
User’s Guide Version 3.6

September 2017

Ming Hu, Guoqing Ge
National Oceanic and Atmospheric Administration (NOAA)/Earth System Research Laboratory

Cooperative Institute for Research in Environmental Sciences (CIRES)

Hui Shao, Don Stark, Kathryn Newman, Chunhua Zhou
National Center for Atmospheric Research (NCAR)

Jeff Beck
NOAA/Earth System Research Laboratory and CIRA

Xin Zhang
University Corporation for Atmospheric Research (UCAR)

Acknowledgement

This user’s guide is constructed with contributions from distributed GSI developers. We
give our special acknowledgement to these contributors and reviewers, including, but not
limit to:

National Centers for Environmental Prediction (NCEP) Environmental Modeling Center
(EMC):
John Derber, Russ Treadon, Mike Lueken, Wan-Shu Wu, Andrew Collard, and Ed Safford

National Center for Atmospheric Research (NCAR):
Xiang-Yu Huang, Syed Rizvi, Zhiquan Liu, and Arthur Mizzi

National Oceanic and Atmospheric Administration (NOAA) Earth System Research
Laboratory (ESRL):
Steve Weygandt, Dezso Devenyi, and Joseph Olson

The GSI community support and code management effort is sponsored by NOAA’s Office
of Oceanic and Atmospheric Research (OAR). This work is also facilitated by NCAR. NCAR
is supported by the National Science Foundation (NSF).

Foreword

This document is the 2017 Gridpoint Statistical Interpolation (GSI) User's Guide, geared
particularly for beginners. It describes the fundamentals of using GSI version (v) 3.6
released in September 2017. Advanced features of GSI as well as details of assimilation of
specific data types can be found in the Advanced GSI User's Guide, released together with
this document and the v3.6 code release.

This User's Guide includes six chapters and three appendices:

Chapter 1 provides a background introduction of GSI.
Chapter 2 contains basic information about how to install and compile GSI - including

system requirements, required software (and how to obtain it), how to download GSI,
and information about compilers, libraries, and how to build the code.

Chapter 3 focuses on the input files needed to run GSI and how to configure and run GSI
through a sample run script. It also provides an example of a successful GSI run and
explanations of often-used namelist variables.

Chapter 4 includes information about diagnostics and tuning of the GSI system through
GSI standard output, statistic fit files, and some diagnostic tools.

Chapter 5 illustrates the GSI applications for regional WRF-ARW cases, including the
setup of different data types such as conventional, radiance, and GPSRO data, and
different analysis functions available in the GSI, such running a hybrid analysis.

Chapter 6 illustrates the GSI applications for global and chemical cases.
Appendix A introduces community tools available for GSI users.
Appendix B describes the content of the GSI namelist section OBS_INPUT.
Appendix C contains a complete list of the GSI namelist with explanations and default

values.

For the latest version of the GSI User's Guide and released code, please visit the GSI User's
Website:

http://www.dtcenter.org/com-GSI/users/index.php

Please send questions and comments to the GSI help desk:

gsi-help@ucar.edu

This document and the annual GSI releases are made available through a community GSI
effort jointly led by the Developmental Testbed Center (DTC) and the National Centers for
Environmental Prediction (NCEP) Environmental Modeling Center (EMC), in collaboration

http://www.dtcenter.org/com-GSI/users/index.php

with other GSI developers. To help sustain this effort, we request that those who use the
community-released GSI, the GSI helpdesk, the GSI User's Guide, or other DTC GSI
services, please refer to this community GSI effort in their work and publications.

To reference this user’s guide, please use:

Hu, M., G. Ge, H. Shao, D. Stark, K. Newman, C. Zhou, J. Beck, and X.
Zhang, 2017: Grid-point Statistical Interpolation (GSI) User’s Guide
Version 3.6. Developmental Testbed Center. Available at
http://www.dtcenter.org/com-GSI/users/docs/index.php, 149 pp.

For referencing the general aspect of the GSI community effort, please use:

Shao, H., J. Derber, X.-Y. Huang, M. Hu, K. Newman, D. Stark, M. Lueken,
C. Zhou, L. Nance, Y.-H. Kuo, B. Brown, 2016: Bridging Research to
Operations Transitions: Status and Plans of Community GSI. Bull. Amer.
Meteor. Soc., 97, 1427-1440, doi: 10.1175/BAMS-D-13-00245.1.

iv

Contents

1. Overview 1
1.1. GSI History and Background . 1
1.2. GSI Becomes Community Code . 2

1.2.1. GSI Code Management and Review Committee 2
1.2.2. Community Code Contributions . 3

1.3. About This GSI Release . 3
1.3.1. What Is New in This Release Version 4
1.3.2. Observations Used by This Version 5

2. Software Installation 8
2.1. Introduction . 8
2.2. Obtaining and Setting Up the Source Code 9
2.3. Directory Structure, Source Code and Supplemental Libraries 10
2.4. Compiling GSI . 11

2.4.1. Build Overview . 11
2.4.2. Environment Variables . 12
2.4.3. Configure and Compile . 13

2.5. Example of Build . 14
2.5.1. Intel Build . 14
2.5.2. PGI Build . 15
2.5.3. GNU Build . 16

2.6. System Requirements and External Libraries 16
2.6.1. Compilers Tested for Release . 17

2.7. Getting Help and Reporting Problems . 17
2.8. CMake Build System . 17

2.8.1. CMake build process with the DTC script 18
2.8.2. Build notes and additional requirements 19
2.8.3. How the helper script works . 19

3. Running GSI 22
3.1. Input Data Required to Run GSI . 22

3.1.1. Background or First Guess Field . 22
3.1.2. Observations . 23

v

Contents

3.1.3. Fixed Files (Statistics and Control Files) 24
3.2. GSI Run Script . 27

3.2.1. Steps in the GSI Run Script . 27
3.2.2. Customization of the GSI Run Script 28
3.2.3. Description of the Sample Regional Run Script to Run GSI 32

3.3. GSI Analysis Result Files in Run Directory 45
3.4. Introduction to Frequently Used GSI Namelist Options 47

3.4.1. Set Up the Number of Outer and Inner Loops 47
3.4.2. Set Up the Analysis Variable for Moisture 48
3.4.3. Set Up the Background File . 48
3.4.4. Set Up the Output of Diagnostic Files 48
3.4.5. Set Up the GSI Recognized Observation Files 49
3.4.6. Set Up Observation Time Window 49
3.4.7. Set Up Data Thinning . 49
3.4.8. Set Up Background Error Factor . 51
3.4.9. Single Observation Test . 51

4. GSI Diagnostics and Tuning 52
4.1. Understanding Standard Output (stdout) . 52
4.2. Single Observation Test . 67

4.2.1. Setup a Single Observation Test . 68
4.2.2. Examples of Single Observation Tests for GSI 68

4.3. Control Data Usage . 70
4.4. Domain Partition for Parallelization and Observation Distribution 74
4.5. Observation Innovation Statistics . 75

4.5.1. Conventional observations . 75
4.5.2. Satellite Radiance . 80

4.6. Convergence Information . 84
4.7. Conventional Observation Errors . 86

4.7.1. Getting Original Observation Errors 86
4.7.2. Observation Error Gross Error Check within GSI 87

4.8. Background Error Covariance . 88
4.8.1. Tuning Background Error Covariance through the Namelist and

Anavinfo File . 88
4.9. Analysis Increments . 89
4.10. Running Time and Memory Usage . 89

5. GSI Applications for Regional 3DVar, Hybrid 3DEnVar and Hybrid 4DEnVar 91
5.1. Assimilating Conventional Observations with Regional GSI 93

5.1.1. Run Script . 93
5.1.2. Run GSI and Check the Run Status 94
5.1.3. Check for Successful GSI Completion 95
5.1.4. Diagnose GSI Analysis Results . 98

5.1.4.1. Check Analysis Fit to Observations 98
5.1.4.2. Check the Minimization 100
5.1.4.3. Check the Analysis Increment 102

5.2. Assimilating Radiance Data with Regional GSI 102
5.2.1. Run Script . 102

vi

Contents

5.2.2. Run GSI and Check Run Status . 104
5.2.3. Diagnose GSI Analysis Results . 105

5.2.3.1. Check File fort.207 . 105
5.2.3.2. Check the Analysis Increment 106

5.3. Assimilating GPS Radio Occultation Data with Regional GSI 108
5.3.1. Run Script . 108
5.3.2. Run GSI and Check the Run Status 108
5.3.3. Diagnose GSI Analysis Results . 109

5.3.3.1. Check File fort.212 . 109
5.3.3.2. Check the Analysis Increment 109

5.4. Introduction to GSI Hybrid 3DEnVar Analysis 110
5.5. Introduction to GSI Hybrid 4DEnVar Analysis 113
5.6. Summary . 113

6. Introduction to more GSI Applications 114
6.1. Introduction to Global GSI analysis . 114

6.1.1. The Difference between Global and Regional GSI 115
6.1.2. Global GFS Scripts . 116
6.1.3. Sample Results . 119

6.2. Introduction to Chemical Analysis . 120
6.2.1. Setup GSI Run Scripts for Chemical Analysis 120
6.2.2. Sample Results . 122

A. GSI Community Tools 124
A.1. BUFR Format and BUFR Tools . 124
A.2. Read GSI Diagnostic Files . 124
A.3. Read and Plot Convergence Information from fort.220 128
A.4. Plot Single Observation Test Result and Analysis Increment 129
A.5. Generate initial regional ensembles . 130

B. Contents of Namelist Section OBS_INPUT 132

C. GSI Namelist: Name, Default Value, Explanation 134

Bibliography 134

vii

1
Overview

1.1 GSI History and Background

The Gridpoint Statistical Interpolation (GSI) system is a unified data assimilation (DA) system
for both global and regional applications. It was initially developed by the National Cen-
ters for Environmental Prediction (NCEP) Environmental Modeling Center (EMC) as a next
generation analysis system based on the then operational Spectral Statistical Interpolation
(SSI) analysis system ([4]; [1]; [2]). Instead of being constructed in spectral space like the SSI,
the GSI is constructed in physical space and is designed to be a flexible, state-of-art system
that is efficient on available parallel computing platforms. Starting with a three-dimensional
variational (3DVar) data assimilation technique, the current GSI can be run as a data as-
similation system of 2DVar (for surface data analysis), 3DVar, 3D ensemble-variational (3D
EnVar), 4D EnVar, 3D/4D hybrid EnVar, or 4DVar (if coupled with an adjoint model from a
GSI supported forecast system).

After initial development, the GSI analysis system became operational as the core of the
North American Data Assimilation System (NDAS) for the North American Mesoscale (NAM)
system in June 2006 and the Global Data Assimilation System (GDAS) for the Global Forecast
System (GFS) in May 2007 at National Oceanic and Atmospheric Administration (NOAA).
Since then, the GSI system has been adopted in various operational systems, including the
National Aeronautics and Space Administration (NASA) Goddard Earth Observing System
Model (GEOS), the United States Air Force (USAF) mesoscale data assimilation system, the
NOAA Real-Time Mesoscale Analysis (RTMA) system, the Hurricane Weather Research and
Forecasting (WRF) model (HWRF), and the Rapid Refresh (RAP) and High Resolution Rapid
Refresh (HRRR) systems. The number of groups and institutes involved in operational GSI
development has also increased throughout these years.

1

1. Overview

1.2 GSI Becomes Community Code

In 2007, the Developmental Testbed Center (DTC) began collaborating with major GSI
development groups to transform the operational GSI system into a community system
and support distributed development ([3]). The DTC complements the development groups
in providing GSI documentation, porting GSI to multiple platforms, and testing GSI in
an independent and objective environment, while maintaining equivalent functionality to
what used in thoperational centers. Since 2009, due to the NOAA security constraints,
the DTC has been maintaining a community GSI code repository, which mirrors the EMC
operational GSI code repository and facilitates community users to develop GSI. Based on
this community repository, the DTC releases GSI code annually with updated documentation.
Currently, the DTC and EMC are working closely to build a unified GSI code repository for
both operational and community developers and users. This unified repository will facilitate
direct communication among developers and help accelerate transitions between research
and operations. Transition to this unified code repository is ongoing and will be completed
by end of 2017.

The first community version of the GSI system was released in 2009. This user's guide
describes the release of GSI (v3.6) in September 2017. The DTC provides user support
through the GSI Helpdesk (gsi-help@ucar.edu), tutorials and workshops. More information
about the GSI community services can be found at the DTC GSI webpage (http://www.
dtcenter.org/com-GSI/users/index.php).

1.2.1 GSI Code Management and Review Committee

The GSI code development and maintenance are managed by the Data Assimilation Review
Committee (DARC). It was originally formed as the GSI Review Committee in 2010, with the
goal of incorporating all major GSI development teams in the United States within a unified
community framework. In 2014, EMC and DTC decided to merge their GSI code repository
with the code repository of the NOAA ensemble Kalman filter (EnKF) data assimilation
system. This merge enabled coordinated development of both systems and joint community
support. Following the repository merging, the GSI Review Committee was transitioned
to DARC, incorporating new members representing EnKF development and applications.
Currently, DARC contains members from NCEP/EMC, NASA's Goddard Global Modeling
and Assimilation Office (GMAO), NOAA’s Earth System Research Laboratory (ESRL), the
Joint Center for Satellite Data Assimilation (JCSDA), the National Center for Atmospheric
Research (NCAR) Mesoscale & Microscale Meteorology Laboratory (MMM), the National
Environmental Satellite, Data, and Information Service (NESDIS), USAF, the University of
Maryland, and the DTC (chair). The DTC also releases the EnKF system annually (along
with GSI). Please refer to the community EnKF user's webpage (http://www.dtcenter.
org/EnKF/users/index.php) for more information.

DARC primarily steers distributed GSI/EnKF development, community code management,
and support. The responsibilities of the committee are divided into two major aspects:

2

http://www.dtcenter.org/com-GSI/users/index.php
http://www.dtcenter.org/com-GSI/users/index.php
http://www.dtcenter.org/EnKF/users/index.php
http://www.dtcenter.org/EnKF/users/index.php

1. Overview

coordination and code review. The purpose and guiding principles of the review committee
are as follows:

• Coordination and advisory
– Propose and shepherd new development
– Coordinate on-going and new development
– Establish and manage a code review and transition process
– Community support recommendation

• Code review
– Establish and manage a unified coding standard followed by all GSI/EnKF devel-

opers
– Review proposed modifications to the code trunk
– Make decisions on whether code change proposals are accepted or denied for

inclusion in the repository
– Manage the repository
– Oversee the timely testing and inclusion of code into the repository

1.2.2 Community Code Contributions

GSI is a community data assimilation system, open to contributions from scientists and
software engineers from both the operational and research communities. DARC oversees
the code transition from prospective contributors. This committee reviews proposals for
code commits to the GSI repository and ensures that coding standards and tests are being
fulfilled. Once the committee approves, the contributed code will be committed to the GSI
code repository and available for operational implementation and public release.

To facilitate this process, the DTC is providing code transition assistance to the general
research community. Prospective code contributors should contact the DTC GSI helpdesk
(gsi-help@ucar.edu) for the preparation and integration of their code. It is the responsibil-
ity of the contributor to ensure that a proposed code change is correct, meets GSI coding
standards, and its expected impact is documented. The DTC will help the contributor run
regression tests and merge the code with the top of the repository trunk. Prospective contrib-
utors can also apply to the DTC visitor program for their GSI research and code transition.
The visitor program is open to applications year-round. Please check the visitor program
webpage (www.dtcenter.org/visitors/) for the latest announcement of opportunity and
application procedures.

1.3 About This GSI Release

As a critical part of the GSI user support, this document is provided to assist users in ap-
plying GSI to data assimilation and analysis studies. It was composed by the DTC and
reviewed by the DARC members. Please note that the major focuses of the DTC are cur-
rently on testing and evaluation of GSI for regional numerical weather prediction (NWP)

3

www.dtcenter.org/visitors/

1. Overview

though the instructions. GSI global and chemical applicaitons are briefly discussed in the
document. The document is based on GSI v3.6 release. Active users can contact the DTC
(gsi-help@ucar.edu) for developmental versions of GSI and access to the GSI code reposi-
tory.

1.3.1 What Is New in This Release Version

The following lists some of the new functions and changes included in the v3.6 release of
the GSI versus v3.5:

Observational aspects:

• Added assimilation of full spectral resolution CrIS radiance observations
• Added near surface temperature (NSST) analysis
• Added options to use correlated radiance observation errors

Code optimization and refactoring:

• Refactored the observer modules using polymorphic code
• Generalized all radiance assimilation across different sensors/instruments for cloud

and aerosol usages in GSI
• Removed the First-Order Time extrapolation to the Observation (FOTO)
• Updated to netCDF v4.0 functionality
• Removed unused modules/variables

Application specific updates:

• Non-variational cloud analysis
– Added number concentration for cloud water, cloud ice, and rain to match the

cloud analysis with the Thompson Microphysical scheme
– Added functions using visibility/fog observation to improve cloud fields in the

lowest two levels
– Added capability to read BUFR format NASA LaRC cloud products

• RTMA
– Added variational QC algorithm using a super-logistic distribution function
– Added cloud ceiling height and scalar wind as analysis variables

Other updates:

• Added the Advanced Research WRF (ARW) hybrid vertical coordinate background to
GSI

• Added a vertical dependence of the hybrid background error weighting, and horizon-
tal/vertical localization scales in GSI

• Added a NCEP nemsio interface for GFS deterministic and ensemble forecasts
• Utility updates such as using GFS ensemble forecast perturbations to initialize WRF

ensemble forecasts.

4

1. Overview

• Bug fixes

Besides the above-mentioned changes, the release code also includes a new cmake-based
build utility. This utility is currently being tested for its portability and has been included
in v3.6. In the near future, the DTC and EMC will use the same cmake build utility for all
operational and research code. Transition to this new build utility will be completed by early
2018.

Please note that due to the version update, some diagnostic and static information files might
have been modified as well.

1.3.2 Observations Used by This Version

GSI is used by various applications on multiple scales. The types of observations GSI can
assimilate vary from conventional to aerosol observations. Users should use observations
with caution to fit their specific applications. The GSI v3.6 can assimilate, but is not limited
to, the following types of observations:

Conventional observations (including satellite retrievals):

• Radiosondes
• Pilot ballon (PIBAL) winds
• Synthetic tropical cyclone winds
• Wind profilers: USA, Jan Meteorological Agency (JMA)
• Conventional aircraft reports
• Aircraft to Satellite Data Relay (ASDAR) aircraft reports
• Meteorological Data Collection and Reporting System (MDCRS) aircraft reports
• Dropsondes
• Moderate Resolution Imaging Spectroradiometer (MODIS) IR and water vapor winds
• Geostationary Meteorological Satellite (GMS), JMA, and Meteosat cloud drift IR and

visible winds
• European Organization for the Exploitation of Meteorological Satellites (EUMETSAT)

and GOES water vapor cloud top winds
• GEOS hourly IR and cloud top wind
• Surface land observations
• Surface ship and buoy observations
• Special Sensor Microwave Imager (SSMI) wind speeds
• Quick Scatterometer (QuikSCAT), the Advanced Scatterometer (ASCAT) and

Oceansat-2 Scatterometer (OSCAT) wind speed and direction
• RapidScat observations
• SSM/I and Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (TMI)

precipitation estimates
• Velocity-Azimuth Display (VAD) Next Generation Weather Radar ((NEXRAD) winds
• Global Positioning System (GPS) precipitable water estimates
• Sea surface temperatures (SSTs)
• Doppler wind Lidar

5

1. Overview

• Aviation routine weather report (METAR) cloud coverage
• Flight level and Stepped Frequency Microwave Radiometer (SFMR) High Density Ob-

servation (HDOB) from reconnaissance aircraft
• Tall tower wind

Satellite radiance/brightness temperature observations (instrument/satellite ID):

• SBUV: NOAA-17, NOAA-18, NOAA-19
• High Resolution Infrared Radiation Sounder (HIRS): Meteorological Operational-A
(MetOp-A), MetOp-B, NOAA-17, NOAA-19

• GOES imager: GOES-11, GOES-12
• Atmospheric IR Sounder (AIRS): aqua
• AMSU-A: MetOp-A, MetOp-B, NOAA-15, NOAA-18, NOAA-19, aqua
• AMSU-B: MetOp-B, NOAA-17
• Microwave Humidity Sounder (MHS): MetOp-A, MetOp-B, NOAA-18, NOAA-19
• SSMI: DMSP F14, F15, F19
• SSMI/S: DMSP F16
• Advanced Microwave Scanning Radiometer for Earth Observing System (AMSR-E):
aqua

• GOES Sounder (SNDR): GOES-11, GOES-12, GOES-13
• Infrared Atmospheric Sounding Interferometer (IASI): MetOp-A, MetOp-B
• Global Ozone Monitoring Experiment (GOME): MetOp-A, MetOp-B
• Ozone Monitoring Instrument (OMI): aura
• Spinning Enhanced Visible and Infrared Imager (SEVIRI): Meteosat-8, Meteosat-9,
Meteosat-10

• Advanced Technology Microwave Sounder (ATMS): Suomi NPP
• Cross-track Infrared Sounder (CrIS): Suomi NPP
• GCOM-W1 AMSR2
• GPM GMI
• Megha-Tropiques SAPHIR
• Himawari AHI

Others:

• GPS Radio occultation (RO) refractivity and bending angle profiles
• Solar Backscatter Ultraviolet (SBUV) ozone profiles, Microwave Limb Sounder (MLS)

(including NRT) ozone, and Ozone Monitoring Instrument (OMI) total ozone
• Doppler radar radial velocities
• Radar reflectivity Mosaic
• Tail Doppler Radar (TDR) radial velocity and super-observation
• Tropical Cyclone Vitals Database (TCVital)
• Particulate matter (PM) of 10-um diameter, 2.5-um diameter or less
• MODIS AOD (when using GSI-chem package)
• Significant wave height observations from JASON-2, JASON-3, SARAL/ALTIKA and

CRYOSAT-2

Please note that some of these above mentioned data are not yet fully tested and/or imple-
mented for operations. Therefore, the current GSI code might not have an optimal setup for

6

1. Overview

these data.

7

2
Software Installation

2.1 Introduction

The DTC GSI is a community distribution of NOAA's operational GSI. The community GSI
expands the portability of the operational code by adding a flexible build system and provid-
ing example run scripts that allow GSI to be compiled and run on many common platforms.
The current version of GSI is 3.6. It builds and runs on most standard Linux platforms using
Intel, PGI, and Gnu compilers. Legacy build rules are provided for two platforms, the IBM
AIX computers using the xlf compiler, and Intel based Macintosh computers using the PGI
compiler. In both cases, the default build system must be significantly modified to build on
these platforms. See the community web page user support FAQ to get started.

This chapter describes how to build and install the DTC community GSI software on your
local Linux computing resources. These instructions apply only to the DTC community GSI.
While the community GSI source code is identical to the NCEP's GSI trunk code used for
release, the community build system is different, allowing it to be more general to support a
wide variety of computing platforms.

The GSI build process consists of four general steps:

• Obtaining the source code for GSI and WRF.
• Building the WRF model (see the WRF user's guide).
• Setting the appropriate environment variables for the GSI build.
• Configuring and compiling the GSI source code.

This chapter is organized as follows: Section 2.2 describes how to obtain the source code.
Section 2.3 covers the directory structure and supplemental NCEP libraries included with

8

2. Software Installation

the distribution. Section 2.4 starts with an outline of the build example and then goes
into a more detailed discussion of setting up the build environment and the configure and
compile steps. Section 2.5 illustrates the build process for three of the compilers (Intel, PGI
and Gnu) on the NCAR Yellowstone supercomputer. Section 2.6 covers system requirements
and settings (tools, libraries, and environment variable settings), and currently supported
platforms in detail. Section 2.7 discusses what to do if you have problems with the build and
where to get help.

For beginners, sections 2.2 and 2.4 provide the necessary steps to obtain the code and
build GSI on most systems. The remainder of the chapters provide background material
for completeness. A final chapter 2.8, discusses the new experimental CMake build system
being developed by the DTC and EMC as a common shared build method. Advanced topics,
such as customizing the build, porting to new platforms, and debugging can be found in the
GSI Advanced User's Guide.

2.2 Obtaining and Setting Up the Source Code

The community GSI resources, including source code, build system, utilities, practice data,
and documentation, are available from the DTC community GSI users website, located at

http://www.dtcenter.org/com-GSI/users/index.php

The source code is available by first selecting the Download tab on the vertical menu located
on the left column of the page, and then selecting the GSI/EnKF System submenu. New users
must first register before downloading the source code. Returning users only need to enter
their registration email address to log in. After accessing the download page, select the
link to the comGSIv3.6_EnKFv1.2.tar tarball to download the most recent version of the
source code (October 2017). Selecting the newest release of the community GSI is critical for
having the most recent capabilities, versions of supplemental libraries, and bug fixes. Full
support is only offered for the two most recent code releases.

To analyze satellite radiance observations, GSI requires the use of CRTM coefficients. It is
important to use only the version of CRTM coefficients provided on the GSI website. Due
to their large size, these are available as a separate tarfile. They can be downloaded by
selecting the link to the tarball for the CRTM 2.2.3 Big Endian coefficients from the
web page. For all compilers, use the big endian byte order coefficients found in the first
CRTM link.

The download page also contains links to the fixed files necessary for running global GSI:

• Global configuration (fix files to run Global GSI)

The community GSI version 3.6 comes in a tar file named comGSIv3.6_EnKFv1.2.tar.
The tar file may be unpacked by using the UNIX commands:

gunzip comGSIv3.6_EnKFv1.2.tar.gz
tar -xvf comGSIv3.6_EnKFv1.2.tar

9

http://www.dtcenter.org/com-GSI/users/index.php

2. Software Installation

This creates the top level GSI directory comGSIv3.6_EnKFv1.2/. After downloading the
source code, and prior to building, the user should check the known issues link on the
download page of the DTC website to determine if any bug fixes or platform specific cus-
tomizations are needed.

2.3 Directory Structure, Source Code and Supplemental Libraries

The GSI system includes the GSI source code, the build system, supplemental libraries, fixed
files, and run scripts. Starting with the current version of GSI V3.6, the directory structure
has be changed slightly. The following table lists the system components found inside the
root GSI directory.

Directory Name Content

src/ GSI source code and makefiles
lib/ Source code and build location for supplemental libraries
core-libs/ Build directory for supplemental libraries for CMake build
libsrc/ Source code for supplemental libraries for the CMake build
fix/ Fixed input files required by a GSI analysis, such as

background error covariances, observation error tables;
Excluding the CRTM coefficients

include/ Include files created by the build system
dtc/ Directory for the DTC build system, executable gsi.exe location, and sample run scripts
arch/ Build system support such as machine architecture specifics

(see Advanced GSI User's Guide)
util/ Tools for GSI diagnostics

For convenience, supplemental NCEP libraries for building GSI are included in the
src/libs/ directory. These libraries will be built when compiling GSI. These supplemental
libraries are listed in the table below.

Directory Name Content
bacio/ NCEP BACIO library
bufr/ NCEP BUFR library
crtm_2.2.3/ JCSDA community radiative transfer model
gsdcloud/ GSD Cloud analysis library
misc/ Misc support libraries
nemsio/ NEMS I/O library
sfcio/ NCEP GFS surface file i/o module
sigio/ NCEP GFS atmospheric file i/o module
sp/ NCEP spectral - grid transforms
w3emc_v2.0.5/ NCEP/EMC W3 library (date/time manipulation, GRIB)
w3nco_v2.0.6/ NCEP/NCO W3 library (date/time manipulation, GRIB)

The one set of non-standard library files not included with the source code are those asso-
ciated with the WRF IO API. These are obtained by linking to a build of the WRF code.

10

2. Software Installation

Please note that the release version of WRF/EnKF has only been tested using the previous
two release versions of WRF. Older versions of WRF may provide unpredictable results.

Following a registration process similar to that for downloading GSI, the WRF code and full
WRF documentation can be obtained from the WRF Users' Page,

http://www.mmm.ucar.edu/wrf/users/

2.4 Compiling GSI

This section starts with a quick outline of how to build GSI (2.4.1), followed by a more
detailed discussion of the build process (2.4.2 & 2.4.3). Typically GSI will build straight out of
the box on any system that successfully builds the WRF model. Should the user experience
any difficulties with the default build, check the build environment against the requirements
described at the end of section 2.6.

To proceed with the GSI build, it is assumed that the WRF model has already been built on
the current system. GSI uses the WRF I/O API libraries to read the background file. These
I/O libraries are created as part of the WRF build, and are linked into GSI during the GSI
build process. In order to successfully link the WRF I/O libraries with the GSI source, it is
crucial that both WRF and GSI are built using the same Fortran compilers. This means that
if WRF is built with the Intel Fortran compiler, then GSI must also be built with the Intel
Fortran compiler. It is also recommended that both codes be built with the same annual
version number of the compiler (e.g., 14, 15, etc.).

2.4.1 Build Overview

This section provides a quick outline of the steps necessary to build the GSI code. The
following steps describe that build process.

1. Set the environment for the compiler: If not already done, set the necessary paths
for using your selected compiler, such as loading the appropriate modules or modifying
your path variable.

2. Set the environment variables: The first path on this list will always need to be
set. The remaining two will depend on your choice of compiler and how your default
environment is configured.
a. WRF_DIR the path to the compiled WRF directory (to always be set)
b. NETCDF the path to the NETCDF libraries
c. LAPACK_PATH the path to the LAPACK math libraries

3. Change into the dtc/ directory
4. Run the configure script
5. Run the compile script

11

http://www.mmm.ucar.edu/wrf/users/

2. Software Installation

2.4.2 Environment Variables

Before configuring the GSI code to be built, be sure to check the following enviroment
variables:

WRF_DIR defines the path to the root of the WRF build directory. Setting this is manda-
tory. This variable tells the GSI build system where to find the WRF I/O libraries. The
process for setting the environment variables varies according to the login shell used.
To set the path variable WRF_DIR for csh/tcsh, type:

setenv WRF_DIR /path_to_WRF_root_directory/ for csh or tcsh
export WRF_DIR=/path_to_WRF_root_directory/ for ksh or bash

NETCDF The second environment variable specifies the local path to NetCDF library.
The path location for the NETCDF environment variable may be checked by using the
command

echo $NETCDF

If the command returns with the response that the variable is undefined, such as

NETCDF: Undefined variable.

it is then necessary to manually set this variable. If your system uses modules or a
similar mechanism to set the environment, do this first. If a valid path is returned by
the echo command, no further action is required.

LAPACK_PATH defines the path to the LAPACK library. Typically, this variable will
only need to be set on systems without a vendor provided version of LAPACK. IBM
systems typically come installed with the LAPACK equivalent ESSL library that links
automatically. Likewise, the PGI compiler often comes with a vendor provided version
of LAPACK that links automatically with the compiler. Experience has shown that the
following situations make up the majority of cases where the LAPACK variable needs
to be set:

• Linux environments using Intel Fortran compiler.
• Building with Gfortran.
• On systems where the path variables are not properly set.
• On stripped down versions of the IBM AIX OS that lack the ESSL libraries

Of these four, the first case is the most common. The Intel compiler usually comes
with a vendor provided mathematics library known as the Mathematics Kernel Libraries
or MKL for short. While most installations of the Intel compiler typically come with
the MKL libraries installed, the ifort compiler does not automatically load the library.
It is therefore necessary to set the LAPACK_PATH variable to the location of the MKL
libraries when using the Intel compiler. You may need to ask your system administrator
for the correct path to these libraries.

On super-computing systems with multiple compiler options, these variables may be set as
part of the module settings for each compiler. On the NCAR supercomputer Yellowstone, the
Intel build environment can be specified through setting the appropriate modules. When this
is done, the MKL library path is available through a local environment variable, MKLROOT.
The LAPACK environment may be set for csh/tcsh with the Unix commands

12

2. Software Installation

setenv LAPACK_PATH $MKLROOT

and for bash/ksh by

export LAPACK_PATH=$MKLROOT

Once the environment variables have been set, the next step in the build process is to run
the configure and compile scripts.

2.4.3 Configure and Compile

Once the environment variables have been set, building the GSI source code requires two
additional steps:

1. Run the configure script and select a compiler option.
2. Run the compile script.

Change into the comGSIv3.6_EnKFv1.2/dtc directory and issue the configure command:

./configure

The ./configure command uses user input to create a platform specific configuration file
called configure.gsi. The script starts by echoing the NETCDF and WRF_DIR paths set
in the previous section. It then examines the current system and queries the user to select
from multiple build options.

For 64-bit Linux, the options will be the following:

Will use NETCDF in dir: /glade/apps/opt/netcdf/4.3.0/intel/default
Will use WRF in dir: /glade/p/work/stark/WRF/intel/trunk_20150420_3-7_RELEASE
--
Please select from among the following supported platforms.

1. Linux x86_64, PGI compilers (pgf90 & pgcc) (dmpar,optimize)
2. Linux x86_64, PGI compilers (pgf90 & gcc) (dmpar,optimize)
3. Linux x86_64, PGI compilers (pgf90 & gcc) Supercomp (w/o -f90=SFC) (dmpar,optimize)
4. Linux x86_64, PGI compilers (pgf90 & pgcc) Supercomp (w/o -f90=SFC) (dmpar,optimize)
5. Linux x86_64, GNU compilers (gfortran & gcc) (dmpar,optimize)
6. Linux x86_64, Intel/gnu compiler (ifort & gcc) (dmpar,optimize)
7. Linux x86_64, Intel compiler (ifort & icc) (dmpar,optimize)
8. Linux x86_64, Intel compiler (ifort & icc), IBM POE (EXPERIMENTAL) (dmpar,optimize)
9. Linux x86_64, Intel compiler (ifort & icc), SGI MPT (EXPERIMENTAL) (dmpar,optimize)

Enter selection [1-9] :

Looking at the list, there are two things to note. First, the GNU C-compiler (gcc) may
be paired with any of the other Fortran compilers. This allows the build to use the GNU
C-compiler in place of the Intel (icc) or PGI (pgcc) C-compiler.

13

2. Software Installation

There are also separate build targets for vendor supplied versions of MPI such as IBM
POE and SGI MPT. This was added due to some computing hardware vendors creating
non-standard mpif90 wrappers for their vendor supplied version of MPI. If uncertain about
which to choose, start by selecting the default option corresponding to the fortran compiler
you wish to use (either 1, 5, or 7). If that option fails with an error referencing a bad argument
for mpif90, only then try the options listed for use with Supercomp, IBM POE, or SGI MPT.

On selecting an option, the script reports a successful configuration with the banner:

--
Configuration successful. To build the GSI, type: compile
--

Failure to get this banner means that the configuration step failed to complete. The most
typical reason for a failure is an error in one of the environment variables paths.

After selecting a build option, run the compile script:

./compile >& compile.log

Capturing the build information to a log file by redirecting the output is necessary to diag-
nose build issues.

To remove all built files in every directory, as well as the configure.gsi, type:

./clean -a

A complete clean is necessary if the compilation failed or if the configuration file is
changed.

Following a successful compile, the GSI executable gsi.exe can be found in the run/
directory. If the executable is not found, check the compilation log file. If the build failed,
search for the first instance of the word "Error" (with a capital "E") to locate the section of
the log file with the failure.

2.5 Example of Build

To illustrate the build process, the following section describes the steps necessary to build
GSI on the NCAR Yellowstone supercomputer using the Intel compiler, the PGI compiler,
and the Gnu compiler. Other platforms will be similar.

2.5.1 Intel Build

Steps to build GSI on Yellowstone using the Intel compiler:

14

2. Software Installation

1. Select the Intel compiler environment by using the module commands:

module load intel
module load impi mkl ncarcompilers ncarbinlibs netcdf

These module commands have specified the compiler, MPI, the version of the LAPACK
library (MKL), and the NetCDF library.

2. For this case, two of the paths must be set. The path to the WRF directory must always
be specified, and the Intel Mathematics Kernal Library (MKL) will be used in place of
the LAPACK library. Note that on Yellowstone, the variable MKLROOT is set to the
path to the MKL libraries by loading the MKL module. To set the paths in a C-shell
environment, use:

setenv WRF_DIR /PATH TO WRF DIRECTORY/
setenv LAPACK_PATH $MKLROOT

3. To run the configure script, type ./configure inside the top of the GSI directory. If
the first three steps were completed successfully, a table of compiler options should
appear. Select the desired compiler combination option, which in this case is either
6 or 7. The alternative options (eight and nine) are needed for certain platforms that
have a vendor supplied custom version of MPI. Try the default build options for MPI
first, and only if it fails should the second option be used.

4. To compile the code, type the following: ./compile >& compile.log. If the build
completes successfully, an executable named gsi.exe will be created in the ./run
directory.

2.5.2 PGI Build

Steps to build GSI on Yellowstone using the PGI compiler:

1. The PGI compiler environment is selected using the module commands:

module load pgi
module load impi ncarcompilers ncarbinlibs netcdf

These module commands have specified the compiler, MPI, and the NetCDF library.
2. For this case only the path to the WRF directory must be set. The PGI compiler comes

with its own version of LAPACK that it finds automatically. It is not necessary to set
the LAPACK path. In a C-shell environment, use:

setenv WRF_DIR /PATH TO WRF DIRECTORY/

3. Similar to the Intel example, pick compiler options listed in the table. In this case, the
desired compiler combination option is either 3 or 4.

4. To compile the code, type the following: ./compile >& compile.log. If the build
completes successfully, an executable named gsi.exe will be created in the ./run
directory.

15

2. Software Installation

2.5.3 GNU Build

Steps to build GSI on Yellowstone using the GNU compiler:

1. The GNU compiler environment is selected using the module commands:

module load gnu/5.3.0
module load ncarcompilers ncarbinlibs netcdf lapack/3.2.1

These module commands have specified the compiler, MPI, and the NetCDF library.
2. For this case, two of the paths must be set. The path to the WRF directory must always

be specified, and we will use the LAPACK library installed by the module. In a C-shell
environment use:

setenv WRF_DIR /PATH TO WRF DIRECTORY/
setenv LAPACK_PATH $LIB_NCAR

3. Similar to the Intel example, pick compiler options listed in the table. In this case, the
desired compiler combination option is 5.

4. To compile the code, type the following: ./compile >& compile.log. If the build
completes successfully, an executable named gsi.exe will be created in the ./run
directory.

2.6 System Requirements and External Libraries

The source code for GSI is written in FORTRAN, FORTRAN 90, and C. In addition, the
parallel executables require some flavor of MPI and OpenMP for the distributed memory
parallelism. Lastly the I/O relies on the NetCDF I/O libraries. Beyond standard shell scripts,
the build system relies on the Perl scripting language and makefiles.

The basic requirements for building and running the GSI system are the following:

• FORTRAN 2003+ compiler
• C compiler
• MPI v1.2+
• OpenMP
• Perl
• NetCDF V4.2+
• LAPACK and BLAS mathematics libraries, or equivalent
• WRF V3.6+

Because all but the last of these tools and libraries are typically the purview of system
administrators to install and maintain, they are lumped together here as part of the basic
system requirements.

16

2. Software Installation

2.6.1 Compilers Tested for Release

Version 3.6 of the DTC community GSI system has been successfully tested on a variety of
Linux platforms with many versions of the Intel and PGI fortran compilers.

Legacy build rules are also available for IBM AIX and Mac Darwin platforms. Because the
DTC does not have the ability to test on these platforms, they are no longer supported. Also,
the Linux GNU gfortran option is available in this version.

