lowest level super cool  | COLD LIQ BOT HEIGHT  | 7   | 253 |
| liquid water                       |                      |     |     |
| Height of highest level super cool | COLD LIQ TOP HEIGHT  | 7   | 254 |
| liquid water                       |                      |     |     |
| Richardson number planetary        | RICH NO PBL HEIGHT   | 7   | 220 |
| boundary layer height              |                      |     |     |
| Total column shortwave             | TOT COL SW T TNDY    | 250 | 200 |
| temperature tendency               |                      |     |     |
| Total column longwave              | TOT COL LW T TNDY    | 251 | 200 |
| temperature tendency               |                      |     |     |
| Total column gridded temperature   | TOT COL GRD T TNDY   | 241 | 200 |
| tendency                           |                      |     |     |
| Total column convective            | TOT COL CNVCT T TNDY | 242 | 200 |
| temperature tendency               |                      |     |     |
| Radiative flux temperature         | RADFLX TMP TNDY ON P | 216 | 100 |
| tendency on pressure level         |                      |     |     |
| Column integrated moisture         | TOT COL MST CNVG     | 135 | 200 |
| convergence                        |                      |     |     |
| Time averaged clear sky            | AVE CLR INC UV-B SW  | 201 | 1   |
| incoming UV-B shortwave            |                      |     |     |
| Time averaged incoming UV-B        | AVE INC UV-B SW      | 200 | 1   |
| shortwave                          |                      |     |     |
| Total column ozone                 | TOT COL OZONE        | 10  | 200 |
| Average low cloud fraction         | AVE LOW CLOUD FRAC   | 71  | 214 |
| Average mid cloud fraction         | AVE MID CLOUD FRAC   | 71  | 224 |
| Average high cloud fraction        | AVE HIGH CLOUD FRAC  | 71  | 234 |
| Average low cloud bottom           | AVE LOW CLOUD BOT P  | 1   | 212 |
| pressure                           |                      |     |     |
| Average low cloud top pressure     | AVE LOW CLOUD TOP P  | 1   | 213 |
| Average low cloud top              | AVE LOW CLOUD TOP T  | 11  | 213 |
| temperature                        |                      |     |     |
| Average mid cloud bottom           | AVE MID CLOUD BOT P  | 1   | 222 |
| pressure                           |                      |     |     |
| Average mid cloud top pressure     | AVE MID CLOUD TOP P  | 1   | 223 |
| Average mid cloud top              | AVE MID CLOUD TOP T  | 11  | 223 |
| temperature                        |                      |     |     |
| Average high cloud bottom          | AVE HIGH CLOUD BOT P | 1   | 232 |
| pressure                           |                      |     |     |
| Average high cloud top pressure    | AVE HIGH CLOUD TOP P | 1   | 233 |
| Average high cloud top             | AVE HIGH CLOUD TOP T | 11  | 233 |
| temperature                        |                      |     |     |
| Total column relative humidity     | TOT COL REL HUM      | 52  | 200 |

| Cloud work function                  | CLOUD WORK           | 146 | 200 |
|--------------------------------------|----------------------|-----|-----|
|                                      | FUNCTION             |     |     |
| Temperature at maximum wind          | MAX WIND             | 11  | 6   |
| level                                | TEMPERATURE          |     |     |
| Time averaged zonal gravity          | AVE Z GRAVITY STRESS | 147 | 1   |
| wave stress                          |                      |     |     |
| Time averaged meridional gravity     | AVE M GRAVITY STRESS | 148 | 1   |
| wave stress                          |                      |     |     |
| Average precipitation type           | AVE PRECIP TYPE      | 140 | 1   |
| Simulated GOES 12 channel 2          | GOES TB – CH 2       | 213 | 8   |
| brightness temperature               |                      |     |     |
| Simulated GOES 12 channel 3          | GOES TB – CH 3       | 214 | 8   |
| brightness temperature               |                      |     |     |
| Simulated GOES 12 channel 4          | GOES TB – CH4        | 215 | 8   |
| brightness temperature               |                      |     |     |
| Simulated GOES 12 channel 5          | GOES TB – CH5        | 216 | 8   |
| brightness temperature               |                      |     |     |
| Cloud fraction on pressure surface   | CLD FRAC ON P SFCS   | 71  | 100 |
| U-wind on theta surface              | U WIND ON THETA SFCS | 33  | 113 |
| V-wind on theta surface              | V WIND ON THETA SFCS | 34  | 113 |
| Temperature on theta surface         | TEMP ON THETA SFCS   | 11  | 113 |
| Potential vorticity on theta surface | PV ON THETA SFCS     | 4   | 113 |
| Montgomery streamfunction on         | M STRMFUNC ON THETA  | 37  | 113 |
| theta surface                        |                      |     |     |
|                                      | S STAB ON THETA SFCS | 19  | 113 |
| Relative humidity on theta surface   | RH ON THETA SFCS     | 52  | 113 |
| U wind on constant PV surface        | U WIND ON PV SFCS    | 33  | 117 |
| V wind on constant PV surface        | V WIND ON PV SFCS    | 34  | 117 |
| Temperature on constant PV           | TEMP ON PV SFCS      | 11  | 117 |
| surface                              |                      |     |     |
| Height on constant PV surface        | HEIGHT ON PV SFCS    | 7   | 117 |
| Pressure on constant PV surface      | PRESSURE ON PV SFCS  | 1   | 117 |
| Wind shear on constant PV            | SHEAR ON PV SFCS     | 136 | 117 |
| surface                              |                      |     |     |
| Planetary boundary layer cloud       | PBL CLD FRACTION     | 71  | 211 |
| fraction                             |                      |     |     |
| Average water runoff                 | AVE WATER RUNOFF     | 90  | 1   |
| Planetary boundary layer regime      | PBL REGIME           | 220 | 1   |
| Maximum 2m temperature               | MAX SHELTER TEMP     | 15  | 105 |
| Minimum 2m temperature               | MIN SHELTER TEMP     | 16  | 105 |
| Maximum 2m RH                        | MAX SHELTER RH       | 218 | 105 |
| Minimum 2m RH                        | MIN SHELTER RH       | 217 | 105 |
| Ice thickness                        | ICE THICKNESS        | 92  | 1   |
| Shortwave tendency on pressure       | SW TNDY ON P SFCS    | 250 | 100 |
| surface                              |                      |     |     |

