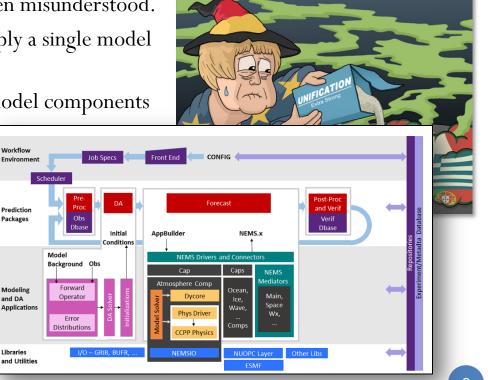


The Common Community Physics Package: overview and available physics suites

Dom Heinzeller

University of Colorado Cooperative Institute for Research in Environmental Sciences (CIRES) at NOAA/ESRL Global Systems Division & Developmental Testbed Center


AMS 2020 short course SCM-CCPP, Jan 12, 2020 – Boston, MA

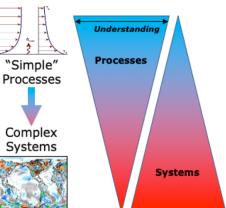
Model unification - omnipresent and misunderstood

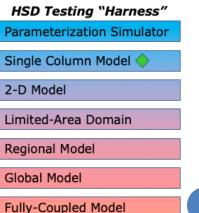
Unification has become a buzz word, but it is often misunderstood. In atmospheric sciences, unification does **not** imply a single model and set of physics that everyone must use.

Unification refers to creating a system of earth model components that can be exchanged and combined easily ...

- to foster collaborations and facilitate research and development
- to accelerate transitions from research to operations and vice versa
- to avoid duplication of efforts and repetition of mistakes

Developmental Testbed Center


NOAA's Unified Forecasting System

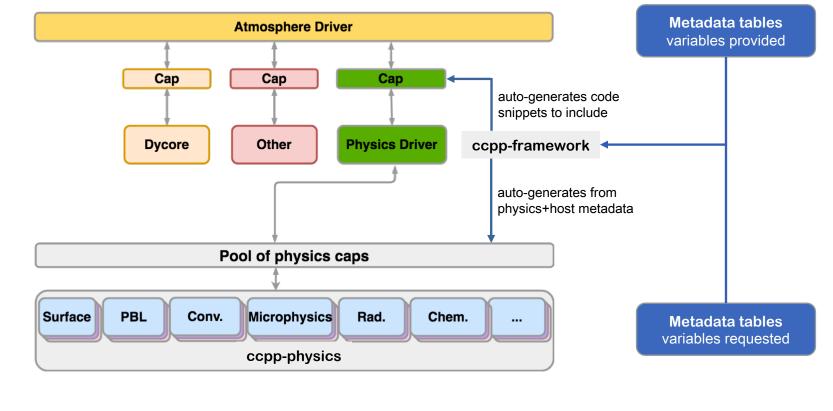

The Unified Forecast System (UFS)

- is a community-based, coupled comprehensive earth system modeling system
- is designed to provide numerical guidance for applications in the forecast suite of NOAA's National Centers for Environmental Prediction (NCEP)
- spans local to global domains and predictive time scales from hours to years
- provides the foundation for closing the gap between ECMWF and NCEP

One cornerstone of the UFS is to **facilitate the improvement of physical parameterizations** and their transition from research to operations.

https://ufscommunity.org/index.html

Infrastructure for development of model physics


The Common Community Physics Package consists of an infrastructure component, **ccpp-framework**, and a collection of compliant physics suites, **ccpp-physics**.