The following Linux compiler combinations have been fully tested:

Fortran compiler version C compiler version

Intel only ifort 17.0.1, 16.0.3, 15.0.3, 14.0.2 icc
PGI only pgf90 17.5, 16.5, 15.7 pgcc
GNU only gfortran 5.4.0 with netcdf 4.4.0 gcc 5.4.0

Unforeseen build issues may occur when using older compiler and library versions. As
always, the best results will be achieved by using the most recent compiler versions.

2.7 Getting Help and Reporting Problems

Should a user experience any difficulty building GSI on his/her system, please first confirm
that all the required software is properly installed (section 2.4). Next check that the external
libraries exist and specified paths in the configure file are correct. Lastly, check the resource
file configure.gsi for errors in any of the paths or settings. Should all these check out, feel free
to contact the community GSI Help Desk for assistance at

gsi-help@ucar.edu

At a minimum, when reporting code building problems to the helpdesk, please include a
copy of the build log and the configure.gsi file with your e-mail.

2.8 CMake Build System

A new unified build system based on CMake has been added to the GSI code. CMake
is a very powerful cross-platform open-source build system. In comGSI, the CMake build
system exists in parallel to the previous DTC build system, and either one can be used
independently to build the code. The CMake build system is still experimental, but is
available as an alternative to the traditional DTC build system.

17

2. Software Installation

2.8.1 CMake build process with the DTC script

The CMake build infrastructure consists of a top level directory with the name cmake/ and
configuration files in each directory named (CMakeLists.txt). The syntax for CMake
relies on a two step command line process, similar to "configure" and "compile." Command
line arguments are used to specify paths and compilers. To simplify the process, the DTC
provides a helper script that simplifies the choice of arguments that need to be used.

The helper script is called dtcbuild and is located in the directory dtc. This script attempts
to walk the user through the process of building GSI. By default CMake prefers to build the
source code "out-of-place," meaning that it does not populate the GSI directory with the
build. The script first creates a directory called build inside the source code directory to
house the build process. If there is already a directory called build, the script halts with a
warning to either rename it or delete it.

The script then checks that the path variable for the WRF build, either WRFPATH or WRF_DIR,
has been set. It then prompts the user to choose a compiler for the build.

Please select from among the following supported platforms.

1. Linux x86_64, PGI compilers (pgf90 & pgcc)
2. Linux x86_64, PGI compilers (pgf90 & gcc)
3. Linux x86_64, GNU compilers (gfortran & gcc)
4. Linux x86_64, Intel/gnu compiler (ifort & gcc)
5. Linux x86_64, Intel compiler (ifort & icc)
6. Linux x86_64, Intel compiler w/intel mpi (mpiifort & icc)
7. Linux x86_64, Intel compiler (mpif90 -f90=ifort & icc)

Enter selection [1-7] :

Once a compiler has been chosen, it generates local makefiles by invoking the cmake com-
mand with the proper arguments. One of those arguments selects that a local build of the
NCEP libraries needed by GSI will be conducted prior to the source code being built. The
final step of the script is to invoke a parallel build of the code.

This points to two advantages in using CMake to build the code. CMake automatically
generates code dependencies each time a build is invoked, allowing the use of a parallel
make, greatly reducing the time it take to complete the build. Typically the time to complete
the CMake build is a quarter of the time needed for the serial DTC "configure" and "compile"
to complete.

Once the build is complete, the two executables a gsi.x and enkf_gfs.x are placed in the
directory build/bin. Note that the name of the executables and their location differs from
the traditional DTC build.

Summary of CMake build steps:

1. Set up the build environment in the same way as with the DTC build

18

2. Software Installation

• Set up compilers/load modules
• Set the environment path for NetCDF and LaPack/MKL
• Set the environment path for WRF by setting either of the variables WRFPATH or
WRF_DIR to point to a compiled copy of the WRF code.

2. Copy the helper script into the top level directory (cp ./dtc/dtcbuild .)
3. Run the helper script (./dtcbuild)
4. Select the compiler combination for your build. For instance, number six for Intel on

Theia.
5. When the build is complets, the executables gsi.x and enkf_gfs.x will be located in

the directory build/bin

2.8.2 Build notes and additional requirements

Requirements:

• The CMake build requires use of version 2.8+ of cmake
• GSI will not build with the Intel compiler V15.0 due to an incompatibility with the

CRTM library.

Build notes:

• Building on the UCAR Yellowstone supercomputer requires additional flags due
to how the C compiler has been installed there. The platform specific script
dtcbuild_yellowstone accounts for this need.

• The build is not conducted within the src/ directory, as is the case with the traditional
DTC build, but instead is located in build/src/CMakeFiles.

• On the NCEP Theia supercomputer, GSI builds best with option six, due to the way
MPI is set up on that machine.

2.8.3 How the helper script works

This sections will go through the DTC helper script, each section at a time to illustrate how
the CMake build works.

One of the first things the script does is create the build directory; However, prior to this, it
checks if a directory by that name already exists. If it does, the script halts with a warning.

create build directory
if test -d ./build ; then

echo "directory build already exists, delete or rename the directory and dry again"
exit

else
mkdir ./build

fi

19

2. Software Installation

Next, the environment variables indicating the top of the source tree and the location of the
NCEP library source code are set.

set CORE_DIR to top of source tree.
CORE_DIR=‘pwd‘
echo "$CORE_DIR"
export CORE_DIR
export CORELIB=$CORE_DIR/libsrc
echo "$CORELIB"

Next the path to the WRF build is set. For the traditional DTC build, the variable WRF_DIR
is used. The current CMake build uses a different variable WRFPATH to do the same thing.
So as a work around, the script accepts the path information from either variable.

set path to WRF and test that it exists
if test -z "$WRFPATH" ; then

if test -z $WRF_DIR; then
echo ’** WARNING: No path to WRF_DIR and environment variable WRF_DIR not set.’
exit

else
export WRFPATH=$WRF_DIR

fi
fi

The next section queries the user to select a compiler combination for the build. Many of
the CMake build variables, such as compiler information, can be either set as environment
variables or included in the command line argument. Here we set them as environment vari-
ables, and cmake is invoked. The following shows the variable settings for the combination
of the PGI FORTRAN compiler and the Gnu C compiler.

if ["$resp" = "2"] ; then
echo ’ 2. Linux x86_64, PGI compilers (pgf90 & gcc) ’
export CC=gcc
export CXX=g++
export FC=pgf90
cd build
cmake -DBUILD_CORELIBS=ON $CORE_DIR
make -j 8

fi

These are standard guesses as to what the C, C++, and MPI call for the FORTRAN compiler
are called on your system. They may be wrong. In that case the environment variables CC,
CXX, and FC may need to be modified.

The final part of the script is the invocation of cmake.

cmake -DBUILD_CORELIBS=ON $CORE_DIR
make -j 8

20

2. Software Installation

There are two arguments used here. The first is -DBUILD_CORELIBS=ON. This argument
directs CMake to look in the core-libs/ directory for rules to build the NCEP libraries
needed for GSI. The environment variable CORELIB, defined at the top of the script, indi-
cates where to look for the library source code. In this case, it is in $CORE_DIR/libsrc/.
Any changes to the source code would be placed in $CORE_DIR/libsrc/, and any changes
to the CMake build rules would go in core-libs/. The second argument $CORE_DIR indi-
cates the location of the build directory. The final statement make -j 8 invokes a parallel
call to make using eight processors, which speeds up the build considerably. For more details
on the CMake build for GSI, see the readme file README.cmake in the top directory.

21

3
Running GSI

This chapter discusses the issues of running GSI. It starts with introductions to the input
data required to run GSI, then proceeds with a detailed explanation of an example GSI run
script and introductions to files produced by a successful GSI run. It concludes with some
frequently used options from the GSI namelist.

3.1 Input Data Required to Run GSI

In most cases, three types of input data (background, observations, and fixed files) must
be available before running GSI. In some special idealized cases, such as a pseudo single
observation test, GSI can be run without any observations. If running GSI with the 3D
EnVar hybrid option, global or regional ensemble forecasts are also needed.

3.1.1 Background or First Guess Field

As with other data analysis systems, the background or first guess fields may come from
a model forecast conducted separately or from a previous data assimilation cycle. The
following is a list of the types of background files that can be used by this release version of
GSI:

a) WRF-NMM input fields in binary format
b) WRF-NMM input fields in NetCDF format
c) WRF-ARW input fields in binary format
d) WRF-ARW input fields in NetCDF format

22

3. Running GSI

e) GFS input fields in binary format or through NEMS I/O
f) NEMS-NMMB input fields
g) RTMA input files (2-dimensional binary format)
h) WRF-Chem GOCART input fields with NetCDF format
i) CMAQ binary file

The Weather Research and Forecasting (WRF) community modeling system includes two
dynamical cores: the Advanced Research WRF (ARW) and the Nonhydrostatic Mesoscale
Model (NMM). The GFS (Global Forecast System), NEMS (National Environmental Mod-
eling System)-NMMB (Nonhydrostatic Mesoscale Model B-Grid), and RTMA (Real-Time
Mesoscale Analysis) are operational systems at the National Center for Environmental Pre-
diction (NCEP). The DTC mainly supports GSI for regional WRF applications. Therefore,
most of the multiple platform tests were conducted using WRF netcdf background files (d).
The DTC also supports the GSI in global and chemical applications with limited resources.
The following backgrounds have been tested for this release:

1. ARW NetCDF (d) were tested with multiple cases
2. GFS (e) was tested with multiple NCEP cases
3. WRF-Chem NetCDF (h) was tested with a single case
4. NEMS-NMMB(f) was tested with a single case

3.1.2 Observations

GSI can analyze many types of observational data, including conventional data, satellite
radiance observations, GPS Radio Occultations, and radar data, among others. The default
observation file names are given in the released GSI namelist, with corresponding observa-
tions included in each file. Sample BUFR files available for download from the NCEP website
listed in table 3.1.

The observations are complex and many observations need format converting and quality
control before being used by GSI. GSI ingests observations saved in BUFR format (with NCEP
specified features). The NCEP processed PrepBUFR and BUFR files can be used directly. If
users need to introduce their own data into GSI, please check the following website for the
User's Guide and examples of BUFR/PreBUFR processing:

http://www.dtcenter.org/com-GSI/BUFR/index.php

DTC supports BUFR/PrepBUFR data processing and quality control as part of the GSI com-
munity tasks.

GSI can analyze all of the data types in table 3.1, but each GSI run (for both operation and
case study purposes) only uses a subset of the data. Some data may be outdated and not
available, some are in monitoring mode, and some may have quality issues during certain
periods. Users are encouraged to check data quality prior to running an analysis. The
following NCEP links provide resources that include data quality history:

http://www.emc.ncep.noaa.gov/mmb/data_processing/Satellite_Historical_Documentation.htm

23

http://www.dtcenter.org/com-GSI/BUFR/index.php
http://www.emc.ncep.noaa.gov/mmb/data_processing/Satellite_Historical_Documentation.htm

3. Running GSI

http://www.emc.ncep.noaa.gov/mmb/data_processing/Non-satellite_Historical_Documentation.htm

Because the current regional models do not have ozone as a prognostic variable, ozone data
are not assimilated on the regional scale.

GSI can be run without any observations to see how the moisture constraint modifies the first
guess (background) field. GSI can also be run in a pseudo single observation mode, which
does not require any BUFR observation files. In this mode, users should specify observation
information in the namelist section SINGLEOB_TEST (see Section 4.2 for details). As more
data files are used, additional information will be added through the GSI analysis.

3.1.3 Fixed Files (Statistics and Control Files)

A GSI analysis also needs to read specific information from statistic files, configuration files,
bias correction files, and CRTM coefficient files. We refer to these files as fixed files and they
are located in a directory called fix/ in the release package, except for CRTM coefficients.

Table 3.2 lists fixed files required for a GSI run, the content of the files, and corresponding
example files from the regional and global applications:

Because most of those fixed files have hardwired names inside the GSI, a GSI run script
needs to copy or link those files (right column in table 3.2) from the ./fix directory to the
GSI run directory with the file name required in GSI (left column in table 3.2). For example,
if GSI runs with an ARW background, the following line should be in the run script:

cp ${path of the fix directory}/anavinfo_arw_netcdf anavinfo

Note that in this release, there is a strict rule that the numbers of vertical levels in the
file anavinfo must match the background file (for example, wrfinput_d01) for the 3-
dimensional variables. Otherwise GSI will fail. To identify the correct numbers of vertical
levels, users can dump out (use ncdump -h) the dimensions from the NetCDF background file
and find the number for bottom_top and bottom_top_stag. For example, if the dimensions
for the background file is:

bottom_top = 50 ;
bottom_top_stag = 51 ;

Then the corresponding anavinfo file should have 51 levels for prse (3-dimemsional pres-
sure field) and 50 levels for other three-dimensional variables such as u, v, tv, q, oz, cw, etc.
For details, users can dump out the global attributes of the background file and find the
number of vertical levels for each variable. The following shows part of the anavinfo file
for the above background:

24

http://www.emc.ncep.noaa.gov/mmb/data_processing/Non-satellite_Historical_Documentation.htm

3. Running GSI

Table 3.1: GSI observation file names, content, and examples
GSI Name Content Example file names

prepbufr Conventional observations, including ps, t, q,
pw, uv, spd, dw, sst

gdas1.t12z.prepbufr.nr

satwndbufr satellite winds observations gdas1.t12z.satwnd.tm00.bufr_d
amsuabufr AMSU-A 1b radiance (brightness temperatures)

from satellites NOAA-15, 16, 17,18, 19 and
METOP-A/B

gdas1.t12z.1bamua.tm00.bufr_d

amsubbufr AMSU-B 1b radiance (brightness temperatures)
from satellites NOAA-15, 16,17

gdas1.t12z.1bamub.tm00.bufr_d

radarbufr Radar radial velocity Level 2.5 data ndas.t12z.radwnd.tm12.bufr_d
gpsrobufr GPS radio occultation and bending angle obser-

vation
gdas1.t12z.gpsro.tm00.bufr_d

ssmirrbufr Precipitation rate observations from SSM/I gdas1.t12z.spssmi.tm00.bufr_d
tmirrbufr Precipitation rate observations from TMI gdas1.t12z.sptrmm.tm00.bufr_d
sbuvbufr SBUV/2 ozone observations from satellite

NOAA-16, 17, 18, 19
gdas1.t12z.osbuv8.tm00.bufr_d

hirs2bufr HIRS2 1b radiance from satellite NOAA-14 gdas1.t12z.1bhrs2.tm00.bufr_d
hirs3bufr HIRS3 1b radiance observations from satellite

NOAA-16, 17
gdas1.t12z.1bhrs3.tm00.bufr_d

hirs4bufr HIRS4 1b radiance observation from satellite
NOAA-18, 19 and METOP-A/B

gdas1.t12z.1bhrs4.tm00.bufr_d

msubufr MSU observation from satellite NOAA 14 gdas1.t12z.1bmsu.tm00.bufr_d
airsbufr AMSU-A and AIRS radiances from satellite

AQUA
gdas1.t12z.airsev.tm00.bufr_d

mhsbufr Microwave Humidity Sounder observation from
NOAA-18, 19 and METOP-A/B

gdas1.t12z.1bmhs.tm00.bufr_d

ssmitbufr SSMI observation from satellite f13, f14, f15 gdas1.t12z.ssmit.tm00.bufr_d
amsrebufr AMSR-E radiance from satellite AQUA gdas1.t12z.amsre.tm00.bufr_d
ssmisbufr SSMIS radiances from satellite f16 gdas1.t12z.ssmis.tm00.bufr_d
gsnd1bufr GOES sounder radiance (sndrd1, sndrd2, sndrd3

sndrd4) from GOES-11, 12, 13, 14, 15.
gdas1.t12z.goesfv.tm00.bufr_d

l2rwbufr NEXRAD Level 2 radial velocity ndas.t12z.nexrad.tm12.bufr_d
gsndrbufr GOES sounder radiance from GOES-11, 12 gdas1.t12z.goesnd.tm00.bufr_d
gimgrbufr GOES imager radiance from GOE-11, 12
omibufr Ozone Monitoring Instrument (OMI) observa-

tion NASA Aura
gdas1.t12z.omi.tm00.bufr_d

iasibufr Infrared Atmospheric Sounding Interfero-meter
sounder observations from METOP-A/B

gdas1.t12z.mtiasi.tm00.bufr_d

gomebufr The Global Ozone Monitoring Experiment
(GOME) ozone observation from METOP-A/B

gdas1.t12z.gome.tm00.bufr_d

mlsbufr Aura MLS stratospheric ozone data from Aura gdas1.t12z.mlsbufr.tm00.bufr_d
tcvitl Synthetic Tropic Cyclone-MSLP observation gdas1.t12z.syndata.tcvitals.tm00
seviribufr SEVIRI radiance from MET-08,09,10 gdas1.t12z. sevcsr.tm00.bufr_d
atmsbufr ATMS radiance from Suomi NPP gdas1.t12z.atms.tm00.bufr_d
crisbufr CRIS radiance from Suomi NPP gdas1.t12z.cris.tm00.bufr_d
modisbufr MODIS aerosol total column AOD observations

from AQUA and TERRA

25

3. Running GSI

state_derivatives::
!var level src
ps 1 met_guess
u 50 met_guess
v 50 met_guess
tv 50 met_guess
q 50 met_guess
oz 50 met_guess
cw 50 met_guess
prse 51 met_guess

::

Table 3.2: GSI fixed files, content, and examples
GSI Name Content Example file names

anavinfo Information file to set control and
analysis variables

anavinfo_arw_netcdf
anavinfo_ndas_netcdf global_anavinfo.l64.txt

berror_stats background error covariance nam_nmmstat_na.gcv nam_glb_berror.f77.gcv
global_berror.l64y386.f77

errtable Observation error table nam_errtable.r3dv
prepobs_errtable.global

Observation data control file (more detailed explanation in Section 4.3)
convinfo Conventional observation infor-

mation file
global_convinfo.txt nam_regional_convinfo.txt

satinfo satellite channel information file global_satinfo.txt
pcpinfo precipitation rate observation in-

formation file
global_pcpinfo.txt

ozinfo ozone observation information file global_ozinfo.txt
Bias correction and Rejection list

satbias_angle satellite scan angle dependent bias
correction file

global_satangbias.txt

satbias_in
satellite mass bias correction coef-
ficient file

sample.satbias

combined satellite angle depen-
dent and mass bias correction co-
efficient file

gdas1.t00z.abias.new

t_rejectlist,
w_rejectlist,..

Rejetion list for T, wind, et al. in
RTMA

new_rtma_t_rejectlist new_rtma_w_rejectlist

Each operational system, such as GFS, NAM, RAP, and RTMA, has their own set of fixed
files. For your specific GSI runs, you need to get the correct set of fixed files. Fixed files for
regional applications are included in this GSI/EnKF release and put under the fix/ directory.
Fixed files for global applications are not included in this release in order to save space.
Please download comGSIv3.6_EnKFv1.2_fix_global.tar.gz if you need to run global
cases. Note that little endian background error covariance files are no longer supported.

Each release version of the GSI calls a certain version of the CRTM library and needs
corresponding CRTM coefficients to do radiance data assimilation. This version of GSI uses
CRTM 2.2.3. The coefficient files are listed in table 3.3.

26

3. Running GSI

Table 3.3: List of radiance coefficients used by CRTM

File name used in GSI Content Example files

Nalli.IRwater.EmisCoeff.bin
NPOESS.IRice.EmisCoeff.bin
NPOESS.IRsnow.EmisCoeff.bin
NPOESS.IRland.EmisCoeff.bin
NPOESS.VISice.EmisCoeff.bin
NPOESS.VISland.EmisCoeff.bin
NPOESS.VISsnow.EmisCoeff.bin
NPOESS.VISwater.EmisCoeff.bin
FASTEM6.MWwater.EmisCoeff.bin

IR surface emissivity
coefficients

Nalli.IRwater.EmisCoeff.bin
NPOESS.IRice.EmisCoeff.bin
NPOESS.IRsnow.EmisCoeff.bin
NPOESS.IRland.EmisCoeff.bin
NPOESS.VISice.EmisCoeff.bin
NPOESS.VISland.EmisCoeff.bin
NPOESS.VISsnow.EmisCoeff.bin
NPOESS.VISwater.EmisCoeff.bin
FASTEM6.MWwater.EmisCoeff.bin

AerosolCoeff.bin Aerosol coefficients AerosolCoeff.bin
CloudCoeff.bin Cloud scattering and

emission coefficients
CloudCoeff.bin

${satsen}.SpcCoeff.bin Sensor spectral re-
sponse characteristics

${satsen}.SpcCoeff.bin

${satsen}.TauCoeff.bin Transmittance coeffi-
cients

${satsen}.TauCoeff.bin

3.2 GSI Run Script

In this release version, three sample run scripts are available for different GSI applications:

• dtc/run/run_gsi_regional.ksh for regional GSI
• dtc/run/run_gsi_global.ksh for global GSI (GFS)
• dtc/run/run_gsi_chem.ksh for chemical analysis

These scripts will be called to generate GSI namelists:

• dtc/run/comgsi_namelist.sh for regional GSI
• dtc/run/comgsi_namelist_gfs.sh for global GSI (GFS)
• dtc/run/comgsi_namelist_chem.sh for GSI chemical analysis

We will introduce the regional run scripts (run_gsi_regional.ksh) in detail in the following
sections and introduce the global run script when we discuss the GSI global application in
the Advanced GSI User's Guide.

Note there is also a run script for regional EnKF (run_enkf_wrf.ksh), a run script for global
EnKF (run_enkf_global.ksh) and the EnKF namelist script (enkf_wrf_namelist.sh) in
the same directory, which will be introduced in the EnKF User's Guide.

3.2.1 Steps in the GSI Run Script

The GSI run script creates a run time environment necessary to run the GSI executable. A
typical GSI run script includes the following steps:

27

3. Running GSI

1. Request computer resources to run GSI.
2. Set environmental variables for the machine architecture.
3. Set experimental variables (such as experiment name, analysis time, background, and

observation).
4. Set the script that generates the GSI namelist.
5. Check the definitions of required variables.
6. Generate a run directory for GSI (sometimes called a working or temporary directory).
7. Copy the GSI executable to the run directory.
8. Copy the background file to the run directory and create an index file listing the

location and name of ensemble members if running with a hybrid set up.
9. Link observations to the run directory.

10. Link fixed files (statistic, control, and coefficient files) to the run directory.
11. Generate namelist for GSI.
12. Run the GSI executable.
13. Post-process: save analysis results, generate diagnostic files, and clean the run direc-

tory.
14. Run GSI as observation operator for EnKF, only for if_observer=Yes.

Typically, users only need to modify specific parts of the run script (steps 1, 2, and 3)
to fit their specific computer environment and point to the correct input/output files and
directories. Users may also need to modify step 4 if changes are made to the namelist and
it is under a different name or at a different location. The next section (3.2.2) covers each
of these modifications for steps 1 to 3. Section 3.2.3 will dissect a sample regional GSI run
script and introduce each piece of this sample GSI run script. Users should start with the
run script provided in the same release package with the GSI executable and modify it for
their own run environment and case configuration.

3.2.2 Customization of the GSI Run Script

3.2.2.1 Setting Up the Machine Environment

This section focuses on step 1 of the run script: modifying the machine specific entries.
Specifically, this consists of setting Unix/Linux environment variables and selecting the cor-
rect parallel run time environment (batch system with options).

GSI can be run with the same parallel environments as other MPI programs, for example:

• IBM supercomputer using LSF (Load Sharing Facility)
• IBM supercomputer using LoadLevel
• Linux clusters using PBS (Portable Batch System)
• Linux clusters using LSF
• Linux workstation (no batch system)
• Intel Mac Darwin workstation with PGI complier (no batch system)

Two queuing systems are listed below as examples:

In both of the examples above, environment variables are set specifying system resource

28

3. Running GSI

Machine &
queue system

Linux Cluster with LSF Linux Cluster with PBS Workstation

example

#BSUB -P ????????
#BSUB -W 00:10
#BSUB -n 4
#BSUB -R "span[ptile=16]
#BSUB -J gsi
#BSUB -o gsi.%J.out
#BSUB -e gsi.%J.err
#BSUB -q small

#PBS -l procs=4
#PBS -n
#PBS -o gsi.out
#PBS -e gsi.err
#PBS -N GSI
#PBS -l walltime=00:20
#PBS -A ??????

No batch sys-
tem, skip this
step

management, such as the number of processors, the name/type of queue, maximum wall
clock time allocated for the job, options for standard out and standard error, etc. Some
platforms need additional definitions to specify Unix environment variables that further
define the run environment.

These variable settings can significantly impact the GSI run efficiency and accuracy of the
GSI results. Please check with your system administrator for optimal settings for your
computer system. Note that while the GSI can be run with any number of processors, it will
not scale well with the increase of processor numbers after a certain threshold based on the
case configuration and GSI application types.

3.2.2.2 Setting up the Running Environment

There are only two options to define in this block.

GSIPROC = processor number used for GSI analysis
#--

GSIPROC=4
ARCH=’LINUX_LSF’

Supported configurations:
IBM_LSF,
LINUX, LINUX_LSF, LINUX_PBS,
DARWIN_PGI

The option ARCH selects the machine architecture. It is a function of platform type and
batch queuing system. The option GSIPROC sets the number of cores used in the run. This
option also decides if the job is run as a multiple core job or as a single core run. Several
choices of the option ARCH are listed in the sample run script. Please check with your system
administrator about running parallel MPI jobs on your system.

Option ARCH Platform Compiler batch queuing system

IBM_LSF IBM AIX xlf, xlc LSF
LINUX Linux workstation Intel/PGI/GNU mpirun if GSIPROC > 1
LINUX_LSF Linux cluster Intel/PGI/GNU LSF
LINUX_PBS Linux cluster Intel/PGI/GNU PBS
DARWIN_PGI MAC DARWIN PGI mpirun if GSIPROC > 1

29

3. Running GSI

3.2.2.3 Setting Up an Analysis Case

This section discusses setting up variables specific to a given case, such as analysis time,
working directory, background and observation files, location of fixed files and CRTM coef-
ficients, the GSI executable file, and the script generating GSI namelist.

###
case set up (users should change this part)
###
#
ANAL_TIME= analysis time (YYYYMMDDHH)
WORK_ROOT= working directory, where GSI runs
PREPBURF = path of PreBUFR conventional obs
BK_FILE = path and name of background file
OBS_ROOT = path of observations files
FIX_ROOT = path of fix files
GSI_EXE = path and name of the gsi executable

ANAL_TIME=2017051312
HH=‘echo $ANAL_TIME | cut -c9-10‘
WORK_ROOT=testarw
OBS_ROOT=data/${ANAL_TIME}/obs
PREPBUFR=${OBS_ROOT}/nam.t${HH}z.prepbufr.tm00.nr
BK_ROOT=data/${ANAL_TIME}/arw
BK_FILE=${BK_ROOT}/wrfinput_d01.${ANAL_TIME}
CRTM_ROOT=fix/CRTM_2.2.3
GSI_ROOT=comGSI
FIX_ROOT=${GSI_ROOT}/fix
GSI_EXE=${GSI_ROOT}/dtc/run/gsi.exe
GSI_NAMELIST=${GSI_ROOT}/dtc/run/comgsi_namelist.sh

When picking the observation BUFR files, please be aware of the following:

• GSI run will stop if the time in the background file does not match the cycle time in
the observation BUFR file used for the GSI run (there is a namelist option to turn this
verification step off).

• Even if their contents are identical, PrepBUFR/BUFR files will differ if they were created
on platforms with different endian byte order specification (Linux vs. IBM). Appendix
A.1 discusses the conversion tool SSRC used to byte-swap observation files. Since
release version 3.2, GSI compiled with PGI and Intel can automatically handle byte
order issues in PrepBUFR and BUFR files. Users can directly link BUFR files of any
order if working with Intel and PGI platform.

The next part of this block focuses on additional options that specify important aspects of
the GSI configuration.

bk_core= which WRF core is used as background (NMM or ARW or NMMB)
bkcv_option= which background error covariance and parameter will be used
(GLOBAL or NAM)
if_clean = clean : delete temperal files in working directory (default)
no : leave running directory as is (this is for debug only)
if_observer = Yes : only used as observation operater for enkf
if_hybrid = Yes : Run GSI as 3D/4D EnVar

30

3. Running GSI

if_4DEnVar = Yes : Run GSI as 4D EnVar
if_hybrid=No # Yes, or, No -- case sensitive !
if_4DEnVar=No # Yes, or, No -- case sensitive (if_hybrid must be Yes)!
if_observer=No # Yes, or, No -- case sensitive !

bk_core=ARW
bkcv_option=NAM
if_clean=clean

#
setup for GSI 3D/4D EnVar hybrid

if [${if_hybrid} = Yes] ; then
ENS_ROOT=data/dacase/2017051312
ENSEMBLE_FILE_mem=${ENS_ROOT}/gfsens/sfg_2017051306_fhr06s

if [${if_4DEnVar} = Yes] ; then
BK_FILE_P1=${BK_ROOT}/wrfout_d01_2017-05-13_19:00:00
BK_FILE_M1=${BK_ROOT}/wrfout_d01_2017-05-13_17:00:00

ENSEMBLE_FILE_mem_p1=${ENS_ROOT}/sfg_2017051312_fhr09s
ENSEMBLE_FILE_mem_m1=${ENS_ROOT}/sfg_2017051312_fhr03s

fi
fi

no_member number of ensemble members
BK_FILE_mem path and base for ensemble members

no_member=20
BK_FILE_mem=${BK_ROOT}/wrfarw.mem

Option if_hybrid controls whether to run a hybrid ensemble/variational data analysis. If
if_hybrid=Yes, option if_4DEnVar=Yes indicates a hybrid 4D-EnVar analysis will be run,
while if_4DEnVar=No indicates a hybrid 3DEnVAR analysis will be run. Option if_observer
determines whether GSI is run as an observation operator for EnKF.

Option bk_core indicates the specific dynamic core used to create the background files
and specifies the core in the namelist. Option bk_core can be ARW or NMMB. Option
bkcv_option specifies the background error covariance to be used in the case. Two regional
background error covariance matrices are provided with the release, one from NCEP global
data assimilation (GDAS), and one from the NAM data assimilation system (NDAS). Please
check Section 4.8 for more details about GSI background error covariance. Option if_clean
tells the script if it needs to delete temporary intermediate files in the working directory after
a GSI run is completed.

In most cases, users should only make minor changes after the following:

###
Users should NOT change script after this point
###
#
BYTE_ORDER=Big_Endian
BYTE_ORDER=Little_Endian

31

3. Running GSI

3.2.3 Description of the Sample Regional Run Script to Run GSI

Listed below is an annotated regional run script with explanations on each function block.

For further details on the first three blocks of the script that users need to change, see
sections 3.2.2.1, 3.2.2.2, and 3.2.2.3:

#!/bin/ksh
###
machine set up (users should change this part)
###

set -x
#
GSIPROC = processor number used for GSI analysis
#--

GSIPROC=4
ARCH=’LINUX_LSF’

Supported configurations:
IBM_LSF,
LINUX, LINUX_LSF, LINUX_PBS,
DARWIN_PGI

#
###
case set up (users should change this part)
###
#
ANAL_TIME= analysis time (YYYYMMDDHH)
WORK_ROOT= working directory, where GSI runs
PREPBURF = path of PreBUFR conventional obs
BK_FILE = path and name of background file
OBS_ROOT = path of observations files
FIX_ROOT = path of fix files
GSI_EXE = path and name of the gsi executable

ANAL_TIME=2017051312
HH=‘echo $ANAL_TIME | cut -c9-10‘
WORK_ROOT=testarw
OBS_ROOT=data/${ANAL_TIME}/obs
PREPBUFR=${OBS_ROOT}/nam.t${HH}z.prepbufr.tm00.nr
BK_ROOT=data/${ANAL_TIME}/arw
BK_FILE=${BK_ROOT}/wrfinput_d01.${ANAL_TIME}
CRTM_ROOT=fix/CRTM_2.2.3
GSI_ROOT=comGSI
FIX_ROOT=${GSI_ROOT}/fix
GSI_EXE=${GSI_ROOT}/dtc/run/gsi.exe
GSI_NAMELIST=${GSI_ROOT}/dtc/run/comgsi_namelist.sh

#--
bk_core= which WRF core is used as background (NMM or ARW or NMMB)
bkcv_option= which background error covariance and parameter will be used
(GLOBAL or NAM)
if_clean = clean : delete temperal files in working directory (default)
no : leave running directory as is (this is for debug only)
if_observer = Yes : only used as observation operater for enkf
if_hybrid = Yes : Run GSI as 3D/4D EnVar

32

3. Running GSI

if_4DEnVar = Yes : Run GSI as 4D EnVar
if_hybrid=No # Yes, or, No -- case sensitive !
if_4DEnVar=No # Yes, or, No -- case sensitive (if_hybrid must be Yes)!
if_observer=No # Yes, or, No -- case sensitive !

bk_core=ARW
bkcv_option=NAM
if_clean=clean

#
setup for GSI 3D/4D EnVar hybrid

if [${if_hybrid} = Yes] ; then
ENS_ROOT=data/dacase/2017051312
ENSEMBLE_FILE_mem=${ENS_ROOT}/gfsens/sfg_2017051306_fhr06s

if [${if_4DEnVar} = Yes] ; then
BK_FILE_P1=${BK_ROOT}/wrfout_d01_2017-05-13_19:00:00
BK_FILE_M1=${BK_ROOT}/wrfout_d01_2017-05-13_17:00:00

ENSEMBLE_FILE_mem_p1=${ENS_ROOT}/sfg_2017051312_fhr09s
ENSEMBLE_FILE_mem_m1=${ENS_ROOT}/sfg_2017051312_fhr03s

fi
fi

no_member number of ensemble members
BK_FILE_mem path and base for ensemble members

no_member=20
BK_FILE_mem=${BK_ROOT}/wrfarw.mem

At this point, users should be able to run the GSI for simple cases without changing the
scripts. However, some advanced users may need to change some of the following blocks for
special applications, such as use of radiance data, cycled runs, specifying certain namelist
variables, or running GSI on a platform not tested by the DTC.

###
Users should NOT change script after this point
###

The next block sets the run command for GSI on multiple platforms. The ARCH variable is
set at the beginning of the script. Option BYTE_ORDER has been set as Big_Endian because
GSI compiled with Intel and PGI can read a Big_Endian background error file, BUFR files,
and CRTM coefficient files.

BYTE_ORDER=Big_Endian
BYTE_ORDER=Little_Endian

case $ARCH in
’IBM_LSF’)

IBM LSF (Load Sharing Facility)
RUN_COMMAND="mpirun.lsf " ;;

’LINUX’)
if [$GSIPROC = 1]; then

Linux workstation - single processor

33

3. Running GSI

RUN_COMMAND=""
else

Linux workstation - mpi run
RUN_COMMAND="mpirun -np ${GSIPROC} -machinefile ~/mach "

fi ;;

’LINUX_LSF’)
LINUX LSF (Load Sharing Facility)
RUN_COMMAND="mpirun.lsf " ;;

’LINUX_PBS’)
Linux cluster PBS (Portable Batch System)
RUN_COMMAND="mpirun -np ${GSIPROC} " ;;

’DARWIN_PGI’)
Mac - mpi run
if [$GSIPROC = 1]; then

Mac workstation - single processor
RUN_COMMAND=""

else
Mac workstation - mpi run
RUN_COMMAND="mpirun -np ${GSIPROC} -machinefile ~/mach "

fi ;;

*)
print "error: $ARCH is not a supported platform configuration."
exit 1 ;;

esac

The next block checks if all the variables needed for a GSI run are properly defined. These
variables should have been defined in the first three parts of this script.

##
Check GSI needed environment variables are defined and exist
#

Make sure ANAL_TIME is defined and in the correct format
if [! "${ANAL_TIME}"]; then

echo "ERROR: \$ANAL_TIME is not defined!"
exit 1

fi

Make sure WORK_ROOT is defined and exists
if [! "${WORK_ROOT}"]; then

echo "ERROR: \$WORK_ROOT is not defined!"
exit 1

fi

Make sure the background file exists
if [! -r "${BK_FILE}"]; then

echo "ERROR: ${BK_FILE} does not exist!"
exit 1

fi

Make sure OBS_ROOT is defined and exists
if [! "${OBS_ROOT}"]; then

echo "ERROR: \$OBS_ROOT is not defined!"
exit 1

fi
if [! -d "${OBS_ROOT}"]; then

echo "ERROR: OBS_ROOT directory ’${OBS_ROOT}’ does not exist!"
exit 1

34

3. Running GSI

fi

Set the path to the GSI static files
if [! "${FIX_ROOT}"]; then

echo "ERROR: \$FIX_ROOT is not defined!"
exit 1

fi
if [! -d "${FIX_ROOT}"]; then

echo "ERROR: fix directory ’${FIX_ROOT}’ does not exist!"
exit 1

fi

Set the path to the CRTM coefficients
if [! "${CRTM_ROOT}"]; then

echo "ERROR: \$CRTM_ROOT is not defined!"
exit 1

fi
if [! -d "${CRTM_ROOT}"]; then

echo "ERROR: fix directory ’${CRTM_ROOT}’ does not exist!"
exit 1

fi

Make sure the GSI executable exists
if [! -x "${GSI_EXE}"]; then

echo "ERROR: ${GSI_EXE} does not exist!"
exit 1

fi

Check to make sure the number of processors for running GSI was specified
if [-z "${GSIPROC}"]; then

echo "ERROR: The variable $GSIPROC must be set to contain the number of processors to run GSI"
exit 1

fi

The next block creates a working directory (workdir) in which GSI will run. The directory
should have enough disk space to hold all the files needed for this run. This directory is
cleaned before each run, therefore, save all the files needed from the previous run before
rerunning GSI.

##
Create the work directory and cd into it

workdir=${WORK_ROOT}
echo " Create working directory:" ${workdir}

if [-d "${workdir}"]; then
rm -rf ${workdir}

fi
mkdir -p ${workdir}
cd ${workdir}

#
##

echo " Copy GSI executable, background file, and link observation bufr to working directory"

Save a copy of the GSI executable in the workdir
cp ${GSI_EXE} gsi.exe

Bring over background field (it’s modified by GSI so we can’t link to it)
cp ${BK_FILE} ./wrf_inout
if [${if_4DEnVar} = Yes] ; then

cp ${BK_FILE_P1} ./wrf_inou3
cp ${BK_FILE_M1} ./wrf_inou1

fi

35

3. Running GSI

Note: You can link observation files to the working directory because GSI will not overwrite
these files. The observations that can be analyzed in GSI are listed in the column "dfile" of
the GSI namelist section OBS_INPUT, as specified in run/comgsi_namelist.sh. Most of
the conventional observations are in one single file named prepbufr, while different radiance
data are in separate files based on satellite instruments, such as AMSU-A or HIRS. All these
observation files must be linked as GSI recognized file names in "dfile." Please check table
3.1 for a detailed explanation of links and the meanings of each file name listed below.