| Longwave tendency on pressure     | LW TNDY ON P SFCS    | 251 | 100 |
|-----------------------------------|----------------------|-----|-----|
| surface                           |                      |     |     |
| Deep convective tendency on       | D CNVCT TNDY ON P SF | 242 | 100 |
| pressure surface                  |                      |     |     |
| Shallow convective tendency on    | S CNVCT TNDY ON P SF | 244 | 100 |
| pressure surface                  |                      |     |     |
| Grid scale tendency on pressure   | GRDSCL TNDY ON P SFC | 241 | 100 |
| surface                           |                      |     |     |
|                                   | VDIFF MOIS ON P SFCS | 249 | 100 |
| Deep convective moisture on       | D CNVCT MOIS ON P SF | 243 | 100 |
| pressure surface                  |                      |     |     |
| Shallow convective moisture on    | S CNVCT MOIS ON P SF | 245 | 100 |
| pressure surface                  |                      |     |     |
| Ozone tendency on pressure        | OZONE TNDY ON P SFCS | 188 | 100 |
| surface                           |                      |     |     |
| Mass weighted potential vorticity | MASS WEIGHTED PV     | 139 | 100 |
| Simulated GOES 12 channel 3       | GOES BRIGHTNESS-CH 3 | 221 | 8   |
| brightness count                  |                      |     |     |
| Simulated GOES 12 channel 4       | GOES BRIGHTNESS-CH 4 | 222 | 8   |
| brightness count                  |                      |     |     |
| Omega on theta surface            | OMEGA ON THETA SFCS  | 39  | 113 |
| Mixing height                     | MIXHT HEIGHT         | 67  | 1   |
| Average clear-sky incoming        | AVE CLR INC SFC LW   | 163 | 1   |
| longwave at surface               |                      |     |     |
| Average clear-sky incoming        | AVE CLR INC SFC SW   | 161 | 1   |
| shortwave at surface              |                      |     |     |
| Average clear-sky outgoing        | AVE CLR OUT SFC LW   | 162 | 1   |
| longwave at surface               |                      |     |     |
| Average clear-sky outgoing        | AVE CLR OUT TOA LW   | 162 | 8   |
| longwave at top of atmosphere     |                      |     |     |
| Average clear-sky outgoing        | AVE CLR OUT SFC SW   | 160 | 1   |
| shortwave at surface              |                      |     |     |
| Average clear-sky outgoing        | AVE CLR OUT TOA SW   | 160 | 8   |
| shortwave at top of atmosphere    |                      |     |     |
| Average incoming shortwave at     | AVE INC TOA SW       | 204 | 8   |
| top of atmosphere                 |                      |     |     |
| Tranport wind u component         | TRANSPORT U WIND     | 33  | 220 |
| Transport wind v component        | TRANSPORT V WIND     | 34  | 220 |
| Sunshine duration                 | SUNSHINE DURATION    | 191 | 1   |
| Field capacity                    | FIELD CAPACITY       | 220 | 1   |
| ICAO height at maximum wind       | ICAO HGHT MAX WIND   | 5   | 6   |
| level                             |                      |     |     |
| ICAO height at tropopause         | ICAO HGHT AT TROP    | 5   | 7   |
| Radar echo top                    | RADAR ECHO TOP       | 240 | 200 |
| Time averaged surface Visible     | AVE IN SFC VIS SW BE | 166 | 1   |

| beam downward solar flux           |                      |     |     |
|------------------------------------|----------------------|-----|-----|
| Time averaged surface Visible      | AVE IN SFC VIS SW DF | 167 | 1   |
| diffuse downward solar flux        |                      |     |     |
| Time averaged surface Near IR      | AVE IN SFC IR SW BE  | 168 | 1   |
| beam downward solar flux           |                      |     |     |
| Time averaged surface Near IR      | AVE IN SFC IR SW DF  | 169 | 1   |
| diffuse downward solar flux        |                      |     |     |
| Average snowfall rate              | AVE SNOWFALL RATE    | 64  | 1   |
| Dust 1 on pressure surface         | DUST 1 ON P SFCS     | 240 | 100 |
| Dust 2 on pressure surface         | DUST 2 ON P SFCS     | 241 | 100 |
| Dust 3 on pressure surface         | DUST 3 ON P SFCS     | 242 | 100 |
| Dust 4 on pressure surface         | DUST 4 ON P SFCS     | 243 | 100 |
| Dust 5 on pressure surface         | DUST 5 ON P SFCS     | 244 | 100 |
| Equilibrium level height           | EQUIL LEVEL HEIGHT   | 7   | 247 |
| Lightning                          | LIGHTNING            | 187 | 1   |
| Goes west channel 2 brightness     | GOES W TB – CH 2     | 241 | 8   |
| temperature                        |                      |     |     |
| Goes west channel 3 brightness     | GOES W TB – CH 3     | 242 | 8   |
| temperature                        |                      |     |     |
| Goes west channel 4 brightness     | GOES W TB – CH 4     | 243 | 8   |
| temperature                        |                      |     |     |
| Goes west channel 5 brightness     | GOES W TB – CH 5     | 244 | 8   |
| temperature                        |                      |     |     |
| In flight icing from NCAR's        | NCAR IN-FLIGHT ICING | 168 | 100 |
| algorithm                          |                      |     |     |
| Specific humidity at flight levels | SPE HUM AT FD HEIGHT | 51  | 103 |
| Virtual temperature based          | TV CNVCT AVBL POT EN | 202 | 1   |
| convective available potential     |                      |     |     |
| energy                             |                      |     |     |
| Virtual temperature based          | TV CNVCT INHIBITION  | 201 | 1   |
| convective inhibition              |                      |     |     |
| Ventilation rate                   | VENTILATION RATE     | 241 | 220 |
| Haines index                       | HAINES INDEX         | 250 | 1   |
| Simulated GOES 12 channel 2        | GOESE TB-2 NON NADIR | 213 | 8   |
| brightness temperature with        |                      |     |     |
| satellite angle correction         |                      |     |     |
| Simulated GOES 12 channel 3        | GOESE TB-3 NON NADIR | 214 | 8   |
| brightness temperature with        |                      |     |     |
| satellite angle correction         |                      |     |     |
| Simulated GOES 12 channel 4        | GOESE TB-4 NON NADIR | 215 | 8   |
| brightness temperature with        |                      |     |     |
| satellite angle correction         |                      |     |     |
| Simulated GOES 12 channel 5        | GOESE TB-5 NON NADIR | 216 | 8   |
| brightness temperature with        |                      |     |     |
| satellite angle correction         |                      |     |     |