Driving principles:

- Readily available and well supported: open source, on GitHub
- Model-agnostic to enable collaboration and accelerate innovations
- Documented interfaces (metadata) facilitate developing and testing physics
- Inline documentation using doxygen for generating scientific documentation
- Physics suite construct is important, but the CCPP must enable easy interchange of schemes within a suite (need for interstitial/glue code)

The CCPP within the model system

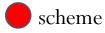
DTC

Key features of the CCPP

- **Compile-time configuration**: suite definition file (XML)
- **Grouping**: schemes can be called in groups with other computations in between (e.g. dycore, coupling)
- Subcycling/iterations: schemes can be called at higher frequency than others/dynamics
- **Ordering**: user-defined order of execution of schemes (may require changing interstitial code)

<suite name="GFS v15p2">

</suite>


Key features of the CCPP

- **Compile-time configuration**: suite definition file (XML)
- **Grouping**: schemes can be called in groups with other computations in between (e.g. dycore, coupling)
- Subcycling/iterations: schemes can be called at higher frequency than others/dynamics
- **Ordering**: user-defined order of execution of schemes (may require changing interstitial code)

<suite name="GFS_v15p2">

<group name="radiation">
 <scheme>GFS_rrtmg_pre</scheme>
 <scheme>rrtmg_sw_pre</scheme>
 <scheme>rrtmg_sw_ost</scheme>
 <scheme>rrtmg_lw_pre</scheme>
 <scheme>rrtmg_lw_pre</scheme>
 <scheme>rrtmg_lw_ost</scheme>
 <scheme>rrtmg_lw_post</scheme>
 <scheme>GFS_rrtmg_post</scheme>
 </group>

</suite>

Developmental Testbed Center

suite interstitial

scheme interstitial

Writing a CCPP-compliant parameterization is easy

```
module myscheme
  implicit none
  contains
  subroutine myscheme init ()
  end subroutine myscheme init
!> \section arg table myscheme run Argument Table
!! \htmlinclude myscheme run.html
11
  subroutine myscheme run(ni, psfc, errmsg, errflg)
    integer, intent(in)
                                   :: ni
   real,
                    intent(inout) :: psfc(:)
   character(len=*), intent(out) :: errmsg
    integer,
              intent(out) :: errflg
  end subroutine myscheme run
  subroutine myscheme finalize()
  end subroutine myscheme finalize
end module myscheme
                                       mvscheme.F90
Developmental Testbed Center
```

```
[ccpp-arg-table]
  name = myscheme run
  type = scheme
[ni]
  standard name = horizontal dimension
  long name = horizontal dimension
  units = count
  dimensions = ()
  type = integer
  intent = in
  optional = F
[psfc]
  standard name = surface air pressure
  long name = air pressure at surface
  units = Pa
  dimensions = (horizontal dimension)
  type = real
  intent = inout
  optional = F
myscheme.meta
```

Metadata is used for scientific documentation

Common Community Physics Package (CCPP) Scientific Documentation: GFDL Cloud Microphysics Module

Common Community Physics Package (CCPP) Scientific Documentation Version 3.0

Q- Search

Modules

Common Community Physics Package Introduction

- Parameterizations and Suites Overvi
- GFS_v15 Suite
- ▶ GFS_v15plus Suite
- csawmg Suite
- ▶ GSD_v0 Suite
- Namelist Options Description Bibliography
- Modules
- ► GFDL In-Core Fast Saturation Ad
- GFS Physics Time Update
- GFS RRTMG Longwave Module
- ► GFS RRTMG Shortwave Module
- RRTMG Aerosols Module
- RRTMG Astronomy Module
- RRTMG Clouds Module
- RRTMG Gases Module
- RRTMG Surface Module
- RRTMG dcvc2t3 Module
- GFS Surface Layer Scheme Mode
- ► GFS Near-Surface Sea Tempe
- GFS Noah LSM Model
- GFS Three-layer Thermodynomic
- GFS Hybrid Eddy-Diffusivity Mas
- GFS Scale-aware TKE-based Mois
- GFS Orographic Gravity Wave Dra
- GFS Rayleigh Damping Module
- GFS Ozone Photochemistry (20)
- GFS Water Vapor Photochemical
- GFS Scale-Aware Mass-Flux D
- GFS Convective Gravity Wave
 GFS Scale-Aware Mass-Flux 3
- GFS Scale-Aware Mass-Flux
 GFS Convective Cloud Diagn
- GFDL Cloud Microphysics I
- GFS Precipitation Type Diag
 Morrison-Gettelman MP scl
- CSAW adjustment Module
- Chikira-Sugiyama Cumulus Schel

GFDL Cloud Microphysics Module

This is cloud microphysics package for GFDL global cloud resolving model. The algorithms are originally derived from Lin et al. (1983) [99]. most of the key elements have been simplified/improved. This code at this stage bears little to no similarity to the original Lin MP in zetac. therefore, it is best to be called GFDL microphysics (GFDL MP). More...