Link to the prepbufr data
ln -s ${PREPBUFR} ./prepbufr

ln -s ${OBS_ROOT}/gdas1.t${HH}z.sptrmm.tm00.bufr_d tmirrbufr
Link to the radiance data
srcobsfile[1]=${OBS_ROOT}/gdas1.t${HH}z.satwnd.tm00.bufr_d
gsiobsfile[1]=satwnd
srcobsfile[2]=${OBS_ROOT}/gdas1.t${HH}z.1bamua.tm00.bufr_d
gsiobsfile[2]=amsuabufr
srcobsfile[3]=${OBS_ROOT}/gdas1.t${HH}z.1bhrs4.tm00.bufr_d
gsiobsfile[3]=hirs4bufr
srcobsfile[4]=${OBS_ROOT}/gdas1.t${HH}z.1bmhs.tm00.bufr_d
gsiobsfile[4]=mhsbufr
srcobsfile[5]=${OBS_ROOT}/gdas1.t${HH}z.1bamub.tm00.bufr_d
gsiobsfile[5]=amsubbufr
srcobsfile[6]=${OBS_ROOT}/gdas1.t${HH}z.ssmisu.tm00.bufr_d
gsiobsfile[6]=ssmirrbufr
srcobsfile[7]=${OBS_ROOT}/gdas1.t${HH}z.airsev.tm00.bufr_d
gsiobsfile[7]=airsbufr
srcobsfile[8]=${OBS_ROOT}/gdas1.t${HH}z.sevcsr.tm00.bufr_d
gsiobsfile[8]=seviribufr
srcobsfile[9]=${OBS_ROOT}/gdas1.t${HH}z.iasidb.tm00.bufr_d
gsiobsfile[9]=iasibufr
srcobsfile[10]=${OBS_ROOT}/gdas1.t${HH}z.gpsro.tm00.bufr_d
gsiobsfile[10]=gpsrobufr
srcobsfile[11]=${OBS_ROOT}/gdas1.t${HH}z.amsr2.tm00.bufr_d
gsiobsfile[11]=amsrebufr
srcobsfile[12]=${OBS_ROOT}/gdas1.t${HH}z.atms.tm00.bufr_d
gsiobsfile[12]=atmsbufr
srcobsfile[13]=${OBS_ROOT}/gdas1.t${HH}z.geoimr.tm00.bufr_d
gsiobsfile[13]=gimgrbufr
srcobsfile[14]=${OBS_ROOT}/gdas1.t${HH}z.gome.tm00.bufr_d
gsiobsfile[14]=gomebufr
srcobsfile[15]=${OBS_ROOT}/gdas1.t${HH}z.omi.tm00.bufr_d
gsiobsfile[15]=omibufr
srcobsfile[16]=${OBS_ROOT}/gdas1.t${HH}z.osbuv8.tm00.bufr_d
gsiobsfile[16]=sbuvbufr
srcobsfile[17]=${OBS_ROOT}/gdas1.t${HH}z.eshrs3.tm00.bufr_d
gsiobsfile[17]=hirs3bufrears
srcobsfile[18]=${OBS_ROOT}/gdas1.t${HH}z.esamua.tm00.bufr_d
gsiobsfile[18]=amsuabufrears
srcobsfile[19]=${OBS_ROOT}/gdas1.t${HH}z.esmhs.tm00.bufr_d
gsiobsfile[19]=mhsbufrears
srcobsfile[20]=${OBS_ROOT}/rap.t${HH}z.nexrad.tm00.bufr_d
gsiobsfile[20]=l2rwbufr
srcobsfile[21]=${OBS_ROOT}/rap.t${HH}z.lgycld.tm00.bufr_d
gsiobsfile[21]=larcglb
ii=1

36

3. Running GSI

while [[$ii -le 21]]; do
if [-r "${srcobsfile[$ii]}"]; then

ln -s ${srcobsfile[$ii]} ${gsiobsfile[$ii]}
echo "link source obs file ${srcobsfile[$ii]}"

fi
((ii = $ii + 1))

done

The following block copies constant fixed files from the fix/ directory and links CRTM
coefficients. Please check Section 3.1 for the meanings of each fixed file.

##

echo " Copy fixed files and link CRTM coefficient files to working directory"

Set fixed files
berror = forecast model background error statistics
specoef = CRTM spectral coefficients
trncoef = CRTM transmittance coefficients
emiscoef = CRTM coefficients for IR sea surface emissivity model
aerocoef = CRTM coefficients for aerosol effects
cldcoef = CRTM coefficients for cloud effects
satinfo = text file with information about assimilation of brightness temperatures
satangl = angle dependent bias correction file (fixed in time)
pcpinfo = text file with information about assimilation of prepcipitation rates
ozinfo = text file with information about assimilation of ozone data
errtable = text file with obs error for conventional data (regional only)
convinfo = text file with information about assimilation of conventional data
bufrtable= text file ONLY needed for single obs test (oneobstest=.true.)
bftab_sst= bufr table for sst ONLY needed for sst retrieval (retrieval=.true.)

Note: For background error covariances, observation errors, and analysis variable informa-
tion, we provide two sets of fixed files. One set is based on GFS statistics and another is
based on NAM statistics. For this release there is an additional setting in the ANAVINFO
file for "bk_core" for both GFS and NAM statistics.

if [${bkcv_option} = GLOBAL] ; then
echo ’ Use global background error covariance’
BERROR=${FIX_ROOT}/${BYTE_ORDER}/nam_glb_berror.f77.gcv
OBERROR=${FIX_ROOT}/prepobs_errtable.global
if [${bk_core} = NMM] ; then

ANAVINFO=${FIX_ROOT}/anavinfo_ndas_netcdf_glbe
fi
if [${bk_core} = ARW] ; then

ANAVINFO=${FIX_ROOT}/anavinfo_arw_netcdf_glbe
fi
if [${bk_core} = NMMB] ; then

ANAVINFO=${FIX_ROOT}/anavinfo_nems_nmmb_glb
fi

else
echo ’ Use NAM background error covariance’
BERROR=${FIX_ROOT}/${BYTE_ORDER}/nam_nmmstat_na.gcv
OBERROR=${FIX_ROOT}/nam_errtable.r3dv

37

3. Running GSI

if [${bk_core} = NMM] ; then
ANAVINFO=${FIX_ROOT}/anavinfo_ndas_netcdf

fi
if [${bk_core} = ARW] ; then

ANAVINFO=${FIX_ROOT}/anavinfo_arw_netcdf
fi
if [${bk_core} = NMMB] ; then

ANAVINFO=${FIX_ROOT}/anavinfo_nems_nmmb
fi

fi

SATINFO=${FIX_ROOT}/global_satinfo.txt
CONVINFO=${FIX_ROOT}/global_convinfo.txt
OZINFO=${FIX_ROOT}/global_ozinfo.txt
PCPINFO=${FIX_ROOT}/global_pcpinfo.txt

copy Fixed fields to working directory
cp $ANAVINFO anavinfo
cp $BERROR berror_stats
cp $SATINFO satinfo
cp $CONVINFO convinfo
cp $OZINFO ozinfo
cp $PCPINFO pcpinfo
cp $OBERROR errtable

#
CRTM Spectral and Transmittance coefficients
CRTM_ROOT_ORDER=${CRTM_ROOT}/${BYTE_ORDER}
emiscoef_IRwater=${CRTM_ROOT_ORDER}/Nalli.IRwater.EmisCoeff.bin
emiscoef_IRice=${CRTM_ROOT_ORDER}/NPOESS.IRice.EmisCoeff.bin
emiscoef_IRland=${CRTM_ROOT_ORDER}/NPOESS.IRland.EmisCoeff.bin
emiscoef_IRsnow=${CRTM_ROOT_ORDER}/NPOESS.IRsnow.EmisCoeff.bin
emiscoef_VISice=${CRTM_ROOT_ORDER}/NPOESS.VISice.EmisCoeff.bin
emiscoef_VISland=${CRTM_ROOT_ORDER}/NPOESS.VISland.EmisCoeff.bin
emiscoef_VISsnow=${CRTM_ROOT_ORDER}/NPOESS.VISsnow.EmisCoeff.bin
emiscoef_VISwater=${CRTM_ROOT_ORDER}/NPOESS.VISwater.EmisCoeff.bin
emiscoef_MWwater=${CRTM_ROOT_ORDER}/FASTEM6.MWwater.EmisCoeff.bin
aercoef=${CRTM_ROOT_ORDER}/AerosolCoeff.bin
cldcoef=${CRTM_ROOT_ORDER}/CloudCoeff.bin

ln -s $emiscoef_IRwater ./Nalli.IRwater.EmisCoeff.bin
ln -s $emiscoef_IRice ./NPOESS.IRice.EmisCoeff.bin
ln -s $emiscoef_IRsnow ./NPOESS.IRsnow.EmisCoeff.bin
ln -s $emiscoef_IRland ./NPOESS.IRland.EmisCoeff.bin
ln -s $emiscoef_VISice ./NPOESS.VISice.EmisCoeff.bin
ln -s $emiscoef_VISland ./NPOESS.VISland.EmisCoeff.bin
ln -s $emiscoef_VISsnow ./NPOESS.VISsnow.EmisCoeff.bin
ln -s $emiscoef_VISwater ./NPOESS.VISwater.EmisCoeff.bin
ln -s $emiscoef_MWwater ./FASTEM6.MWwater.EmisCoeff.bin
ln -s $aercoef ./AerosolCoeff.bin
ln -s $cldcoef ./CloudCoeff.bin
Copy CRTM coefficient files based on entries in satinfo file
for file in ‘awk ’{if($1!~"!"){print $1}}’ ./satinfo | sort | uniq‘ ;do

ln -s ${CRTM_ROOT_ORDER}/${file}.SpcCoeff.bin ./
ln -s ${CRTM_ROOT_ORDER}/${file}.TauCoeff.bin ./

done

Only need this file for single obs test
bufrtable=${FIX_ROOT}/prepobs_prep.bufrtable

38

3. Running GSI

cp $bufrtable ./prepobs_prep.bufrtable

for satellite bias correction
cp ${OBS_ROOT}/gdas1.t12z.abias ./satbias_in
cp ${OBS_ROOT}/gdas1.t12z.abias_pc ./satbias_pc_in

Please note that in the above sample script, two files related to radiance bias correction are
copied to the work directory:

cp ${OBS_ROOT}/gdas1.t12z.abias ./satbias_in
cp ${OBS_ROOT}/gdas1.t12z.abias_pc ./satbias_pc_in

There are two options on how to perform the radiance bias correction. The first method is
to do the angle dependent bias correction offline and do the mass bias correction inside the
GSI analysis, therefore requiring two input files: satbias_angle, corresponding to the angle
dependent bias correction file and satbias_in, being the input file for mass bias correction.
The second method is to combine the angle dependent and mass bias correction together
and do it within the GSI analysis, requiring one combined input file: satbias_in. Note
that the input bias correction coefficients file, satbias_in, is different for the two options,
therefore it is important to use the appropriate input file for each method. The sample
input files for the first method are provided with this release: global_satangbias.txt and
sample.satbias. To use the second option - combined angle dependent and mass bias
correction, a sample file, gdas1.t00z.abias_pc.20150617, is also provided. As a starting
point, users may also download a GDAS satbias coefficient file from the NOMADS ftp site
as the input file (starting in spring 2015, the GDAS satbias files have adopted the following
format):

ftp://nomads.ncdc.noaa.gov/GDAS/YYYYMM/YYYYMMDD/gdas1.tHHz.abias

In order to use the combined angle dependent and mass bias correction, users
also need to set adp_anglebc=.true. in the &SETUP section of the GSI namelist
(comgsi_namelist.sh). For more details about the namelist, please see Appendix C in
this document.

Set up some constants used in the GSI namelist. Please note that bkcv_option is set
for background error tuning. They should be set based on specific applications. Here we
provide three sample sets of the constants for different background error covariance options,
one set is used in the NAM operations, one for the GFS operations and one for the NMMB
operations. In this release, the capability of NMMB application is included and therefore the
namelist settings for NMMB are provided in addition to NMM and ARW applications.

##
Set some parameters for use by the GSI executable and to build the namelist
echo " Build the namelist "

default is NAM
as_op=’1.0,1.0,0.5 ,0.7,0.7,0.5,1.0,1.0,’
vs_op=’1.0,’

39

ftp://nomads.ncdc.noaa.gov/GDAS/YYYYMM/YYYYMMDD/gdas1.tHHz.abias

3. Running GSI

hzscl_op=’0.373,0.746,1.50,’
if [${bkcv_option} = GLOBAL] ; then
as_op=’0.6,0.6,0.75,0.75,0.75,0.75,1.0,1.0’

vs_op=’0.7,’
hzscl_op=’1.7,0.8,0.5,’

fi
if [${bk_core} = NMMB] ; then

vs_op=’0.6,’
fi

default is NMM
bk_core_arw=’.false.’
bk_core_nmm=’.true.’
bk_core_nmmb=’.false.’
bk_if_netcdf=’.true.’

if [${bk_core} = ARW] ; then
bk_core_arw=’.true.’
bk_core_nmm=’.false.’
bk_core_nmmb=’.false.’
bk_if_netcdf=’.true.’

fi
if [${bk_core} = NMMB] ; then

bk_core_arw=’.false.’
bk_core_nmm=’.false.’
bk_core_nmmb=’.true.’
bk_if_netcdf=’.false.’

fi

The following section specifies the number of outer loops and whether to save GSI read
observations based on the setting of ”if_observer”.

if [${if_observer} = Yes] ; then
nummiter=0
if_read_obs_save=’.true.’
if_read_obs_skip=’.false.’

else
nummiter=2
if_read_obs_save=’.false.’
if_read_obs_skip=’.false.’

fi

The following section of the script is used to generate the GSI namelist called gsiparm.anl
in the working directory. A detailed explanation of each variable can be found in Section
3.4 and Appendix C.

Build the GSI namelist on-the-fly
. $GSI_NAMELIST
cat << EOF > gsiparm.anl

$comgsi_namelist

EOF

40

3. Running GSI

Note: EOF indicates the end of GSI namelist.

The following block modifies the anavinfo file so that its vertical levels are consistent with
the wrf_inout file for WRF ARW or NMM. Users no longer need to manually modify the
anavinfo file.

modify the anavinfo vertical levels based on wrf_inout for WRF ARW and NMM
if [${bk_core} = ARW] || [${bk_core} = NMM] ; then
bklevels=‘ncdump -h wrf_inout | grep "bottom_top =" | awk ’{print $3}’ ‘
bklevels_stag=‘ncdump -h wrf_inout | grep "bottom_top_stag =" | awk ’{print $3}’ ‘
anavlevels=‘cat anavinfo | grep ’ sf ’ | tail -1 | awk ’{print $2}’ ‘ # levels of sf, vp, u, v, t, etc
anavlevels_stag=‘cat anavinfo | grep ’ prse ’ | tail -1 | awk ’{print $2}’ ‘ # levels of prse
sed -i ’s/ ’$anavlevels’/ ’$bklevels’/g’ anavinfo
sed -i ’s/ ’$anavlevels_stag’/ ’$bklevels_stag’/g’ anavinfo
fi

The following block runs GSI and checks if GSI has successfully completed.

###
run GSI
###
echo ’ Run GSI with’ ${bk_core} ’background’

case $ARCH in
’IBM_LSF’)

${RUN_COMMAND} ./gsi.exe < gsiparm.anl > stdout 2>&1 ;;

*)
${RUN_COMMAND} ./gsi.exe > stdout 2>&1 ;;

esac

##
run time error check
##
error=$?

if [${error} -ne 0]; then
echo "ERROR: ${GSI} crashed Exit status=${error}"
exit ${error}

fi

The following block saves the analysis results with an understandable name and adds the
analysis time to some output file names. Among them, "stdout" contains runtime output of
GSI and wrf_inout is the resulting analysis file.

##
#
GSI updating satbias_in
#
GSI updating satbias_in (only for cycling assimilation)

Copy the output to more understandable names

41

3. Running GSI

ln -s stdout stdout.anl.${ANAL_TIME}
ln -s wrf_inout wrfanl.${ANAL_TIME}
ln -s fort.201 fit_p1.${ANAL_TIME}
ln -s fort.202 fit_w1.${ANAL_TIME}
ln -s fort.203 fit_t1.${ANAL_TIME}
ln -s fort.204 fit_q1.${ANAL_TIME}
ln -s fort.207 fit_rad1.${ANAL_TIME}

The following block collects the diagnostic files. The diagnostic files are merged and catego-
rized based on outer loop and data type. Setting "write_diag" to true in the namelist directs
GSI to write out diagnostic information for each observation. This information is very useful
to check analysis details. Please check Appendix A.2 for the tool to read and analyze these
diagnostic files.

Loop over first and last outer loops to generate innovation
diagnostic files for indicated observation types (groups)
#
NOTE: Since we set miter=2 in GSI namelist SETUP, outer
loop 03 will contain innovations with respect to
the analysis. Creation of o-a innovation files
is triggered by write_diag(3)=.true. The setting
write_diag(1)=.true. turns on creation of o-g
innovation files.
#

loops="01 03"
for loop in $loops; do

case $loop in
01) string=ges;;
03) string=anl;;
*) string=$loop;;

esac

Collect diagnostic files for obs types (groups) below
listall="conv amsua_metop-a mhs_metop-a hirs4_metop-a hirs2_n14 msu_n14 \
sndr_g08 sndr_g10 sndr_g12 sndr_g08_prep sndr_g10_prep sndr_g12_prep \
sndrd1_g08 sndrd2_g08 sndrd3_g08 sndrd4_g08 sndrd1_g10 sndrd2_g10 \
sndrd3_g10 sndrd4_g10 sndrd1_g12 sndrd2_g12 sndrd3_g12 sndrd4_g12 \
hirs3_n15 hirs3_n16 hirs3_n17 amsua_n15 amsua_n16 amsua_n17 \
amsub_n15 amsub_n16 amsub_n17 hsb_aqua airs_aqua amsua_aqua \
goes_img_g08 goes_img_g10 goes_img_g11 goes_img_g12 \
pcp_ssmi_dmsp pcp_tmi_trmm sbuv2_n16 sbuv2_n17 sbuv2_n18 \
omi_aura ssmi_f13 ssmi_f14 ssmi_f15 hirs4_n18 amsua_n18 mhs_n18 \
amsre_low_aqua amsre_mid_aqua amsre_hig_aqua ssmis_las_f16 \
ssmis_uas_f16 ssmis_img_f16 ssmis_env_f16 mhs_metop_b \
hirs4_metop_b hirs4_n19 amusa_n19 mhs_n19"
listall=‘ls pe* | cut -f2 -d"." | awk ’{print substr($0, 0, length($0)-3)}’ | sort | uniq‘

for type in $listall; do
count=‘ls pe*${type}_${loop}* | wc -l‘
if [[$count -gt 0]]; then

cat pe*${type}_${loop}* > diag_${type}_${string}.${ANAL_TIME}
fi

done
done

42

3. Running GSI

The following scripts clean the temporary intermediate files:

Clean working directory to save only important files
ls -l * > list_run_directory
if [[${if_clean} = clean && ${if_observer} != Yes]]; then

echo ’ Clean working directory after GSI run’
rm -f *Coeff.bin # all CRTM coefficient files
rm -f pe0* # diag files on each processor
rm -f obs_input.* # observation middle files
rm -f siganl sigf03 # background middle files
rm -f fsize_* # delete temperal file for bufr size

fi

The following block of the script runs only for if_observer=Yes, which runs GSI as an
observation operator for EnKF and without doing minimization. The script first renames
the previous diagnostics files and GSI analysis file by appending .ensmean to the filenames
to avoid these files being overwritten by the new GSI run.

###
start to calculate diag files for each member
###
#
if [${if_observer} = Yes] ; then

string=ges
for type in $listall; do

count=0
if [[-f diag_${type}_${string}.${ANAL_TIME}]]; then

mv diag_${type}_${string}.${ANAL_TIME} diag_${type}_${string}.ensmean
fi

done
mv wrf_inout wrf_inout_ensmean

Next, the script generates the namelist for each ensemble member.

Build the GSI namelist on-the-fly for each member
nummiter=0
if_read_obs_save=’.false.’
if_read_obs_skip=’.true.’

. $GSI_NAMELIST
cat << EOF > gsiparm.anl

$comgsi_namelist

EOF

The rest of the script loops through the ensemble members to get the background ready, run
GSI, and check the run status:

Loop through each member
loop="01"

43

3. Running GSI

ensmem=1
while [[$ensmem -le $no_member]];do

rm pe0*

print "\$ensmem is $ensmem"
ensmemid=‘printf %3.3i $ensmem‘

get new background for each member
if [[-f wrf_inout]]; then

rm wrf_inout
fi

BK_FILE=${BK_FILE_mem}${ensmemid}
echo $BK_FILE
ln -s $BK_FILE wrf_inout

run GSI
echo ’ Run GSI with’ ${bk_core} ’for member ’, ${ensmemid}

case $ARCH in
’IBM_LSF’)

${RUN_COMMAND} ./gsi.exe < gsiparm.anl > stdout_mem${ensmemid} 2>&1 ;;

*)
${RUN_COMMAND} ./gsi.exe > stdout_mem${ensmemid} 2>&1 ;;

esac

run time error check and save run time file status
error=$?

if [${error} -ne 0]; then
echo "ERROR: ${GSI} crashed for member ${ensmemid} Exit status=${error}"
exit ${error}

fi

ls -l * > list_run_directory_mem${ensmemid}

The following lines generate the diagnostics files for each member.

generate diag files

for type in $listall; do
count=‘ls pe*${type}_${loop}* | wc -l‘

if [[$count -gt 0]]; then
cat pe*${type}_${loop}* > diag_${type}_${string}.mem${ensmemid}

fi
done

The following section is to move on to the next ensemble member and run GSI.

next member

44

3. Running GSI

((ensmem += 1))

done

fi

If this point is reached, the GSI successfully finishes and exits with status "0":

exit 0

3.3 GSI Analysis Result Files in Run Directory

Once the GSI run script is set up, it is ready to be submitted like any other batch job. When
completed, GSI will create a number of files in the run directory. Below is an example of the
files generated in the run directory from one of the GSI test case runs. This case was run to
perform a regional GSI analysis with a WRF-ARW NetCDF background using conventional
(prepbufr), radiance (AMSU-A, HIRS4, and MHS), and GPSRO data. The analysis time is
1200Z on 13 May 2017. Four processors were used. To make the run directory more readable,
we turned on the clean option in the run script, which deleted all temporary intermediate
files.

amsuabufr fort.206 hirs3bufrears
amsuabufrears fort.207 hirs4bufr
anavinfo fort.208 l2rwbufr
atmsbufr fort.209 larcglb
berror_stats fort.210 list_run_directory
convinfo fort.211 mhsbufr
diag_amsua_n15_anl.2017051312 fort.212 mhsbufrears
diag_amsua_n15_ges.2017051312 fort.213 omibufr
diag_amsua_n18_anl.2017051312 fort.214 ozinfo
diag_amsua_n18_ges.2017051312 fort.215 pcpbias_out
diag_amsua_n19_anl.2017051312 fort.217 pcpinfo
diag_amsua_n19_ges.2017051312 fort.218 prepbufr
diag_conv_anl.2017051312 fort.219 prepobs_prep.bufrtable
diag_conv_ges.2017051312 fort.220 radar_supobs_from_level2
diag_hirs4_n19_anl.2017051312 fort.221 satbias_angle
diag_hirs4_n19_ges.2017051312 fort.223 satbias_ang.out
diag_mhs_n18_anl.2017051312 fort.224 satbias_in
diag_mhs_n18_ges.2017051312 fort.225 satbias_out
diag_mhs_n19_anl.2017051312 fort.226 satbias_out.int
diag_mhs_n19_ges.2017051312 fort.227 satbias_pc_in
errtable fort.228 satbias_pc.out
fit_p1.2017051312 fort.229 satinfo
fit_q1.2017051312 fort.230 satwnd
fit_rad1.2017051312 fort.232 sbuvbufr
fit_t1.2017051312 fort.233 seviribufr
fit_w1.2017051312 fort.234 ssmirrbufr
fort.201 gimgrbufr stdout
fort.202 gomebufr stdout.anl.2017051312
fort.203 gpsrobufr wrfanl.2017051312
fort.204 gsi.exe wrf_inout
fort.205 gsiparm.anl

It is important to know which files hold the GSI analysis results, standard output, and
diagnostic information. We will introduce these files and their contents in detail in the
following chapter. The following is a brief list of what these files contain:

45

3. Running GSI

• stdout or stdout.anl.(time): standard text output file. stdout.anl.(time) is a link to stdout
with the analysis time appended. This is the most commonly used file to check the GSI
analysis processes and contains basic and important information about the analyses.
We will explain the contents of the stdout file in Section 4.1 and users are encouraged
to read this file in detail to become familiar with the order of GSI analysis processing.

• wrf_inout or wrfanl.(time): analysis results if GSI completes successfully. It exists only
if using WRF for the background. The wrfanl.(time) file is a link to wrf_inout with the
analysis time appended. The format is the same as the background file.

• diag_conv_anl.(time): binary diagnostic files for conventional and GPS RO observations
at the final analysis step (analysis departure for each observation).

• diag_conv_ges.(time): binary diagnostic files for conventional and GPS RO observations
before the initial analysis step (background departure for each observation)

• diag_(instrument_satellite)_anl : diagnostic files for satellite radiance observations at
the final analysis step.

• diag_(instrument_satellite)_ges: diagnostic files for satellite radiance observations before
the initial analysis step.

• gsiparm.anl : GSI namelist, generated by the run script.
• fit_(variable).(time): links to fort.2?? with meaningful names (variable name plus anal-

ysis time). They are statistic results of observation departures from background and
analysis results according to observation variables. Please see Section 4.5 for more
details.

• fort.220 : output from the inner loop minimization (in pcgsoi.f90). Please see Section
4.6 for details.

• anavinfo: info file to set up control, state, and background variables. Please see the
Advanced GSI User's Guide for details.

• *info (convinfo,satinfo, . . .): info files that control data usage. Please see Section 4.3 for
details.

• berror_stats and errtable: background error file (binary) and observation error file (text).
• *bufr : observation BUFR files linked to the run directoryi. Please see Section 3.1 for

details.
• satbias_in: the input coefficients of bias correction for satellite radiance observations.
• satbias_out: the output coefficients of bias correction for satellite radiance observations

after the GSI run.
• satbias_pc: the input coefficients of bias correction for passive satellite radiance obser-

vations.
• list_run_directory : the complete list of files in the run directory before cleaning takes

place. This is generated by the GSI run script.

The diag files, such as diag_(instrument_satellite)_anl.(time) and
diag_conv_anl.(time), contain important information about the data used in the
GSI, including observation departure from analysis results for each observation (O-A).
Similarly, diag_conv_ges and diag_(instrumen_satellite)_ges.(time) include the
observation innovation for each observation (O-B). These files can be very helpful in
understanding the detailed impact of data on the analysis. A tool is provided to process
these files, which is introduced in Appendix A.2.

There are many intermediate files in this directory while GSI is running or if the run
crashes. The complete list of files in the directory (prior to cleaning) is saved in file

46

3. Running GSI

list_run_directory. Some knowledge about the content of these files is very helpful
for debugging if the GSI run crashes. Please check table 3.4 for the meaning of these
files. (Note: you may not see all the files in the list because different observational data are
used. Also, the fixed files prepared for a GSI run, such as CRTM coefficient files, are not
included.)

Table 3.4: List of GSI intermediate files

File name Content
sigf03 This is a temporary file, holding binary format back-

ground files (typically sigf03, sigf06 and sigf09 if FGAT
used). When you see this file, at the minimum, a back-
ground file was successfully read in.

siganl Analysis results in binary format. When this file exists,
the analysis has finished.

pe????.(conv or instru-
ment_satellite)_(outer loop)

Diagnostic files for conventional and satellite radiance
observations at each outer loop and each sub-domain
(????=subdomain id)i.

obs_input.???? Observation scratch files (each file contains observations
for one observation type within the whole analysis domain
and time window. ????=observation type id in namelist).

pcpbias_out Output precipitation bias correction file.

3.4 Introduction to Frequently Used GSI Namelist Options

The complete namelist options and their explanations are listed in Appendix A of the Ad-
vanced GSI User's Guide. For most GSI analysis applications, only a few namelist variables
need to be changed. Here we introduce frequently used variables for regional analyses:

3.4.1 Set Up the Number of Outer and Inner Loops

To change the number of outer loops and the number of inner iterations in each outer loop,
the following three variables in the namelist need to be modified:

• miter: number of outer analysis loops.
• niter(1): maximum iteration number of inner loop iterations for the 1st outer loop.

The inner loop will stop when it reaches this maximum number, when it reaches the
convergence threshold, or when it fails to converge.

• niter(2): maximum iteration number of inner loop iterations for the 2nd outer loop.
• If miter is larger than two, repeat niter with larger index.

47

3. Running GSI

3.4.2 Set Up the Analysis Variable for Moisture

There are two moisture analysis variable options. It is based on the following namelist
variable:

qoption = 1 or 2:

• If qoption=1, the moisture analysis variable is pseudo-relative humidity. The satura-
tion specific humidity, qsatg, is computed from the guess and held constant during the
inner loop. Thus, the relative humidity control variable can only change via changes
in specific humidity, q.

• If qoption=2, the moisture analysis variable is normalized relative humidity. This
formulation allows relative humidity to change in the inner loop via changes to surface
pressure, temperature, or specific humidity.

3.4.3 Set Up the Background File

The following four variables define which background field will be used in the GSI analy-
ses:

• regional: if true, perform a regional GSI run using either ARW or NMM inputs as
the background. If false, perform a global GSI analysis. If either wrf_nmm_regional
or wrf_mass_regional are true, it will be set to true.

• wrf_nmm_regional: if true, the background comes from WRF-NMM. When using
other background fields, set it to false.

• wrf_mass_regional: if true, the background comes from WRF-ARW. When using
other background fields, set it to false.

• nems_nmmb_regional: if true, the background comes from NMMB. When using other
background fields, set it to false.

• netcdf: if true, WRF files are in NetCDF format, otherwise WRF files are in binary
format. This option only works for a regional GSI analysis.

3.4.4 Set Up the Output of Diagnostic Files

The following variables tell the GSI to write out diagnostic results in certain loops:

• write_diag(1): if true, write out diagnostic data in the beginning of the analysis, so
that we can have information on observation − background (O-B) differences.

• write_diag(2): if true, write out diagnostic data at the end of the 1st outer loop
(before the 2nd outer loop starts).

• write_diag(3): if true, write out diagnostic data at the end of the 2nd outer loop (after
the analysis finishes if the outer loop number is two), so that we can have information
on observation − analysis (O-A) differences.

48

3. Running GSI

Please check appendix A.2 for the tools to read the diagnostic files.

3.4.5 Set Up the GSI Recognized Observation Files

The following sets up the GSI recognized observation files for GSI observation ingest:

OBS_INPUT::
! dfile dtype dplat dsis dval dthin dsfcalc

prepbufr ps null ps 1.0 0 0
prepbufr t null t 1.0 0 0
prepbufr q null q 1.0 0 0
prepbufr pw null pw 1.0 0 0
satwndbufr uv null uv 1.0 0 0
prepbufr uv null uv 1.0 0 0
prepbufr spd null spd 1.0 0 0
prepbufr dw null dw 1.0 0 0
radarbufr rw null rw 1.0 0 0
prepbufr sst null sst 1.0 0 0
gpsrobufr gps_ref null gps 1.0 0 0
ssmirrbufr pcp_ssmi dmsp pcp_ssmi 1.0 -1 0

• dfile: GSI recognized observation file name. The observation file contains observa-
tions used for a GSI analysis. This file can include several observation variables from
different observation types. The file name listed by this parameter will be read in by
GSI. This name can be changed as long as the name in the link from the BUFR/Prep-
BUFR file in the run scripts also changes correspondingly.

• dtype: analysis variable name that GSI can read in. Please note this name should be
consistent with that used in the GSI code.

• dplat: sets up the observation platform for a certain observation, which will be read
in from the file dfile.

• dsis: sets up the data name (including both data type and platform name) used inside
GSI.

Please see Section 4.3 for examples and explanations of these variables.

3.4.6 Set Up Observation Time Window

In the namelist section OBS_INPUT, use time_window_max to set the maximum half time
window (hours) for all data types. In the convinfo file, you can use the column "twindow"
to set the half time window for a certain data type (hours). For conventional observations,
only observations within the smaller window of these two will be kept for further processing.
For others, observations within time_window_max will be kept for further processing.

3.4.7 Set Up Data Thinning

1) Radiance data thinning

49

3. Running GSI

Radiance data thinning is controlled through two GSI namelist variables in the section
&OBS_INPUT. Below is an example:

&OBS_INPUT
dmesh(1)=120.0,dmesh(2)=60.0,dmesh(3)=30,time_window_max=1.5,ext_sonde=.true.,

/
OBS_INPUT::
! dfile dtype dplat dsis dval dthin dsfcalc

prepbufr ps null ps 1.0 0 0

gpsrobufr gps_ref null gps 1.0 0 0
ssmirrbufr pcp_ssmi dmsp pcp_ssmi 1.0 -1 0
tmirrbufr pcp_tmi trmm pcp_tmi 1.0 -1 0

hirs3bufr hirs3 n17 hirs3_n17 6.0 1 0
hirs4bufr hirs4 metop-a hirs4_metop-a 6.0 2 0

The two namelist variables that control the radiance data thinning are real array "dmesh"
in the 1st line and the "dthin" values in the 6th column. The "dmesh" array sets mesh sizes
for radiance thinning grids in kilometers, while "dthin" defines if the data type it represents
needs to be thinned and which thinning grid (mesh size) to use. If the value of dthin is:

• an integer less than or equal to zero, no thinning is needed
• an integer larger than zero, this kind of radiance data will be thinned using the mesh

size defined as dmesh (dthin).

The following section provides several thinning examples defined by the above sample
&OBS_INPUT section:

• Data type ps from prepbufr: no thinning because dthin=0
• Data type gps_ref from gpsrobufr: no thinning because dthin=0
• Data type pcp_ssmi from dmsp: no thinning because dthin(01)=-1
• Data type hirs3 from NOAA-17: thinning in a 120 km grid because dthin=1 and
dmesh(1)=120

• Data type hirs4 from metop-a: thinning in a 60 km grid because dthin=2 and
dmesh(2)=60

2) Conventional data thinning

The conventional data can also be thinned. However, the setup of thinning is not in the
namelist. To give users a complete picture of data thinning, conventional data thinning is
briefly introduced here. There are three columns, ithin, rmesh, pmesh, in the convinfo
file (more details on this file are in Section 4.3) to configure conventional data thinning:

• ithin: 0 = no thinning; 1 = thinning with grid mesh decided by rmesh and pmesh
• rmesh: horizontal thinning grid size in km
• pmesh: vertical thinning grid size in mb; if 0, then use background vertical grid.

50

3. Running GSI

3.4.8 Set Up Background Error Factor

In the namelist section BKGERR, vs is used to set up the scale factor for vertical correlation
length and hzscl is defined to set up scale factors for horizontal smoothing. The scale
factors for the variance of each analysis variables are set in the anavinfo file. The typical
values used in operations for regional and global background error covariance are given and
picked based on the choice of background error covariance in the run scripts and sample
anavinfo files

3.4.9 Single Observation Test

To do a single observation test, the following namelist option has to be set to true:

oneobtest=.true.

Then go to the namelist section SINGLEOB_TEST to set up the single observation location
and variable to be tested, please see Section 4.2 for an example and details on the single
observation test.

51

4
GSI Diagnostics and Tuning

The guidance in this chapter will help users understand how and where to check output
from GSI to determine whether a run was successful. Properly checking the GSI output will
also provide useful information to diagnose potential errors in the system. This chapter
starts with an introduction to the content and structure of the GSI standard output file:
(stdout). It continues with the use of a single observation to check the features of the
GSI analysis. Then, observation usage control, analysis domain partitioning, fit files, and
the optimization process will all be presented from information within the GSI output files
(including stdout).

This chapter follows the online case example for 2014061700. This case uses a WRF-ARW
NetCDF file as the background and analyzes several observations typical for operations,
including most conventional observation data, several radiance data sets (AMSU-A, HIRS4,
and MHS), and GPSRO data. The case was run on a Linux cluster supercomputer, using
four processors. Users can execute this test to reproduce the following results by visiting:

http://www.dtcenter.org/com-GSI/users/tutorial/index.php

4.1 Understanding Standard Output (stdout)

In Section 3.3, we listed the files present in the GSI run directory following a successful GSI
analysis and briefly introduced the contents of several important files. Of these, stdout is
the most useful because critical information about the GSI analysis can be obtained from the
file. From stdout, users can check if the GSI has successfully completed, if optimal iterations
look correct, and if the background and analysis fields are reasonable. Understanding the

52

http://www.dtcenter.org/com-GSI/users/tutorial/index.php

4. GSI Diagnostics and Tuning

content of this file can also be very helpful for users to find where and why the GSI failed if
it crashes.

The structure of stdout follows the typical steps of a meteorological data analysis system:

1. Read in all data and prepare analysis:
• Read in configuration (namelist)
• Read in the background
• Read in observations
• Partition domain and data for parallel analysis
• Read in constant fields (fixed files)

2. Calculate observation innovations
3. Optimal iteration (analysis)
4. Save analysis results

In this section, the detailed structure and content of stdout are explained using the online
example case: 2014061700. To keep the output concise and make it more readable, most
repeated content was deleted (shown with a dotted line). For the same reason, the precision
of some numbers has been reduced to avoid line breaks in stdout.

The following indicates the start of the GSI analysis. It shows the date and time that GSI
started running:

* . * . * . * . * . * . * . * . * . * . * . * . * . * . * . * . * . * . * . * .
PROGRAM GSI_ANL HAS BEGUN. COMPILED 1999232.55 ORG: NP23
STARTING DATE-TIME JUL 02,2016 20:36:21.760 184 SAT 2457572

The following shows the content of anavinfo, a list of state and control variables:

gsi_metguess_mod*init_: 2D-MET STATE VARIABLES:
ps
z
gsi_metguess_mod*init_: 3D-MET STATE VARIABLES:
u
v
div
vor
tv
q
oz
cw
gsi_metguess_mod*init_: ALL MET STATE VARIABLES:
u
v
div
vor
tv
q
oz
cw
ps
z
state_vectors*init_anasv: 2D-STATE VARIABLES ps
sst
state_vectors*init_anasv: 3D-STATE VARIABLES u
v tv
tsen q
oz cw

53

4. GSI Diagnostics and Tuning

prse
state_vectors*init_anasv: ALL STATE VARIABLES u
v tv
tsen q
oz cw
prse ps
sst
control_vectors*init_anacv: 2D-CONTROL VARIABLES ARE
ps sst
control_vectors*init_anacv: 3D-CONTROL VARIABLES ARE
sf vp
t q
oz cw
control_vectors*init_anacv: MOTLEY CONTROL VARIABLES
stl sti
control_vectors*init_anacv: ALL CONTROL VARIABLES
sf vp
ps t
q oz
sst cw
stl sti

Next is the content of all namelist variables used in this analysis. The 1st part shows 4DVAR
setup information. Please note that while this version of the GSI includes a 4DVAR option, it
remains untested. The general setup for the GSI analysis (3DVAR) is located in the &SETUP
section of the GSI namelist. Please check Appendix B for definitions and default values of
each namelist variable.