| Simulated GOES 11 channel 2    | GOESW TB-2 NON NADIR          | 241  | 8   |
|--------------------------------|-------------------------------|------|-----|
| brightness temperature with    |                               |      |     |
| satellite angle correction     |                               |      |     |
| Simulated GOES 11 channel 3    | GOESW TB-3 NON NADIR          | 242  | 8   |
| brightness temperature with    |                               |      |     |
| satellite angle correction     |                               |      |     |
| Simulated GOES 11 channel 4    | GOESW TB-4 NON NADIR          | 243  | 8   |
| brightness temperature with    |                               |      |     |
| satellite angle correction     |                               |      |     |
| Simulated GOES 11 channel 5    | GOESW TB-5 NON NADIR          | 244  | 8   |
| brightness temperature with    |                               |      |     |
| satellite angle correction     |                               |      |     |
| Pressure at flight levels      | PRESS AT FD HEIGHTS           | 1    | 103 |
| Simulated AMSR-E channel 9     | AMSRE TB – CH 9               | 176  | 8   |
| brightness temperature         |                               |      | -   |
| Simulated AMSR-E channel 10    | AMSRE TB – CH 10              | 177  | 8   |
| brightness temperature         |                               | 1,,  | 0   |
| Simulated AMSR-E channel 11    | AMSRE TB – CH 11              | 178  | 8   |
| brightness temperature         |                               | 170  | 0   |
| Simulated AMSR-F channel 12    | AMSRE TB – CH 12              | 179  | 8   |
| brightness temperature         |                               | 1/)  | 0   |
| SSMI channel 4 brightness      | SSMLTB – CH 4                 | 176  | 8   |
| temperature                    |                               | 170  | 0   |
| SSMI channel 5 brightness      | SSMLTB – CH 5                 | 177  | 8   |
| temperature                    |                               | 1//  | 0   |
| SSMI channel 6 brightness      | SSMLTB – CH 6                 | 178  | 8   |
| temperature                    |                               | 170  | 0   |
| SSMI channel 7 brightness      | SSMI TB – CH 7                | 179  | 8   |
| temperature                    |                               | 1/2  | 0   |
| Time-averaged percentage snow  | TIME AVG PCT SNW CVR          | 238  | 1   |
| cover                          |                               | 230  | 1   |
| Time-averaged surface pressure | TIME AVG SEC PRESS            | 1    | 1   |
| Time averaged 10m temperature  | TIME AVG TMP AT 10M           | 11   | 105 |
| Time averaged mass avehange    | TAVG MASS EXCH COEE           | 11   | 105 |
| coefficient                    | TAVO WASS EACH COEF           | 105  | 1   |
| Time averaged wind eveloping   | TAVG WIND EVCH COFE           | 196  | 1   |
| a sofficient                   | TAVG WIND EACH COEF           | 100  | 1   |
| Torren erroture et 10m         | TEMD AT 10 M                  | 11   | 105 |
| Temperature at 10m             | IEMPATIUM<br>UCOMPMANIO MINID | 11   | 105 |
| Waximum U-component wind at    | U COMP MAX 10 M WIND          | 255  | 105 |
|                                |                               | 25.4 | 105 |
| Maximum V-component wind at    | V COMP MAX 10 M WIND          | 254  | 105 |
| 10m                            |                               |      |     |

## RIP4

### **RIP Introduction**

RIP (which stands for <u>Read/Interpolate/Plot</u>) is a Fortran program that invokes NCAR Graphics routines for the purpose of visualizing output from gridded meteorological data sets, primarily from mesoscale numerical models. It can also be used to visualize model input or analyses on model grids.

RIP has been under continuous development since 1991, primarily by Mark Stoelinga at both NCAR and the University of Washington. It was originally designed for sigma-coordinate-level output from the PSU/NCAR Mesoscale Model (MM4/MM5), but was generalized in April 2003 to handle data sets with any vertical coordinate, and in particular, output from both the WRF-NMM and WRF-ARW modeling systems.

It is strongly recommended that users read the complete RIP User's Guide found at: <u>http://www.mmm.ucar.edu/wrf/users/docs/ripug.pdf</u>. A condensed version is given here for a quick reference.

### **RIP Software Requirements**

The program is designed to be portable to any UNIX system that has a Fortran 77 or Fortran 90 compiler and the NCAR Graphics library (preferably 4.0 or higher). The NetCDF library is also required for I/O.

### **RIP Environment Settings**

An important environment variable for the RIP system is *RIP\_ROOT*. *RIP\_ROOT* should be assigned the path name of the directory where all the RIP program and utility files (*color.tbl, stationlist, .ascii* files, *psadilookup.dat*) will reside. The natural choice for the *RIP\_ROOT* directory is the *RIP* subdirectory that is created after the RIP tar file is unpacked. For simplicity, define *RIP\_ROOT* in one of the UNIX start-up files. For example, add the following to the shell configuration file (such as .login or .cshrc):

setenv RIP\_ROOT /path-to/RIP

### **Obtaining the RIP Code**

The RIP4 package can be downloaded from: http://www.dtcenter.org/wrf-nmm/users/downloads.

Once the *tar* file is obtained, *gunzip* and *untar* the file.

tar -zxvf RIP4\_v4.4.TAR.gz

This command will create a directory called *RIP*.

### **RIP Directory Structure**

:

Under the main directory of *RIP* reside the following files and subdirectories:

- CHANGES, a text file that logs changes to the RIP tar file.
- **Doc**/, a directory that contains documentation of RIP, most notably the HTML version of the Users' Guide that you are now reading (*ripug.htm*).
- Makefile, the top-level make file used to compile and link RIP.
- **README**, a text file containing basic information on running RIP.
- **color.tbl**, a file that contains a table defining the colors you want to have available for RIP plots.
- **eta\_micro\_lookup.dat**, a file that contains "look-up" table data for the Ferrier microphysics scheme.
- **psadilookup.dat**, a file that contains "look-up" table data for obtaining temperature on a pseudoadiabat.
- **sample\_infiles**/, a directory that contains sample user input files for RIP and related programs. These files include *bwave.in*, *grav2d\_x.in*, *hill2d.in*, *qss.in*, *rip\_sample.in*, *ripdp\_wrfarw\_sample.in*, *ripdp\_wrfnmm\_sample.in*, *sqx.in*, *sqy.in*, *tabdiag\_sample.in*, and *tserstn.dat*.
- **src**/, a directory that contains all of the source code files for RIP, RIPDP, and several other utility programs. Most of these are Fortran 77 source code files with extension *.f.* In addition, there are:
  - a few .*h* and .*c* files, which are C source code files.
  - *comconst, commptf, comvctran,* and *CMASSI.comm,* which are include files that contain common blocks that are used in several routines in RIP.
  - *pointers*, an include file that contains pointer declarations used in some of the routines in RIP.
  - *Makefile*, a secondary make file used to compile and link RIP.
- **stationlist**, a file containing observing station location information.

### **Installing the RIP Code**

RIP uses a build mechanism similar to that used by the WRF model. First issue the *configure* command, followed by the *compile* command.

#### ./configure

Choose one of the configure options listed. Check the *configure.rip* file created and edit for compile options/paths, if necessary.

#### ./compile >& compile\_rip.log &

A successful compilation will result in the creation of several object files and executables in the *RIP/src* directory. The makefile is also set up to create symbolic links in the *RIP* directory to the actual executables in the *RIP/src* directory.

To remove all built files, as well as the *configure.rip*, type:

clean

This action is recommended if a mistake is made during the installation process.