Detailed Description

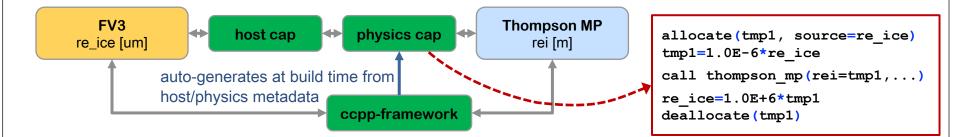
Author

Shian-Jiann Lin, Linjiong Zhou

The module contains the GFDL cloud microphysics (Chen and Lin (2013) [28]). The module is paired with GFDL In-Core Fast Saturation Adjustment Module, which performs the "fast" processes.

The subroutine executes the full GFDL cloud microphysics.

Argument Table


local_name	standard_name	long_name	units	rank	type	kind	intent	optiona
levs	vertical_dimension	number of vertical levels	count	0	integer		in	F
im	horizontal_loop_extent	horizontal loop extent	count	0	integer		in	F
con_g	gravitational_acceleration	gravitational acceleration	m s-2	0	real	kind_phys	in	F
con_fvirt	ratio_of_vapor_to_dry_air_gas_constants_minus_one	rv/rd - 1 (rv = ideal gas constant for water vapor)	none	0	real	kind_phys	in	F
con_rd	gas_constant_dry_air	ideal gas constant for dry air	J kg-1 K-1	0	real	kind_phys	in	F
frland	land_area_fraction_for_microphysics	land area fraction used in microphysics schemes	frac	1	real	kind_phys	in	F
garea	cell_area	area of grid cell	m2	1	real	kind_phys	in	F
gq0	water_vapor_specific_humidity_updated_by_physics	water vapor specific humidity updated by physics	kg kg-1	2	real	kind_phys	inout	F
gq0_ntcw	cloud_condensed_water_mixing_ratio_updated_by_physics	cloud condensed water mixing ratio updated by physics	kg kg-1	2	real	kind_phys	inout	F
gq0_ntrw	rain_water_mixing_ratio_updated_by_physics	moist mixing ratio of rain updated by physics	kg kg-1	2	real	kind_phys	inout	F
gq0_ntiw	ice_water_mixing_ratio_updated_by_physics	moist mixing ratio of cloud ice updated by physics	kg kg-1	2	real	kind_phys	inout	F
gq0_ntsw	snow_water_mixing_ratio_updated_by_physics	moist mixing ratio of snow updated by physics	kg kg-1	2	real	kind_phys	inout	F
gq0_ntgl	graupel_mixing_ratio_updated_by_physics	moist mixing ratio of graupel updated by physics	kg kg-1	2	real	kind_phys	inout	F
gq0_ntclamt	cloud_fraction_updated_by_physics	cloud fraction updated by physics	frac	2	real	kind_phys	inout	F
gt0	air_temperature_updated_by_physics	air temperature updated by physics	к	2	real	kind_phys	inout	F
gu0	x_wind_updated_by_physics	zonal wind updated by physics	m s-1	2	real	kind_phys	inout	F
av0	v wind undated by physics	meridional wind undated by physics	m s-1	2	real	kind nhvs	inout	F