GSI_4DVAR: nobs_bins = 1
SETUP_4DVAR: l4dvar= F
SETUP_4DVAR: l4densvar= F
SETUP_4DVAR: winlen= 3.00000000000000
SETUP_4DVAR: winoff= 3.00000000000000
SETUP_4DVAR: hr_obsbin= 3.00000000000000
SETUP_4DVAR: nobs_bins= 1
SETUP_4DVAR: ntlevs_ens= 1
SETUP_4DVAR: nsubwin,nhr_subwin= 1 3
SETUP_4DVAR: lsqrtb= F
SETUP_4DVAR: lbicg= F
SETUP_4DVAR: lcongrad= F
SETUP_4DVAR: lbfgsmin= F
SETUP_4DVAR: ltlint= F
SETUP_4DVAR: ladtest,ladtest_obs,lgrtest= F F F
SETUP_4DVAR: iwrtinc= -1
SETUP_4DVAR: lanczosave= F
SETUP_4DVAR: ltcost= F
SETUP_4DVAR: jsiga= -1
SETUP_4DVAR: nwrvecs= -1
SETUP_4DVAR: iorthomax= 0
SETUP_4DVAR: liauon= F
SETUP_4DVAR: ljc4tlevs= F
SETUP_4DVAR: ibin_anl= 1
in gsimod: use_gfs_stratosphere,nems_nmmb_regional,wrf_nmm_regional= F F F
GSIMOD: ***WARNING*** set l_cloud_analysis=false
INIT_OBSMOD_VARS: reset time window for one or more OBS_INPUT entries to

1.50000000000000
INIT_OBSMOD_VARS: ndat_times,ndat_types,ndat= 1 81

81
INIT_OBSMOD_VARS: nhr_assimilation= 3
GSIMOD: ***WARNING*** reset oberrflg= T

calling gsisub with following input parameters:

&SETUP
GENCODE = 78.0000000000000 ,
FACTQMIN = 0.000000000000000E+000,
FACTQMAX = 0.000000000000000E+000,
CLIP_SUPERSATURATION = F,
FACTV = 1.00000000000000 ,

54

4. GSI Diagnostics and Tuning

FACTL = 1.00000000000000 ,
FACTP = 1.00000000000000 ,
FACTG = 1.00000000000000 ,
FACTW10M = 1.00000000000000 ,
FACTHOWV = 1.00000000000000 ,
R_OPTION = F,
DELTIM = 1200.00000000000 ,
DTPHYS = 3600.00000000000 ,
BIASCOR = -1.00000000000000 ,
BCOPTION = 1,
DIURNALBC = 0.000000000000000E+000,
NITER = 0, 2*50, 48*0,
NITER_NO_QC = 51*1000000,
MITER = 2,
QOPTION = 2,
CWOPTION = 0,
NHR_ASSIMILATION = 3,
MIN_OFFSET = 180,
PSEUDO_Q2 = F,
IOUT_ITER = 220,
NPREDP = 6,

/
&GRIDOPTS
...
&BKGERR
...
&ANBKGERR
...
&JCOPTS
...
&STRONGOPTS
...
&OBSQC
...
&SUPEROB_RADAR
...
&LAG_DATA
...
&HYBRID_ENSEMBLE
...
&RAPIDREFRESH_CLDSURF
...
&CHEM
...

This version of GSI attempts to read multiple time level backgrounds for option FGAT (First
Guess at Appropriate Time), however we only have provided one time level in this test case.
Therefore, there is an error while reading background information:

CONVERT_NETCDF_MASS: problem with flnm1 = wrf_inou1, Status = -1021

We can ignore errors for missing files wrf_inou1, wrf_inou2, . . . , and wrf_inou9, because we
are only running 3DVAR with one background.

Next, the background fields for the analysis are read in, and the maximum, minimum, and
median values of the fields at each vertical level are displayed. Here, only part of the
variables ZNU and T are shown, with all other variables read by the GSI listed solely as the
variable name in the NetCDF file(rmse_var = T). Maximum and minimum values are useful
for a quick verification that the background fields have been read successfully. From this
section, we also know the time (iy,m,d,h,m,s) and dimension (nlon,lat,sig_regional)
of the background field.

55

4. GSI Diagnostics and Tuning

dh1 = 3
iy,m,d,h,m,s= 2014 6 17 0 0

0
dh1 = 3

rmse_var = SMOIS
ndim1 = 3
ordering = XYZ
staggering = N/A
start_index = 1 1 1 0
end_index = 332 215 4 0
WrfType = 104
ierr = 0
rmse_var = T ndim1 = 3 dh1 = 3
WrfType = 104 ierr = 0
ordering = XYZ staggering = N/A
start_index = 1 1 1 0
end_index = 332 215 50 0
nlon,lat,sig_regional= 332 215 50
rmse_var = P_TOP ndim1= 0
WrfType = 104 WRF_REAL= 104 ierr = 0
ordering = 0 staggering = N/A
start_index = 1 1 1 0
end_index = 332 215 50 0
p_top= 2000.000

...

...
rmse_var = ZNU ndim1= 1
WrfType = 104 WRF_REAL= 104 ierr = 0
ordering = Z staggering = N/A
start_index = 1 1 1 0
end_index = 50 215 50 0
k,znu(k)= 1 0.9990000
k,znu(k)= 2 0.9960001
k,znu(k)= 3 0.9905000

...

...
k,znu(k)= 49 7.1999999E-03
k,znu(k)= 50 2.3500000E-03
rmse_var = ZNW ndim1= 1

...
rmse_var = RDX ndim1= 0

...
rmse_var = RDY ndim1= 0

...
rmse_var = MAPFAC_M ndim1= 2

...
rmse_var = XLAT ndim1= 2

...
rmse_var = XLONG ndim1= 2

...
rmse_var = MUB ndim1= 2

...
rmse_var = MU ndim1= 2

...
rmse_var = PHB ndim1= 3

...
rmse_var = T ndim1= 3
WrfType = 104 WRF_REAL= 104 ierr = 0
ordering = XYZ staggering = N/A
start_index = 1 1 1 0
end_index = 332 215 50 0
k,max,min,mid T= 1 321.5280 270.7682 309.0504
k,max,min,mid T= 2 321.6272 270.9064 309.1002
k,max,min,mid T= 3 321.4596 271.1610 309.1918
k,max,min,mid T= 4 321.2505 271.6038 309.3501
k,max,min,mid T= 5 321.6713 272.2668 309.4191

...

...
k,max,min,mid T= 48 632.2557 567.8249 596.6701
k,max,min,mid T= 49 659.2219 604.4777 630.4330
k,max,min,mid T= 50 689.7565 646.8995 668.5146
rmse_var = QVAPOR ndim1= 3

...

56

4. GSI Diagnostics and Tuning

rmse_var = U ndim1= 3
...

rmse_var = V ndim1= 3
...

rmse_var = XLAND ndim1= 2
...

rmse_var = SEAICE ndim1= 2
...

rmse_var = SST ndim1= 2
...

rmse_var = IVGTYP ndim1= 2
...

rmse_var = ISLTYP ndim1= 2
...

rmse_var = VEGFRA ndim1= 2
...

rmse_var = SNOW ndim1= 2
...

rmse_var = U10 ndim1= 2
...

rmse_var = V10 ndim1= 2
...

rmse_var = SMOIS ndim1= 3
...

rmse_var = TSLB ndim1= 3
...

rmse_var = TSK ndim1= 2
...

rmse_var = Q2 ndim1= 2
...

rmse_var = QCLOUD ndim1= 3
...

rmse_var = QRAIN ndim1= 3
...

rmse_var = QSNOW ndim1= 3
...

rmse_var = QICE ndim1= 3
...

rmse_var = QGRAUP ndim1= 3
...

rmse_var = QNRAIN ndim1= 3
...

rmse_var = RAD_TTEN_DFI ndim1= 3
...

For some variables, the following NETCDF error information might show up when they are
not in the background fields. These errors don't affect the GSI run so you can ignore them.

rmse_var = QSNOW ndim1= 3
WrfType = 104 WRF_REAL= 104 ierr = -1021
ordering = XYZ staggering = N/A
start_index = 1 1 1 0
end_index = 332 215 50 0
NetCDF error: NetCDF: Variable not found
NetCDF error: NetCDF: Variable not found
NetCDF error in wrf_io.F90, line 2842 Varname QSNOW
NetCDF error in wrf_io.F90, line 2842 Varname QSNOW

Again, some error information on missing background files shows up. Ignore if you are not
doing FGAT.

CONVERT_NETCDF_MASS: problem with flnm1 = wrf_inou4, Status = -1021

57

4. GSI Diagnostics and Tuning

Following this is information on the byte order of the binary background files. Since we
used a NetCDF file, there is no need to be concerned with byte order. When using a binary
format background, byte-order can be a problem. Beginning with the release version v3.2,
GSI can automatically check the background byte-order and read it in the right order:

in convert_regional_guess, for wrf arw binary input, byte_swap= F

Information on setting the grid related variables, and the beginning and ending indices for
thread one:

INIT_GRID_VARS: number of threads 1
INIT_GRID_VARS: for thread 1 jtstart,jtstop = 1

168

Information on the initial pointer location for each variable in the Jacobian for the use of
satellite radiance data:

Vars in Rad-Jacobian (dims)

sst 0
u 1
v 2
tv 3
q 53
oz 103

Starting subroutine gsisub (major GSI control subroutine) and displaying the analysis and
background file time (they should be the same):

[000]gsisub(): : starting ...
READ_wrf_mass_FILES: analysis date,minutes 2014 6

17 0 0 19175040
READ_wrf_mass_FILES: sigma guess file, nming2 0.000000000000000E+000

2014 6 17 0 0 19175040
READ_wrf_mass_FILES: sigma fcst files used in analysis : 3

3.00000000000000 1
READ_wrf_mass_FILES: surface fcst files used in analysis: 3

3.00000000000000 1
GESINFO: Guess date is 0 6 17 2014
0.000000000000000E+000

GESINFO: Analysis date is 2014 6 17 0
0 2014061700 3.00000000000000

using restart file date = 2014 6 17 0

Read in radar location information and generate superobs for radar level-II radial velocity.
This case didn't have radar level-II velocity data linked, therefore there is warning about
when opening the file, but this will not impact the rest of the GSI analysis.

RADAR_BUFR_READ_ALL: analysis time is 2014 6 17
0

RADAR_BUFR_READ_ALL: NO RADARS KEPT IN radar_bufr_read_all,
continue without level 2 data

Read in information from fix file scaninfo (see table 3.2) and pcpinfo (see table 3.2).

58

4. GSI Diagnostics and Tuning

***WARNING file scaninfo not found, use default
CREATE_PCP_RANDOM: iseed= 2014061700
PCPINFO_READ: no pcpbias file. set predxp=0.0

Read in and show the content of the conventional observation information file (convinfo;
see Section 4.3 for details). Here is the part of the stdout file showing information from
convinfo:

READ_CONVINFO: tcp 112 0 1 3.00000 0 0 0 75.0000 5.00000 1.00000 75.0000
0.00000 0 0.00000 0.00000 0 0.00000 0.00000 2

READ_CONVINFO: ps 120 0 1 3.00000 0 0 0 4.00000 3.00000 1.00000 4.00000
0.300000E-03 0 0.00000 0.00000 0 0.00000 0.00000 2

...

READ_CONVINFO: t 120 0 1 3.00000 0 0 0 8.00000 5.60000 1.30000 8.00000
0.100000E-05 0 0.00000 0.00000 0 0.00000 0.00000 2

READ_CONVINFO: t 126 0 -1 3.00000 0 0 0 8.00000 5.60000 1.30000 8.00000
0.100000E-02 0 0.00000 0.00000 0 0.00000 0.00000 2

...

READ_CONVINFO: gps 729 0 -1 3.00000 0 0 0 10.0000 10.0000 1.00000 10.0000
0.00000 0 0.00000 0.00000 0 0.00000 0.00000 2

READ_CONVINFO: gps 44 0 -1 3.00000 0 0 0 10.0000 10.0000 1.00000 10.0000
0.00000 0 0.00000 0.00000 0 0.00000 0.00000 2

Starting subroutine glbsoi with information on reading in background fields from the inter-
mediate binary file sigf03 and partitioning the whole 2D field into subdomains for parallel
analysis:

glbsoi: starting ...
gsi_metguess_mod*create_: alloc() for met-guess done
guess_grids*create_chemges_grids: trouble getting number of chem/gases
at 0 in read_wrf_mass_guess
at 0.1 in read_wrf_mass_guess

at 1 in read_wrf_mass_guess, lm = 50
at 1 in read_wrf_mass_guess, num_mass_fields= 215
at 1 in read_wrf_mass_guess, nfldsig = 1
at 1 in read_wrf_mass_guess, num_all_fields= 215
at 1 in read_wrf_mass_guess, npe = 4
at 1 in read_wrf_mass_guess, num_loc_groups= 53
at 1 in read_wrf_mass_guess, num_all_pad = 216
at 1 in read_wrf_mass_guess, num_loc_groups= 54
READ_WRF_MASS_GUESS: open lendian_in= 15 to file=sigf03
READ_WRF_MASS_GUESS: open lendian_in= 15 to file=sigf03
in read_wrf_mass_guess, num_doubtful_sfct_all = 0
in read_wrf_mass_guess, num_doubtful_sfct_all = 0

Show observation observer as successfully initialized and inquire about the control vectors
(space for analysis variables).

observer_init: successfully initialized
control_vectors: length= 5613648
control_vectors: currently allocated= 0
control_vectors: maximum allocated= 0
control_vectors: number of allocates= 0
control_vectors: number of deallocates= 0

control_vectors: Estimated max memory used= 0.0 Mb

Show the source of observation error used in the analysis (details see Section 4.7.1):

59

4. GSI Diagnostics and Tuning

CONVERR: using observation errors from user provided table

The following information is related to the observation ingest processes, which is distributed
over all the processors with each processor reading in at least one observation type. To
speed up the reading process, some of the large datasets will use more than one (ntasks)
processor for the ingest process.

Before reading in data from BUFR files, GSI checks the file status to insure the observation
time matches the analysis time and whether the namelist option offtime_data is set (can be
used to turn off the time consistency check between observation and analysis time). This
step also checks for consistency between the satellite radiance data types in the BUFR files
and the usage setups in the satinfo files. The following shows stdout information from this
step:

read_obs_check: bufr file date is 2014061700 prepbufr ps
read_obs_check: bufr file uv not available satwndbufr
read_obs_check: bufr file rw not available radarbufr
read_obs_check: bufr file pcp_tmi trmm not available tmirrbufr
read_obs_check: bufr file hirs3 n17 not available hirs3bufr
read_obs_check: bufr file goes_img g11 not available gimgrbufr
read_obs_check: bufr file date is 2014061700 prepbufr q
read_obs_check: bufr file date is 2014061700 prepbufr t
read_obs_check: bufr file date is 2014061700 amsuabufr amsua n18
read_obs_check: bufr file amsua n18 not available amsuabufrears

...

...

read_obs_check: bufr file sndrd3 g15 not available gsnd1bufr
read_obs_check: bufr file omi aura not available omibufr
read_obs_check: bufr file seviri m09 not available seviribufr
read_obs_check: bufr file atms npp not available atmsbufr
read_obs_check: bufr file date is 2014061700 prepbufr sst

...

...

read_obs_check: bufr file seviri m08 not available seviribufr
read_obs_check: bufr file gome metop-b not available gomebufr
read_obs_check: bufr file uv not available oscatbufr
data type mta_cld not used in info file -- do not read file
prepbufr
data type gos_ctp not used in info file -- do not read file
prepbufr
data type rad_ref not used in info file -- do not read file
refInGSI
data type lghtn not used in info file -- do not read file
lghtInGSI
data type larccld not used in info file -- do not read file
larcInGSI

The list of observation types that were read in and processors used to read them:

number of extra processors 1
READ_OBS: read 33 mhs mhs_n18 using ntasks= 2 0 131 0
READ_OBS: read 34 mhs mhs_n19 using ntasks= 2 2 153 0
READ_OBS: read 35 mhs mhs_metop-a using ntasks= 2 0 563 0
READ_OBS: read 36 mhs mhs_metop-b using ntasks= 2 2 2 0
READ_OBS: read 1 ps ps using ntasks= 1 0 0 0
READ_OBS: read 2 t t using ntasks= 1 1 0 0
READ_OBS: read 3 q q using ntasks= 1 2 0 0

60

4. GSI Diagnostics and Tuning

READ_OBS: read 4 pw pw using ntasks= 1 3 839 0
READ_OBS: read 6 uv uv using ntasks= 1 0 0 0
READ_OBS: read 10 sst sst using ntasks= 1 1 504 0
READ_OBS: read 11 gps_ref gps using ntasks= 1 2 0 0
READ_OBS: read 19 hirs4 hirs4_metop-a using ntasks= 2 3 277 0
READ_OBS: read 21 hirs4 hirs4_n19 using ntasks= 1 0 75 0
READ_OBS: read 22 hirs4 hirs4_metop-b using ntasks= 1 1 2 0
READ_OBS: read 26 amsua amsua_n15 using ntasks= 1 2 27 0
READ_OBS: read 27 amsua amsua_n18 using ntasks= 1 3 45 0
READ_OBS: read 28 amsua amsua_n19 using ntasks= 1 0 47 0
READ_OBS: read 29 amsua amsua_metop-a using ntasks= 1 1 124 0
READ_OBS: read 30 amsua amsua_metop-b using ntasks= 1 2 2 0

Display basic statistics for full horizontal surface fields (If radiance BUFR files are not linked,
this section will not be in the stdout file):

GETSFC: enter with nlat_sfc,nlon_sfc= 0 0 and nlat,nlon=
215 332

GETSFC: set nlat_sfc,nlon_sfc= 215 332
==
Status Var Mean Min Max
sfcges2 FC10 1.000000000000E+00 1.000000000000E+00 1.000000000000E+00
sfcges2 SNOW 8.137817211798E-02 0.000000000000E+00 9.510296630859E+01
sfcges2 VFRC 1.701514588514E-01 0.000000000000E+00 9.899999499321E-01
sfcges2 SRGH 5.003234230527E-02 5.000000074506E-02 5.000000074506E-02
sfcges2 STMP 2.936729335948E+02 2.643117675781E+02 3.229424743652E+02
sfcges2 SMST 7.664003944557E-01 6.047149747610E-02 1.000000000000E+00
sfcges2 SST 2.942266741384E+02 2.688000183105E+02 3.240092468262E+02
sfcges2 VTYP 1.463281031101E+01 1.000000000000E+00 2.400000000000E+01
sfcges2 ISLI 3.405295601009E-01 0.000000000000E+00 2.000000000000E+00
sfcges2 STYP 1.137135051835E+01 1.000000000000E+00 1.600000000000E+01
==

Loop over all data files to read in observations, also read in rejection list for surface obser-
vations and show GPS observations outside the time window:

READ_BUFRTOVS : file=mhsbufr type=mhs sis=mhs_n18 nread= 248485 ithin= 2
rmesh= 60.000000 isfcalc= 0 ndata= 26765 ntask= 2
READ_BUFRTOVS : file=mhsbufr type=mhs sis=mhs_n19 nread= 60900 ithin= 2
rmesh= 60.000000 isfcalc= 0 ndata= 6725 ntask= 2
READ_BUFRTOVS : file=mhsbufr type=mhs sis=mhs_metop-a nread= 142555 ithin= 2
rmesh= 60.000000 isfcalc= 0 ndata= 15145 ntask= 2
READ_BUFRTOVS : file=mhsbufr type=mhs sis=mhs_metop-b nread= 113590 ithin= 2
rmesh= 60.000000 isfcalc= 0 ndata= 12185 ntask= 2
READ_PREPBUFR: messages/reports = 142 / 20925 ntread =

1
new vad flag:: F
READ_PREPBUFR : file=prepbufr type=pw sis=pw nread= 252 ithin= 0 rmesh=
120.000000 isfcalc= 0 ndata= 252 ntask= 1
READ_PREPBUFR: messages/reports = 682 / 67083 ntread =

1
READ_PREPBUFR: time offset is 3.00000000000000 hours.
new vad flag:: F
READ_PREPBUFR: messages/reports = 682 / 67083 ntread =

1
mesonetuselist: listexist,nprov= F 0
w_rejectlist: wlistexist,nwrjs= F 0
t_rejectlist: tlistexist,ntrjs= F 0

...

READ_PREPBUFR : file=prepbufr type=ps sis=ps nread= 23868 ithin= 0 rmesh=
120.000000 isfcalc= 0 ndata= 15819 ntask= 1
READ_PREPBUFR : file=prepbufr type=t sis=t nread= 26296 ithin= 0 rmesh=
120.000000 isfcalc= 0 ndata= 25686 ntask= 1
READ_PREPBUFR : file=prepbufr type=sst sis=sst nread= 0 ithin= 0 rmesh=
120.000000 isfcalc= 0 ndata= 0 ntask= 1
READ_PREPBUFR : file=prepbufr type=q sis=q nread= 24461 ithin= 0 rmesh=
120.000000 isfcalc= 0 ndata= 20989 ntask= 1

..

READ_BUFRTOVS : file=hirs4bufr type=hirs4 sis=hirs4_n19 nread= 55613 ithin= 2 rmesh=
60.000000 isfcalc= 0 ndata= 23408 ntask= 1
READ_BUFRTOVS : file=amsuabufr type=amsua sis=amsua_n19 nread= 20370 ithin= 2

rmesh= 60.000000 isfcalc= 0 ndata= 16912 ntask= 1

61

4. GSI Diagnostics and Tuning

Using the above output information, many details on the observations can be obtained.
For example, the last line indicates that subroutine READ_BUFRTOVS was called to read in
NOAA-19 AMSU-A (sis=amsua_n19) data from the BUFR file amsuabufr (file=amsuabufr).
Furthermore, there are 20370 observations in this file (nread=20370) and 16912 in the anal-
ysis domain and within the time window (ndata=16912). The data was thinned on a 60 km
coarse grid (rmesh=60.000000).

The next step partitions observations into subdomains. The observation distribution is
summarized below by listing the number of observations for each variable per subdomain
(see Section 4.4 for more information):

OBS_PARA: ps 1429 3190 4655 6774
OBS_PARA: t 2564 5200 7057 11128
OBS_PARA: q 2346 4626 6148 8128
OBS_PARA: pw 65 80 63 49
OBS_PARA: uv 3358 6453 8091 11998
OBS_PARA: gps_ref 1799 1368 2664 3520
OBS_PARA: hirs4 metop-a 0 0 1146 1661
OBS_PARA: hirs4 n19 213 1020 0 0
OBS_PARA: hirs4 metop-b 0 0 85 555
OBS_PARA: amsua n15 1458 2026 830 234
OBS_PARA: amsua n18 2223 2318 108 0
OBS_PARA: amsua n19 176 960 0 0
OBS_PARA: amsua metop-a 0 0 1077 1559
OBS_PARA: amsua metop-b 0 0 265 1829
OBS_PARA: mhs n18 2550 2695 160 0
OBS_PARA: mhs n19 246 1103 0 0
OBS_PARA: mhs metop-a 0 0 1237 1809
OBS_PARA: mhs metop-b 0 0 321 2128

Information on ingesting background error statistics:

m_berror_stats_reg::berror_read_bal_reg(PREBAL_REG): get balance variables"
berror_stats". mype,nsigstat,nlatstat = 0 60 93
m_berror_stats_reg::berror_read_wgt_reg(PREWGT_REG): read error amplitudes "
berror_stats". mype,nsigstat,nlatstat = 0 60 93
Assigned default statistics to variable oz
Assigned default statistics to variable cw

From this point forward in the stdout file, the output shows many repeated entries. This is
because the information is written from inside the outer loop. Typically the outer loop is run
twice.

For each outer loop, the work begins with the calculation of the observation innovation. This
calculation is done by the subroutine setuprhsall, which sets up the right hand side (rhs) of
the analysis equation. This information is contained within the stdout file, which is shown
in the following sections:

Start the first outer analysis loop:

GLBSOI: jiter,jiterstart,jiterlast,jiterend= 1 1
2 1

Calculate observation innovation for each data type in the first outer loop:

62

4. GSI Diagnostics and Tuning

SETUPALL:,obstype,isis,nreal,nchanl= ps ps 20 0
SETUPALL:,obstype,isis,nreal,nchanl= t t 25 0
SETUPALL:,obstype,isis,nreal,nchanl= q q 26 0
SETUPALL:,obstype,isis,nreal,nchanl= pw pw 20 0
SETUPALL:,obstype,isis,nreal,nchanl= uv uv 25 0
SETUPALL:,obstype,isis,nreal,nchanl= gps_ref gps 16 0
SETUPALL:,obstype,isis,nreal,nchanl= hirs4 hirs4_n19 33 19

0 setuprad: passive obs 21 hirs4_n19
crtm_interface*init_crtm: crtm_init() on path "./"
SpcCoeff_ReadFile(Binary)(INFORMATION) : FILE: ./hirs4_n19.SpcCoeff.bin; ^M
SpcCoeff RELEASE.VERSION: 8.03^M

N_CHANNELS=19
Read_ODPS_Binary(INFORMATION) : FILE: ./hirs4_n19.TauCoeff.bin; ^M

ODPS RELEASE.VERSION: 2.01 N_LAYERS=100 N_COMPONENTS=5 N_ABSORBERS=3 N_CHANNELS=19 N_COEFFS=82000
SEcategory_ReadFile(INFORMATION) : FILE: ./NPOESS.IRland.EmisCoeff.bin; ^M
SEcategory RELEASE.VERSION: 3.01^M

CLASSIFICATION: NPOESS, N_FREQUENCIES=20 N_SURFACE_TYPES=20
SETUPALL:,obstype,isis,nreal,nchanl= hirs4 hirs4_metop-a 33 19
crtm_interface*init_crtm: crtm_init() on path "./"

...

...

In the above section, when computing the radiance observation innovation, information on
reading in CRTM coefficients follows SETUPALL information. In the stdout file, only infor-
mation related to available radiance data are printed. The complete innovation information
can be found in the diagnostic files for each observation (for details see Appendix A.2):

...

...
FitCoeff_ReadFile(INFORMATION) : FILE: ./FASTEM6.MWwater.EmisCoeff.bin; ^M
FitCoeff RELEASE.VERSION : 1.6; DIMENSIONS= 3, 6, 2
MWwaterCoeff_ReadFile(INFORMATION) : FILE: ./FASTEM6.MWwater.EmisCoeff.bin; ^M
MWwaterCoeff RELEASE.VERSION: 1.6
SETUPRAD: write header record for mhs_n19 12 30

8 0 0 22 4 30303
to file pe0000.mhs_n19_01 2014061700

The inner iteration of the first outer loop is discussed in the example below. In this example,
the maximum number of iterations is 50.

Print cost function values for each inner iteration (see section 4.6 for more details):

GLBSOI: START pcgsoi jiter= 1
pcgsoi: gnorm(1:2),b= 2.767403469782257162E+03 2.767403469782257162E+03 0.000000000000000000E+00
Begin J table inner/outer loop 0 1

J term J
surface pressure 5.7012207042385944E+03
temperature 6.4242087278840627E+03
wind 1.6782607330525603E+04
moisture 3.5878183830232451E+03
gps 7.8814883785376896E+03
radiance 3.4334884315701471E+04

J Global 7.4712227839910673E+04
End Jo table inner/outer loop 0 1

Initial cost function = 7.471222783991067263E+04
Initial gradient norm = 5.260611627731377382E+01
cost,grad,step,b,step? = 1 0 7.471222783991067263E+04 5.260611627731377382E+01 1.717817994849075269E+00 0.000000000000000000E+00 good
pcgsoi: gnorm(1:2),b= 1.754232612149755596E+03 1.754232612149755141E+03 6.338911659627933792E-01
cost,grad,step,b,step? = 1 1 6.995833236051093263E+04 4.188356016565158058E+01 4.106937422100393142E+00 6.338911659627933792E-01 good
pcgsoi: gnorm(1:2),b= 1.216588309725912268E+03 1.216588309725912268E+03 6.935159575188962755E-01
cost,grad,step,b,step? = 1 2 6.275380879860417917E+04 3.487962599750622417E+01 2.174716042085542700E+00 6.935159575188962755E-01 good
pcgsoi: gnorm(1:2),b= 1.156766558917323891E+03 1.156766558917324346E+03 9.508282708864222998E-01
cost,grad,step,b,step? = 1 3 6.010807468482949480E+04 3.401127105706759579E+01 2.916832102067935306E+00 9.508282708864222998E-01 good
pcgsoi: gnorm(1:2),b= 6.945724726018979709E+02 6.945724726018985393E+02 6.004430775142600707E-01
...
...
cost,grad,step,b,step? = 1 49 4.142785387197384262E+04 1.680503228207865574E+00 2.338314294416948602E+00 1.076393393015242506E+00 good
pcgsoi: gnorm(1:2),b= 1.980029522220628557E+00 1.980029522219752591E+00 7.011209809087933786E-01
cost,grad,step,b,step? = 1 50 4.142125025938593171E+04 1.407135218172236746E+00 5.458012252072157899E+00 7.011209809087933786E-01 good
update_guess: successfully complete

63

4. GSI Diagnostics and Tuning

At the end of the 1st outer loop, print some diagnostics about the analysis increments as well
as information on the guess fields after adding the analysis increments to the background:

==
Status Var Mean Min Max
analysis U 3.027810174754E+00 -4.616646796505E+01 6.874148210358E+01
analysis V -2.783966384966E-02 -6.673607446514E+01 6.206906140999E+01
analysis TV 2.466648731614E+02 1.909849532362E+02 3.159577451606E+02
analysis Q 2.789588139811E-03 1.000000000000E-07 2.260955460480E-02
analysis TSEN 2.461750146062E+02 1.909846857229E+02 3.153599236074E+02
analysis OZ 1.000000000007E-15 1.000000000000E-15 1.000000000000E-15
analysis CW 0.000000000000E+00 0.000000000000E+00 0.000000000000E+00
analysis DIV 0.000000000000E+00 0.000000000000E+00 0.000000000000E+00
analysis VOR 0.000000000000E+00 0.000000000000E+00 0.000000000000E+00
analysis PRSL 4.154470108570E+01 2.152367800892E+00 1.028272918117E+02
analysis PS 9.910751025141E+01 6.684714489139E+01 1.029767184368E+02
analysis SST 2.942451749464E+02 2.688000183105E+02 3.240092468262E+02
analysis radb 6.939468963354E-02 -1.373884240000E+02 1.230549030000E+02
analysis pcpb 0.000000000000E+00 0.000000000000E+00 0.000000000000E+00
analysis aftb 0.000000000000E+00 0.000000000000E+00 0.000000000000E+00
==
increment u 6.699567621553E-04 -1.360159370531E+01 7.008598936474E+00
increment v 1.598741317770E-03 -9.984198525101E+00 8.688133965521E+00
increment tv -5.436012894801E-04 -2.969908758852E+00 4.753382796517E+00
increment tsen 4.740094380224E-04 -2.966625119631E+00 4.955252532399E+00
increment q -5.666454694731E-06 -4.783507458114E-03 4.607810408495E-03
increment oz 0.000000000000E+00 0.000000000000E+00 0.000000000000E+00
increment cw 0.000000000000E+00 0.000000000000E+00 0.000000000000E+00
increment prse 4.684195247526E-03 -8.941125614721E-02 1.065972973935E-01
increment ps 1.145022012350E-02 -8.941125614721E-02 1.065972973935E-01
increment sst 2.337322205329E-02 -5.017646098146E-01 1.017498439243E+00

Start the second outer loop.

GLBSOI: jiter,jiterstart,jiterlast,jiterend= 2 1
2 1

Calculate observation innovations for each data type in the second outer loop:

SETUPALL:,obstype,isis,nreal,nchanl= ps ps 20 0
SETUPALL:,obstype,isis,nreal,nchanl= t t 25 0
SETUPALL:,obstype,isis,nreal,nchanl= q q 26 0

...

When calculating the radiance data innovation, there is no need to read in CRTM coefficients
again because they were already read in during the first outer loop:

SETUPALL:,obstype,isis,nreal,nchanl= ps ps 20 0
SETUPALL:,obstype,isis,nreal,nchanl= t t 25 0
SETUPALL:,obstype,isis,nreal,nchanl= q q 26 0
SETUPALL:,obstype,isis,nreal,nchanl= pw pw 20 0
SETUPALL:,obstype,isis,nreal,nchanl= uv uv 25 0
SETUPALL:,obstype,isis,nreal,nchanl= gps_ref gps 16 0
SETUPALL:,obstype,isis,nreal,nchanl= hirs4 hirs4_n19 33 19

0 setuprad: passive obs 21 hirs4_n19
SETUPALL:,obstype,isis,nreal,nchanl= hirs4 hirs4_metop-a 33 19
SETUPALL:,obstype,isis,nreal,nchanl= amsua amsua_n15 33 15
SETUPALL:,obstype,isis,nreal,nchanl= amsua amsua_n18 33 15
SETUPALL:,obstype,isis,nreal,nchanl= hirs4 hirs4_metop-b 33 19
SETUPALL:,obstype,isis,nreal,nchanl= amsua amsua_metop-a 33 15
SETUPALL:,obstype,isis,nreal,nchanl= amsua amsua_n19 33 15
SETUPALL:,obstype,isis,nreal,nchanl= amsua amsua_metop-b 33 15
SETUPALL:,obstype,isis,nreal,nchanl= mhs mhs_n18 33 5
SETUPALL:,obstype,isis,nreal,nchanl= mhs mhs_metop-a 33 5
SETUPALL:,obstype,isis,nreal,nchanl= mhs mhs_metop-b 33 5
SETUPALL:,obstype,isis,nreal,nchanl= mhs mhs_n19 33 5

64

4. GSI Diagnostics and Tuning

The output from the inner iterations in the second outer loop is shown below. In this
example, the maximum number of iterations is 50.

Print cost function values for each inner iteration (see section 4.6 for more details):

GLBSOI: START pcgsoi jiter= 2
pcgsoi: gnorm(1:2),b= 9.125529304049867960E+02 9.125529304049867960E+02 0.000000000000000000E+00
Begin J table inner/outer loop 0 2

J term J
background 5.1520678195203345E+03
surface pressure 4.1180289830866377E+03
temperature 4.3079774551559522E+03
wind 1.0714401927194920E+04
moisture 1.3696062777723114E+03
gps 3.1175680587783127E+03
radiance 2.4255186183427002E+04

J Global 5.3034836704935471E+04
End Jo table inner/outer loop 0 2

Initial cost function = 5.303483670493547106E+04
Initial gradient norm = 3.020849103157896565E+01
cost,grad,step,b,step? = 2 0 5.303483670493547106E+04 3.020849103157896565E+01 1.417696886759607366E+00 0.000000000000000000E+00 good
pcgsoi: gnorm(1:2),b= 3.752399307247351885E+02 3.752399307247339380E+02 4.111979899710630493E-01
cost,grad,step,b,step? = 2 1 5.174111325649695937E+04 1.937111072511680021E+01 5.251908998246061167E+00 4.111979899710630493E-01 good
pcgsoi: gnorm(1:2),b= 2.403892651142143109E+02 2.403892651142157320E+02 6.406281566301591512E-01
cost,grad,step,b,step? = 2 2 4.977038728782249382E+04 1.550449177219989672E+01 3.447718424869901543E+00 6.406281566301591512E-01 good
pcgsoi: gnorm(1:2),b= 3.513995903418547186E+02 3.513995903418544913E+02 1.461794020522907633E+00
cost,grad,step,b,step? = 2 3 4.894159278934728354E+04 1.874565523906419173E+01 1.888694950411589302E+00 1.461794020522907633E+00 good
...
...
pcgsoi: gnorm(1:2),b= 4.240269047847287087E-01 4.240269047846388362E-01 8.928029496575288215E-01
cost,grad,step,b,step? = 2 49 4.549093632176067331E+04 6.511734828636134287E-01 3.659140330083644699E+00 8.928029496575288215E-01 good
pcgsoi: gnorm(1:2),b= 3.162643690270069974E-01 3.162643690267226138E-01 7.458592024656659492E-01
cost,grad,step,b,step? = 2 50 4.548938474781232799E+04 5.623738694383008108E-01 3.375651104905403432E+00 7.458592024656659492E-01 good
update_guess: successfully complete

Diagnostics of the analysis results after adding the analysis increment to the guess, as well
as diagnostics about the analysis increments:

==
Status Var Mean Min Max
analysis U 3.031191508676E+00 -4.617266089077E+01 6.889816661368E+01
analysis V -2.943556460524E-02 -6.653467898266E+01 6.166408410383E+01
analysis TV 2.467118072154E+02 1.909576489123E+02 3.159594232825E+02
analysis Q 2.792097480151E-03 1.000000000000E-07 2.263794691793E-02
analysis TSEN 2.462214978004E+02 1.909573814527E+02 3.153808896427E+02
analysis OZ 1.000000000007E-15 1.000000000000E-15 1.000000000000E-15
analysis CW 0.000000000000E+00 0.000000000000E+00 0.000000000000E+00
analysis DIV 0.000000000000E+00 0.000000000000E+00 0.000000000000E+00
analysis VOR 0.000000000000E+00 0.000000000000E+00 0.000000000000E+00
analysis PRSL 4.154936446270E+01 2.152390788296E+00 1.028757430184E+02
analysis PS 9.910817481416E+01 6.684789651716E+01 1.029802303066E+02
analysis SST 2.942451749464E+02 2.688000183105E+02 3.240092468262E+02
analysis radb 6.938254104671E-02 -1.373884240000E+02 1.230549030000E+02
analysis pcpb 0.000000000000E+00 0.000000000000E+00 0.000000000000E+00
analysis aftb 0.000000000000E+00 0.000000000000E+00 0.000000000000E+00
==
increment u 3.381333921427E-03 -1.617060550844E+00 3.067216672606E+00
increment v -1.595900755559E-03 -2.932441477540E+00 1.626847973396E+00
increment tv 4.693405394733E-02 -9.818098783002E-01 2.215784626624E+00
increment tsen 4.648264962860E-02 -9.818069362856E-01 2.215777805989E+00
increment q 2.508348182621E-06 -2.410389935149E-03 1.663695364258E-03
increment oz 0.000000000000E+00 0.000000000000E+00 0.000000000000E+00
increment cw 0.000000000000E+00 0.000000000000E+00 0.000000000000E+00
increment prse 2.718674106775E-04 -5.539352084836E-02 4.239997318097E-02
increment ps 6.645627545749E-04 -5.539352084836E-02 4.239997318097E-02
increment sst -2.077555444927E-03 -3.656869699698E-01 7.433384932582E-01

Because the outer loop is set to two, the completion of the 2nd outer loop marks the end of
the analysis. The next step is to save the analysis results. Again, only a portion of variable
"T" is shown and all other variables are listed according to variable name in the NetCDF
file (rmse_var = T). The maximum and minimum values are useful information for a quick
sanity check of the analysis:

65

4. GSI Diagnostics and Tuning

at 2 in wrwrfmassa
update sigf03
at 3 in wrwrfmassa
at 6 in wrwrfmassa
at 10.11 in wrwrfmassa,max,min(temp1)= 2.1931874E-02 1.3461057E-03
at 10.12 in wrwrfmassa,max,min(tempa)= 0.0000000E+00 0.0000000E+00
at 10.13 in wrwrfmassa,max,min(tempa)= 0.0000000E+00 -2.1931874E-02
at 10.14 in wrwrfmassa,max,min(temp1)= 0.0000000E+00 0.0000000E+00
iy,m,d,h,m,s= 2014 6 17 0 0

0
nlon,lat,sig_regional= 332 215 50
rmse_var=P_TOP
ordering=0
WrfType,WRF_REAL= 104 104
ndim1= 0
staggering= N/A
start_index= 1 1 1 0
end_index1= 332 215 50 0
p_top= 2000.000
rmse_var=MUB
ordering=XY
WrfType,WRF_REAL= 104 104
ndim1= 2
staggering= N/A
start_index= 1 1 1 0
end_index1= 332 215 50 0
max,min MUB= 98672.59 63425.52
max,min psfc= 102799.7 66795.70
max,min MU= 2799.734 -1187.844
rmse_var=MU
ordering=XY
WrfType,WRF_REAL= 104 104
ndim1= 2
staggering= N/A
start_index= 1 1 1 0
end_index1= 332 215 50 0
k,max,min,mid T= 1 321.6379 270.7839 309.3401
k,max,min,mid T= 2 321.7433 270.9335 309.3846
k,max,min,mid T= 3 321.4780 271.1794 309.3658

...

k,max,min,mid T= 49 662.7022 604.6494 637.0358
k,max,min,mid T= 50 693.4219 647.1161 675.5701

rmse_var=T
...

rmse_var=QVAPOR
...

rmse_var=U
...

rmse_var=V
...

rmse_var=SEAICE
...

rmse_var=SST
...

rmse_var=TSK
...

rmse_var=Q2
...