### **RIP Functionalities**

RIP can be described as "quasi-interactive". You specify the desired plots by editing a formatted text file. The program is executed, and an NCAR Graphics CGM file is created, which can be viewed with any one of several different metacode translator applications. The plots can be modified, or new plots created, by changing the user input file and re-executing RIP. Some of the basic features of the program are outlined below:

- Uses a preprocessing program (called RIPDP) which reads model output, and converts this data into standard RIP format data files that can be ingested by RIP.
- Makes Lambert Conformal, Polar Stereographic, Mercator, or stretched-rotatedcyllindrical-equidistant (SRCE) map backgrounds, with any standard parallels.
- Makes horizontal plots of contours, color-filled contours, vectors, streamlines, or characters.
- Makes horizontal plots on model vertical levels, as well as on pressure, height, potential temperature, equivalent potential temperature, or potential vorticity surfaces.
- Makes vertical cross sections of contours, color-filled contours, full vectors, or horizontal wind vectors.
- Makes vertical cross sections using vertical level index, pressure, log pressure, Exner function, height, potential temperature, equivalent potential temperature, or potential vorticity as the vertical coordinate.
- Makes skew-*T*/log *p* soundings at points specified as grid coordinates, lat/lon coordinates, or station locations, with options to plot a hodograph or print sounding-derived quantities.
- Calculates backward or forward trajectories, including hydrometeor trajectories, and calculates diagnostic quantities along trajectories.
- Plots trajectories in plan view or vertical cross sections.
- Makes a data set for use in the Vis5D visualization software package.
- Allows for complete user control over the appearance (color, line style, labeling, etc.) of all aspects of the plots.

### **RIP Data Preparation (RIPDP)**

RIP does not ingest model output files directly. First, a preprocessing step, RIPDP (which stands for <u>RIP</u> Data Preparation), must be executed which converts the model output data files to RIP-format data files. The primary difference between these two types of files is that model output is in NetCDF or GRIB format and may contain all times and all variables in a single file (or a few files), whereas RIP data has each variable at each time in a separate file in binary format.

RIPDP reads in a model output file (or files), and separates out each variable at each time. There are several basic variables that RIPDP expects to find, and these are written out to files with names that are chosen by RIPDP (such as *uuu*, *vvv*, *prs*, etc.). These are the variable names that RIP users are familiar with. However, RIPDP can also process unexpected variables that it encounters in model output data files, creating RIP data file names for these variables from the variable name that is stored in the model output file metadata.

When you run *make*, it should produce executable programs called *ripdp\_mm5*, *ripdp\_wrfarw*, and *ripdp\_wrfnmm*. Although these are three separate programs, they serve the same purpose, and only *ripdp\_wrfnmm* will be described here.

The WRF-NMM model uses a rotated latitude/longitude projection on the E-grid, both of which introduce special challenges for processing and plotting WRF-NMM data. RIPDP and RIP have been modified to handle the rotated latitude/longitude projection, however, the grid staggering in WRF-NMM requires additional data processing.

Because of its developmental history with the MM5 model, RIP is inextricably linked with an assumed B-grid staggering system. Therefore, the easiest way to deal with E-grid data is to make it look like B-grid data. This can be done in two ways, either of which the user can choose.

| E-grid | l                          |                               | _                                |                                           | B                      | -grid                                                                                                                                                                                |                                |                                                                                                                                                                                   |
|--------|----------------------------|-------------------------------|----------------------------------|-------------------------------------------|------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| V      | Н                          | V                             |                                  | h                                         |                        | h                                                                                                                                                                                    |                                | h                                                                                                                                                                                 |
| Н      | V                          | Н                             |                                  | h                                         | V                      | h                                                                                                                                                                                    | V                              | h                                                                                                                                                                                 |
| V      | Н                          | V                             |                                  | h                                         | v                      | h                                                                                                                                                                                    | v                              | h                                                                                                                                                                                 |
| Н      | V                          | Н                             |                                  | h                                         | v                      | h                                                                                                                                                                                    | v                              | h                                                                                                                                                                                 |
|        | E-gric<br>V<br>H<br>V<br>H | V H<br>H V<br>V H<br>H V<br>H | V H V<br>H V H<br>V H V<br>H V H | V H V<br>H V H<br>V H V<br>H V H<br>H V H | E-gridVHHVHVHVHVHVHVHN | E-grid     B       V     H       H     V       H     V       H     V       H     V       H     V       H     V       H     V       H     V       H     V       H     V       H     V | E-gridB-gridVHVHVHVHVVHVHVHHVH | E-grid     B-grid       V     H     V       H     V     H       V     H     V       V     H     V       H     V     H       H     V     H       H     V     H       H     V     H |

In the first method (*iinterp=0*), we define a B-grid in which its mass (h) points collocate with all the mass (H) and velocity (V) points in the E-grid, and the B-grid's velocity (v) points are staggered in the usual B-grid way (see illustration below). The RIPDP-created data files retain only the E-grid data, but then when they are ingested into RIP, the E-grid H-point data are transferred directly to overlapping B-grid mass points, and non-overlapping B-grid mass points and all velocity points are interpolated from the E-grid's

H and V points. This is the best way to retain as much of the exact original data as possible, but effectively doubles the number of horizontal grid points in RIP, which can be undesirable.



The second method (*iinterp*=1) is to define a completely new B-grid that has no relation to the E-grid points, possibly (or even preferably) including a different map background, but presumably with substantial overlap between the two grids, and a horizontal resolution similar to the effective resolution of the E-grid. The E-grid data is then bilinearly interpolated to the new B-grid in RIPDP and the new B-grid data is then written out to the RIPDP output data files. With this method, the fact that the original data was on the E-grid is completely transparent to the RIP plotting program.

*iinterp=1* 



It should be noted that if *iinterp*=1 is set, grid points in the new domain that are outside the original E-grid domain will be assigned a "missing value" by RIPDP. RIP (the plotting program) handles "missing value" data inconsistently. Some parts of the code are designed to deal with it gracefully, and other parts are not. Therefore, it is best to make sure that the new domain is entirely contained within the original E-grid domain. Unfortunately, there is no easy way to do this. RIPDP does not warn you when your new domain contains points outside the original E-grid. The best way to go about it is by trial and error: define an interpolation domain, run RIPDP, then plot a 2-D dot-point field such as map factor on dot points (*feld=dmap*) in color contours and see if any points do not get plotted. If any are missing, adjust the parameters for the interpolation domain and try again.

### **RIPDP** Namelist

The namelist file for RIPDP contains the namelist *&userin*. All of the *&userin* namelist variables are listed below. Each variable has a default value, which is the value this variable will take if its specification is omitted from the namelist. Additional details for each namelist variable can be found in <u>Chapter 3</u> of the full RIP User's Guide.

| Variable Name | Default Value | Description                                                                                                                                                                      |
|---------------|---------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ptimes        | 9.0E+09       | Times to process.                                                                                                                                                                |
|               |               | This can be a string of times or a series in the form of A, -B, C, which is interpreted as "times from hour A to hour B, every C hours".                                         |
| ptimeunits    | ' h'          | Units of <i>ptimes</i> .                                                                                                                                                         |
|               |               | This can be either 'h' (for hours), 'm' (for minutes), or 's' (for seconds).                                                                                                     |
| iptimes       | 99999999      | Times to process in the form of 8-digit<br>"mdate" times (i.e. YYMMDDHH).                                                                                                        |
|               |               | A value of 99999999 indicates <i>ptimes</i> is being used instead.                                                                                                               |
| tacc          | 1.0           | Time tolerance, in seconds.                                                                                                                                                      |
|               |               | Any times encountered in the model output<br>that are within <i>tacc</i> seconds of one of the times<br>specified in <i>ptimes</i> or <i>iptimes</i> will be<br>processed.       |
| discard       | 11            | Names of variables that, if encountered in the model data file, will not be processed.                                                                                           |
| retain        |               | Names of variables that, if encountered in the model data file, <u>should</u> be processed, even though the user specified <i>basic</i> on the <i>ripdp_wrfnmm</i> command line. |
| iinterp       | 0             | NMM Only: Method for defining B-grid<br>(described above)                                                                                                                        |
|               |               | 0 = Collocated high-density B-grid<br>1 = Interpolate to a new B-grid                                                                                                            |