Generated by (0) (1.8.11

https://dtcenter.org/gmtb/users/ccpp

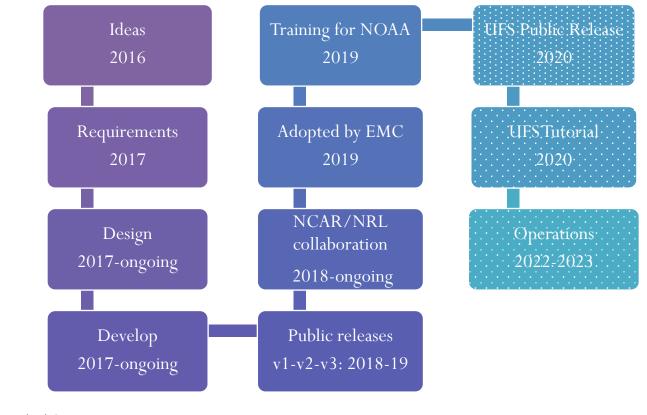
CCPP provides options for performance and flexibility

- CCPP uses a multi-suite static build to maintain the required performance for operations
 - Compile options for the UFS (and DTC's Single Column Model SCM): SUITES="abc, xyz, ..."
 - Filters unused suites and variables, and auto-generates Fortran caps for each of the suites
- CCPP supports automatic unit conversions to expediate development and transition

Parallelization in CCPP: limited MPI, full threading

Overarching paradigms

- physics are column-based, no communication during time integration in physics
- physics initialization/finalization are independent of threading strategy of the model


MPI

- MPI communication only allowed in the physics initialization/finalization
- use MPI communicator provided by host model, not MPI_COMM_WORLD

OpenMP

- time integration (but not init./final.) can be called by multiple threads
- threading inside physics is allowed, use # OpenMP threads provided by host model

Timeline of CCPP Activities

Developmental Testbed Center

DTC

Parameterizations in master CCPP code (Jan. 2020)

Microphysics	Zhao-Carr, GFDL (incl. sat adj in dycore), MG2-3, Thompson, F-A			
PBL	K-EDMF, TKE-EDMF, moist TKE-EDMF, YSU, saYSU, MYJ			
Surface Layer	GFS, MYNN, MYJ	Implementation		
Deep Convection	saSAS, Chikira-Sugiyama, GF, Tiedtke	DTC		
Shallow Convection	EDMF, GF, Tiedtke	GSD		
PBL and Shal Convection	SHOC, MYNN	OU		
Radiation	RRTMG	EMC		
Gravity Wave Drag	GFS orographic, GFS convective, uGWD, RAP/HRRR drag suite			
Land Surface	Noah, Noah-MP, RUC			
Ocean	Simple GFS ocean			
Sea Ice	Simple GFS sea ice			
Ozone	2006 NRL, 2015 NRL			
H ₂ O	NRL			

Developmental Testbed Center-

CCPP v4 Supported Suites: Operations & Research

	Operational	Experimental			
	GFS_v15.2	GFS_v16beta	csawmg	GSD_v1	
Microphysics	GFDL	GFDL	M-G3	Thompson	
Boundary Layer	K-EDMF	TKE EDMF	K-EDMF	saMYNN	
Surface Layer	GFS	GFS	GFS	GFS	
Deep convection	saSAS	saSAS	Chikira-Sugiyama	Grell-Freitas	
Shallow Convection	saSAS	saSAS	saSAS	saMYNN and GF	
Radiation	RRTMG	RRTMG	RRTMG	RRTMG	
Gravity Wave Drag	uGWD	uGWD	uGWD	uGWD	
Land Surface	Noah	Noah	Noah	RUC	
Ozone	NRL 2015	NRL 2015	NRL 2015	NRL 2015	
H ₂ O	NRL	NRL	NRL	NRL	
	Additional parameterizations and suites are underdevelopment				

Developmental Testbed Center

CCPP Public Releases

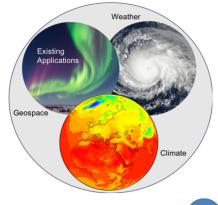
V	Date	Physics	Host
v1	2018 Apr	GFS v14 operational	SCM
v2	2018 Aug	GFS v14 operational updated	SCM
		GFDL microphysics	UFSWM for developers
v3	2019 Jul	GFS v15 operational	SCM
		Developmental schemes/suites	UFSWM for developers
v4	2020	GFS v15 operational	SCM
		Developmental schemes/suites	UFSWM
		(incl GFS v16 developmental)	
aab			

CCPP v3: <u>https://dtcenter.org/ccpp</u>

- Docs: Scientific Doc, Users Guide, Technical Documentation, FAQ
- Helpdesk: <u>gmtb-help@ucar.edu</u>

UFS WM – UFS Weather Model SCM – CCPP Single Column Model

DTC .