After completion of the analysis, the subroutine "setuprhsall" is called again if
write_diag(3)=.true., to calculate analysis and O-A information (this marks the third
time this information is presented):

SETUPALL:,obstype,isis,nreal,nchanl= ps ps 20 0
SETUPALL:,obstype,isis,nreal,nchanl= t t 25 0
SETUPALL:,obstype,isis,nreal,nchanl= q q 26 0
SETUPALL:,obstype,isis,nreal,nchanl= pw pw 20 0

66

4. GSI Diagnostics and Tuning

SETUPALL:,obstype,isis,nreal,nchanl= uv uv 25 0
SETUPALL:,obstype,isis,nreal,nchanl= gps_ref gps 16 0
SETUPALL:,obstype,isis,nreal,nchanl= hirs4 hirs4_n19 33 19

0 setuprad: passive obs 21 hirs4_n19
SETUPRAD: write header record for hirs4_n19 12 30

8 0 0 22 4 30303
to file pe0000.hirs4_n19_03 2014061700

SETUPALL:,obstype,isis,nreal,nchanl= hirs4 hirs4_metop-a 33 19
SETUPRAD: write header record for hirs4_metop-a 12 30

8 0 0 22 4 30303

Deallocate the data arrays and finalize the GSI run:

gsi_metguess_mod*destroy_: dealloc() for met-guess done
observer_final: successfully finalized
glbsoi: complete

[000]gsisub(): : complete.

The end of the GSI analysis (reaching this point does not necessarily guarantee a successful
analysis), which shows the date and time when GSI finished and some additional resource
statistics:

ENDING DATE-TIME JUL 02,2016 20:43:40.422 184 SAT 2457572
PROGRAM GSI_ANL HAS ENDED.

* . * . * . * . * . * . * . * . * . * . * . * . * . * . * . * . * . * . * . * .
*****************RESOURCE STATISTICS*******************************
The total amount of wall time = 438.663534
The total amount of time in user mode = 427.578998
The total amount of time in sys mode = 9.457562
The maximum resident set size (KB) = 2020132
Number of page faults without I/O activity = 312762
Number of page faults with I/O activity = 0
Number of times filesystem performed INPUT = 0
Number of times filesystem performed OUTPUT = 0
Number of Voluntary Context Switches = 7641
Number of InVoluntary Context Switches = 851
*****************END OF RESOURCE STATISTICS*************************

Different GSI applications may write out slightly different stdout file information but the
major flow and information are the same. A good knowledge of the stdout file gives users a
clear picture of how GSI runs and the key information provided during a GSI run like data
distribution and inner iterations.

4.2 Single Observation Test

A single observation test is a GSI where only one (pseudo) observation is assimilated from a
specific time and location within the analysis domain. By examining the analysis increments
from a single observation test, one can visualize the important features of the analysis, such
as the ratio of background error and observation error variance and the pattern of the
background error covariance. Therefore, the single observation test is the first thing that
users should run after successfully installing the GSI.

67

4. GSI Diagnostics and Tuning

4.2.1 Setup a Single Observation Test

To perform the single observation test with the GSI, the following GSI namelist variables
need to be set, which should be done through editing the script run/comgsi_namelist.sh:

Under the &SETUP section, turn on the single observation test:

oneobtest=.true.,

under the &SINGLEOB_TEST section, set up single observation features like:

maginnov=1.0,
magoberr=0.8,
oneob_type=’t’,
oblat=38.,
oblon=262.,
obpres=500.,
obdattim= 2014061700,
obhourset=0.,

Note:

• Please check Appendix C in the User's Guide for the explanation of each parameter.
From these parameters, we can see that a useful observation in the analysis should
include information like the observation type (oneob_type), value (maginnov), ob-
servation error (magoberr), location (oblat, oblong, obpres), and time (obdattim,
obhourset). Users can dump out (use ncdump) the global attributes from the NetCDF
background file and set oblat=CEN_LAT, oblong=360-CEN_LON to have the obser-
vation at the center of the domain.

• In the analysis, the GSI first generates a prepbufr file including only one observation
based on the information given in the namelist &SINGLEOB_TEST section. To generate
this prepbufr file, the GSI needs to read in a PrepBUFR table, which is not needed
when running a GSI analysis with real observations. The BUFR table is in the fix/
directory and needs to be copied to the run directory. We have put the following lines
in the GSI run script for the single observation test:
bufrtable=${FIX_ROOT}/prepobs_prep.bufrtable
cp $bufrtable ./prepobs_prep.bufrtable

4.2.2 Examples of Single Observation Tests for GSI

Figure 4.1 is a single observation test that has a temperature observation (oneob_type=’t’)
with a one degree innovation (maginnov=1.0) and a 0.8 degree observation error
(magoberr=0.8). The background error covariance converted from global (GFS) BE was
picked to provide for better illustration.

This single observation was located at the center of the domain. The results are shown with
figures of the horizontal and vertical cross sections through the point of maximum analysis
increment. The Figure 4.1 was generated using NCL scripts, which can be found in the
util/Analysis_Utilities/plots_ncl directory, introduced in Section A.4.

68

4. GSI Diagnostics and Tuning

Figure 4.1: Horizontal cross sections (left column) and vertical cross sections (right column)
of analysis increment of T, U, V, and Q from a single T observation

69

4. GSI Diagnostics and Tuning

4.3 Control Data Usage

Observation data used in the GSI analysis can be controlled through three parts of the GSI
system:

1. In the GSI run script, by linking observation BUFR files to the working directory
2. In section &OBS_INPUT of the GSI namelist (inside comgsi_namelist.sh)
3. Through parameters in info files (e.g.: convinfo, satinfo, etc.)

Each part provides different levels of control for data usage in the GSI, which is introduced
below:

1. Link observation BUFR files to the working directory in the GSI run script:

All BUFR/PrepBUFR observation files need to be linked to the working directory with
GSI recognizable names before they can be used in a GSI analysis. The run script
(run_gsi_regional.ksh) makes these links after locating the working directory. Turning
these links on or off can control the use of all the data contained in the BUFR files.
Table 4.1 provides a list of all default observation file names recognized by GSI and the
corresponding examples of the observation BUFR files from NCEP. The following is the
first three rows of the table as an example:

Table 4.1: List of all default observation file names recognized by GSI.

GSI Name Content Example file names
prepbufr Conventional observations, including ps, t, q, pw,

uv, spd, dw, sst, from observation platforms such as
METAR, soundings, etc.

gdas1.t12z.prepbufr

satwndbufr satellite winds gdas1.t12z.satwnd.tm00.bufr_d
amsuabufr AMSU-A 1b radiance (brightness temperatures) from

satellites NOAA-15, 16, 17,18, 19, and METOP-A/B
gdas1.t12z.1bamua.tm00.bufr_d

The left column is the GSI recognized name (bold) and the right column are names of
BUFR files from NCEP (italic). In the run script, the following lines are used to link the
BUFR files in the right column to the working directory using the GSI recognized names
shown in the left column:
Link to the prepbufr data
ln -s ${PREPBUFR} ./prepbufr

Link to the radiance data
ln -s ${OBS_ROOT}/gdas1.t12z.1bamua.tm00.bufr_d amsuabufr

The GSI recognized default observation filenames are set up in the namelist section
&OBS_INPUT, which can be changed based on application needs (see below for details).

2. In the GSI namelist (inside comgsi_namelist.sh), section &OBS_INPUT:

In this namelist section, observation files ("dfile" column) are tied to the observation vari-
ables used inside the GSI code ("dsis" column). For example, part of section OBS_INPUT
shows:

70

4. GSI Diagnostics and Tuning

&OBS_INPUT
dmesh(1)=120.0,dmesh(2)=60.0,dmesh(3)=30,time_window_max=1.5,ext_sonde=.true.,

/
OBS_INPUT::
! dfile dtype dplat dsis dval dthin dsfcalc

prepbufr ps null ps 1.0 0 0
prepbufr t null t 1.0 0 0
prepbufr q null q 1.0 0 0
prepbufr pw null pw 1.0 0 0
satwndbufr uv null uv 1.0 0 0
prepbufr uv null uv 1.0 0 0
prepbufr spd null spd 1.0 0 0
prepbufr dw null dw 1.0 0 0
radarbufr rw null rw 1.0 0 0
prepbufr sst null sst 1.0 0 0
gpsrobufr gps_ref null gps 1.0 0 0
ssmirrbufr pcp_ssmi dmsp pcp_ssmi 1.0 -1 0
...
amsuabufr amsua n15 amsua_n15 10.0 2 0
amsuabufr amsua n18 amsua_n18 10.0 2 0
...

This setup tells GSI that conventional observation variables ps, t, and q should be read in
from the file prepbufr, while AMSU-A radiances from NOAA-15 and NOAA-18 satellites
should be read in from the file amsuabufr. Deleting a particular line in &OBS_INPUT will
turn off the use of the observation variable presented by the line in the GSI analysis but
other variables under the same type can still be used. For example, if we delete:

amsuabufr amsua n15 amsua_n15 10.0 2 0

Then, the AMSU-A observation from NOAA-15 will not be used in the analysis but the
AMSU-A observations from NOAA-18 will still be used.

The observation filename in "dfile" can be different from the sample script
(comgsi_namelist.ksh). If the filename in "dfile" has been changed, the link from the
BUFR files to the GSI recognized name in the run script also needs to be changed cor-
respondingly. For example, if we change the "dfile" in amsuabufr for NOAA-15 to be
amsuabufr_n15,

amsuabufr_n15 amsua n15 amsua_n15 10.0 2 0
amsuabufr amsua n18 amsua_n18 10.0 2 0

Then a new link needs to be added in the run script:

Link to the radiance data
ln -s ${OBS_ROOT}/le_gdas1.t00z.1bamua.tm00.bufr_d amsuabufr
ln -s ${OBS_ROOT}/le_gdas1.t00z.1bamua.tm00.bufr_d amsuabufr_n15

The GSI will read NOAA-18 AMSU-A observations from file amsuabufr and NOAA-15
AMSU-A observations from file amsuabufr_n15 based on the above changes to the run
scripts and namelist. In this example, both amsuabufr and amsuabufr_15 are linked
to the same BUFR file and NOAA-15 AMSU-A and NOAA-18 AMSU-A observations
are still read in from the same BUFR file. If amsuabufr and amsuabufr_15 link to
different BUFR files, then NOAA-15 AMSU-A and NOAA-18 AMSU-A will be read in
from different BUFR files. The changeable filename in dfile gives GSI more flexibility to
handle multiple data resources.

3. Use info files to control data usage

71

4. GSI Diagnostics and Tuning

For each variable, observations can come from multiple platforms (data types or observa-
tion instruments). For example, surface pressure (ps) can come from METAR observation
stations (data type 187) and rawinsonde (data type 120). There are several files named
*info in the GSI system (located in ./fix) to control the usage of observations based on the
observation platform. Table 4.2 is a list of info files and their function:

Table 4.2: The content of info files

File name
in GSI

Function and Content

convinfo Control the usage of conventional data, including tcp, ps, t, q, pw, sst, uv, spd,
dw, radial wind (Level 2 rw and 2.5 srw), gps, and pm2_5

satinfo Control the usage of satellite data. Instruments include AMSU-A/B, HIRS3/4,
MHS, ssmi, ssmis, iasi, airs, sndr, cris, amsre, imgr, seviri, atms, avhrr3, etc., and
satellites include NOAA 15, 17, 18, 19, aqua, GOES 11, 12, 13, METOP-A/B, NPP,
DMSP 15,16,17,18,19,20, M08, M09, M10, etc.

ozinfo Control the usage of ozone data, including sbuv6, 8 from NOAA 14, 16, 17, 18, 19.
omi_aura, gome_metop-a, and mls_aura

pcpinfo Control the usage of precipitation data, including pcp_ssmi and pcp_tmi
aeroinfo Control the usage of aerosol data, including modis_aqua and modis_terra

The header of each info file includes an explanation of the content of the file. Here we
discuss the two most commonly used info files:
• convinfo

The convinfo file controls the usage of conventional data. The following is part of the
convinfo file:

!otype type sub iuse twindow numgrp ngroup nmiter gross ermax ermin var_b var_pg ithin rmesh pmesh npred pmot ptime
tcp 112 0 1 3.0 0 0 0 75.0 5.0 1.0 75.0 0.000000 0 0. 0. 0 0. 0.
ps 120 0 1 3.0 0 0 0 4.0 3.0 1.0 4.0 0.000300 0 0. 0. 0 0. 0.
ps 132 0 -1 3.0 0 0 0 4.0 3.0 1.0 4.0 0.000300 0 0. 0. 0 0. 0.
ps 180 0 1 3.0 0 0 0 4.0 3.0 1.0 4.0 0.000300 0 0. 0. 0 0. 0.
ps 180 01 1 3.0 0 0 0 4.0 3.0 1.0 4.0 0.000300 0 0. 0. 0 0. 0.
ps 181 0 1 3.0 0 0 0 3.6 3.0 1.0 3.6 0.000300 0 0. 0. 0 0. 0.
ps 182 0 1 3.0 0 0 0 4.0 3.0 1.0 4.0 0.000300 0 0. 0. 0 0. 0.
ps 183 0 -1 3.0 0 0 0 4.0 3.0 1.0 4.0 0.000300 0 0. 0. 0 0. 0.
ps 187 0 1 3.0 0 0 0 4.0 3.0 1.0 4.0 0.000300 0 0. 0. 0 0. 0.
t 120 0 1 3.0 0 0 0 8.0 5.6 1.3 8.0 0.000001 0 0. 0. 0 0. 0.
t 126 0 -1 3.0 0 0 0 8.0 5.6 1.3 8.0 0.001000 0 0. 0. 0 0. 0.
t 130 0 1 3.0 0 0 0 7.0 5.6 1.3 7.0 0.001000 0 0. 0. 0 0. 0.
t 131 0 1 3.0 0 0 0 7.0 5.6 1.3 7.0 0.001000 0 0. 0. 0 0. 0.
t 132 0 1 3.0 0 0 0 7.0 5.6 1.3 7.0 0.001000 0 0. 0. 0 0. 0.
t 133 0 1 3.0 0 0 0 7.0 5.6 1.3 7.0 0.004000 0 0. 0. 0 0. 0.
t 134 0 -1 3.0 0 0 0 7.0 5.6 1.3 7.0 0.004000 0 0. 0. 0 0. 0.
t 135 0 -1 3.0 0 0 0 7.0 5.6 1.3 7.0 0.004000 0 0. 0. 0 0. 0.
t 180 0 1 3.0 0 0 0 7.0 5.6 1.3 7.0 0.004000 0 0. 0. 0 0. 0.
t 180 01 1 3.0 0 0 0 7.0 5.6 1.3 7.0 0.004000 0 0. 0. 0 0. 0.
t 181 0 -1 3.0 0 0 0 7.0 5.6 1.3 7.0 0.004000 0 0. 0. 0 0. 0.
t 182 0 1 3.0 0 0 0 7.0 5.6 1.3 7.0 0.004000 0 0. 0. 0 0. 0.

The meaning of each column is explained in the header of the file and is listed in
Table 4.3.

From this table, we can see that parameter "iuse" is used to control the usage of data
and parameter "twindow" is used to control the time window of data usage. Parameters
gross, ermax, and ermin are for gross quality control. Through these parameters, GSI
can control how to use certain types of data in the analysis.

• satinfo

72

4. GSI Diagnostics and Tuning

Table 4.3: list of the content for each convinfo column

Column
Name

Content of the column

otype observation variables (t, uv, q, etc.)
type prepbufr observation type (if available)
sub prepbufr subtype (not yet available)
iuse flag if to use/not use / monitor data;

= 1, use data, the data type will be read and used in the analysis after quality
control;
= 0, read in and process data, use for quality control, but do NOT assimilate;
= -1, monitor data. This data type will be read in and monitored but not be used
in the GSI analysis.

twindow time window (+/- hours) for data used in the analysis
numgrp cross validation parameter - number of groups
ngroup cross validation parameter - group to remove from data use
nmiter cross validation parameter - external iteration to introduce removed data
gross gross error parameter - gross error
ermax gross error parameter - maximum error
ermin gross error parameter - minimum error
var_b variational quality control parameter - b parameter
var_pg variational quality control parameter - pg parameter
ithin Flag to turn on thinning (0, no thinning, 1 - thinning)
rmesh size of horizontal thinning mesh (in kilometers)
pmesh size of vertical thinning mesh
npred Number of bias correction predictors
pmot Option to keep thinned data as monitored, 0: do not keep, other values: keep
ptime time interval for thinning, 0, no temporal thinning, other values define time

interval (less than six)

73

4. GSI Diagnostics and Tuning

The satinfo file contains information about the channels, sensors, and satellites. It
specifies observation error (cloudy or clear) for each channel, how to use the channels
(assimilate, monitor, etc), and other useful information. The following is part of the
content of satinfo. The meaning of each column is explained in Table 4.4.

!sensor/instr/sat chan iuse error error_cld ermax var_b var_pg cld_det
amsua_n15 1 1 3.000 20.000 4.500 10.000 0.000 -2
amsua_n15 2 1 2.200 18.000 4.500 10.000 0.000 -2
amsua_n15 3 1 2.000 12.000 4.500 10.000 0.000 -2
amsua_n15 4 1 0.600 3.000 2.500 10.000 0.000 -2
amsua_n15 5 1 0.300 0.500 2.000 10.000 0.000 -2
amsua_n15 6 -1 0.230 0.300 2.000 10.000 0.000 -2
amsua_n15 7 1 0.250 0.250 2.000 10.000 0.000 -2
amsua_n15 8 1 0.275 0.275 2.000 10.000 0.000 -2
amsua_n15 9 1 0.340 0.340 2.000 10.000 0.000 -2
amsua_n15 10 1 0.400 0.400 2.000 10.000 0.000 -2
amsua_n15 11 -1 0.600 0.600 2.500 10.000 0.000 -2
amsua_n15 12 1 1.000 1.000 3.500 10.000 0.000 -2
amsua_n15 13 1 1.500 1.500 4.500 10.000 0.000 -2
amsua_n15 14 -1 2.000 2.000 4.500 10.000 0.000 -2
amsua_n15 15 1 3.500 15.000 4.500 10.000 0.000 -2
hirs3_n17 1 -1 2.000 0.000 4.500 10.000 0.000 -1
hirs3_n17 2 -1 0.600 0.000 2.500 10.000 0.000 1
hirs3_n17 3 -1 0.530 0.000 2.500 10.000 0.000 1

Table 4.4: list of the content for each satinfo column

Column Name Content of the column

sensor/instr/sat Sensor, instrument, and satellite name
chan Channel number for certain sensor
iuse = 1, use this channel data;

=-1, don't use this channel data
error Variance for each satellite channel
error_cld Variance for each satellite channel if cloudy
ermax Error maximum for gross check to observations
var_b Possible range of variable for gross errors
var_pg Probability of gross error
icld_det Use this channel in cloud detection if > 0

4.4 Domain Partition for Parallelization and Observation Distribu-
tion

The standard output file (stdout) has an information block that shows the distribution of
different kinds of observations in each sub-domain. This block follows the observation input
section. The following is the observation distribution from the case shown in Section 4.1.
From the introduction, we know the prepbufr (conventional data), radiance BUFR files, and
GPS BUFR files were used. In this list, the conventional observations (ps, t, q, pw, and
uv), GPSRO (gps_ref), and radiance data (amusa, hirs4, and mhs from Metop-a, Metop-b,
NOAA 15, and 18) were distributed among four sub-domains:

OBS_PARA: ps 1429 3190 4655 6774

74

4. GSI Diagnostics and Tuning

OBS_PARA: t 2564 5200 7057 11128
OBS_PARA: q 2346 4626 6148 8128
OBS_PARA: pw 65 80 63 49
OBS_PARA: uv 3358 6453 8091 11998
OBS_PARA: gps_ref 1799 1368 2664 3520
OBS_PARA: hirs4 metop-a 0 0 1146 1661
OBS_PARA: hirs4 n19 213 1020 0 0
OBS_PARA: hirs4 metop-b 0 0 85 555
OBS_PARA: amsua n15 1458 2026 830 234
OBS_PARA: amsua n18 2223 2318 108 0
OBS_PARA: amsua n19 176 960 0 0
OBS_PARA: amsua metop-a 0 0 1077 1559
OBS_PARA: amsua metop-b 0 0 265 1829
OBS_PARA: mhs n18 2550 2695 160 0
OBS_PARA: mhs n19 246 1103 0 0
OBS_PARA: mhs metop-a 0 0 1237 1809
OBS_PARA: mhs metop-b 0 0 321 2128

This list is a good way to quickly check which kinds of data are used in the analysis and how
they are distributed in the analysis domain.

4.5 Observation Innovation Statistics

The GSI analysis provides a set of files named fort.2* to summarize observations fit to the
current solution in each outer loop (except for fort.220, see explanation in the next section).
The content of some of these files is listed in Table 4.5:

To help users understand the information inside these files, some examples are given in the
following sub-sections with corresponding explanations.

4.5.1 Conventional observations

Example of files, including single level data (fort.201, fort.205, and fort.213)

current fit of surface pressure data, ranges in mb
--
pressure levels (hPa)= 0.0 2000.0

it obs type stype count bias rms cpen qcpen
o-g 01 ps 120 0000 101 0.1813 0.6089 0.4711 0.4711
o-g 01 ps 180 0000 601 0.0378 0.6354 0.7171 0.7171
o-g 01 ps 180 0001 1428 0.1857 0.8555 0.7164 0.7164
o-g 01 ps 181 0000 610 0.1959 0.8991 0.7387 0.7387
o-g 01 ps 182 0000 1 0.9173 0.9173 2.8976 2.8976
o-g 01 ps 187 0000 11149 0.1999 0.7877 0.3360 0.3360
o-g 01 all 13890 0.1912 0.7931 0.4105 0.4105
o-g 01 ps rej 120 0000 1 -3.5799 3.5799 0.0000 0.0000
o-g 01 ps rej 180 0001 7 -0.3349 4.9273 0.0000 0.0000
o-g 01 ps rej 181 0000 47 1.1146 54.8539 0.0000 0.0000
o-g 01 ps rej 183 0000 3 10.4797 10.4836 0.0000 0.0000
o-g 01 ps rej 187 0000 52 4.2528 7.4112 0.0000 0.0000
o-g 01 rej all 110 2.7186 36.2804 0.0000 0.0000
o-g 01 ps mon 132 0000 1 0.9173 0.9173 0.2104 0.2104
o-g 01 ps mon 180 0000 113 0.0447 0.5158 0.8709 0.8709
o-g 01 ps mon 180 0001 24 0.2122 0.4050 0.3559 0.3559
o-g 01 ps mon 181 0000 207 0.0910 0.9492 1.2514 1.2514
o-g 01 ps mon 183 0000 1386 0.3974 1.0861 0.0000 0.0000

75

4. GSI Diagnostics and Tuning

Table 4.5: List of the content and units for each fort files

File Name Variables in file Ranges/units
fort.201 or
fit_p1.analysis_time

fit of surface pressure data mb

fort.202 or
fit_w1.analysis_time

fit of u, v wind data m/s

fort.203 or
fit_t1.analysis_time

fit of temperature data K

fort.204 or
fit_q1.analysis_time

fit of moisture data percent of qsatu-
ration guess

fort.205 fit of precipitation water data mm
fort.206 fit of ozone observations from sbuv6_n14

(, _n16, _n17, _n18), sbuv8_n16 (, _n17,
_n18, _n19), omi_aura, gome_metop-a/b,
and mls_aura

fort.207 or
fit_rad1.analysis_time

fit of satellite radiance data, such as: am-
sua_n15(, n16, n17, n18, metop-a, aqua,
n19), amsub_n17, hirs3_n17, hirs4_n19 (,
metop-a), etc.

fort.208 fit of precipitation rate (pcp_ssmi and
pcp_tmi)

fort.209 fit of radar radial wind (rw)
fort.210 fit of lidar wind (dw)
fort.211 fit of radar superob wind data (srw)
fort.212 fit of GPS data (refractivity or bending

angle)
fractional differ-
ence

fort.213 fit of conventional sst data C
fort.214 fit of tropical cyclone central pressure
fort.215 fit of Lagrangian tracer data
fort.217 fit of aerosol product (aod)
fort.218 fit of wind gust
Fort.219 fit of visibility

76

4. GSI Diagnostics and Tuning

o-g 01 ps mon 187 0000 88 -0.0100 0.5290 0.7534 0.7534
o-g 01 mon all 1819 0.3188 1.0169 0.2378 0.2378

Example of files including multiple level data (fort.202, fort.203, and fort.204)

ptop 1000.0 900.0 800.0 600.0 100.0 50.0 0.0
it obs type styp pbot 1200.0 1000.0 900.0 800.0 150.0 100.0 2000.0

--
o-g 01 uv 220 0000 count 44 223 223 478 437 519 4231
o-g 01 uv 220 0000 bias 0.26 0.51 0.04 0.35 0.99 0.97 0.59
o-g 01 uv 220 0000 rms 2.21 2.48 2.51 2.84 5.88 4.79 4.18
o-g 01 uv 220 0000 cpen 0.31 0.38 0.44 0.61 1.64 1.18 0.90
o-g 01 uv 220 0000 qcpen 0.31 0.38 0.44 0.60 1.63 1.18 0.89
o-g 01 uv 223 0000 count 0 6 16 88 32 8 331
o-g 01 uv 223 0000 bias 0.00 0.23 -0.29 0.85 -0.76 -4.89 0.27
o-g 01 uv 223 0000 rms 0.00 1.28 1.32 2.86 5.21 6.63 3.76
o-g 01 uv 223 0000 cpen 0.00 0.06 0.07 0.45 0.88 1.31 0.73

...

o-g 01 all count 1799 1726 2001 3050 469 527 13124
o-g 01 all bias 0.05 0.91 0.78 0.63 0.87 0.88 0.62
o-g 01 all rms 2.46 2.58 2.65 3.21 5.83 4.82 3.54
o-g 01 all cpen 0.24 0.24 0.30 0.45 1.58 1.19 0.52
o-g 01 all qcpen 0.23 0.24 0.30 0.44 1.58 1.19 0.52
o-g 01 uv rej 220 0000 count 0 0 0 0 0 0 800
o-g 01 uv rej 220 0000 bias 0.00 0.00 0.00 0.00 0.00 0.00 3.11
o-g 01 uv rej 220 0000 rms 0.00 0.00 0.00 0.00 0.00 0.00 6.41

...

o-g 01 rej all count 23 108 21 41 2 0 1008
o-g 01 rej all bias 44.72 6.40 -0.30 -7.38 11.46 0.00 3.84
o-g 01 rej all rms 56.08 16.60 6.87 10.47 43.15 0.00 12.28
o-g 01 rej all cpen 0.00 0.00 0.00 0.00 0.00 0.00 0.00
o-g 01 rej all qcpen 0.00 0.00 0.00 0.00 0.00 0.00 0.00
o-g 01 uv mon 220 0000 count 0 4 0 1 8 9 29
o-g 01 uv mon 220 0000 bias 0.00 1.07 0.00 6.04 -1.03 0.23 -2.21
o-g 01 uv mon 220 0000 rms 0.00 20.49 0.00 17.78 9.06 8.51 12.52
o-g 01 uv mon 220 0000 cpen 0.00 0.00 0.00 0.00 0.00 0.00 0.00
o-g 01 uv mon 220 0000 qcpen 0.00 0.00 0.00 0.00 0.00 0.00 0.00

...

o-g 01 mon all count 3573 7736 1004 563 8 9 13052
o-g 01 mon all bias -0.01 0.40 0.05 -0.30 -1.03 0.23 0.23
o-g 01 mon all rms 2.55 3.25 4.67 5.98 9.06 8.51 3.60
o-g 01 mon all cpen 0.81 1.21 1.67 1.28 0.00 0.00 1.12
o-g 01 mon all qcpen 0.80 1.15 1.53 1.16 0.00 0.00 1.07

...

Please note that five layers from 600 to 150 hPa have been deleted to make each row fit into
one line. Only observation type 220 and 223 are shown as an example.

Table 4.6 lists the meaning of each item in file fort.201-213 except file fort.207 :

The contents of the fit files are calculated based on O-B or O-A for each observation. The
detailed departure information about each observation is saved in the diagnostic files. For
the content of the diagnostic files, please check the content of the array "rdiagbuf" in one of
the setup subroutines for conventional data (for example, setupt.f90). We provide a tool in
appendix A.2 to help users read in the information from the diagnostic files.

These fit files give lots of useful information on how data are analyzed by the GSI, such as
how many observations are used and rejected, the bias and root mean squared (RMS) error

77

4. GSI Diagnostics and Tuning

Table 4.6: List of each item in file fort.201-213 (except fort.207).

Name Explanation
it outer loop number

= 01: observation - background
= 02: observation - analysis (after 1st outer loop)
= 03: observation - analysis (after 2nd outer loop)

obs observation variable type (such as uv or ps) and usage,
which includes:
blank: used in GSI analysis
mon: monitored (read in but not assimilated by GSI)
rej: rejected because of quality control in GSI

type prepbufr observation type (see the BUFR User's Guide for
details)

styp prepbufr observation subtype (not used)
ptop for multiple level data: pressure at the top of the layer
pbot for multiple level data: pressure at the bottom of the layer
count the number of observations summarized under observa-

tion types and vertical layers
bias bias of observation departure for each outer loop (it)
rms root mean square error of observation departure for each

outer loop (it)
cpen observation part of penalty (cost function)
qcpen nonlinear qc penalty

78

4. GSI Diagnostics and Tuning

for certain data types or for all observations, and how analysis results fit to the observation
before and after analysis. Again, we use observation type 220 in fort.202 (fit_w1.2014061700)
as an example to illustrate how to read this information. The fit information for observation
type 220 (soundings) is listed below. Like the previous example, five layers from 600 to 150
hPa were deleted to make each row fit into one line. All fit information of observation type
220 is shown.

ptop 1000.0 900.0 800.0 600.0 100.0 50.0 0.0
it obs type styp pbot 1200.0 1000.0 900.0 800.0 150.0 100.0 2000.0

o-g 01 uv 220 0000 count 44 223 223 478 437 519 4231
o-g 01 uv 220 0000 bias 0.26 0.51 0.04 0.35 0.99 0.97 0.59
o-g 01 uv 220 0000 rms 2.21 2.48 2.51 2.84 5.88 4.79 4.18
o-g 01 uv 220 0000 cpen 0.31 0.38 0.44 0.61 1.64 1.18 0.90
o-g 01 uv 220 0000 qcpen 0.31 0.38 0.44 0.60 1.63 1.18 0.89

...
o-g 01 uv rej 220 0000 count 0 0 0 0 0 0 800
o-g 01 uv rej 220 0000 bias 0.00 0.00 0.00 0.00 0.00 0.00 3.11
o-g 01 uv rej 220 0000 rms 0.00 0.00 0.00 0.00 0.00 0.00 6.41
o-g 01 uv rej 220 0000 cpen 0.00 0.00 0.00 0.00 0.00 0.00 0.00
o-g 01 uv rej 220 0000 qcpen 0.00 0.00 0.00 0.00 0.00 0.00 0.00

...

o-g 01 uv mon 220 0000 count 0 4 0 1 8 9 29
o-g 01 uv mon 220 0000 bias 0.00 1.07 0.00 6.04 -1.03 0.23 -2.21
o-g 01 uv mon 220 0000 rms 0.00 20.49 0.00 17.78 9.06 8.51 12.52
o-g 01 uv mon 220 0000 cpen 0.00 0.00 0.00 0.00 0.00 0.00 0.00
o-g 01 uv mon 220 0000 qcpen 0.00 0.00 0.00 0.00 0.00 0.00 0.00

...

ptop 1000.0 900.0 800.0 600.0 100.0 50.0 0.0
it obs type styp pbot 1200.0 1000.0 900.0 800.0 150.0 100.0 2000.0

o-g 02 uv 220 0000 count 44 223 223 478 437 519 4231
o-g 02 uv 220 0000 bias 0.21 0.05 -0.43 0.03 0.69 0.96 0.39
o-g 02 uv 220 0000 rms 2.13 2.26 2.29 2.56 5.19 4.55 3.73
o-g 02 uv 220 0000 cpen 0.32 0.31 0.37 0.50 1.27 1.07 0.71
o-g 02 uv 220 0000 qcpen 0.32 0.31 0.37 0.50 1.27 1.07 0.71

...

o-g 02 uv rej 220 0000 count 0 0 0 0 0 0 800
o-g 02 uv rej 220 0000 bias 0.00 0.00 0.00 0.00 0.00 0.00 2.96
o-g 02 uv rej 220 0000 rms 0.00 0.00 0.00 0.00 0.00 0.00 6.33
o-g 02 uv rej 220 0000 cpen 0.00 0.00 0.00 0.00 0.00 0.00 0.00
o-g 02 uv rej 220 0000 qcpen 0.00 0.00 0.00 0.00 0.00 0.00 0.00

...

o-g 02 uv mon 220 0000 count 0 4 0 1 8 9 29
o-g 02 uv mon 220 0000 bias 0.00 2.16 0.00 5.80 -1.00 0.23 -0.82
o-g 02 uv mon 220 0000 rms 0.00 18.44 0.00 12.60 10.31 8.58 10.87
o-g 02 uv mon 220 0000 cpen 0.00 0.00 0.00 0.00 0.00 0.00 0.00
o-g 02 uv mon 220 0000 qcpen 0.00 0.00 0.00 0.00 0.00 0.00 0.00

...
ptop 1000.0 900.0 800.0 600.0 100.0 50.0 0.0

it obs type styp pbot 1200.0 1000.0 900.0 800.0 150.0 100.0 2000.0
--
o-g 03 uv 220 0000 count 44 223 223 478 437 519 4231
o-g 03 uv 220 0000 bias 0.28 0.08 -0.32 0.11 0.74 1.00 0.43
o-g 03 uv 220 0000 rms 2.11 2.17 2.20 2.38 5.00 4.46 3.60
o-g 03 uv 220 0000 cpen 0.31 0.29 0.34 0.43 1.18 1.03 0.65
o-g 03 uv 220 0000 qcpen 0.31 0.29 0.34 0.43 1.18 1.03 0.65

79

4. GSI Diagnostics and Tuning

...

o-g 03 uv rej 220 0000 count 0 0 0 0 0 0 800
o-g 03 uv rej 220 0000 bias 0.00 0.00 0.00 0.00 0.00 0.00 2.98
o-g 03 uv rej 220 0000 rms 0.00 0.00 0.00 0.00 0.00 0.00 6.35
o-g 03 uv rej 220 0000 cpen 0.00 0.00 0.00 0.00 0.00 0.00 0.00
o-g 03 uv rej 220 0000 qcpen 0.00 0.00 0.00 0.00 0.00 0.00 0.00

...

o-g 03 uv mon 220 0000 count 0 4 0 1 8 9 29
o-g 03 uv mon 220 0000 bias 0.00 1.86 0.00 6.09 -0.98 0.07 -0.94
o-g 03 uv mon 220 0000 rms 0.00 18.76 0.00 12.59 10.34 8.69 11.01
o-g 03 uv mon 220 0000 cpen 0.00 0.00 0.00 0.00 0.00 0.00 0.00
o-g 03 uv mon 220 0000 qcpen 0.00 0.00 0.00 0.00 0.00 0.00 0.00

In loop section o-g 01, from the count line, we can see there were 4231 sounding obser-
vations used in the analysis. Among them, 44 were within the 1000-1200 hPa layer. Also
from the count lines, in the rejection and monitoring section, there were 800 observations
rejected and 29 observations monitored. In the same loop section, from the bias line and
rms lines, we can see the total bias and RMS error of O-B for the sounding information
is 0.59 and 4.18. The bias and RMS error for each vertical layer can also be found in this
file.

Next we can see bias and RMS error values from different loops, as shown with the compar-
ison in the following three lines:

o-g 01 uv 220 0000 rms 2.21 2.48 2.51 2.84 5.88 4.79 4.18
o-g 02 uv 220 0000 rms 2.13 2.26 2.29 2.56 5.19 4.55 3.73
o-g 03 uv 220 0000 rms 2.11 2.17 2.20 2.38 5.00 4.46 3.60

These three lines show that the RMS error reduced from 4.18 (o-g 01, which is O-B) to 3.73
(o-g 02, which is O-A after the 1st outer loop) and then to 3.60 (o-g 03, which is O-A after the
2nd outer loop, which is also the final analysis result). The reduction in the RMS error shows
that observation type 220 (sounding) was used in the GSI analysis to modify the background
fields to fit to the observations.

4.5.2 Satellite Radiance

The file fort.207 is the fit file for radiance data. Its content includes important information
about the radiance data analysis.

The first part of the file fort.207 lists the content that corresponds to those in the file satinfo,
which is the info file to control radiance data usage.

RADINFO_READ: jpch_rad= 2723
1 amsua_n15 chan= 1 var= 3.000 varch_cld= 20.000 use= 1 ermax= 4.500 b_rad= 10.00 pg_rad= 0.00 icld_det=-2
2 amsua_n15 chan= 2 var= 2.200 varch_cld= 18.000 use= 1 ermax= 4.500 b_rad= 10.00 pg_rad= 0.00 icld_det=-2
3 amsua_n15 chan= 3 var= 2.000 varch_cld= 12.000 use= 1 ermax= 4.500 b_rad= 10.00 pg_rad= 0.00 icld_det=-2
4 amsua_n15 chan= 4 var= 0.600 varch_cld= 3.000 use= 1 ermax= 2.500 b_rad= 10.00 pg_rad= 0.00 icld_det=-2
5 amsua_n15 chan= 5 var= 0.300 varch_cld= 0.500 use= 1 ermax= 2.000 b_rad= 10.00 pg_rad= 0.00 icld_det=-2

...

80

4. GSI Diagnostics and Tuning

This shows there are 2723 channels listed in the satinfo file and the 2723 lines following this
line include the details for each channel.

The second part of the file is a list of the coefficients for bias correction, after reading the
satbias_in file:

RADINFO_READ: ***WARNING instrument/channel ahi_himawari8 16
not found in satbias_pc file - set to zero

RADINFO_READ: guess air mass bias correction coefficients below
1 amsua_n15 -1.965181 0.000000 39.068176 -0.923195 0.408460 0.000000 0.000000 0.001735 3.689709

2.367472 8.862940 -1.848292
2 amsua_n15 -7.415403 0.000000 80.138019 -0.818472 -1.013216 0.000000 0.000000 0.014279 2.638804

8.315096 22.041458 -1.564773
...

Each channel has 12 coefficients listed in a line. Therefore, there are 2723 lines of radiance
bias correction coefficients for all channels, though some of the coefficients are zero.

The 3rd part of the fort.207 file is similar to other fit files with content repeated in three
sections, providing detailed statistics about the data in stages before the 1st outer loop,
between the 1st and 2nd outer loops, and after the 2nd outer loop. The results before the 1st

outer loop are used here as an example to explain the content of the results:

• Summaries for various statistics as a function of observation type

sat type penalty nobs iland isnoice icoast ireduce ivarl nlgross
metop-a hirs4 371.46818888 385 143 0 25 0 1452 0

qcpenalty qc1 qc2 qc3 qc4 qc5 qc6 qc7
371.46818888 0 0 1651 3330 0 0 0

sat type penalty nobs iland isnoice icoast ireduce ivarl nlgross
metop-b hirs4 0.00000000 34 25 0 0 0 139 0

qcpenalty qc1 qc2 qc3 qc4 qc5 qc6 qc7
0.00000000 0 0 97 279 0 0 0

6

rad total penalty_all= 13986.0933845987129
rad total qcpenalty_all= 13986.0933845987129
rad total failed nonlinqc= 0

...