If *iinterp=1* then the following namelist variables must also be set for the indicated domain on which the new B-grid will be based.

| Variable Name          | Default Value | Description                                                    |
|------------------------|---------------|----------------------------------------------------------------|
| dskmcib                | 50.0          | Grid spacing, in km, of the centered domain.                   |
| miycorsib, mjxcorsib   | 100           | Grid points in the <i>y</i> and <i>x</i> directions,           |
|                        |               | respectively, of the centered domain.                          |
| nprojib                | 1             | Map projection number (0: none/ideal, 1: LC,                   |
|                        |               | 2: PS, 3: ME, 4: SRCE) of the centered                         |
|                        |               | domain.                                                        |
| xlatcib, xloncib       | 45.0, -90.0   | Central latitude and longitude, respectively, for              |
|                        |               | the centered domain.                                           |
| truelat1ib, truelat2ib | 30.0, 60.0    | Two true latitudes for the centered domain.                    |
| miyib, mjxib           | 75            | Number of grid points in the <i>y</i> and <i>x</i> directions, |
|                        |               | respectively, of the fine domain.                              |
| yicornib, xjcornib     | 25            | Centered domain <i>y</i> and <i>x</i> locations,               |
|                        |               | respectively, of the lower left corner point of                |
|                        |               | the fine domain.                                               |
| dskmib                 | 25.0          | Grid spacing, in km, of the fine domain.                       |

An example of a namelist input file for *ripdp\_wrfnmm*, called *ripdp\_wrfnmm\_sample.in*, is provided in the RIP tar file in the *sample\_infiles* directory.

### **Running RIPDP**

RIPDP has the following usage:

*ripdp\_wrfnmm* -n namelist\_file model-data-set-name [*basic/all*] data\_file\_1 data\_file\_2 data\_file\_3 ...

In order to provide the user more control when processing the data, a namelist needs to be specified by means of the *-n* option, with *namelist\_file* specifying the path name of the file containing the namelist.

The argument *model-data-set-name* can be any string you choose, that uniquely defines the model output data set. It will be used in the file names of all the new RIP data files that are created.

The *basic* option causes *ripdp\_wrfnmm* to process only the basic variables that RIP requires, whereas *all* causes *ripdp\_wrfnmm* to process all variables encountered in the model output file. It produces files for those variables using the variable name provided in the model output to create the file name. If *all* is specified, the *discard* variable can be used in the RIPDP namelist to prevent processing of unwanted variables. However, if *basic* is specified, the user can request particular other fields (besides the basic fields) to be processed by setting a *retain* variable in the RIPDP namelist.

Finally, *data-file-1*, *data-file-2*, ... are the path names (either full or relative to the current working directory) of the model data set files, in chronological order. If model output

exists for nested domains, RIPDP must be run for each domain separately and each run must be given a new *model-data-set-name*.

When the program is finished, a large number of files will have been created that will reside in the current working directory. This is the data that will be accessed by RIP to produce plots. See <u>Appendix C</u> in the full RIP user's guide for a description of how these files are named and the format of their contents.

### **RIP User Input File (UIF)**

Once the RIP data has been created with RIPDP, the next step is to prepare the user input file (UIF) for RIP. This file is a text file which tells RIP what plots you want and how they should be plotted. A sample UIF, called *rip\_sample.in*, is provided in the RIP tar file.

A UIF is divided into two main sections. The first section specifies various general parameters about the set up of RIP in a namelist format. The second section is the plot specification section, which is used to specify what plots will be generated.

#### a. The namelist section

The first namelist in the UIF is called *&userin*. A description of each variable is shown below. Each variable has a default value, which is the value this variable will take if its specification is omitted from the namelist. Additional details for each namelist variable can be found in <u>Chapter 4</u> of the full RIP User's Guide.

| Variable Name   | Default Value    | Description                                                   |
|-----------------|------------------|---------------------------------------------------------------|
| idotitle, title | 1, 'auto'        | Control the first part of the first title line.               |
| titlecolor      | 'def.foreground' | Specifies the color for the text in the title.                |
| iinittime       | 1                | If $flag = 1$ , the initial date and time (in                 |
|                 |                  | UTC) will be printed in the title.                            |
| ifcsttime       | 1                | If flag = 1, the forecast lead time (in hours) $($            |
|                 |                  | will be printed in the title.                                 |
| ivalidtime      | 1                | If $flag = 1$ , the valid date and time (in both              |
|                 |                  | UTC and local time) will be printed in the                    |
|                 |                  | title.                                                        |
| inearesth       | 0                | If $flag = 1$ , plot valid time as two digits                 |
|                 |                  | rather than 4 digits.                                         |
| timezone        | -7.0             | Offset from Greenwich time (UTC) for the                      |
|                 |                  | local time zone.                                              |
| iusdaylightrule | 1                | If flag = 1, apply daylight saving rule.                      |
| ptimes          | 9.0E+09          | Times to process.                                             |
|                 |                  |                                                               |
|                 |                  | This can be a string of times or a series in                  |
|                 |                  | the form of A,- <i>B</i> , <i>C</i> , which is interpreted as |
|                 |                  | "times from hour A to hour B, every C                         |