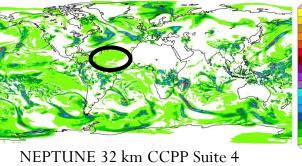

NOAA–NCAR Memorandum of Agreement (2019)

In 2019, NOAA and NCAR agreed to jointly develop the CCPP framework as a single system to communicate between models and physics.

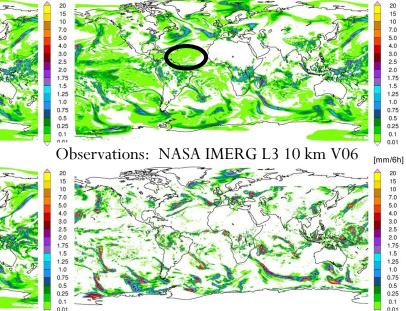
NCAR contributions to the CCPP framework (within SIMA*):

- Augmented metadata standard to provide information on
 - Coordinate variables and vertical direction
 - Dimensions and index ordering of arrays
 - State variables, tendencies, persistent variables
 - Tracers and what to do with them (e.g. advection)
- Automatic variable allocation for variables used by physics suite only
- Compare metadata to actual Fortran code
- Improved build system and code generator

Developmental Testbed Center



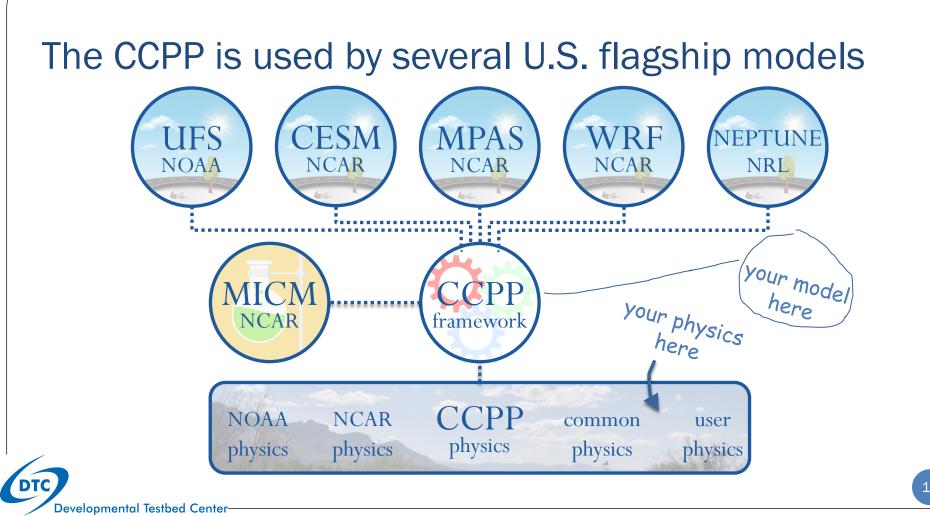
*SIMA: System for Integrated Modeling-Atmosphere 16


Collaboration with NRL NEPTUNE

- CCPP implemented in NEPTUNE by NRL
- Experiments in NEPTUNE have been conducted with various suites

NEPTUNE 32 km IPDv4 GFSv14

NEPTUNE 32 km CCPP GFSv14


Total precipitation (explicit + parameterized) for 60-h forecast (mm/h)

Courtesy of Matus Martini (Devine), Alex Reinecke and Jim Doyle (NRL)

Suite 4 improves drizzle bias

17