Table 4.7 outlines the meaning of each item in the above statistics:
Note: One radiance observation may include multiple channels, and not all channels are
necessarily used in the analysis.

• Summaries for various statistics as a function of channel

1 2 3 4 5 6 7 8 9 10 11
1 1 amsua_n15 915 247 3.000 0.6623748 1.2673027 0.2414967 2.4209147 2.0627099
2 2 amsua_n15 902 261 2.000 0.5209886 1.1773765 0.2626527 2.2705374 1.9414234
3 3 amsua_n15 1114 48 2.000 1.2349467 -1.5090660 0.3421312 1.9416738 1.2218089
4 4 amsua_n15 1162 0 0.600 -0.2114506 -0.3195250 0.5286580 0.6271317 0.5396275
5 5 amsua_n15 1162 3 0.300 -0.0888496 -0.1685199 0.4352839 0.2734131 0.2153040
6 6 amsua_n15 2093 3 -0.230 -1.8141034 -0.0695503 0.8415303 0.2646033 0.2552992
7 7 amsua_n15 2342 28 0.250 -0.0830293 0.0453835 0.6141132 0.2522587 0.2481427
8 8 amsua_n15 2311 59 0.275 0.0201868 0.1758359 0.7782391 0.3173862 0.2642267
9 9 amsua_n15 2124 246 0.340 0.1262987 0.5008846 1.4907547 0.5544190 0.2376868

10 10 amsua_n15 82 2288 0.400 0.6700157 0.8263504 2.0387089 0.8304076 0.0819868
15 15 amsua_n15 862 300 3.000 0.8244923 -2.2960147 0.3769625 2.7445692 1.5036544

...

81

4. GSI Diagnostics and Tuning

Table 4.7: Summary of the radiance observation fit file (fort.207)

Name Explanation

sat satellite name
type instrument type
penalty contribution to cost function from this observation type
nobs number of good observations used in the assimilation
iland number of observations over land
isnoice number of observations over sea ice and snow
icoast number of observations over coast
ireduce number of observations that reduce qc bounds in tropics
ivarl number of observations removed by gross check
nlgross number of observation removed by nonlinear qc
qcpenalty nonlinear qc penalty from this data type
qc1-7 number of observations whose quality control criteria has

been adjusted by each qc method (1-7). For details, see the
Radiance Chapter of the Advanced User's Guide

rad total
penalty_all

summary of penalty for all radiance observation types

rad total
qcpenalty_all

summary of qcpenalty for all radiance observation types

rad to-
tal failed
nonlinqc

summary of observations removed by nonlinear qc for all
radiance observation types

82

4. GSI Diagnostics and Tuning

63 4 hirs4_metop-a 11 217 0.400 0.9717384 0.9536444 1.8583033 0.9570578 0.0807581
64 5 hirs4_metop-a 81 4 0.360 0.1655806 -0.2231640 0.3231878 0.3433454 0.2609289
65 6 hirs4_metop-a 25 27 0.460 -0.8415009 -1.1454801 2.6082742 1.1558578 0.1545404
66 7 hirs4_metop-a 20 3 0.570 -0.9563649 -1.1287970 1.4138248 1.1699278 0.3074870
67 8 hirs4_metop-a 23 0 1.000 1.3954294 0.6716651 0.1668694 0.9134028 0.6190078
...

Table 4.8 lists the meaning of each column in the above statistics:

Table 4.8: Content of fit statistics for each channel in the fort.207 file.

Column
#

Content

1 series number of the channel in satinfo file
2 channel number for certain radiance observation type
3 radiance observation type (for example: amsua_n15)
4 number of observations (nobs) used in GSI analysis within

this channel
5 number of observations (nobs) tossed by gross check

within this channel
6 variance for each satellite channel
7 bias (observation-guess before bias correction)
8 bias (observation-guess after bias correction)
9 penalty contribution from this channel
10 square root of (observation-guess with bias correction)**2
11 standard deviation

• Final summary for each observation type

it satellite instrument # read # keep # assim penalty qcpnlty cpen qccpen
o-g 01 rad n16 hirs3 0 0 0 0.0000 0.0000 0.0000 0.0000
o-g 01 rad n17 hirs3 0 0 0 0.0000 0.0000 0.0000 0.0000
o-g 01 rad metop-a hirs4 13832 7315 651 371.47 371.47 0.57061 0.57061
o-g 01 rad n18 hirs4 0 0 0 0.0000 0.0000 0.0000 0.0000
o-g 01 rad n19 hirs4 0 0 0 0.0000 0.0000 0.0000 0.0000
o-g 01 rad metop-b hirs4 2527 646 0 0.0000 0.0000 0.0000 0.0000
o-g 01 rad g11 goes_img 0 0 0 0.0000 0.0000 0.0000 0.0000
o-g 01 rad g12 goes_img 0 0 0 0.0000 0.0000 0.0000 0.0000
o-g 01 rad aqua airs 0 0 0 0.0000 0.0000 0.0000 0.0000
o-g 01 rad n15 amsua 43515 30810 12976 8854.4 8854.4 0.68236 0.68236
o-g 01 rad n18 amsua 30690 25575 8203 3642.7 3642.7 0.44407 0.44407
o-g 01 rad n19 amsua 0 0 0 0.0000 0.0000 0.0000 0.0000
o-g 01 rad metop-a amsua 4890 3878 1466 652.20 652.20 0.44489 0.44489
o-g 01 rad metop-b amsua 810 718 294 201.79 201.79 0.68636 0.68636
o-g 01 rad aqua amsua 0 0 0 0.0000 0.0000 0.0000 0.0000
o-g 01 rad n17 amsub 0 0 0 0.0000 0.0000 0.0000 0.0000
...

Table 4.9 lists the meaning of each column in the above statistics:
Similar to other fit files, a comparison between results from different outer loops can give
us very useful information on how much impact each channel and data type has in the
GSI.

83

4. GSI Diagnostics and Tuning

Table 4.9: Content of the final summary section for the fort.207 file.

Name Explanation

it stage (o-g 01 rad = before 1st outer loop for radiance data)
satellite satellite name (n16=NOAA -16)
instrument instrument name (HIRS-3)
read number of data (channels) read in within analysis time

window and domain
keep number of data (channels) kept after data thinning
assim number of data (channels) used in analysis (passed all qc

process)
penalty contribution from this observation type to cost function
qcpnlty nonlinear qc penalty from this data type
cpen penalty divided by (the number of data assimilated)
qccpen qcpnlty divided by (the number of data assimilated)

4.6 Convergence Information

There are two ways to check the convergence information for each iteration of the GSI:

1. Standard output file (stdout):

The value of the cost function and norm of the gradient for each iteration are listed
in the file stdout.
The following is an example showing the iterations from the first outer loop:

GLBSOI: START pcgsoi jiter= 1
pcgsoi: gnorm(1:2),b= 9.869857497554413276E+05 9.869857497554413276E+05 0.000000000000000000E+00
Initial cost function = 3.915930707165839704E+04
Initial gradient norm = 9.934715646436194447E+02
cost,grad,step,b,step? = 1 0 3.915930707165839704E+04 9.934715646436194447E+02 4.821051367939106942E-03 0.000000000000000000E+00 good
pcgsoi: gnorm(1:2),b= 4.101618851769856410E+05 4.101618851769853500E+05 4.155702200144395508E-01
cost,grad,step,b,step? = 1 1 3.440099807266351127E+04 6.404388223530688720E+02 5.837551195665082078E-03 4.155702200144395508E-01 good
pcgsoi: gnorm(1:2),b= 4.679752995326447999E+05 4.679752995326457312E+05 1.140952673675940110E+00
cost,grad,step,b,step? = 1 2 3.200665706943234181E+04 6.840872017021256397E+02 3.727016244273905453E-03 1.140952673675940110E+00 good
pcgsoi: gnorm(1:2),b= 2.579351145588153449E+05 2.579351145588165091E+05 5.511724973869557287E-01

...
cost,grad,step,b,step? = 1 9 2.515019683100273687E+04 2.511847728725914237E+02 5.552768045789822915E-03 9.872916643640710088E-01 good
pcgsoi: gnorm(1:2),b= 5.868194961445817898E+04 5.868194961445837544E+04 9.300748853414525508E-01
cost,grad,step,b,step? = 1 10 2.479985164931967302E+04 2.422435749704379191E+02 5.481216572289848883E-03 9.300748853414525508E-01 good

The following are the iterations from the second outer loop:

Initial cost function = 2.792919782749931983E+04
Initial gradient norm = 4.241369976412337337E+02
cost,grad,step,b,step? = 2 0 2.792919782749931983E+04 4.241369976412337337E+02 4.301269527061492466E-03 0.000000000000000000E+00 good
pcgsoi: gnorm(1:2),b= 1.641799966598818428E+05 1.641799966598813771E+05 9.126577097845959274E-01
cost,grad,step,b,step? = 2 1 2.715543302058953486E+04 4.051913087171068923E+02 3.965037770683364597E-03 9.126577097845959274E-01 good
pcgsoi: gnorm(1:2),b= 7.369958699881075881E+04 7.369958699881142820E+04 4.488950450613589660E-01
cost,grad,step,b,step? = 2 2 2.650445313264244396E+04 2.714766785541821719E+02 6.065878225371862040E-03 4.488950450613589660E-01 good
pcgsoi: gnorm(1:2),b= 5.010117245725526300E+04 5.010117245725520479E+04 6.798026216627733875E-01

...
cost,grad,step,b,step? = 2 9 2.488459155328830457E+04 1.491452772915179139E+02 6.349376870755444636E-03 9.522651754285673675E-01 good
pcgsoi: gnorm(1:2),b= 2.350218829989638834E+04 2.350218829989681763E+04 1.056548139732611746E+00
cost,grad,step,b,step? = 2 10 2.474335402213209454E+04 1.533042344486817683E+02 5.304880218120413757E-03 1.056548139732611746E+00 good

Here, we can see the number of outer and inner loops (minimization iteration). The
meaning of the names (bold) used in stdout are explained in the following:

• cost: the cost function values, (=J)

84

4. GSI Diagnostics and Tuning

• grad: inner product of gradients (norm of the gradient (Y*X))
• step: stepsize
• b: parameter to estimate the new search direction

As a quick check, the cost function reduced from 3.915930707165839704E+04
to 2.479985164931967302E+04 in the 1st outer loop and reduced from
2.792919782749931983E+04 to 2.474335402213209454E+04 in the 2nd outer loop.

2. Convergence information in file fort.220 :

In file fort.220, users can find more detailed minimization information about each
iteration. A detailed description and example are provided in the Advanced User's
Guide.
To evaluate the iteration convergence, we usually make plots based on the information
from fort.220, such as the value of the cost function and the norm of the gradient. The
following are example plots showing the evolution of the cost function and the norm
of the gradient in different outer loops:

Figure 4.2: Evolution of the cost function (left column) and the norm of the gradient (right
column) in the first outer loop (top row) and the second outer loop (bottom row).
The Y-axis is the iteration number.

Scripts are available in the release code to read convergence information from fort.220
and produce the above plots. Please see Section A.3 for information on where to locate
and how to run these scripts.

85

4. GSI Diagnostics and Tuning

4.7 Conventional Observation Errors

Each observation type has its own observation errors. In this section, we introduce several
topics related to the conventional observation error processing in GSI. The observation error
for satellite radiance and its adjustment is discussed in the Advanced User's Guide.

4.7.1 Getting Original Observation Errors

For the global GSI analysis, when oberrflg (a namelist option in section &obsqc) is true,
observation errors are generated based on an external observation error table according to
the observation type. Otherwise, observation errors are read in from the PrepBUFR file.

For regional analyses, GSI forces the use of an external observation error table to get ob-
servation errors no matter what the oberrflg is set to (oberrflg is forced to be true for
regional runs in gsimod.F90).

The external observation error table file, errtable, includes observation errors for all types
of conventional observations. It is copied from the ./fix directory by the run script. This
release package has three sample external observation error table files, nam_errtable.r3dv,
prepobs_errtable.global, and rtma/new_rtma_nam_errtable.r3dv in the ./fix directory. The
nam_errtable.r3dv is used in the sample run script as a default observation error table.
The observation error file is a text file that can be easily edited to tune the error values.
The following shows a portion of nam_errtable.r3dv file for rawinsondes and its description
of each column in Table 4.10:

Column # 1 2 3 4 5 6
120 OBSERVATION TYPE
0.11000E+04 0.12696E+01 0.60737E+00 0.10000E+10 0.76322E+00 0.10000E+10
0.10500E+04 0.13282E+01 0.66294E+00 0.10000E+10 0.76322E+00 0.10000E+10
0.10000E+04 0.13932E+01 0.74223E+00 0.10000E+10 0.76322E+00 0.10000E+10
0.95000E+03 0.14390E+01 0.83688E+00 0.10000E+10 0.79899E+00 0.10000E+10
0.90000E+03 0.14354E+01 0.94025E+00 0.10000E+10 0.83561E+00 0.10000E+10
0.85000E+03 0.13669E+01 0.10439E+01 0.10000E+10 0.87224E+00 0.10000E+10

220 OBSERVATION TYPE
0.11000E+04 0.10000E+10 0.10000E+10 0.18521E+01 0.10000E+10 0.10000E+10
0.10500E+04 0.10000E+10 0.10000E+10 0.20636E+01 0.10000E+10 0.10000E+10
0.10000E+04 0.10000E+10 0.10000E+10 0.22799E+01 0.10000E+10 0.10000E+10
0.95000E+03 0.10000E+10 0.10000E+10 0.24211E+01 0.10000E+10 0.10000E+10
0.90000E+03 0.10000E+10 0.10000E+10 0.24934E+01 0.10000E+10 0.10000E+10
0.85000E+03 0.10000E+10 0.10000E+10 0.25155E+01 0.10000E+10 0.10000E+10

Table 4.10: Description of each column in the observation error table file

Column # 1 2 3 4 5 6
Content Pressure T RH UV Ps Pw
Unit hPa degree C percent/10 m/s mb kg/m2(or mm)

For each observation type, the error table has six columns and 33 rows (levels). The 1st

column prescribes 33 pressure levels, covering 1100 hPa to 0 hPa. Columns 2-6 prescribe

86

4. GSI Diagnostics and Tuning

observation errors for temperature (T), relative humidity (RH), horizontal wind component
(UV), surface pressure (Ps), and the total column precipitable water (Pw). The missing value
is 0.10000E+10.

The observation error table for each observation type starts with the observation type num-
ber defined for the PrepBUFR files, such as:

120 OBSERVATION TYPE
220 OBSERVATION TYPE

The PrepBUFR data type numbers 100-199 are for temperature (T), moisture (q), and surface
pressure (Ps) observations, while numbers 200-299 are for horizontal wind component (UV)
observations. A detailed explanation of each data type number can be found in the following
table on the EMC website:

http://www.emc.ncep.noaa.gov/mmb/data_processing/prepbufr.doc/table_2.htm

For more details on PrepBUFR/BUFR, please check the BUFR/PrepBUFR User's Guide, which
is freely available at the DTC BUFR/PrepBUFR website:

http://www.dtcenter.org/com-GSI/BUFR/index.php

4.7.2 Observation Error Gross Error Check within GSI

The gross error check is an important quality control step to exclude questionable observa-
tions that degrade the analysis. Users can adjust the threshold of the gross error check for
each data type within the convinfo file to make the gross error check more or less strict for
a certain data type. For example, the following is a part of the convinfo file without the last
five columns:

!otype type sub iuse twindow numgrp ngroup nmiter gross ermax ermin var_b var_pg ithin
ps 183 0 -1 3.0 0 0 0 4.0 3.0 1.0 4.0 0.000300 0
ps 187 0 1 3.0 0 0 0 4.0 3.0 1.0 4.0 0.000300 0
t 120 0 1 3.0 0 0 0 8.0 5.6 1.3 8.0 0.000001 0
t 126 0 -1 3.0 0 0 0 8.0 5.6 1.3 8.0 0.001000 0

The gross check for each data type is controlled by columns "gross", "ermax", and "er-
min." If an observation has observation error set to "obserror," then a gross check ratio is
calculated:

ratio = (Observation-Background)/max(ermin,min(ermax,obserror))

If ratio > gross, then this observation fails the gross check and will not be used in the analysis.
The unused observation is indicated as a "rejection" in the fit files.

87

http://www.emc.ncep.noaa.gov/mmb/data_processing/prepbufr.doc/table_2.htm
http://www.dtcenter.org/com-GSI/BUFR/index.php

4. GSI Diagnostics and Tuning

4.8 Background Error Covariance

The GSI package has several files in ./fix to hold the pre-computed background error statis-
tics for different GSI applications with different grid configurations. Within the ./fix subdi-
rectories ./fix/Big_Endian and ./fix/Little_Endian contain the fix files corresponding to each
endianness. Since the GSI code has a build-in mechanism to interpolate the input back-
ground error matrix to any desired analysis grid, the following two background error files
can be used to specify the B matrix for any GSI regional application.

• nam_nmmstat_na.gcv : contains the regional background error statistics, computed
using forecasts from the NCEP's NAM model covering North America. The values of
this B matrix cover the northern hemisphere with 93 latitude lines, from -2.5 degrees
to 89.5 degrees with 60 vertical sigma levels from 0.9975289 to 0.01364.

• nam_glb_berror.f77.gcv : contains the global background errors based on NCEP's GFS
model, a global forecast model. The values of this B matrix cover the globe with 192
latitude lines from -90 degrees to 90 degrees and 42 vertical sigma levels from 0.99597
to 0.013831.

The background error matrix files listed above are in Big Endian binary form (therefore
located in the Big_Endian directory). In the Little_Endian directory, nam_nmmstat_na.gcv
and nam_glb_berror.f77.gcv are their Little Endian versions for certain computer platforms
that cannot compile GSI with the Big Endian option. In this release version, GSI can be
compiled with the Big Endian option with PGI and Intel.

4.8.1 Tuning Background Error Covariance through the Namelist
and Anavinfo File

The final background error covariance matrix used in the GSI analysis is the content from
the fixed file "berror", which is a copy of nam_nmmstat_na.gcv or nam_glb_berror.f77.gcv,
multiplied by several factors set by the namelist and the anavinfo file.

In GSI namelist, three variables are used for tuning horizontal and vertical impact scales:

• vs scale factor for vertical correlation lengths for background error
• hzscl(3) scale factor for three scales specified for horizontal smoothing
• hswgt(3) weights to apply to each horizontal scales

In the GSI anavinfo file, the column as/tsfc_sdv in the control_vector section are factors for
tuning the variance of each analysis control variable.

These values can be used to tune the background error covariance used in the GSI analysis.
For each background error matrix file, there are recommended values for these parameters
listed in table 4.11.

88

4. GSI Diagnostics and Tuning

Table 4.11: Recommended tuning values for the provided B matrix.

Global Regional
fixed B ma-
trix

nam_glb_berror.f77.gcv nam_nmmstat_na.gcv

vs 0.7 1.0
hzscl 1.7, 0.8, 0.5 0.373,0.746,1.50
hswgt 0.45, 0.3,0.25 0.45, 0.3,0.25
ss/tsfc_sdv

control_vector::
!var as/tsfc_sdv
sf 0.60
vp 0.60
ps 0.75
t 0.75
q 0.75
oz 0.75
sst 1.00
cw 1.00
stl 3.00
sti 3.00

control_vector::
!var as/tsfc_sdv
sf 1.00
vp 1.00
ps 0.50
t 0.70
q 0.70
oz 0.50
sst 1.00
cw 1.00
stl 1.00
sti 1.00

4.9 Analysis Increments

Analysis increments are defined as the difference between analysis results and the back-
ground (A-B). A plot of analysis increments can help users understand how the analysis
procedure modifies the background fields according to observations, background and ob-
servation error covariances, and other constraints. You can either calculate analysis-guess
and plot the difference field or use the tools introduced in Appendix A.4 to make analysis
increment figures for different analysis fields.

4.10 Running Time and Memory Usage

In addition to analysis increments, run time and memory usage are other important features
of an analysis system, especially for operational code like the GSI.

The GSI standard output file (stdout) gives the GSI start time and end time of the analysis at
the beginning and end of the file. For example:

* . * . * . * . * . * . * . * . * . * . * . * . * . * . * . * . * . * . * . * .
PROGRAM GSI_ANL HAS BEGUN. COMPILED 1999232.55 ORG: NP23
STARTING DATE-TIME JUL 02,2016 20:36:21.760 184 SAT 2457572

...

89

4. GSI Diagnostics and Tuning

ENDING DATE-TIME JUL 02,2016 20:43:40.422 184 SAT 2457572
PROGRAM GSI_ANL HAS ENDED.

* . * . * . * . * . * . * . * . * . * . * . * . * . * . * . * . * . * . * . * .

This tells us the analysis started at 20:36:21.760 and ended at 20:43:40.422, which means
GSI used 7 minutes and 19 seconds to finish.

Following the ending date-time, there is a resource statistics section at the end of the stdout
file, which gives information about run time and memory usage for the analysis:

*****************RESOURCE STATISTICS*******************************
The total amount of wall time = 438.663534
The total amount of time in user mode = 427.578998
The total amount of time in sys mode = 9.457562
The maximum resident set size (KB) = 2020132
Number of page faults without I/O activity = 312762
Number of page faults with I/O activity = 0
Number of times filesystem performed INPUT = 0
Number of times filesystem performed OUTPUT = 0
Number of Voluntary Context Switches = 7641
Number of InVoluntary Context Switches = 851
*****************END OF RESOURCE STATISTICS*************************

90

5
GSI Applications for Regional

3DVar, Hybrid 3DEnVar and

Hybrid 4DEnVar

In this chapter, information from the previous chapters will be applied to three regional GSI
cases with different data sources. These examples are to give users a clear idea of how to set
up GSI with various configurations and properly check the run status and analysis results in
order to determine if a particular GSI application was successful. Note that the examples
here only use the WRF-ARW system - WRF-NMM runs are similar, but require different
background and namelist options.

For illustrations of all the cases, it is assumed that the reader has successfully compiled
GSI on a local machine. For regional case studies, users should have the following data
available:

1. Background file
• When using WRF, WPS and real.exe will be run to create a WRF input file:

wrfinput_<domain>_<yyyy-mm-dd_hh:mm:ss>
2. Conventional data

• Real time NAM PrepBUFR data can be obtained from the server:
ftp://ftpprd.ncep.noaa.gov/pub/data/nccf/com/nam/prod

91

ftp://ftpprd.ncep.noaa.gov/pub/data/nccf/com/nam/prod

5. GSI Applications for Regional 3DVar, Hybrid 3DEnVar and Hybrid 4DEnVar

Note: An NDAS PrepBUFR file was chosen to increase the amount of data used in the
analysis (compared to a NAM PrepBUFR file)

3. Radiance data and GPS RO data
• Real time GDAS BUFR files can be obtained from the following server:
ftp://ftpprd.ncep.noaa.gov/pub/data/nccf/com/gfs/prod
Note: GDAS data was chosen to get better coverage for radiance and GPS/RO refrac-
tivity

The following cases will give users an example of a successful GSI run with various data
sources. Users are welcome to download these example data from the GSI users' webpage
(online case) or create a new background and get the observational data from the above
server. The background and observations used in this case study are as follows:

1. Background files: wrfinput_d01_2014-06-17_00:00:00
• The horizontal grid spacing is 30-km with 51 vertical sigma levels

Figure 5.1: The terrain (left) and land mask (right) of the background used in this case study.

2. Conventional data: NAM PrepBUFR data from 0000 UTC 17 June 2014
• File: nam.t00z.prepbufr.tm00.nr

3. Radiance and GPS RO data: GDAS PREPBUFR data from 0000 UTC 17 June 2014
• Files: gdas.t00z.1bamua.tm00.bufr_d

gdas.t00z.1bhrs4.tm00.bufr_d
gdas.t00z.gpsro.tm00.bufr_d

This case study was run on a Linux cluster. As of version 3.2, the BUFR/PrepBUFR files
do not need to be byte-swapped to little endian format. BUFRLIB can automatically handle
byte order issues.

Assume the background file is located at:

data/2014061700/arw

All the observations are located at:

data/2014061700/obs

And the GSI release version 3.6 is located at:

code/comGSI(version_number)_EnKF(version_number)

92

ftp://ftpprd.ncep.noaa.gov/pub/data/nccf/com/gfs/prod

5. GSI Applications for Regional 3DVar, Hybrid 3DEnVar and Hybrid 4DEnVar

5.1 Assimilating Conventional Observations with Regional GSI

5.1.1 Run Script

With GSI successfully compiled and background and observational data acquired, move
to the ./run directory under ./comGSIv3.5_EnKFv1.1 to run the GSI using the sample script
run_gsi_regional.ksh. The run_gsi_regional.ksh script must be modified in several places be-
fore running:

• Set up batch queuing system.
To run GSI with multi-processors, a job queuing section has to be added at the begin-
ning of the run_gsi_regional.ksh script. The set up of the job queue is dependent on
the machine and the job control system. More setup examples are described in section
3.2.2. The following example is set up to run on a Linux cluster supercomputer with
LSF. The job section is as follows:

#BSUB -P ????????? # project code
#BSUB -W 00:20 # wall-clock time (hrs:mins)
#BSUB -n 4 # number of tasks in job
#BSUB -R "span[ptile=16]" # run 16 MPI tasks per node
#BSUB -J gsi # job name
#BSUB -o gsi.%J.out
#BSUB -e gsi.%J.err
#BSUB -q small # queue

In order to find out how to set up the job section, a good method is to use an existing
MPI job script and copy the job section over.

• Set up the number of processors and the job queue system used. For this example,
LINUX_PBS and four processors are used:

GSIPROC=4
ARCH=’LINUX_PBS’

• Set up the case data, analysis time, GSI fix files, GSI executable, and CRTM coeffi-
cients:
Set up analysis time:

ANAL_TIME=2014061700

Set up a working directory, which will hold all the analysis results. This directory must
have correct write permissions, as well as enough space to hold the output.

WORK_ROOT=/scratch1/gsiprd_${ANAL_TIME}_prepbufr

Set path to the background directory and file:

BK_ROOT=data/20140617/${ANAL_TIME}/arw
BK_FILE=${BK_ROOT}/wrfinput_d01.${ANAL_TIME}

Set path to the observation directory and the PrepBUFR file within the observation
directory. All observations to be assimilated should be in the observation directory.

OBS_ROOT=data/20140617/${ANAL_TIME}/obs
PREPBUFR=${OBS_ROOT}/nam.t${HH}z.prepbufr.tm00.nr

93

5. GSI Applications for Regional 3DVar, Hybrid 3DEnVar and Hybrid 4DEnVar

Set up the GSI system used for this case, including the paths of fix files and the CRTM
coefficients as well as the location of the GSI executable and the namelist file:

CRTM_ROOT=data/fix/CRTM_2.2.3
GSI_ROOT=/comGSIv3.5_EnKFv1.1
FIX_ROOT=${GSI_ROOT}/fix
GSI_EXE=${GSI_ROOT}/run/gsi.exe
GSI_NAMELIST=${GSI_ROOT}/run/comgsi_namelist.sh

• Set which background and background error file to use:

bk_core=ARW
bkcv_option=NAM
if_clean=clean

This example uses the ARW NetCDF background; therefore bk_core is set to
’ARW.’ The regional background error covariance file is used in this case, as set by
bkcv_option=NAM. Finally, the run scripts are set to clean the run directory to delete
all temporary intermediate files.

5.1.2 Run GSI and Check the Run Status

Once the run script is set up properly for the case and machine, and the anavinfo file has
been updated with the same number of vertical levels as the background (please see section
3.1 for more details), GSI can be run through the run script. On our test machine, the GSI
run is submitted as follows:

$ bsub < run_gsi_regional.ksh

While the job is running, move to the working directory and check the details. Given the
following working directory setup:

WORK_ROOT=/scratch1/gsiprd_${ANAL_TIME}_prepbufr

Go to directory /scratch1 to check the GSI run directory.

A directory named gsiprd_2014061700_prepbufr should have been created. This directory is
the run directory for this GSI case study. While GSI is still running, the contents of this
directory should include files such as:

imgr_g12.TauCoeff.bin ssmi_f15.SpcCoeff.bin
imgr_g13.SpcCoeff.bin ssmi_f15.TauCoeff.bin
imgr_g13.TauCoeff.bin ssmis_f16.SpcCoeff.bin

These are CRTM coefficient files that have been linked to this run directory through the
GSI run script. Additionally, many other files are linked or copied to this run directory or
generated during the run, such as:

• stdout: standard output file

94

5. GSI Applications for Regional 3DVar, Hybrid 3DEnVar and Hybrid 4DEnVar

• wrf_inout: background file
• gsiparm.anl: GSI namelist
• prepbufr: prepBUFR file for conventional observation
• convinfo: data usage control for conventional data
• berror_stats: background error file
• errtable: observation error file

The presence of these files indicates that the GSI run scripts have successfully set up a run
environment for GSI and that the GSI executable is running. While GSI is still running,
checking the content of the standard output file (stdout) can monitor the status of the GSI
analysis:

$ tail stdout
[mhu@yslogin2 testarw_conv]$ tail stdout
pcgsoi: gnorm(1:2),b= 4.971613638691962543E-04 4.971613637988174387E-04 6.539937387039491679E-01
cost,grad,step,b,step? = 2 21 2.283071832605468444E+04 2.229711559527815246E-02 4.235685495878949780E+01 6.539937387039491679E-01 good
pcgsoi: gnorm(1:2),b= 2.427998455757554152E-04 2.427998455925739387E-04 4.883723137754825139E-01
cost,grad,step,b,step? = 2 22 2.283069726786290266E+04 1.558203598942562579E-02 5.370146211199837438E+01 4.883723137754825139E-01 good
pcgsoi: gnorm(1:2),b= 1.349871612172568163E-04 1.349871612633241600E-04 5.559606553423739328E-01
cost,grad,step,b,step? = 2 23 2.283068422915619885E+04 1.161839753224414365E-02 6.137769018004394894E+01 5.559606553423739328E-01 good
pcgsoi: gnorm(1:2),b= 9.116990149652581994E-05 9.116990145686963470E-05 6.753968350377786978E-01
cost,grad,step,b,step? = 2 24 2.283067594395604101E+04 9.548293119533240308E-03 5.219011413742769179E+01 6.753968350377786978E-01 good
pcgsoi: gnorm(1:2),b= 5.783146215365002791E-05 5.783146214669085264E-05 6.343262545796939378E-01
cost,grad,step,b,step? = 2 25 2.283067118578847294E+04 7.604700004184913528E-03 5.599317818817987558E+01 6.343262545796939378E-01 good

The above output shows that GSI is in the inner iteration stage. It may take several minutes
to finish the GSI run. Once GSI has finished running, the number of files in the directory
will be greatly reduced from those during the run stage. This is because the run script was
set to clean the working directory after a successful run. The important analysis result files
and configuration files will remain. Please check Section 3.3 for more details on GSI run
results. Upon successful completion of GSI, the run directory will look as follows:

anavinfo fort.202 fort.214 fort.228 satbias_ang.out
berror_stats fort.203 fort.215 fort.229 satbias_in
convinfo fort.204 fort.217 fort.230 satbias_out
diag_conv_anl.2014061700 fort.205 fort.218 gsi.exe satbias_out.int
diag_conv_ges.2014061700 fort.206 fort.219 gsiparm.anl satbias_pc
errtable fort.207 fort.220 l2rwbufr satbias_pc.out
fit_p1.2014061700 fort.208 fort.221 list_run_directory satinfo
fit_q1.2014061700 fort.209 fort.223 ozinfo stdout
fit_rad1.2014061700 fort.210 fort.224 pcpbias_out stdout.anl.2014061700
fit_t1.2014061700 fort.211 fort.225 pcpinfo wrfanl.2014061700
fit_w1.2014061700 fort.212 fort.226 prepbufr wrf_inout
fort.201 fort.213 fort.227 prepobs_prep.bufrtable

5.1.3 Check for Successful GSI Completion

It is important to always check for a successful completion of the GSI analysis. However,
completion of the GSI run without crashing does not guarantee a successful analysis. First,
it is necessary to check the stdout file in the run directory to make sure GSI completed each
step without any obvious problems. The following are several important steps to check:

1. Read in the anavinfo and namelist files

The following lines show that GSI started normally and has read in the anavinfo and
namelist files:

95

5. GSI Applications for Regional 3DVar, Hybrid 3DEnVar and Hybrid 4DEnVar

gsi_metguess_mod*init_: 2D-MET STATE VARIABLES:
ps
z
gsi_metguess_mod*init_: 3D-MET STATE VARIABLES:
u
v

... ...

control_vectors*init_anacv: ALL CONTROL VARIABLES
sf vp
ps t
q oz

... ...

GSI_4DVAR: nobs_bins = 1
SETUP_4DVAR: l4dvar= F
SETUP_4DVAR: l4densvar= F
SETUP_4DVAR: winlen= 3.00000000000000
SETUP_4DVAR: winoff= 3.00000000000000
SETUP_4DVAR: hr_obsbin= 3.00000000000000
SETUP_4DVAR: nobs_bins= 1

... ...

&SETUP
GENCODE = 78.0000000000000 ,
FACTQMIN = 0.000000000000000E+000,
FACTQMAX = 0.000000000000000E+000,
CLIP_SUPERSATURATION = F,
FACTV = 1.00000000000000 ,
FACTL = 1.00000000000000 ,
FACTP = 1.00000000000000 ,
FACTG = 1.00000000000000 ,

... ...

2. Read in the background field

The following lines in standard output file, immediately following the namelist section,
indicate that GSI is reading the background fields. Checking the range of the ’max’
and ’min’ values will indicate if certain background fields are normal.

dh1 = 3
iy,m,d,h,m,s= 2014 6 17 0 0

0
dh1 = 3

RMS errore_var = SMOIS
ndim1 = 3
ordering = XYZ
staggering = N/A
start_index = 1 1 1 0
end_index = 332 215 4 0
WrfType = 104
ierr = 0
RMS errore_var = T ndim1 = 3 dh1 = 3

...............

RMS errore_var = U ndim1= 3
WrfType = 104 WRF_REAL= 104 ierr = 0
ordering = XYZ staggering = N/A
start_index = 1 1 1 0 end_index =

333 215 50 0
k,max,min,mid U= 1 18.50961 -17.84097 -0.8667576
k,max,min,mid U= 2 18.68178 -18.39229 -0.8647658
k,max,min,mid U= 3 19.28049 -19.42709 -0.8610985
k,max,min,mid U= 4 19.60607 -21.29182 -0.8547171
k,max,min,mid U= 5 21.58153 -24.50086 -0.8405453

3. Read in observational data

96

5. GSI Applications for Regional 3DVar, Hybrid 3DEnVar and Hybrid 4DEnVar

Skipping through a majority of the content towards the middle of the standard output
file, the following lines will appear:

OBS_PARA: ps 1429 3190 4655 6774
OBS_PARA: t 2564 5200 7057 11128
OBS_PARA: q 2346 4626 6148 8128
OBS_PARA: pw 65 80 63 49
OBS_PARA: uv 3358 6453 8091 11998

This table is an important step to check if the observations have been read in, which
types of observations have been read in, and the distribution of observations in each
sub domain. At this point, GSI has read in all the data needed for the analysis.
Following this table is the inner iteration information.

4. Inner iteration

The inner iteration step in the standard output file will look like this:
GLBSOI: START pcgsoi jiter= 1

pcgsoi: gnorm(1:2),b= 1.131520548923311509E+02 1.131520548923311509E+02 0.000000000000000000E+00
Begin J table inner/outer loop 0 1

J term J
surface pressure 5.7012207042385944E+03
temperature 6.4242087278840627E+03
wind 1.6782607330525603E+04
moisture 3.5878183830232451E+03

J Global 3.2495855145671507E+04
End Jo table inner/outer loop 0 1

Initial cost function = 3.249585514567150676E+04
Initial gradient norm = 1.063729546888358080E+01
cost,grad,step,b,step? = 1 0 3.249585514567150676E+04 1.063729546888358080E+01 2.548553547231620442E+01 0.000000000000000000E+00 good
pcgsoi: gnorm(1:2),b= 9.711890653545569307E+01 9.711890653545563623E+01 8.583043995786756586E-01
cost,grad,step,b,step? = 1 1 2.961211443694752961E+04 9.854892517701838273E+00 2.514521805501437157E+01 8.583043995786756586E-01 good
pcgsoi: gnorm(1:2),b= 8.597091659074136771E+01 8.597091659074150982E+01 8.852129791983981422E-01
cost,grad,step,b,step? = 1 2 2.717003835484893352E+04 9.272050290563644381E+00 1.036575164309021346E+01 8.852129791983981422E-01 good
pcgsoi: gnorm(1:2),b= 5.683515872824821002E+01 5.683515872824790449E+01 6.610975081120487040E-01

...

Following the namelist set up, similar information will be repeated for each inner loop.
In this case, two outer loops with 50 inner loops in each outer loop are shown. The
last iteration looks like this:
...
cost,grad,step,b,step? = 2 43 2.283066393607995633E+04 1.877001128106250809E-04 2.191568845986752123E+01 1.034537274286373876E+00 good
pcgsoi: gnorm(1:2),b= 1.819672329827284049E-08 1.819678976283112548E-08 5.164945106960998622E-01
cost,grad,step,b,step? = 2 44 2.283066393530783535E+04 1.348952308210814343E-04 4.180909725254741716E+01 5.164945106960998622E-01 good
pcgsoi: gnorm(1:2),b= 1.127913513618353988E-08 1.127903191777782680E-08 6.198386233002942669E-01
cost,grad,step,b,step? = 2 45 2.283066393454704667E+04 1.062032727187987424E-04 2.399192596022169610E+01 6.198386233002942669E-01 good
PCGSOI: WARNING **** Stopping inner iteration ***
gnorm 0.996812222890348903E-10 less than 0.100000000000000004E-09
update_guess: successfully complete

At the 45th iterationi, GSI met the stop threshold before getting to the maximum
iteration number (50). As a quick check, the J value should descend with each
iteration. Here, J has a value of 3.249585514567150676E+04 at the beginning and a
value of 2.283066393454704667E+04 for the final iteration. Therefore, the value has
reduced by about one third, which is an expected reduction.

5. Write out analysis results

The final step of the GSI analysis procedure looks very similar to the portion where
the background fields were read in:

... ...

max,min psfc= 102799.9 66793.78

97

5. GSI Applications for Regional 3DVar, Hybrid 3DEnVar and Hybrid 4DEnVar

max,min MU= 2799.898 -1195.195
RMS errore_var=MU
ordering=XY
WrfType,WRF_REAL= 104 104
ndim1= 2
staggering= N/A
start_index= 1 1 1 0
end_index1= 332 215 50 0
k,max,min,mid T= 1 321.6157 270.8151 309.3634
k,max,min,mid T= 2 321.7112 270.9660 309.4070
k,max,min,mid T= 3 321.4324 271.2166 309.3831
k,max,min,mid T= 4 321.2418 271.6100 309.3864
k,max,min,mid T= 5 321.6863 272.2831 309.3308
k,max,min,mid T= 6 320.9441 272.8387 309.1977
k,max,min,mid T= 7 320.8511 273.1703 309.0908

... ...

6. As an indication that GSI has successfully run, several lines will appear at the bottom
of the file:

ENDING DATE-TIME JUL 05,2016 11:30:38.156 187 TUE 2457575
PROGRAM GSI_ANL HAS ENDED.

* . * . * . * . * . * . * . * . * . * . * . * . * . * . * . * . * . * . * . * .