|                      |                     | hours".                                                                          |
|----------------------|---------------------|----------------------------------------------------------------------------------|
| ptimeunits           | ' h'                | Units of <i>ptimes</i> .                                                         |
|                      |                     | This can be either 'h' (for hours), 'm' (for minutes), or 's' (for seconds).     |
| iptimes              | 99999999            | Times to process in the form of 8-digit                                          |
| •                    |                     | "mdate" times (i.e. YYMMDDHH).                                                   |
|                      |                     |                                                                                  |
|                      |                     | A value of 999999999 indicates ptimes is                                         |
|                      |                     | being used instead.                                                              |
| tacc                 | 1.0                 | Time tolerance, in seconds.                                                      |
|                      |                     |                                                                                  |
|                      |                     | Any times encountered in the model output                                        |
|                      |                     | that are within <i>tacc</i> seconds of one of the                                |
|                      |                     | times specified in <i>ptimes</i> or <i>iptimes</i> will be                       |
|                      |                     | processed.                                                                       |
| flmin, frmax, fbmin, | 0.05,0.95,0.10,0.90 | Left frame limit, right frame limit, bottom                                      |
| and <i>ftmax</i>     |                     | frame limit, and top frame limit,                                                |
|                      |                     | respectively.                                                                    |
| ntextq               | 0                   | Text quality specifier [0=high; 1=medium;                                        |
|                      |                     | 2=low].                                                                          |
| ntextcd              | 0                   | Text font specifier [0=complex (Times);                                          |
| 0 00 /               | 0.0                 | []=duplex (Helvetica)].                                                          |
| fcoffset             | 0.0                 | Change initial time to something other than                                      |
| •1 /                 |                     | output initial time.                                                             |
| laoiser              | 0                   | If $hag = 1$ , generate time series ASCII                                        |
| idagarinting         | 1                   | Support files (no prots). If flag $= 1$ , use more descriptive plot titles       |
| iaescriptive         | 1                   | If flag $= 1$ , use more descriptive plot titles.                                |
| icgmspin<br>manfld   | 0                   | If hag = 1, split metacode into several mes.                                     |
| maxju<br>itanionlo   | 10                  | If flag = 1, turns on trainstony coloulation                                     |
|                      | U                   | If flag = 1, turns on trajectory calculation $(use Straicale normalist as well)$ |
| imakon5d             | 0                   | (use <b><i>Cirajcaic</i></b> hamenst as well).                                   |
| rin root             | U<br>!/doy/pull!    | n nag – 1, generates output for visol.                                           |
|                      |                     | environment variable <b><i>BIP ROOT</i></b>                                      |
| 1                    |                     | environment variable <b>AIF_AUUI</b> .                                           |

The second namelist in the UIF is called *&trajcalc*. This section is ignored by RIP if *itrajcalc*=0. Trajectory calculation mode and use of the *&trajcalc* namelist are described in the <u>Calculating and Plotting Trajectories with RIP</u> section and in <u>Chapter 6</u> of the full RIP User's Guide.

#### b. The plot specification table

The plot specification table (PST) provides user control over particular aspects of individual frames and overlays. The basic structure of the PST is as follows. The first line of the PST is a line of consecutive equal signs. This line, as well as the next two lines, is

ignored-they are simply a banner that indicates a PST. Following that there are several groups of one or more lines separated by a full line of equal signs. Each group of lines is a frame specification group (FSG), because it describes what will appear in a frame. A frame is defined as one frame of metacode. Each FSG must be ended with a full line of equal signs-that is how RIP knows that it has reached the end of the FSG. (Actually, RIP only looks for four consecutive equal signs, but the equal signs are continued to the end of the line for cosmetic purposes.) Each line within the FSG is a plot specification line (PSL), because it describes what will appear in a plot. A plot is defined as one call to a major plotting routine (e.g. a contour plot, a vector plot, a map background, etc.). Hence, a FSG that has three PSLs in it will result in a frame that has three overlaid plots.

Each PSL contains several plot specification settings (PSSs), of the form

#### keyword = value [,value,value,...]

where *keyword* is a 4-character code word that refers to a specific aspect of the plot. Some keywords need one value, some need two, and some need an arbitrary number of values. Keywords that require more than one value should have those values separated by commas. All the PSSs within a PSL must be separated by semicolons, but the final PSS in a PSL must have no semicolon after it—this is how RIP identifies the end of the PSL. Any amount of white space (i.e., blanks or tabs) is allowed anywhere in a PSS or PSL, because all white space will be removed after the line is read into RIP. The use of white space can help make your PST more readable. The order of the PSSs in a PSL does not matter, though the common convention is to first specify the *feld* keyword, then the *ptyp* keyword, and then other keywords in no particular order.

A PSL may be as long as 240 characters, including spaces. However, if you want to keep all your text within the width of your computer screen, then a "greater than" symbol (>) at the end of the line can be used to indicate that the PSL will continue onto the next line. You may continue to the next line as many times as you want for a PSL, but the total length of the PSL cannot exceed 240 characters.

Any line in the PST can be commented out, simply by putting a pound sign (#) anywhere in the line (at the beginning makes the most sense). Note that the pound sign only comments out the line, which is not necessarily the same as the PSL. If the PSL is continued onto another line, both lines must be commented out in order to comment out the entire PSL. A partial PSL will likely cause a painful error in RIP. If all the PSLs in a FSG are commented out, then the line of equal signs at the end of the FSG should also be commented out.

There is a special keyword, *incl*, which allows the user to tell RIP to insert (at run time) additional information from another file into the plot specification table. This capability makes it easier to repeat large sections of plot specification information in a single input file, or to maintain a library of "canned" plot specifications that can be easily included in different input files. The *incl* keyword is described in more detail in <u>Appendix A</u> in the full RIP User's Guide.

Each keyword has a variable associated with it in the program, and this variable may be of type integer, real, character, logical, or array. The keywords that are associated with a real variable expect values that are of Fortran floating point format. The keywords that are associated with an integer variable also expect values that are of Fortran floating point format because they are initially read in as a floating point number, and then rounded (not truncated) to the nearest integer. The keywords that are associated with a character variable expect values that are character strings. They should NOT be in single quotes, and should also not have any blank characters, commas, or semicolons in them. The keywords that are associated with a logical variable should not have any value. They are set as .FALSE. by default, and simply the fact that the keyword appears will cause the associated variable to be set to .TRUE.. The keywords that are associated with an array (of any type) may expect more than one value. The values should be separated by commas, as mentioned above.

All keywords are set to a default value prior to the reading of the PST. With regard to the default setting of keywords, there are two basic types of keywords; those that "remember" their values, and those that "forget" their values. The type that remembers its value is set to its default value only at the outset, and then it simply retains its value from one PSL to the next (and even from one FSG to the next) unless it is explicitly changed by a PSS. The type that forgets its value is reset to its default value after every PSL. Keywords that remember are primarily those that deal with location (e.g. the subdomain for horizontal plots, the vertical coordinate and levels for horizontal plots, cross section end points, etc.).

This section has described the basic rules to follow in creating the PST. <u>Appendix A</u> in the full RIP User's Guide provides a description of all of the available keywords, in alphabetical order.

### **Running RIP**

Each execution of RIP requires three basic things: a RIP executable, a model data set and a user input file (UIF). Assuming you have followed the procedures outlined in the previous sections, you should have all of these. The UIF should have a name of the form *rip-execution-name.in*, where *rip-execution-name* is a name that uniquely defines the UIF and the set of plots it will generate. The syntax for the executable, *rip*, is as follows:

#### rip [-f] model-data-set-name rip-execution-name

In the above, *model-data-set-name* is the same *model-data-set-name* that was used in creating the RIP data set with the program *ripdp*. The *model-data-set-name* may also include a path name relative to the directory you are working in, if the data files are not in your present working directory. Again, if nested domains were run, *rip* will be run for each domain separately. The *rip-execution-name* is the unique name for this RIP execution, and it also defines the name of the UIF that RIP will look for. The intended syntax is to exclude the *.in* extension in *rip-execution-name*. However, if you include it by mistake, RIP will recognize it and proceed without trouble. The *-f* option causes the

standard output (i.e., the textual print out) from RIP to be written to a file called *rip-execution-name.out*. Without the -f option, the standard output is sent to the screen. The standard output from RIP is a somewhat cryptic sequence of messages that shows what is happening in the program execution.

As RIP executes, it creates either a single metacode file or a series of metacode files, depending on whether or not *icgmsplit* was set to 0 or 1 in the *&userin* namelist. If only one file was requested, the name of that metacode file is *rip-execution-name.cgm*. If separate files were requested for each plot time, they are named *rip-execution-name.cgmA*, *rip-execution-name.cgmB*, etc.

Although the metacode file has a *.cgm* suffix, it is not a standard computer graphics metacode (CGM) file. It is an NCAR CGM file that is created by the NCAR Graphics plotting package. It can be viewed with any of the standard NCAR CGM translators, such as *ctrans*, *ictrans*, or *idt*.

A common arrangement is to work in a directory that you've set up for a particular data set, with your UIFs and plot files (*.cgm* files) in that directory, and a subdirectory called *data* that contains the large number of RIP data files

### **Calculating and Plotting Trajectories with RIP**

Because trajectories are a unique feature of RIP and require special instructions to create, this section is devoted to a general explanation of the trajectory calculation and plotting utility. RIP deals with trajectories in two separate steps, each of which requires a separate execution of the program.

#### a. Trajectory calculation

The first step is trajectory calculation, which is controlled exclusively through the namelist. No plots are generated in a trajectory calculation run. In order to run RIP in trajectory calculation mode, the variable *itrajcalc* must be set to 1 in the *&userin* namelist. All other variables in the *&userin* part of the namelist are ignored. The *&trajcalc* part of the namelist contains all the information necessary to set up the trajectory calculation run. The following is a description of the variables that need to be set in the *&trajcalc* section:

| Variable Name | Description                                                                                 |
|---------------|---------------------------------------------------------------------------------------------|
| rtim          | The release time (in forecast hours) for the trajectories.                                  |
| ctim          | The completion time (in forecast hours) for the trajectories.                               |
|               |                                                                                             |
|               | Note: If <i>rtim<ctim< i="">, trajectories are forward. If <i>rtim&gt;ctim</i>,</ctim<></i> |
|               | trajectories are backward.                                                                  |
| dtfile        | The time increment (in seconds) between data files.                                         |
| dttraj        | The time step (in seconds) for trajectory calculation.                                      |

| vctraj        | The vertical coordinate of values specified for <i>zktraj</i> .                                                                                                                                                                                                                                                                                    |
|---------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|               | <ul> <li>'s': <i>zktraj</i> values are model vertical level indices</li> <li>'p': <i>zktraj</i> values are pressure values, in mb</li> <li>'z': <i>zktraj</i> values are height values, in km</li> <li>'m': <i>zktraj</i> values are temperature values, in C</li> <li>'t': <i>zktraj</i> values are potential temperature values, in K</li> </ul> |
| ihvdrometeor  | If flag=1, trajectory calculation algorithm uses the hydrometeor                                                                                                                                                                                                                                                                                   |
|               | fall speed instead of the vertical air velocity.                                                                                                                                                                                                                                                                                                   |
| xjtraj,yitraj | x and y values (in grid points) of the initial positions of the                                                                                                                                                                                                                                                                                    |
|               | trajectories.                                                                                                                                                                                                                                                                                                                                      |
| zktraj        | Vertical location of the initial points of the trajectories.                                                                                                                                                                                                                                                                                       |

It is also possible to define a 3D array of trajectory initial points, without having to specify the [x,y,z] locations of every point. The grid can be of arbitrary horizontal orientation. To define the grid, you must specify the first seven values of *xjtraj* as follows: The first two values should be the *x* and *y* values of the lower left corner of the trajectory horizontal grid. The next two values should be the *x* and *y* values of another point defining the positive x-axis of the trajectory grid (i.e., the positive x-axis will point from the corner point to this point). The fifth value should be the trajectory grid spacing, in model grid lengths. The final two values should be the number of points in the *x* and *y* directions of the trajectory horizontal grid. The first value of *xjtraj* should be negative, indicating that a grid is to be defined (rather than just individual points), but the absolute value of that value will be used. Any *yitraj* values given are ignored. The *zktraj* values specify the vertical levels of the 3D grid to be defined. Note that any vertical coordinate may still be used if defining a 3D grid of trajectories.

If no diagnostic quantities along the trajectories are desired, the PST is left blank (except that the first three lines comprising the PST banner are retained). If diagnostic quantities are desired, they can be requested in the PST (although no plots will be produced by these specifications, since you are running RIP in trajectory calculation mode). Since no plots are produced, only a minimum of information is necessary in the PST. In most cases, only the *feld* keyword needs to be set. For some fields, other keywords that affect the calculation of the field should be set (such as *strm*, *rfst*, *crag*, *crbg*, *shrd*, *grad*, *gdir*, *qgsm*, *smcp*, and *addf*). Keywords that only affect how and where the field is plotted can be omitted.

Any of the diagnostic quantities listed in <u>Appendix B</u> of the full RIP User's Guide can be calculated along trajectories, with the exception of the Sawyer-Eliassen diagnostics. Each desired diagnostic quantity should be specified in its own FSG (i.e. only one *feld*= setting between each line of repeated equal signs). The only exception to this is if you are using the *addf* keyword. In that case, all of the plot specification lines (PSLs) corresponding to the fields being added (or subtracted) should be in one FSG.

Once the input file is set up, RIP is run as outlined in the <u>Running RIP</u> section. Since no plots are generated when RIP is run in trajectory calculation mode, no *rip-execution-name.cgm* file is created. However, two new files are created that are not in a regular (non-trajectory-calculation) execution of RIP. The first is a file that contains the positions of all the requested trajectories at all the trajectory time steps, called *rip-execution-name.traj*. The second is a file that contains requested diagnostic quantities along the trajectories at all data times during the trajectory period, called *rip-execution-name.diag*. The *.diag* file is only created if diagnostic fields were requested in the PST.

#### b. Trajectory plotting

Once the trajectories have been calculated, they can be plotted in subsequent RIP executions. Because the plotting of trajectories is performed with a different execution of RIP than the trajectory calculation, the plotting run should have a different *rip-execution-name* than any previous trajectory calculation runs.

Trajectories are plotted by including an appropriate PSL in the PST. There are three keywords that are necessary to plot trajectories, and several optional keywords. The necessary keywords are *feld*, *ptyp*, and *tjfl*. Keyword *feld* should be set to one of five possibilities: *arrow*, *ribbon*, *swarm*, *gridswarm*, or *circle* (these fields are described in detail below). Keyword *ptyp* should be set to either *ht* (for "horizontal trajectory plot") or *vt* (for "vertical (cross section) trajectory plot"). And keyword *tjfl* tells RIP which trajectory position file you want to access for the trajectory plot.