After carefully investigating each portion of the standard output file, it can be con-
cluded that GSI successfully ran through every step and there were no run issues.
A more complete description of the standard output file can be found in Section 4.1.
However, it cannot be concluded that GSI successfully produced an analysis until more
diagnosis has been completed.

5.1.4 Diagnose GSI Analysis Results

a Check Analysis Fit to Observations

The analysis uses observations to correct the background fields to fit to the observations
under certain constraints. The easiest way to confirm the GSI analysis results fit the obser-
vations better than the background is to check a set of files with names fort.2??, where ?? is a
number from 01 to 19 or larger than 20. In the run scripts, several "fort" files have also been
renamed as fit_t1 (q1, p1, rad1, w1).YYYYMMDDHH. Please check Section 4.5.1 for a detailed
explanation of the fit files. Here, we illustrate how to use these fit files.

• fit_t1.2014061700 (fort.203)
This file shows how the background and analysis fields fit to temperature observations.
The contents of this file show five data types were used in the analysis: 120, 130, 132,
180, and 182. Also included are the number of observations, bias, and RMS error of
observation minus background (o-g 01) or analysis (o-g 03) on each level for the three data
types. The following is part of the file, only showing data types 120 and 180:

ptop 1000.0 900.0 800.0 600.0 400.0 300.0 250.0 200.0 150.0 100.0 50.0 0.0
it obs type styp pbot 1200.0 1000.0 900.0 800.0 600.0 400.0 300.0 250.0 200.0 150.0 100.0 2000.0

--
o-g 01 t 120 0000 count 107 350 357 866 1153 719 252 450 551 884 745 7188
o-g 01 t 120 0000 bias 0.80 0.32 -0.10 -0.12 -0.15 -0.20 -0.24 -0.60 -0.22 0.15 -0.10 -0.07
o-g 01 t 120 0000 RMS error 2.06 1.55 0.83 0.77 0.69 0.66 0.73 1.20 1.44 1.65 1.65 1.23
o-g 01 t 120 0000 cpen 0.81 0.49 0.23 0.33 0.33 0.30 0.36 0.79 0.91 0.98 0.79 0.58
o-g 01 t 120 0000 qcpen 0.81 0.49 0.23 0.33 0.33 0.30 0.36 0.79 0.91 0.98 0.79 0.58
o-g 01 t 180 0000 count 339 35 0 0 0 0 0 0 0 0 0 374

98

5. GSI Applications for Regional 3DVar, Hybrid 3DEnVar and Hybrid 4DEnVar

o-g 01 t 180 0000 bias 0.17 1.12 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.26
o-g 01 t 180 0000 RMS error 1.66 4.03 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.01
o-g 01 t 180 0000 cpen 0.63 7.18 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.25
o-g 01 t 180 0000 qcpen 0.63 7.18 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.25
o-g 01 t 180 0001 count 1344 15 0 0 0 0 0 0 0 0 0 1359
o-g 01 t 180 0001 bias 0.82 4.17 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.86
o-g 01 t 180 0001 RMS error 2.07 5.44 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.13
o-g 01 t 180 0001 cpen 0.47 23.37 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.73
o-g 01 t 180 0001 qcpen 0.47 23.37 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.73
o-g 01 all count 1792 405 358 871 1172 725 325 800 651 884 745 9482
o-g 01 all bias 0.69 0.53 -0.10 -0.12 -0.15 -0.19 -0.09 -0.50 -0.04 0.15 -0.10 0.08
o-g 01 all RMS error 1.99 2.14 0.83 0.77 0.69 0.67 0.84 1.32 1.58 1.65 1.65 1.45
o-g 01 all cpen 0.52 1.91 0.23 0.33 0.36 0.31 0.44 0.97 1.18 0.98 0.79 0.68
o-g 01 all qcpen 0.52 1.91 0.23 0.33 0.36 0.31 0.44 0.97 1.18 0.98 0.79 0.68

--
o-g 03 t 120 0000 count 107 350 357 866 1153 719 252 450 551 884 745 7188
o-g 03 t 120 0000 bias 0.58 0.29 -0.04 -0.02 -0.04 -0.02 0.01 -0.16 -0.04 0.06 0.04 0.01
o-g 03 t 120 0000 RMS error 1.72 1.35 0.70 0.61 0.49 0.43 0.50 0.79 1.14 1.40 1.59 1.05
o-g 03 t 120 0000 cpen 0.57 0.33 0.14 0.19 0.16 0.12 0.18 0.34 0.57 0.72 0.73 0.39
o-g 03 t 120 0000 qcpen 0.57 0.33 0.14 0.19 0.16 0.12 0.18 0.34 0.57 0.72 0.73 0.39
o-g 03 t 180 0000 count 339 35 0 0 0 0 0 0 0 0 0 374
o-g 03 t 180 0000 bias -0.24 0.21 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -0.19
o-g 03 t 180 0000 RMS error 1.55 2.83 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.71
o-g 03 t 180 0000 cpen 0.34 2.57 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.55
o-g 03 t 180 0000 qcpen 0.34 2.57 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.55
o-g 03 t 180 0001 count 1344 16 0 0 0 0 0 0 0 0 0 1360
o-g 03 t 180 0001 bias 0.30 1.97 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.32
o-g 03 t 180 0001 RMS error 1.75 2.88 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.77
o-g 03 t 180 0001 cpen 0.27 6.05 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.34
o-g 03 t 180 0001 qcpen 0.27 6.05 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.34
o-g 03 all count 1792 406 358 871 1172 725 325 800 651 884 745 9483
o-g 03 all bias 0.21 0.34 -0.04 -0.02 -0.04 -0.02 0.04 -0.13 0.06 0.06 0.04 0.05
o-g 03 all RMS error 1.71 1.61 0.69 0.61 0.49 0.43 0.61 0.94 1.26 1.40 1.59 1.22
o-g 03 all cpen 0.30 0.75 0.14 0.19 0.18 0.14 0.24 0.49 0.76 0.72 0.73 0.42
o-g 03 all qcpen 0.30 0.75 0.14 0.19 0.18 0.14 0.24 0.49 0.76 0.72 0.73 0.42

For example, data type 120 has 1153 observations in layer 400.0-600.0 hPa, a bias of -0.15,
and a RMS error of 0.69. The last column shows the statistics for the whole atmosphere.
There are several summary lines for all data types, which is indicated by "all" in the data
types column. For summary O-B (which is "o-g 01" in the file), there are 9482 observations
in total, for a bias of 0.08, and a RMS error of 1.45.

Skipping ahead in the "fort" file, "o-g 03" columns (under "it") show the observation
minus analysis (O-A) information. Under the summary ("all") rows, it can be seen that
there were 9483 total observations, a bias of 0.05, and a RMS error of 1.22. This
shows that from the background to the analysis, one more observation data point is
being used because of the recalculation of the innovation and the gross check after each
outer loop, the bias reduced from 0.08 to 0.05, and the RMS error reduced from 1.45
to 1.22. This is about a 16% reduction, which is a reasonable value for a large-scale analysis.

• fit_w1.2014061700 (fort.202)
This file demonstrates how the background and analysis fields fit to wind observations.
This file (as well as fit_q1) is formatted the same way as fort.203. Therefore, only the
summary lines for O-B and O-A will be shown here to gain a quick view of the fit to
observations:

ptop 1000.0 900.0 800.0 600.0 400.0 300.0 250.0 200.0 150.0 100.0 50.0 0.0
it obs type styp pbot 1200.0 1000.0 900.0 800.0 600.0 400.0 300.0 250.0 200.0 150.0 100.0 2000.0

--
o-g 01 all count 1597 1703 1839 2930 1213 828 290 687 533 694 798 14513
o-g 01 all bias 0.27 0.84 0.68 0.61 0.56 0.45 0.67 0.91 0.48 0.83 1.21 0.64
o-g 01 all RMS error 2.50 2.65 2.52 3.11 4.02 3.98 4.37 4.31 5.32 5.41 4.77 3.59

--
o-g 03 all count 1608 1695 1843 2931 1212 828 290 687 533 694 798 14520
o-g 03 all bias 0.23 0.42 0.26 0.30 0.37 0.33 0.22 0.37 0.32 0.67 1.22 0.39
o-g 03 all RMS error 2.27 2.16 1.94 2.23 2.74 2.82 3.64 3.31 4.22 4.43 4.41 2.90

O-B: 14513 observations in total, bias is 0.64, and RMS error is 3.59
O-A: 14520 observations in total, bias is 0.39, and RMS error is 2.90

The total bias was reduced from 0.64 to 0.39 and the RMS error was reduced from 3.59

99

5. GSI Applications for Regional 3DVar, Hybrid 3DEnVar and Hybrid 4DEnVar

to 2.90 (20% reduction).

• fit_q1.2014061700 (fort.204)
This file demonstrates how the background and analysis fields fit to moisture observations
(relative humidity). The summary lines for O-B and O-A are as follows:

ptop 1000.0 950.0 900.0 850.0 800.0 700.0 600.0 500.0 400.0 300.0 0.0 0.0
it obs type styp pbot 1200.0 1000.0 950.0 900.0 850.0 800.0 700.0 600.0 500.0 400.0 300.0 2000.0

--
o-g 01 all count 543 186 182 211 146 457 406 520 621 623 0 3895
o-g 01 all bias 1.17 -3.68 -2.47 -1.30 -3.55 0.19 0.64 -1.80 -4.28 -5.55 0.00 -2.05
o-g 01 all RMS error 9.09 10.63 9.03 9.34 12.73 12.30 14.53 15.27 16.45 16.01 0.00 13.66

--
o-g 03 all count 543 186 182 211 146 457 406 520 621 623 0 3895
o-g 03 all bias -0.39 -0.88 -0.68 0.45 -0.51 0.06 0.13 -0.10 -0.70 -1.90 0.00 -0.53
o-g 03 all RMS error 5.48 5.19 4.37 5.73 8.13 9.31 12.19 13.82 13.01 12.36 0.00 10.64

O-B: 3895 observations in total, bias is -2.05, and RMS error is 13.66
O-A: 3895 observations in total, bias is -0.53, and RMS error is 10.64

The total bias and RMS error were reduced.

• fit_p1.2014061700 (fort.201)
This file demonstrates how the background and analysis fields fit to surface pressure
observations. Because surface pressure is a two-dimensional field, the table is formatted
differently than the three-dimensional fields shown above. Once again, only the summary
lines will be shown for O-B and O-A to gain a quick view of the fit to observations:

--
pressure levels (hPa)= 0.0 2000.0

it obs type stype count bias RMS error cpen qcpen
o-g 01 all 13890 0.1912 0.7931 0.4105 0.4105

--
o-g 03 all 13916 0.0403 0.6764 0.2921 0.2921

O-B: 13890 observations in total, bias is 0.1912, and RMS error is 0.7931
O-A: 13916 observations in total, bias is 0.0403, and RMS error is 0.6764

Both the total bias and RMS error were reduced.

These statistics show that the analysis results fit to the observations closer than the back-
ground, which is what we would expect. How close the analysis fits to the observations is
based on the ratio of background error variance and observation error.

b Check the Minimization

In addition to the minimization information in the standard output file, GSI writes more
detailed information into a file called "fort.220." The content of "fort.220" is explained in
the Advanced GSI User's Guide. Below is an example of a quick check of the cost function
trend and the norm of gradient. The values should get smaller with each iteration.

In the run directory, information on the cost function and norm of the gradient can be
dumped into an output file by using the following command:

$ grep ’cost,grad,step,b’ fort.220 | sed -e ’s/cost,grad,step,b,step? = //g’ | sed -e ’s/good//g’ > cost_gradient.txt

100

5. GSI Applications for Regional 3DVar, Hybrid 3DEnVar and Hybrid 4DEnVar

The file cost_gradient.txt includes six columns, however only the first four columns are needed
and are explained below. The first five and last five lines read are:

1 0 3.249585514567150676E+04 1.063729546888358080E+01 2.548553547231620442E+01 0.000000000000000000E+00
1 1 2.961211443694752961E+04 9.854892517701838273E+00 2.514521805501437157E+01 8.583043995786756586E-01
1 2 2.717003835484893352E+04 9.272050290563644381E+00 1.036575164309021346E+01 8.852129791983981422E-01
1 3 2.627888518494048549E+04 7.538909651153024249E+00 1.948409284114243079E+01 6.610975081120487040E-01
1 4 2.517150367563822510E+04 5.715354258100989071E+00 2.423238066649372513E+01 5.747370998254690555E-01
... ...
2 41 2.283066394128102547E+04 2.700371175626514980E-04 4.661917669555924704E+01 3.046618826707093719E-01
2 42 2.283066393788155256E+04 1.845403996927800583E-04 5.290241773629001187E+01 4.670206697407201513E-01
2 43 2.283066393607995633E+04 1.877001128106250809E-04 2.191568845986752123E+01 1.034537274286373876E+00
2 44 2.283066393530783535E+04 1.348952308210814343E-04 4.180909725254741716E+01 5.164945106960998622E-01
2 45 2.283066393454704667E+04 1.062032727187987424E-04 2.399192596022169610E+01 6.198386233002942669E-01

The first column is the outer loop number and the second column is the inner iteration num-
ber. The third column is the cost function, and the forth column is the norm of the gradient.
It can be seen that both the cost function and norm of the gradient are descending.

To get a complete picture of the minimization process, the cost function and norm of the
gradient can be plotted using an included NCL script located here:

./util/Analysis_Utilities/plot_ncl/GSI_cost_gradient.ncl.

The plot is shown as Fig.5.2:

Figure 5.2: The cost function (y-axes) and norm of the gradient (y-axes) change with each
iteration (x-axes).

The above plots demonstrate that both the cost function and norm of the gradient descend
very fast in the first ten iterations in both outer loops and drop very slowly afterward.

101

5. GSI Applications for Regional 3DVar, Hybrid 3DEnVar and Hybrid 4DEnVar

c Check the Analysis Increment

The analysis increment gives us an idea of where and how much the background fields have
been modified by the observations through the analysis. Another useful graphics tool that
can be used to look at the analysis increment is located here:

./util/Analysis_Utilities/plot_ncl/Analysis_increment.ncl.

The graphic below shows the analysis increment at the 15th sigma (vertical) level on the
analysis grid. Notice that the scales are different for each of the plots.

Figure 5.3: Analysis increment at the 15th level

The analysis increment indicates that conventional observations are mostly located within
the continental United States and that data availability over the ocean is very sparse.

5.2 Assimilating Radiance Data with Regional GSI

5.2.1 Run Script

Adding radiance data into the GSI analysis is straightforward after having already run GSI
with conventional data. The same run script from the above section can be used to run GSI
with radiance data (with or without PrepBUFR data). The key step to adding the radiance
data is linking the radiance BUFR files to the GSI run directory with the names listed in
the &OBS_INPUT section of the GSI namelist. The following example adds the two radiance
BUFR files:

102

5. GSI Applications for Regional 3DVar, Hybrid 3DEnVar and Hybrid 4DEnVar

AMSU-A: gdas1.t00z.1bamua.tm00.bufr_d
HIRS4: gdas1.t00z.1bhrs4.tm00.bufr_d

The location of these radiance BUFR files is already included in the scripts variable
OBS_ROOT, therefore the following two lines can be inserted below the link to the prepBUFR
data in the script run_gsi_regional.ksh:

ln -s ${OBS_ROOT}/gdas1.t${HH}z.1bamua.tm00.bufr_d amsuabufr
ln -s ${OBS_ROOT}/gdas1.t${HH}z.1bhrs4.tm00.bufr_d hirs4bufr

If radiance data is desired in addition to conventional prepBUFR data, the following link to
the prepBUFR data should be kept as is:

ln -s ${PREPBUFR} ./prepbufr

Alternatively, to analyze radiance data without conventional prepBUFR data, this line can
be commented out in the script run_gsi_regional.ksh:

ln -s ${PREPBUFR} ./prepbufr

In the following example, both radiance and conventional observations will be assimilated.

In order to link the correct name for the radiance BUFR file, the namelist section
&OBS_INPUT should be referenced. This section has a list of data types and BUFR file
names that can be used in GSI. The 1st column "dfile" is the file name recognized by
GSI. The 2nd column "dtype" and 3rd column "dplat" are the data type and data platform
that are included in the file listed in "dfile," respectively. For example, the following line
tells us the AMSU-A observation from NOAA-15 should be read from a BUFR file named
"amsuabufr" :

! dfile dtype dplat dsis dval dthin dsfcalc
amsuabufr amsua n15 amsua_n15 10.0 2 0

With radiance data assimilation, data thinning and bias correction need to be checked
carefully. The following is a brief description of these two:

• Radiance data thinning
Radiance data thinning is found in the namelist section &OBS_INPUT. The following is
a part of namelist in that section:

dmesh(1)=120.0,dmesh(2)=60.0,dmesh(3)=30,time_window_max=1.5,ext_sonde=.true.
! dfile dtype dplat dsis dval dthin dsfcalc

amsuabufr amsua n15 amsua_n15 10.0 2 0

The first line of &OBS_INPUT lists multiple mesh grids as elements of the array dmesh
(three mesh grids in the above example). For the line specifying data type, the 2nd

to last element of that line is used to specify the choice of dthin. This selects the

103

5. GSI Applications for Regional 3DVar, Hybrid 3DEnVar and Hybrid 4DEnVar

mesh grid to be used for thinning. The data thinning option for NOAA-15 AMSU-A
observations is set to 60 km because the value of dthin is two, corresponding to
dmesh(2)=60 km. For more information about radiance data thinning, please refer to
the Advanced GSI User's Guide.

• Radiance data bias correction
Radiance data bias correction is very important for successful radiance data assimila-
tion. In the sample run scripts, there are two files related to bias correction:
for satellite bias correction
cp ${FIX_ROOT}/gdas1.t00z.abias.20150617 ./satbias_in
cp ${FIX_ROOT}/gdas1.t00z.abias_pc.20150617 ./satbias_pc

For this case, the GDAS bias correction files were downloaded and saved in the fix
directory as examples. For other cases, the run script should link to corresponding
bias correction coefficient files. The first line sets the path to the bias coefficient file,
and the second copies the bias correction coefficients for passive (monitored) channels
into the working directory. These two coefficient files are usually calculated from
within GSI in the previous cycle. Two files are provided in ./fix as examples of the
bias correction coefficients. For the best results, it is necessary for the user to generate
his or her own bias files. The details of radiance data bias correction are discussed
in the Advanced GSI User's Guide. Please note that GSI releases prior to v3.5 have
coefficients for mass bias correction and angle bias correction calculated separately.

Once these links are set, we are ready to run GSI.

5.2.2 Run GSI and Check Run Status

The process for running GSI is the same as described in section 5.1.2. Once
run_gsi_regional.ksh has been submitted, move into the run directory to check the GSI
analysis results. For the current case, the run directory will look almost as it did for the
conventional data case, the exception being the two links to the radiance BUFR files and
new diag files for the radiance data types used. Following the same steps as in section 5.1.2,
check the stdout file to see if GSI has run through each part of the analysis process success-
fully. In addition to the information outlined for the conventional run, the radiance BUFR
files should have been read in and distributed to each sub domain:

OBS_PARA: ps 1429 3190 4655 6774
OBS_PARA: t 2564 5200 7057 11128
OBS_PARA: q 2346 4626 6148 8128
OBS_PARA: pw 65 80 63 49
OBS_PARA: uv 3358 6453 8091 11998
OBS_PARA: hirs4 metop-a 0 0 1146 1661
OBS_PARA: hirs4 n19 213 1020 0 0
OBS_PARA: hirs4 metop-b 0 0 85 555
OBS_PARA: amsua n15 1458 2026 830 234
OBS_PARA: amsua n18 2223 2318 108 0
OBS_PARA: amsua n19 176 960 0 0
OBS_PARA: amsua metop-a 0 0 1077 1559
OBS_PARA: amsua metop-b 0 0 265 1829

When comparing this output to the content in step three of section 5.1.3, it can be seen that
there are eight new radiance data types that have been read in: HIRS4 from METOP-A,

104

5. GSI Applications for Regional 3DVar, Hybrid 3DEnVar and Hybrid 4DEnVar

METOP-B and NOAA-19, AMSU-A from NOAA-15, NOAA-18, NOAA-19, METOP-A, and
METOP-B. The table above shows that most of the radiance data read in for this case are
AMSU-A from NOAA satellite information.

5.2.3 Diagnose GSI Analysis Results

a Check File fort.207

The file fort.207 contains the statistics for the radiance data, similar to file fort.203 for
temperature. This file contains important details about the radiance data analysis. Section
4.5.2 explains this file in detail. Below are some values from the file fort.207 to provide a
quick look at the radiance assimilation for this example.

The fort.207 file contains the following lines:

For O-B, before the first outer loop:

it satellite instrument # read # keep # assim penalty qcpnlty cpen qccpen
o-g 01 rad n15 amsua 83190 58236 25226 10356. 10356. 0.41053 0.41053
o-g 01 rad n18 amsua 83595 69147 27677 11067. 11067. 0.39988 0.39988

For O-A, after the second outer loop:

o-g 03 rad n15 amsua 83190 58236 30136 4672.4 4672.4 0.15504 0.15504
o-g 03 rad n18 amsua 83595 69147 32253 8546.8 8546.8 0.26499 0.26499

From the above information, it can be seen that AMSU-A data from NOAA-15 provides
83190 observations within the analysis time window and domain. After thinning, 58236
observations remained, and only 25226 passed the quality check and were used in the
analysis. The penalty for this data decreased from 10356 to 4672.4 after two outer loops.
It is important to note that the number of AMSU-A observations assimilated in the O-A
calculation increased to 30136 from 25226 as more data passed the quality check in the 2nd

outer loop.

The statistics for each channel can be viewed in the fort.207 file as well. Here, channels
from AMSU-A NOAA-15 are listed as an example:

For O-B, before the first outer loop:

1 1 amsua_n15 1903 24 3.000 1.6543287 -0.3164878 0.1411234 1.7151923 1.6857402
2 2 amsua_n15 1927 0 2.200 1.0105548 -0.2430249 0.0385590 1.0284683 0.9993427
3 3 amsua_n15 1927 0 2.000 1.7941589 -0.1480894 0.0575956 0.7909800 0.7769935
4 4 amsua_n15 1927 0 0.600 -0.1848763 -0.0460476 0.0856369 0.2497797 0.2454985
5 5 amsua_n15 1927 4 0.300 0.0314288 -0.0292998 0.3025052 0.2008865 0.1987383
6 6 amsua_n15 4126 10 -0.230 -1.8448526 -0.0778284 0.8969513 0.2463875 0.2337725
7 7 amsua_n15 4468 13 0.250 -0.1497841 -0.0810899 0.5245399 0.2042760 0.1874916
8 8 amsua_n15 4468 13 0.275 -0.0251081 -0.0869918 0.6195120 0.2420568 0.2258847
9 9 amsua_n15 4463 18 0.340 0.1824903 0.2108491 0.6987405 0.3453174 0.2734717

10 10 amsua_n15 294 4187 0.400 0.7946961 0.7908103 2.5281681 0.7982470 0.1087077
15 15 amsua_n15 1922 5 3.500 1.6785936 -0.1471413 0.0940713 1.6461928 1.6396037

105

5. GSI Applications for Regional 3DVar, Hybrid 3DEnVar and Hybrid 4DEnVar

For O-A, after the second outer loop:

1 1 amsua_n15 2050 10 3.000 2.0842622 0.1363398 0.0414276 1.0332965 1.0242622
2 2 amsua_n15 2060 0 2.200 1.0926873 -0.0731534 0.0177924 0.8048238 0.8014923
3 3 amsua_n15 2060 0 2.000 1.8733559 -0.0257656 0.0406385 0.6841159 0.6836305
4 4 amsua_n15 2060 0 0.600 -0.1278763 0.0136412 0.0547146 0.2103718 0.2099291
5 5 amsua_n15 2060 4 0.300 0.0730860 0.0118626 0.1759475 0.1624923 0.1620587
6 6 amsua_n15 4234 0 -0.230 -1.7911421 -0.0262042 0.5247873 0.1975867 0.1958414
7 7 amsua_n15 4470 11 0.250 -0.0766482 -0.0094307 0.1918646 0.1288789 0.1285334
8 8 amsua_n15 4475 6 0.275 0.0675371 -0.0047226 0.1715888 0.1341703 0.1340871
9 9 amsua_n15 4481 0 0.340 -0.0508290 -0.0396425 0.1722334 0.1711928 0.1665396

10 10 amsua_n15 4362 119 0.400 0.2373520 0.1943598 0.3425567 0.3140220 0.2466457
15 15 amsua_n15 2058 2 3.500 1.8261335 0.0617429 0.0487809 1.2317674 1.2302190

The second column is the channel number for AMSU-A and the last column is the stan-
dard deviation for each channel. It can be seen that most of the channels fit better to the
observations after the second outer loop.

b Check the Analysis Increment

The same methods for checking the optimal minimization as demonstrated in section 5.1.4.2
can be used for radiance assimilation. Similar features to the conventional assimilation
should be seen with the minimization. The figures below show detailed information on how
the radiance data impact the analysis results on top of the conventional data. Using the
same NCL script as in section 5.1.4.3, analysis increment fields are plotted comparing the
analysis results with radiance and conventional data to the analysis results with conventional
data assimilation only. Figure 5.5 is for vertical level 49 and Figure 5.4 is for vertical level
six, representing the maximum temperature increment level (49) and maximum moisture
increment level (6), respectively.

In order to fully understand the analysis results, the following topics should be reviewed:

1. The weighting functions of each channel and the data coverage at the analysis time.
There are several sources on the internet that show the weighting functions of the
AMSU-A channels. Channel one is the moisture channel, while the others are mainly
temperature channels (Channels two, there, and 15 also have large moisture signals).
Because a model top of 20 mb was specified for this case study, the actual impact
should come from channels with peak weighting below 20 hPa.

2. The usage of each channel is located in the file named ’satinfo’ in the run directory.
The first two columns show the observation type and platform of the channels, and the
third column indicates if the channel is used in the analysis. Because many amsua_n15
and amsua_n18 data were used, they should be checked in detail. In this case, Channels
six, 11, and 14 from amsua_n15 and channels nine and 14 from amsua_n18 were turned
off.

3. Thinning information, including a quick look at the namelist in the run directory. The
file "gsiparm.anl" shows that both amsua_n15 and amsu_n18 use thinning grid two,
which is 60 km. In this case, the grid spacing is 30 km, which indicates to use the
satellite observations every four grid-spaces, which might be a little dense.

106

5. GSI Applications for Regional 3DVar, Hybrid 3DEnVar and Hybrid 4DEnVar

Figure 5.4: Analysis increment fields of the prepBUFR and radiance data analysis compared
to the analysis with prepBUFR only at vertical level six

Figure 5.5: Analysis increment fields of the prepBUFR and radiance data analysis compared
to the analysis with prepBUFR only at vertical level 49

4. Bias correction: Radiance bias correction was previously discussed. It is very impor-
tant for a successful radiance data analysis. The run script can only link to the GDAS
bias correction coefficients that are provided as an example in ./fix:

cp ${FIX_ROOT}/gdas1.t00z.abias.20150617 ./satbias_in
cp ${FIX_ROOT}/gdas1.t00z.abias_pc.20150617 ./satbias_pc

Users can download the operational bias correction coefficients during their ex-
periment period as a starting point to calculate the coefficients suitable for their
experiments.

107

5. GSI Applications for Regional 3DVar, Hybrid 3DEnVar and Hybrid 4DEnVar

Radiance bias correction for regional analyses is a difficult issue because of the limited
coverage of radiance data. This topic is out of the scope of this document, but this
issue should be considered and understood when using GSI with radiance applications.

5.3 Assimilating GPS Radio Occultation Data with Regional GSI

5.3.1 Run Script

The addition of GPS Radio Occultation (RO) data into the GSI analysis is similar to that of
adding radiance data. In the example below, the RO data is used as refractivity. There is
also an option to use the data as bending angles. The same run scripts in sections 5.1.1 and
5.2.1 can be used with the addition of the following link to RO observations:

ln -s ${OBS_ROOT}/gdas1.t${HH}z.gpsro.tm00.bufr_d gpsrobufr

For this case study, the GPS RO BUFR file was downloaded and saved in the OBS_ROOT direc-
tory. The file is linked to the name gpsrobufr, following the namelist section &OBS_INPUT:

! dfile dtype dplat dsis dval dthin dsfcalc

gpsrobufr gps_ref null gps 1.0 0 0

This indicates that GSI is expecting a GPS refractivity BUFR file named gpsrobufr. In the
following example, GPS RO and conventional observations are both assimilated. Change the
run directory name in the run scripts to reflect this test:

WORK_ROOT=/scratch1/gsiprd_${ANAL_TIME}_gps_prepbufr

5.3.2 Run GSI and Check the Run Status

The process of running GSI is the same as described in section 5.1.2. Once
run_gsi_regional.ksh has been submitted, move into the working directory,
gsiprd_2014061700_gps_prepbufr, to check the GSI analysis results. The run directory
will look exactly the same as with the conventional data, with the exception of the link to
the GPS RO BUFR files used in this case. Following the same steps as in section 5.1.3, check
the standard output file to see if GSI has run through each part of the analysis process
successfully. In addition to the information outlined for the conventional run, the GPS RO
BUFR files should have been read in and distributed to each sub domain:

108

5. GSI Applications for Regional 3DVar, Hybrid 3DEnVar and Hybrid 4DEnVar

OBS_PARA: ps 1429 3190 4655 6774
OBS_PARA: t 2564 5200 7057 11128
OBS_PARA: q 2346 4626 6148 8128
OBS_PARA: pw 65 80 63 49
OBS_PARA: uv 3358 6453 8091 11998
OBS_PARA: gps_ref 1799 1368 2664 3520

Comparing the output to the content in section 5.1.3, it can be seen that the GPS RO
refractivity data have been read in and distributed to four sub-domains successfully.

5.3.3 Diagnose GSI Analysis Results

a Check File fort.212

The file fort.212 shows the fit of the analysis/background to the GPS/RO data as fractional
differences. It has the same structure as the fit files for conventional data. Below is a quick
look to be sure the GPS RO data were used:

Observation - Background (O-B)

ptop 1000.0 900.0 800.0 600.0 400.0 300.0 250.0 200.0 150.0 100.0 50.0 0.0
it obs type styp pbot 1200.0 1000.0 900.0 800.0 600.0 400.0 300.0 250.0 200.0 150.0 100.0 2000.0

--
o-g 01 all count 0 13 58 223 355 342 232 261 326 440 729 3740
o-g 01 all bias 0.00 -0.76 -0.03 -0.06 -0.04 0.01 -0.03 0.04 -0.04 -0.16 -0.18 -0.14
o-g 01 all RMS error 0.00 1.41 0.75 0.96 0.79 0.35 0.32 0.42 0.54 0.57 0.55 0.59

Observation - Analysis (O-A)

ptop 1000.0 900.0 800.0 600.0 400.0 300.0 250.0 200.0 150.0 100.0 50.0 0.0
it obs type styp pbot 1200.0 1000.0 900.0 800.0 600.0 400.0 300.0 250.0 200.0 150.0 100.0 2000.0

--
o-g 03 all count 1 18 65 229 355 342 231 266 330 440 731 3776
o-g 03 all bias -0.40 -0.43 0.03 0.02 -0.02 -0.01 -0.02 0.00 0.01 -0.01 -0.02 0.00
o-g 03 all RMS error 0.40 1.03 0.54 0.59 0.70 0.26 0.14 0.20 0.24 0.28 0.39 0.41

It can be seen that most of the GPS RO data are located in the upper levels, with a total of
3740 observations used in the analysis during the 1st outer loop, and 3776 used to calculate
O-A. After the analysis, the data bias reduced from -0.14 to 0.00, and the RMS error was
reduced from 0.59 to 0.41. It can be concluded that the analysis with GPS RO data looks
reasonable from these statistics.

b Check the Analysis Increment

The same methods for checking the minimization in section 5.1.4.2 can be used for the GPS
RO assimilation.

The following figures provide detailed information about how the new data impacts the
analysis. Using the NCL script from section ??, analysis increment fields are plotted com-
paring the analysis results with GPS RO and conventional data to the analysis results with
conventional data assimilation only for vertical level 48, which represents the maximum
temperature increment.

109

5. GSI Applications for Regional 3DVar, Hybrid 3DEnVar and Hybrid 4DEnVar

Figure 5.6: Analysis increment fields comparing the use of GPS RO and conventional obser-
vations to only prepBUFR at vertical level 48.

5.4 Introduction to GSI Hybrid 3DEnVar Analysis

The three-dimensional hybrid ensemble-variational (hybrid 3DEnVar) analysis is an impor-
tant option in the GSI system that has been used operationally. It provides the ability to
bring the flow dependent background error covariance into the analysis based on ensemble
forecasts. If ensemble forecasts have been generated, setting up GSI to do a hybrid analysis
is straightforward and only requires two changes in the run script in addition to the current
3DVAR run script:

• Change 1: Link the ensemble members to the GSI run directory

This change is required to link the ensemble members to the GSI run directory and
assign each ensemble member a name that GSI recognizes. GSI can accept four kinds
of ensemble forecasts, controlled by the namelist variable regional_ensemble_option. Table
5.1 provides a list of options for regional_ensemble_option and the naming convention for
linking the ensemble files to GSI recognized names.

Users have to change the GSI run script to add the links to the ensemble forecasts if
they want to use the GSI hybrid function. Below is an example of using an ensemble in
ARW netcdf format, assuming that all the ensemble members are located in a directory
defined by the parameter $mempath and the ensemble members have a name such as:
wrfout_d01_$iiimem, where $iiimem is an integer indicating the ensemble member ID. The
following lines should be added to the run script with loop iiimem from one to the total
number of ensemble members:

if [-r ${mempath}/wrfout_d01_${iiimem}]; then
ln -sf ${mempath}/wrfout_d01_${iiimem} ./wrf_en${iiimem}

else
echo "member ${mempath}/wrfout_d01_${iiimem} does not exit"

110

5. GSI Applications for Regional 3DVar, Hybrid 3DEnVar and Hybrid 4DEnVar

Table 5.1: List of ensemble forecasts that can be read by GSI

regional_
ensemble_
option

explanation Function called GSI recognized ensemble
file names

1 GFS ensemble internally
interpolated to hybrid
grid

get_gefs_for_regional filelist : a text file includ-
ing the path and name of
ensemble files

2 Ensemble is in WRF-
NMM (HWRF) format

get_wrf_nmm_ensperts d01_en001,
d01_en002,
...

3 Ensemble is in ARW
netcdf format

get_wrf_mass_ensperts_netcdf wrf_en001,
wrf_en002,
...

4 Ensemble is in NMMB
format

get_nmmb_ensperts nmmb_ens_mem001,
nmmb_ens_mem002,
...

fi

• Change 2: Set up the namelist options in section HYBRID_ENSEMBLE

Users need to set l_hyb_ens=.true. to turn on the hybrid ensemble analysis. Commonly
used namelist options for the hybrid analysis are listed in table 5.2:
Please note: the parameters s_ens_h, s_ens_v, and beta1_inv are tunable parameters.
They should be tuned for best performance.

After setting up the namelist parameters and the path/name of the ensemble members,
GSI can be run in the same manner as the other 3DVAR cases introduced in this chapter.
The same procedures could be followed as in the previous sections to check the run status
and diagnose the GSI analysis.

111

5. GSI Applications for Regional 3DVar, Hybrid 3DEnVar and Hybrid 4DEnVar

Table 5.2: The list of namelist options for GSI hybrid
Options explanation
l_hyb_ens if true, turn on hybrid ensemble option
uv_hyb_ens if true, ensemble perturbation wind variables are u and v;

otherwise, ensemble perturbation wind variables are stream
function and velocity potential

generate_ens if true, generate an internal ensemble based on the existing
background error; recommended = false

n_ens number of ensemble members
beta1_inv (1/beta1), the weight given to the static background error co-

variance. 0 <= beta1_inv <= 1, should be tuned for optimal
performance; beta2_inv = 1 - beta1_inv is the weight given to the
ensemble derived covariance
=1, ensemble information turned off
=0, static background errors turned off

s_ens_h homogeneous isotropic horizontal ensemble localization scale
(km)

s_ens_v vertical localization scale
If positive, in grid units;
if negative, in lnp unit

regional_ensemble
_option

integer, used to select the type of ensemble to read in for re-
gional applications. Currently takes values from one to four:
=1: use GEFS internally interpolated to ensemble grid;
=2: ensembles are in WRF-NMM format;
=3: ensembles are in ARW netcdf format;
=4: ensembles are in NMMB format.

grid_ratio_ens for regional runs, the ratio of ensemble to analysis grid resolu-
tion. If turned on and specified with an appropriate value, this
could increase the computational efficiency.

112

5. GSI Applications for Regional 3DVar, Hybrid 3DEnVar and Hybrid 4DEnVar

5.5 Introduction to GSI Hybrid 4DEnVar Analysis

The GSI hybrid 4DEnVAR analysis is similar to the hybrid 3DEnVar except that the hybrid
4DEnVar will use multiple background files and GFS ensemble forecasts. As an example,
the following shows how to conduct a hybrid 4DEnVar analysis using three time levels of
background files and ensembles.

Before creating a hybrid 4DEnVar analysis, be sure to read the previous section about how
to run hybrid 3DEnVar first. The following steps are additional procudures beyond hybrid
3DEnVar and assume that all hybrid 3DEnVar settings have already been set.

(1). Set if_4DEnVar=Yes in run_gsi_regional.ksh.

(2). Set the correct background files and ensemble files at different time levels in
run_gsi_regional.ksh. See the following example:

if [${if_4DEnVar} = Yes] ; then
BK_FILE_P1=${BK_ROOT}/wrfout_d01_2017-05-13_19:00:00
BK_FILE_M1=${BK_ROOT}/wrfout_d01_2017-05-13_17:00:00

ENSEMBLE_FILE_mem_p1=${ENS_ROOT}/sfg_2017051312_fhr09s
ENSEMBLE_FILE_mem_m1=${ENS_ROOT}/sfg_2017051312_fhr03s

fi

Note that the background file at the analysis time (201705131800 for the above example) is
set by BK_FILE and the ensemble files at the analysis time are set by ENSEMBLE_FILE_mem
as introduced in previous sections. See the following example:

BK_FILE=${BK_ROOT}/wrfout_d01_2017-05-13_18:00:00
...
if [${if_hybrid} = Yes] ; then
...

ENSEMBLE_FILE_mem=${ENS_ROOT}/sfg_2017051312_fhr06s
...

Now GSI can be run following the hybrid 3DEnVar case introducted in the prevous section.
Similar procedures can be conducted to check the GSI run status and results.

5.6 Summary

This chapter applied previous information outlined in the user's guide to demonstrate how
to set up, run, and analyze GSI for various regional applications. It is important to always
check for a successful GSI analysis, as running to completion does not always indicate a
successful analysis was generated. Using the tools and methods described in this chapter, a
complete picture of the GSI analysis can be obtained.

It is important to realize that GSI applications are not limited to regional analyses with WRF.
Other GSI applications, including global analyses for GFS, chemical analyses, and others will
be introduced in the next chapter.

113

6
Introduction to more GSI

Applications

6.1 Introduction to Global GSI analysis

The Global Forecast System (GFS) is a global numerical weather prediction system containing
a global computer model and variational analysis run by the U.S. National Weather Service
(NWS). As of February 2015, the numerical model is run four times a day, and produces
forecasts for up to 16 days in advance, with decreased spatial resolution after 10 days. It
is a spectral model with a resolution of T1534 from 0 to 240 hours (0-10 days) and T574
from 240 to 384 hours (10-16 days). In the vertical, the model is divided into 64 layers and
temporally, it produces forecast output every hour for the first 12 hours, every 3 hours out to
10 days, and every 12 hours after that. Its data assimilation system runs 6-hourly continuous
cycles using the GSI-hybrid.