As mentioned above, there are four different representations of trajectories, as specified by the *feld* keyword:

- *feld=arrow*: This representation shows trajectories as curved arrows, with arrowheads drawn along each trajectory at a specified time interval. If the plot is a horizontal trajectory plot (*ptyp=ht*), the width of each arrowhead is proportional to the height of the trajectory at that time. If the plot is a vertical (cross section) trajectory plot (*ptyp=vt*), the width of each arrowhead is constant. The arrowhead that corresponds to the time of the plot is boldened.
- *feld=ribbon*: This representation shows trajectories as curved ribbons, with arrowheads drawn along each trajectory at a specified time interval. If the plot is a horizontal trajectory plot (ptyp=ht), the width of each arrowhead, and the width of the ribbon, is proportional to the height of the trajectory at that time. If the plot is a vertical (cross section) trajectory plot (ptyp=vt), the width of each arrowhead (and the ribbon) is constant. The arrowhead that corresponds to the time of the plot is boldened.
- *feld=swarm*: This representation shows a group of trajectories attached to each other by straight lines at specified times. The trajectories are connected to each other in the same order at each time they are plotted, so that the time evolution of a material curve can be depicted. Swarms can be plotted either as horizontal or vertical trajectory plots (*ptyp=ht* or *ptyp=vt*).

- *feld=gridswarm*: This is the same as *swarm*, except it works on the assumptioin that part or all of the trajectories in the position file were initially arranged in a row-oriented 2-D array, or "gridswarm". The evolution of this gridswarm array is depicted as a rectangular grid at the initial time, and as a deformed grid at other specified times. The gridswarm being plotted can have any orientation in 3D space, although the means to create arbitrarily oriented gridswarms when RIP is used in trajectory calculation mode are limited. Creative use of the "3D grid of trajectories" capability descirbed above under the description of *zktraj* can be used to initialize horizontal gridswarms of arbitrary horizontal orientation (but on constant vertical levels).
- *feld=circle*: This representation shows the trajectories as circles located at the positions of the trajectories at the current plotting time, in which the diameter of the circles is proportional to the net ascent of the trajectories (in terms of the chosen vertical coordinate) during the specified time interval. It is only available as a horizontal trajectory plot (ptyp=ht).

See "Keywords", in <u>Appendix A</u> in the full RIP User's Guide for more details on optional keywords that affect trajectory plots.

#### c. Printing out trajectory positions

Sometimes, you may want to examine the contents of a trajectory position file. Since it is a binary file, the trajectory position file cannot simply be printed out. However, a short program is provided in the *src*/ directory in the RIP tar file called *showtraj.f*, which reads the trajectory position file and prints out its contents in a readable form. The program should have been compiled when you originally ran *make*, and when you run *showtraj*, it prompts you for the name of the trajectory position file to be printed out.

#### d. Printing out diagnostics along trajectories

As mentioned above, if fields are specified in the PST for a trajectory calculation run, then RIP produces a *.diag* file that contains values of those fields along the trajectories. This file is an unformatted Fortran file, so another program is required to view the diagnostics. Among the Fortran files included in the *src* directory in the RIP tar file is *tabdiag.f* which serves this purpose. It is compiled when *make* is run.

In order to use the program, you must first set up a special input file that contains two lines. The first line should be the column headings you want to see in the table that will be produced by *tabdiag*, with the entire line enclosed in single quotes. The second line is a Fortran I/O format string, also enclosed in single quotes, which determines how the diagnostic values are printed out. An example of an input file for *tabdiag* is included in the RIP tar file, called *tabdiag.in*.

Once the input file is set up, *tabdiag* is run as follows:

tabdiag diagnostic-output-file tabdiag-input-file

The result will be a text file with a table for each trajectory, showing the time evolution of the diagnostic quantities. Some adjustment of the column headings and format statement will probably be necessary to make it look just right.

### **Creating Vis5D Dataset with RIP**

Vis5D is a powerful visualization software package developed at the University of Wisconsin, and is widely used by mesoscale modelers to perform interactive 3D visualization of model output. Although it does not have the flexibility of RIP for producing a wide range of 2D plot types with extensive user control over plot details, its 3D visualization capability and fast interactive response make it an attractive complement to RIP.

A key difference between RIP and Vis5D is that RIP was originally developed specifically for scientific diagnosis and operational display of mesoscale modeling system output. This has two important implications: (1) The RIP system can ingest model output files, and (2) RIP can produce a wide array of diagnostic quantities that mesoscale modelers want to see. Thus, it makes sense to make use of these qualities to have RIP act as a bridge between a mesoscale model and the Vis5D package. For this reason, a Vis5D format data-generating capability was added to RIP. With this capability, you can create a Vis5D data set from your model data set, including any diagnostic quantities that RIP currently calculates.

The Vis5D mode in RIP is switched on by setting *imakev5d*=1 in the **&userin** namelist in the UIF. All other variables in the **&userin** part of the namelist are ignored. No plots are generated in Vis5D mode. The desired diagnostic quantities are specified in the PST with only a minimum of information necessary since no plots are produced. In most cases, only the *feld* keyword needs to be set, and vertical levels should be specified with *levs* (in km) for the first field requested. The vertical coordinate will automatically be set to 'z', so there is no need to set vcor=z. The levels specified with *levs* for the first requested field will apply to all 3D fields requested, so the *levs* specification need not be repeated for every field. You are free to choose whatever levels you wish, bearing in mind that the data will be interpolated from the data set's vertical levels to the chosen height levels.

For some fields, other keywords that affect the calculation of the field should be set (such as *strm*, *rfst*, *crag*, *crbg*, *shrd*, *grad*, *gdir*, *qgsm*, *smcp*, and *addf*). Keywords that only affect how and where the field is plotted can be omitted. Any of the diagnostic quantities listed in <u>Appendix B</u> in the full RIP User's Guide can be added to the Vis5D data set, with the exception of the Sawyer-Eliassen diagnostics. Each desired diagnostic quantity should be specified in its own FSG (i.e. only one *feld*= setting between each line of repeated equal signs). The only exception to this is if you are using the *addf* keyword. In that case, all of the plot specification lines (PSLs) corresponding to the fields being added (or subtracted) should be in one FSG.

Once the user input file is set up, RIP is run as outlined in the <u>Running RIP</u> section. Since no plots are generated when RIP is run in Vis5D mode, no *rip-execution-name.cgm* file is

created. However, a file is created with the name *rip-execution-name.v5d*. This file is the Vis5D data set which can be used by the Vis5D program to interactively display your model data set.

The map projection information will automatically be generated by RIP and be included in the Vis5D data set. Therefore, you don't have to explicitly request *feld=map* in the PST. However, there are some complications with converting the map background, as specified in RIP, to the map background parameters required by Vis5D. Currently, RIP can only make the conversion for Lambert conformal maps, and even that conversion does not produce an exact duplication of the correct map background.

Vis5D also has its own terrain data base for producing a colored terrain-relief map background--you don't need to specifically request *feld=ter* to get this. However, if you want to look at the actual model terrain as a contour or color-filled field, you should add *feld=ter* to your PST.