GSI has many functions specifically designed and tuned for GFS. Although the release ver-
sion of the community GSI includes all the functions used by the operational systems, the
DTC can only support the GSI regional applications because the DTC is not able to run
GFS on community computers. Beginning with release version 3.2, the DTC began to intro-
duce the use of GSI for global applications, assuming users can obtain the GFS background
through the NCEP data hub or by running GFS themselves.

114

6. Introduction to more GSI Applications

6.1.1 The Difference between Global and Regional GSI

As mentioned above, all of the NCEP operational systems use GSI as their analysis system.
The majority of the GSI code is common to these operational systems. Very little source code
is specific to a particular operational system. The main differences in the GSI operational
application come from the configuration the run scripts and namelist parameters.

The different GSI applications need different backgrounds, observations, and fixed files. For
the GFS system, GSI needs:

• GFS Backgrounds: Typically, GSI uses 6-h GFS forecasts as the background. GFS 3-h
and 9-h forecasts are also needed for the FGAT function in the GSI analysis. Both
surface and atmosphere forecasts are needed.

• Observations: NCEP has several sets of BUFR/prepBUFR observation files with global
coverage for global systems. The files that start with the prefix GDAS are for the
6-hourly global data assimilation system. These files have more data available for the
analysis, but have a longer delay for use in real-time. The files that start with gfs
are for the GFS forecasts. Different operational systems need different observation
data files because they require different kinds of observations with different coverage,
cut-off times, and quality control processes. All these observation files are read in and
processed in GSI by the same section of code. Therefore, there is no problem using
GFS observation data files for regional GSI applications, as is described in the practice
cases and the GSI User's Guide. Using regional BUFR files for global applications will
cause problems since the data only cover part of the analysis domain, but GSI can still
read in the observations and perform the analysis.

• Fixed files: Section 3.1 of the GSI User's Guide introduced the notion that
different operational systems have their own fixed files. These global fixed
files can be downloaded as a separate tar ball from the GSI user's website
(http://www.dtcenter.org/com-GSI/users/downloads/index.php). For the
GFS GSI application, the big difference is the background error covariance (BE).
Different resolutions of the GFS backgrounds use their matched BE files, which are
different from the BE files used by the regional GSI applications. In release version
3.4, ten new BE files were provided for users (in addition to the two for release version
3.3):

1. global_berror.l64y386.f77
2. global_berror.l64y96.f77
3. global_berror.l64y1154.f77
4. global_berror.l64y290.f77
5. global_berror.l64y882.f77
6. global_berror.l64y130.f77
7. global_berror.l64y192.f77
8. global_berror.l64y578.f77
9. global_berror.l64y258.f77

10. global_berror.l64y674.f77

115

http://www.dtcenter.org/com-GSI/users/downloads/index.php

6. Introduction to more GSI Applications

6.1.2 Global GFS Scripts

Starting with release version 3.3, support for running GSI global applications was added
to the community release. Specifically a sample global analysis run script was added to
the ./run directory named run_gsi_global.ksh of the community release. This script
run_gsi_global.ksh is based on the GSI GFS regression tests. This script retains the same
basic structure as the regional run script run_gsi_regional.ksh, but includes additional
details needed for the global analysis.

Table 6.1: The grid dimensions for GFS.
EULERIAN SEMI-LAGRANGIAN

SPECTRAL
RESOLUTION

LONB LATB LONB LATB

T62 192 94 128 64
T126 384 190 256 128
T170 512 256 352 176
T190 576 288 384 192
T254 768 384 512 256
T382 1152 576 768 384
T574 1760 880 1152 576
T878 2304 1152 1760 880
T1148 2304 1152
T1534 3072 1536
T2014 4032 2016
T2046 4096 2048
T3070 6144 3072

The first part of the global analysis run script, just as in the regional script, sets up the com-
puter environment and case configuration. The primary differences between the global and
regional scripts are the specification of the GFS case and the global application namelist.

GFSCASE=T126
GSI_NAMELIST=${GSI_ROOT}/run/comgsi_namelist_gfs.sh

While the regional script simply specifies the background and BE files, the global script
needs to know the background resolution by defining the following parameters:

Set the JCAP resolution which you want.
All resolutions use LEVS=64
if [["$GFSCASE" = "T62"]]; then

JCAP=62
JCAP_B=62

elif [["$GFSCASE" = "T126"]]; then
JCAP=126
JCAP_B=126

elif [["$GFSCASE" = "enkf_glb_t254"]]; then
JCAP=254
JCAP_B=254

elif [["$GFSCASE" = "T254"]]; then
JCAP=254

116

6. Introduction to more GSI Applications

JCAP_B=574
elif [["$GFSCASE" = "T574"]]; then

JCAP=574
JCAP_B=1534

else
echo "INVALID case = $GFSCASE"
exit

fi
LEVS=64

#

Just as with the regional analysis run script, the global script double checks the needed
parameters, creates a run directory, and copies the background, observations, and fixed files
into the run directory. It generates the namelist, and places it in the run directory as well.

1. Specify the values of LATA, LONA, DELTIME, resol based on the choice of JCAP:

Given the requested resolution, set dependent resolution parameters
if [["$JCAP" = "382"]]; then

LONA=768
LATA=384
DELTIM=180
resol=1

elif [["$JCAP" = "574"]]; then
LONA=1152
LATA=576
DELTIM=1200
resol=2

elif [["$JCAP" = "254"]]; then
LONA=512
LATA=256
DELTIM=1200
resol=2

elif [["$JCAP" = "126"]]; then
LONA=256
LATA=128
DELTIM=1200
resol=2

elif [["$JCAP" = "62"]]; then
LONA=192
LATA=94
DELTIM=1200
resol=2

else
echo "INVALID JCAP = $JCAP"
exit

fi
NLAT=‘ expr $LATA + 2 ‘

2. Set up CO2, CH4, N2O, CO file decisions:

ICO2=${ICO2:-0}
if [$ICO2 -gt 0] ; then

Copy co2 files to $workdir
co2dir=${FIX_ROOT}
yyyy=‘echo $ANAL_TIME | cut -c1-4‘
rm ./global_co2_data.txt
co2=$co2dir/global_co2.gcmscl_$yyyy.txt
while [! -s $co2] ; do

((yyyy-=1))
co2=$co2dir/global_co2.gcmscl_$yyyy.txt

done
if [-s $co2] ; then

cp $co2 ./global_co2_data.txt
fi
if [! -s ./global_co2_data.txt] ; then

echo "\./global_co2_data.txt" not created
exit 1

fi
fi

117

6. Introduction to more GSI Applications

#CH4 file decision
...

3. Set up the namelist parameters and generate the namelist:

Set some parameters for use by the GSI executable and to build the namelist
echo " Build the namelist "

vs_op=’0.7,’
hzscl_op=’1.7,0.8,0.5,’

... ...

Build the GSI namelist on-the-fly
. $GSI_NAMELIST
cat << EOF > gsiparm.anl

$comgsi_namelist

EOF

4. Multiple time level backgrounds are needed:

if [["$GFSCASE" = "enkf_glb_t254"]]; then
cp $OBS_ROOT/gdas1.t12z.abias ./satbias_in
cp $OBS_ROOT/gdas1.t12z.satang ./satbias_angle

cp $BK_ROOT/sfcanl_2014040506_fhr03_ensmean ./sfcf03
cp $BK_ROOT/sfcanl_2014040506_fhr06_ensmean ./sfcf06
cp $BK_ROOT/sfcanl_2014040506_fhr06_ensmean ./sfcf09

cp $BK_ROOT/sfg_2014040506_fhr03_mem001 ./sigf03
cp $BK_ROOT/sfg_2014040506_fhr06_mem001 ./sigf06
cp $BK_ROOT/sfg_2014040506_fhr09_mem001 ./sigf09

else
cp $OBS_ROOT/satbias_in ./satbias_in
cp $OBS_ROOT/satbias_angle ./satbias_angle

cp $BK_ROOT/sfcf03 ./sfcf03
cp $BK_ROOT/sfcf06 ./sfcf06
cp $BK_ROOT/sfcf09 ./sfcf09

cp $BK_ROOT/sigf03 ./sigf03
cp $BK_ROOT/sigf06 ./sigf06
cp $BK_ROOT/sigf09 ./sigf09

fi

Both surface and atmosphere files at 03, 06, and 09 hour forecasts are needed.

5. More observations files are available
In the sample run script, many more observations are listed for use:

Link to the other observation data

if [["$GFSCASE" = "enkf_glb_t254"]]; then
obsfile_amua=gdas1.t12z.1bamua.tm00.bufr_d
obsfile_amub=gdas1.t12z.1bamub.tm00.bufr_d

else
obsfile_amua=amsuabufr
obsfile_amub=amsubbufr

fi

if [-r "${OBS_ROOT}/satwnd"]; then
ln -s ${OBS_ROOT}/satwnd .

fi
if [-r "${OBS_ROOT}/gpsrobufr"]; then

ln -s ${OBS_ROOT}/gpsrobufr .
fi

......

118

6. Introduction to more GSI Applications

if [-r "${OBS_ROOT}/amsubbufrears"]; then
ln -s ${OBS_ROOT}/amsubbufrears .

fi
if [-r "${OBS_ROOT}/tcvitl"]; then

ln -s ${OBS_ROOT}/tcvitl .
fi

Table 6.1 lists the grid dimensions for GFS of different resolutions from Running Global
Model Parallel Experiments Version 6.0 from NCEP/EMC, which may provide users more
information on the above mentioned resolution parameters:

6.1.3 Sample Results

After a successful run of the GSI GFS analysis, the contents of the run directory, with the
clean option turned on, will look something like this:

amsrebufr diag_mhs_n18_anl.2011080100.gz fort.213
amsuabufr diag_mhs_n18_ges.2011080100.gz fort.214
amsubbufr diag_mhs_n19_anl.2011080100.gz fort.215
anavinfo diag_mhs_n19_ges.2011080100.gz fort.217
atms_beamwidth.txt diag_omi_aura_anl.2011080100.gz fort.218
berror_stats diag_omi_aura_ges.2011080100.gz fort.219
bftab_sstphr diag_pcp_tmi_trmm_anl.2011080100.gz fort.220
convinfo diag_pcp_tmi_trmm_ges.2011080100.gz fort.221
diag_amsre_hig_aqua_anl.2011080100.gz diag_sbuv2_n16_anl.2011080100.gz gomebufr
diag_amsre_hig_aqua_ges.2011080100.gz diag_sbuv2_n16_ges.2011080100.gz gpsrobufr
diag_amsre_low_aqua_anl.2011080100.gz diag_sbuv2_n17_anl.2011080100.gz gsi.exe
diag_amsre_low_aqua_ges.2011080100.gz diag_sbuv2_n17_ges.2011080100.gz gsiparm.anl
diag_amsre_mid_aqua_anl.2011080100.gz diag_sbuv2_n18_anl.2011080100.gz hirs3bufr
diag_amsre_mid_aqua_ges.2011080100.gz diag_sbuv2_n18_ges.2011080100.gz hirs4bufr
diag_amsua_metop-a_anl.2011080100.gz diag_sbuv2_n19_anl.2011080100.gz mhsbufr
diag_amsua_metop-a_ges.2011080100.gz diag_sbuv2_n19_ges.2011080100.gz omibufr
diag_amsua_n15_anl.2011080100.gz diag_seviri_m09_anl.2011080100.gz ozinfo
diag_amsua_n15_ges.2011080100.gz diag_seviri_m09_ges.2011080100.gz pcpbias_out
diag_amsua_n18_anl.2011080100.gz errtable pcpinfo
diag_amsua_n18_ges.2011080100.gz fit_p1.2011080100 prepbufr
diag_amsua_n19_anl.2011080100.gz fit_q1.2011080100 prepobs_prep.bufrtable
diag_amsua_n19_ges.2011080100.gz fit_rad1.2011080100 satbias_angle
diag_amsub_n17_anl.2011080100.gz fit_t1.2011080100 satbias_in
diag_amsub_n17_ges.2011080100.gz fit_w1.2011080100 satbias_out
diag_conv_anl.2011080100.gz fort.201 satinfo
diag_conv_ges.2011080100.gz fort.202 satwnd
diag_gome_metop-a_anl.2011080100.gz fort.203 sbuvbufr
diag_gome_metop-a_ges.2011080100.gz fort.204 scaninfo
diag_hirs3_n17_anl.2011080100.gz fort.205 seviribufr
diag_hirs3_n17_ges.2011080100.gz fort.206 sfcanl.gsi
diag_hirs4_metop-a_anl.2011080100.gz fort.207 siganl
diag_hirs4_metop-a_ges.2011080100.gz fort.208 stdout
diag_hirs4_n19_anl.2011080100.gz fort.209 stdout.anl.2011080100
diag_hirs4_n19_ges.2011080100.gz fort.210 tcvitl
diag_mhs_metop-a_anl.2011080100.gz fort.211 tmirrbufr
diag_mhs_metop-a_ges.2011080100.gz fort.212

The majority of these files existed after running the GSI regional analysis examples in section
3.2.3 of the Basic User's Guide, and they provide the same information about the GSI run.
Of note, the GSI global analysis run includes more radiance observations, resulting in more
radiance diag files in this list. Instead of the single background file wrf_inout as seen
with the regional analysis, the global analysis background is split between the two files
siganl, for the atmosphere, and sfcanl.gsi for the surface. A quick check of the standard
output file stdout shows information similar to that generated by the regional runs for the

119

6. Introduction to more GSI Applications

namelist, data ingest, and minimization, but is quite different with respect to information on
the background IO.

Please visit our online tutorial for more details regarding how to conduct a global GSI run.

6.2 Introduction to Chemical Analysis

The GSI has also been developed to analyze chemical observations, such as MODIS AOD
or PM2.5, to improve the pollution forecasts with chemical models. In this release, GSI can
do the following chemical analyses:

Table 6.2: List of GSI chemical analyses
case Chemical Model background species Observations
1 WRF-Chem GOCART MODIS AOD
2 WRF-Chem GOCART PM2.5
3 WRF-Chem PM2.5 PM2.5
4 CMAQ CMAQ PM2.5

The GSI run script for a chemical analysis (./run/run_gsi_chem.ksh) and associated
namelist (./run/comgsi_namelist_chem.sh) are provided with this release. Sample back-
ground and observation files are provided through the on-line tutorial.

6.2.1 Setup GSI Run Scripts for Chemical Analysis

The script run_gsi_chem.ksh was built based on regional GSI run scripts and has a sim-
ilar structure to the regional run script run_gsi_regional.ksh, but include a couple of
differences.

The first part of the run script sets up the computer environment and case configuration.
This is similar to the regional analysis run scripts, except for the specification of (bk_core
and obs_type) for a given chemical case, and the namelist for the chemical application:

GSI_NAMELIST=${GSI_ROOT}/run/comgsi_namelist_chem.sh

#--
bk_core= set background (WRFCHEM_GOCART WRFCHEM_PM25 or CMAQ)
obs_type= set observation type (MODISAOD or PM25)

bk_core=CMAQ
obs_type=PM25

The choices of (bk_core and obs_type) for a chemical case need to match with the options
PREPBUFR and BK_FILE, which set background and observation files. Table 6.3 shows how
to set up these two options for each case:

Similar to the regional run script, this chemical run script will also double check the needed
parameters. Then it creates a run directory, generates the namelist, and copies the back-
ground, observations, and fixed files into the run directory. Users who run the cases listed in

120

6. Introduction to more GSI Applications

Table 6.3: List of GSI chemical analyses.
case background (BK_FILE ; bk_core) Observation (PREPBUFR; obs_type)
1 wrfinput_enkf_d01_2012-06-03_18:00:00; Aqua_Terra_AOD_BUFR:2012-06-03_00:00:00;

WRFCHEM_GOCART MODISAOD
2 wrfinput_enkf_d01_2012-06-03_18:00:00; anow.2012060318.bufr;

WRFCHEM_GOCART PM25
3 wrfinput_enkf_d01_2012-06-03_18:00:00; anow.2012060318.bufr;

WRFCHEM_PM25 PM25
4 cmaq2gsi_4.7_20130621_120000.bin; anow.2013062112.bufr;

CMAQ PM25

table 6.2 do not need to change the rest of the run script. But users who need to build new
cases may need to know the differences between chemical and regional applications, which
is shown below.

1. Specify the name of the background and observations:

Bring over background field (it’s modified by GSI so we can’t link to it)

if [${bk_core} = WRFCHEM_GOCART] ; then
cp ${BK_FILE} ./wrf_inout

fi
if [${bk_core} = WRFCHEM_PM25] ; then

cp ${BK_FILE} ./wrf_inout
fi
if [${bk_core} = CMAQ] ; then

cp ${BK_FILE} ./cmaq_in.bin
fi

Link to the observation data
if [${obs_type} = MODISAOD] ; then
ln -s ${PREPBUFR} ./modisbufr

fi
if [${obs_type} = PM25] ; then
ln -s ${PREPBUFR} ./pm25bufr

fi

2. Specify the background error file and anavinfo:

if [${bk_core} = WRFCHEM_GOCART] ; then
BERROR=${FIX_ROOT}/wrf_chem_berror_little_endian
BERROR_CHEM=${FIX_ROOT}/wrf_chem_berror_little_endian
ANAVINFO=${FIX_ROOT}/anavinfo_wrfchem_gocart

fi
if [${bk_core} = WRFCHEM_PM25] ; then

BERROR=${FIX_ROOT}/wrf_chem_berror_little_endian
BERROR_CHEM=${FIX_ROOT}/wrf_chem_berror_little_endian
ANAVINFO=${FIX_ROOT}/anavinfo_wrfchem_pm25

fi
if [${bk_core} = CMAQ] ; then

BERROR=${FIX_ROOT}/cmaq_berror_little_endian
BERROR_CHEM=${FIX_ROOT}/cmaq_berror_little_endian
ANAVINFO=${FIX_ROOT}/anavinfo_cmaq_pm25

fi

3. Specify the options for building the namelist:

if [${bk_core} = WRFCHEM_GOCART] ; then
bk_core_arw=’.true.’
bk_if_netcdf=’.true.’
bk_core_cmaq=’.false.’
bk_wrf_pm2_5=’.false.’
bk_laeroana_gocart=’.true.’

fi
if [${bk_core} = WRFCHEM_PM25] ; then
bk_core_arw=’.true.’
bk_if_netcdf=’.true.’

121

6. Introduction to more GSI Applications

bk_core_cmaq=’.false.’
bk_wrf_pm2_5=’.true.’
bk_laeroana_gocart=’.false.’

fi
if [${bk_core} = CMAQ] ; then
bk_core_arw=’.false.’
bk_if_netcdf=’.false.’
bk_core_cmaq=’.true.’
bk_wrf_pm2_5=’.false.’
bk_laeroana_gocart=’.false.’

fi

6.2.2 Sample Results

In this section, case one in Table 6.2 will be used as an example. After a successful run of
the GSI Chem analysis, the contents of the run directory, with the clean option turned on,
will look something like this:

aeroinfo fit_w1.2012060318 fort.212 fort.226 pcpinfo
anavinfo fort.201 fort.213 fort.227 prepobs_prep.bufrtable
berror_stats fort.202 fort.214 fort.228 satbias_angle
berror_stats_chem fort.203 fort.215 fort.229 satbias_in
convinfo fort.204 fort.217 fort.230 satbias_out
diag_conv_anl.2012060318 fort.205 fort.218 gsi.exe satinfo
diag_conv_ges.2012060318 fort.206 fort.219 gsiparm.anl stdout
errtable fort.207 fort.220 l2rwbufr stdout.anl.2012060318
fit_p1.2012060318 fort.208 fort.221 list_run_directory wrfanl.2012060318
fit_q1.2012060318 fort.209 fort.223 modisbufr wrf_inout
fit_rad1.2012060318 fort.210 fort.224 ozinfo
fit_t1.2012060318 fort.211 fort.225 pcpbias_out

Following instructions from Chapter 5, the following steps are conducted to check the results
of this GSI chemical analysis:

1. Check the standard output file:

• Read in chemical background fields:
rmse_var=sulf
ordering=XYZ
WrfType,WRF_REAL= 104 104
ndim1= 3
staggering= N/A
start_index= 1 1 1 0
end_index= 112 122 40 0
k,max,min,mid var=sulf 1 9.622933
3.3167184E-13 0.7885093
k,max,min,mid var=sulf 2 9.687045
3.3167214E-13 0.7910572

... ...
rmse_var=BC1
...
rmse_var=BC2
...
rmse_var=OC1
...
rmse_var=OC2
...

• Read in modis AOD observations:
OBS_PARA: modis_aod terra 7 64 50 11 34 25 7 81

40 31 50 27 38 46 56 25 7 0
26 53 62 60 19 0

122

6. Introduction to more GSI Applications

OBS_PARA: modis_aod aqua 29 34 44 23 50 18 55 76
33 30 49 22 20 67 76 30 2 0
36 76 38 50 14 0

• Minimizations:
Begin J table inner/outer loop 0 1

J term J
aerosol aod 7.8897778549100276E+03

J Global 7.8897778549100276E+03
End Jo table inner/outer loop 0 1
Initial cost function = 7.88977E+03
Initial gradient norm = 1.531557E+02
cost,grad,step,b,step? = 1 0 7.8897778E+03 1.5315573E+02 1.3701618E-01 0.0000000E+00 good
pcgsoi: gnorm(1:2),b= 5.2207374E+03 5.220737604157E+03 2.225693512490E-01
cost,grad,step,b,step? = 1 1 4.67583332E+03 7.2254671E+01 1.4308398E-01 2.2256935E-01 good
...

pcgsoi: gnorm(1:2),b= 1.254432996913E-06 1.254434051E-06 2.97203315E-01
cost,grad,step,b,step? = 2 16 3.15885215E+03 1.12001473E-03 2.3966297E-01 2.9720331E-01 good
PCGSOI: WARNING **** Stopping inner iteration ***
gnorm 0.534787149781733860E-10 less than 0.100000004E-09
update_guess: successfully complete
\end{scriptsize}
\end{tiny}

\item Update chemical background fields:
\begin{scriptsize}
\begin{verbatim}

...
k,max,min,mid var=sulf 38 9.1036431E-02
4.5203370E-07 1.8112745E-02
k,max,min,mid var=sulf 39 2.5694052E-02
6.2565640E-08 5.7557132E-03
k,max,min,mid var=sulf 40 1.1622031E-02
1.4633585E-09 8.4061045E-03
rmse_var=sulf
...

2. Analysis increments: After successfully running GSI, the analysis increments should
be checked to see if data impacts are reasonable.

Figure 6.1: Analysis increments in the lowest level for SEAS_1 (left) and BC1 (right).

123

A
GSI Community Tools

A.1 BUFR Format and BUFR Tools

Under ./util/bufr_tools, there are many Fortran examples to illustrate basic BUFR/PrepBUFR
file process skills such as encoding, decoding, and appending. For details of these examples
and the BUFR format, please see the BUFR/PrepBUFR User's Guide, which is freely available
on-line

http://www.dtcenter.org/com-GSI/BUFR/docs/index.php

The observation BUFR files generated by NCEP (for example, PrepBUFR and BUFR files
from NCEP ftp server or gdas1.t12z.prepbufr.nr in tutorial case) are in Big Endian binary
format. For release version older than 3.2, the BUFR files have to be converted from Big
Endian BUFR file to Little Endian file when used by the GSI on Linux platform. Please refer
to older version User's guide on how to convert.

Since release 3.2, BUFRLIB can automatically identify and handle either byte orders. For
Intel and PGI compilers on Linux, the Big Endian BUFR/PrepBUFR files can be used by GSI
without byte swap.

A.2 Read GSI Diagnostic Files

Lots of useful information about how one observation was used in the analysis such as
innovation, observation values, observation error and adjusted observation error, and quality
control information, has been saved in diagnostic files. To generate these diagnosis files,

124

A. GSI Community Tools

namelist variable write_diag in namelist section &SETUP needs to be true. The write_diag
variable has been introduced in Part 4 of Section 3.4. The following is an example of using
the write_diag variable to control diagnostic files. When we set the number of outer loops
to 2, and set the write_diag namelist variable to the following:

write_diag(1)=.true.,write_diag(2)=.false.,write_diag(3)=.true.,

GSI will write out diagnostic files before the start of the 1st outer loop start (O-B) and after
the completion of the 2nd outer loop finish (O-A). We don't want GSI to write out diagnosis
files after the 1st outer loop because we set write_diag(2)=.false.

This is what we set in our example case described in section 5.2. From this case, we can see
the following diagnostic files generated from the GSI analysis:

diag_amsua_metop-a_anl.2014061700 diag_amsua_n18_ges.2014061700
diag_amsua_metop-a_ges.2014061700 diag_conv_anl.2014061700
diag_amsua_n15_anl.2014061700 diag_conv_ges.2014061700
diag_amsua_n15_ges.2014061700 diag_hirs4_metop-a_anl.2014061700
diag_amsua_n18_anl.2014061700 diag_hirs4_metop-a_ges.2014061700

All files are identified with a filename containing three elements. The first element "diag"
indicates these are combined diagnostic files. The second element identifies the observa-
tion type (here, "conv" means conventional observation from prepbufr and "amsua_n15"
corresponds to radiance observation AMSU-A from NOAA 15). The last element identifies
which step of outer loop the files were generated for. Here, "anl" means the contents were
written after the last outer loop (from write_diag(3)=.true.) and "ges" means the contents
were written before the first output loop (from write_diag(1)= .true.).

To help users to read the information from these diagnostic files, we have provided two
Fortran programs in the ./util/Analysis_Utilities/read_diag/ directory:

read_diag_conv.f90 : Reads the diagnostic files for conventional observations. For example:
diag_conv_anl.2014061700 and diag_conv_ges.2014061700

read_diag_rad.f90 : Reads the diagnostic files for radiance observation. For example:

diag_amsua_n15_ges.2014061700 diag_hirs4_metop-a_anl.2014061700
diag_amsua_n18_anl.2014061700 diag_hirs4_metop-a_ges.2014061700

To compile the programs, use the makefile provided:

./make

Note: since information in the GSI include directory is required, the GSI must have been
compiled first.

To run read_diag_conv.exe, a namelist file namelist.conv needs to be in the directory along
with the executable. The namelist.conv only has two parameters:

125

A. GSI Community Tools

&iosetup
infilename=’./diag_conv_anl’, : The path and name of GSI diagnosis file
outfilename=’./results_conv_anl’, : The path and name of a text file used to

save the content of the diagnostic file
/

The user can set the test case directory and file diag_conv_anl.2014061700 from section 5.2
as the entry for infilename in the namelist, then run the executable

./read_diag_conv.exe

The results are placed in the file specified by the outfilename entry in the namelist. In this
case that would be a file results_conv_anl located in the directory where the executable was
run.

Similarly, to run read_diag_rad.exe, the namelist file namelist.rad is needed. It contains the
same parameters as namelist.conv but it links to radiance diag files. After setting it to use
the same case from section 5.2, such as:

&iosetup
infilename=’(test directory)/diag_amsua_n18_ges.2014061700’,
outfilename=’./results_amsua_n18_ges’,

/

Running the executable creates the text file results_amsua_n18_ges specified by the namelist
in the directory read_diag_rad.exe runs.

For the conventional observations, the data is stored in two arrays: rdiagbuf and cdiag-
buf. Their contents are listed as follows, for temperature (check src/main/setupt.f90) as an
example:

cdiagbuf = station id
rdiagbuf(1) = observation type
rdiagbuf(2) = observation subtype
rdiagbuf(3) = observation latitude (degrees)
rdiagbuf(4) = observation longitude (degrees)
rdiagbuf(5) = station elevation (meters)
rdiagbuf(6) = observation pressure (hPa)
rdiagbuf(7) = observation height (meters)
rdiagbuf(8) = observation time (hours relative to analysis time)
rdiagbuf(9) = input prepbufr qc or event mark
rdiagbuf(10) = setup qc or event mark (currently qtflg only)
rdiagbuf(11) = read_prepbufr data usage flag
rdiagbuf(12) = analysis usage flag (1=use, -1=not used)
rdiagbuf(13) = nonlinear qc relative weight
rdiagbuf(14) = prepbufr inverse obs error (K**-1)
rdiagbuf(15) = read_prepbufr inverse obs error (K**-1)
rdiagbuf(16) = final inverse observation error (K**-1)
rdiagbuf(17) = observation (K)
rdiagbuf(18) = obs-ges used in analysis (K)
rdiagbuf(19) = obs-ges without bias correction (K)

For wind observations, the content after index 16 (check src/main/setupw.f90) is:

rdiagbuf(17) = earth relative u wind component observation (m/s)

126

A. GSI Community Tools

rdiagbuf(18) = earth relative u obs-ges used in analysis (m/s)
rdiagbuf(19) = earth relative u obs-ges w/o bias correction (m/s)
rdiagbuf(20) = earth relative v wind component observation (m/s)
rdiagbuf(21) = earth relative v obs-ges used in analysis (m/s)
rdiagbuf(22) = earth relative v obs-ges w/o bias correction (m/s)

The read_diag_conv.exe reads these arrays and outputs important information in the text file
results_conv_anlspecified by the user in the &iosetup namelist. For example:

station obs obs obs obs obs usag obs O-B
ID type time latitude longitude pressure value

ps @ 46047 : 180 -0.17 32.40 240.50 1014.30 1 1014.30 -0.09
t @ 72293 : 120 -0.98 32.85 242.88 996.00 1 297.25 1.26

uv @ 72293 : 220 -0.98 32.85 242.88 996.00 1 3.90 0.38 3.30 2.66

For wind, the last 4 columns are the wind components in the order of: U observation, O-B
for U, V observation, O-B for V.

For radiance observations, the data is stored in two arrays: diagbuf and diagbufchan. Their
contents are listed as follows (please refer to src/main/setuprad.f90 for more details):

diagbuf(1) = observation latitude (degrees)
diagbuf(2) = observation longitude (degrees)
diagbuf(3) = model (guess) elevation at observation location
diagbuf(4) = observation time (hours relative to analysis time)

diagbuf(5) = sensor scan position
diagbuf(6) = satellite zenith angle (degrees)
diagbuf(7) = satellite azimuth angle (degrees)
diagbuf(8) = solar zenith angle (degrees)
diagbuf(9) = solar azimuth angle (degrees)
diagbuf(10) = sun glint angle (degrees) (sgagl)

diagbuf(11) = surface fractional coverage by water
diagbuf(12) = surface fractional coverage by land
diagbuf(13) = surface fractional coverage by ice
diagbuf(14) = surface fractional coverage by snow

if(.not. retrieval)then
diagbuf(15) = surface temperature over water (K)
diagbuf(16) = surface temperature over land (K)
diagbuf(17) = surface temperature over ice (K)
diagbuf(18) = surface temperature over snow (K)
diagbuf(19) = soil temperature (K)
diagbuf(20) = soil moisture
diagbuf(21) = surface land type

else
diagbuf(15) = SST first guess used for SST retrieval
diagbuf(16) = NCEP SST analysis at t
diagbuf(17) = Physical SST retrieval
diagbuf(18) = Navy SST retrieval
diagbuf(19) = d(ta) corresponding to sstph
diagbuf(20) = d(qa) corresponding to sstph
diagbuf(21) = data type

endif
diagbuf(22) = vegetation fraction
diagbuf(23) = snow depth
diagbuf(24) = surface wind speed (m/s)

! Note: The following quantities are not computed for all sensors
if (.not.microwave) then

diagbuf(25) = cloud fraction (%)
diagbuf(26) = cloud top pressure (hPa)

else
diagbuf(25) = cloud liquid water (kg/m**2)
diagbuf(26) = total column precip. water (km/m**2)

endif

127

A. GSI Community Tools

diagbuf(27) = foundation temperature: Tr
diagbuf(28) = diurnal warming: d(Tw) at depth zob
diagbuf(29) = sub-layer cooling: d(Tc) at depth zob
diagbuf(30) = d(Tz)/d(Tr)

diagbufchan include loop through channel i from 1 to nchanl :

diagbufchan(1,i)= observed brightness temperature (K)
diagbufchan(2,i)= observed - simulated Tb with bias corrrection (K)
diagbufchan(3,i)= observed - simulated Tb with no bias correction (K)
diagbufchan(4,i)= inverse observation error
diagbufchan(5,i)= quality control mark or event indicator
diagbufchan(6,i)= surface emissivity
diagbufchan(7,i)= stability index
diagbufchan(8,i)= d(Tb)/d(Ts)
do j=1,npred+1

diagbufchan(7+j,i)= Tb bias correction terms (K)
end do

In the sample output file results_amsua_n18_ges, only the observation location and time are
written in the file. Users can write out other information based on the list.

A.3 Read and Plot Convergence Information from fort.220

In section 4.6, we introduced how to check the convergence information in the fort.220 file.
Further detail on the fort.220 convergence information can be found in the Advanced User's
Guide. Here, we provide tools to filter this file and to plot the values of the cost function
and the norm of gradient during each iteration.

These tools - one ksh script and one ncl script - are in: ./util/Analysis_Utilities/plot_cost_grad
directory:

The ksh script, filter_fort220.ksh, only has one line:

grep ’cost,grad,step,b’ fort.220 | sed -e ’s/cost,grad,step,b,step? = //g’ | sed -e ’s/good//g’ > cost_gradient.txt

To run filter_fort220.ksh, the fort.220 needs to be in the same directory. The script will filter
out the values of the cost function and the norm of gradient at each iteration from fort.220
into a text file called cost_gradient.txt.

Once the file cost_gradient.txt is ready, run ncl script GSI_cost_gradient.ncl to generate the
plot:

ncl GSI_cost_gradient.ncl

The pdf file GSI_cost_gradient.pdf is created. The pdf file contains plots of the convergence
of the GSI analysis like those in section 4.6.

128

A. GSI Community Tools

A.4 Plot Single Observation Test Result and Analysis Increment

In Section 4.2, we introduced how to do a single observation test for GSI. Here we provide
users with the ncl scripts to plot the single observation test results.

There are 5 ncl scripts in the util/Analysis_Utilities/plots_ncl directory:

Table A.1: the list of ncl plotting tools

GSI_singleobs_arw.ncl Plot single observation test with ARW NetCDF back-
ground

GSI_singleobs_nmm.ncl Plot single observation test with NMM NetCDF
background

Analysis_increment.ncl Plot analysis increment from the case with ARW
NetCDF background

Analysis_increment_nmm.ncl Plot analysis increment from the case with NMM
NetCDF background

fill_nmm_grid2.ncl E grid to A grid convertor

The main difference between the ARW and NMM core used in GSI is that ARW is on a C
grid, while NMM is on an E grid. GSI_singleobs_nmm.ncl calls fill_nmm_grid2.ncl to convert
the E grid to an A grid for plotting, while GSI_singleobs_arw.ncl itself includes a C grid to A
grid convertor.

Before running ncl scripts, users need to set up two links:

• cdf_analysis - Link to analysis result in NetCDF format (wrf_inout)
• cdf_bk - Link to background file in netCDF format

These scripts read in the analysis and background fields of temperature (T), U component
of wind (U), V component of wind (V), and moisture (Q) and calculate the difference of the
analysis field minus the background field. Then XY sections (left column) and XZ sections
(right column) are plotted for T, U, V, and Q through the point that has maximum analysis
increment of single observation. Here the default single observation test is T. If the user
conducts other single observation tests, the corresponding changes should be made based
on the current scripts.

The scripts Analysis_increment.ncl and Analysis_increment_nmm.ncl are very similar the one
for the single observation but only the XY section for a certain analysis level is plotted.

For more information on how to use ncl, please check the NCL website at:

http://www.ncl.ucar.edu/

129

A. GSI Community Tools

A.5 Generate initial regional ensembles

Under the ./util/EnKF directory, there are two sub-directories: enspreproc_regional.fd/ and
initialens_regional.fd/. The first one is to extract ensemble pertubations from GDAS 80
member ensembles and the second one is to add the extracted ensembles to a regional WRF
background field (considered as the mean filed) to generate initial regional ensembles.

Before using these two unitilies, you should have already sucessfully compiled the GSI and
gotten the "gsi.exe" file. After that, enter each of the two directory, type "make" to com-
pile the utilities. A sucessful compilation should yield "enspreproc.exe" and "initialens.exe"
respectively.

Now, the next step is to get GDAS spectrally smoothed atmospheric ensemble forecasts.
These files should be in the sigma format, which is currrenlty the only format sup-
ported by "enspreproc.exe". You need to contact NCEP or other appropriate contacts to
download these kind of ensembles. These ensemble files follow the name convection of
"sfg_$CDATE_fhr$FEs_mem$MEM". $CDATE is the cycle date, such as 2017011518 which
means 18z of Jan. 15th, 2017. $FE is the forecast hour, for example, 06 means 6 hour
of forecasts. $MEM is the member number. Here is an example of GDAS ensmbles:
sfg_2017011518_fhr06s_mem001.

After you download the required GDAS ensembles, follow the following steps:

1. Running "enspreproc.exe", enter the enspreproc_regional.fd/ directory:

(1). generate the file "fileslist01". This file lists the ensemble files to be used in the calculation
of ensemble pertubations. For example, if it is determined to use 20 members to generate
ensemble perturbations, the file "filelist01" will be as follows:

sfg_2017011518_fhr06s_mem001
sfg_2017011518_fhr06s_mem002
sfg_2017011518_fhr06s_mem003
...
sfg_2017011518_fhr06s_mem018
sfg_2017011518_fhr06s_mem019
sfg_2017011518_fhr06s_mem020

(2). Modify the file "namelist.input", change "n_ens" to the total number of ensembles to be
used.

(3). Copy the "anavinfo" file used by GSI into current directory.

(4). Copy the background WRF file, name it as "wrf_inout".

(5). Create a job description file, submit the job to get it run in parallel.

After the successful running of "enspreproc.exe", you will get ensemble perturbations as
follows:

en_perts4ars.mem0001
en_perts4ars.mem0002
en_perts4ars.mem0003

130

A. GSI Community Tools

...
en_perts4ars.mem0018
en_perts4ars.mem0019
en_perts4ars.mem0020

2. Runnning "initialens.exe", enter the initialens_regional.fd/ directory:

(1). Modify the file "namelist.input", change "n_ens" to the total number of ensembles to be
used.

(2). Copy wrf_inout to current directry

(3). Copy wrf_inout to wrfinput_d01.mem$MEM files as follows:

cp wrf_inout wrfinput_d01.mem0001
cp wrf_inout wrfinput_d01.mem0002
cp wrf_inout wrfinput_d01.mem0003
...
cp wrf_inout wrfinput_d01.mem0018
cp wrf_inout wrfinput_d01.mem0019
cp wrf_inout wrfinput_d01.mem0020

Be sure that each member has a correspoding wrfinput_d01 file. These files will be updated
by "initialens.exe" later.

(4). Link the ensemble perturbations generated by "enspreproc.exe" to current directory.
Something like this ln -s ../enspreproc_regional.fd/en_perts4arw.mem*.

(5). Create a job description file, submit the job to get it run in parallel. Please note that only
1 processor is required to run "initialens.exe" but submitting it to run on computing node is
a must.

After the sucessful running of "initialens.exe", all the wrfinput_d01.mem$MEM files are up-
dated with ensemble perturbation added to the background or "mean" state of the original
wrf_inout.

Now the initial regionl ensembles have been sucessfully generated.

131

B
Contents of Namelist Section

OBS_INPUT

&OBS_INPUT
dmesh(1)=120.0,dmesh(2)=60.0,dmesh(3)=30,time_window_max=1.5,ext_sonde=.true.,

/
OBS_INPUT::
! dfile dtype dplat dsis dval dthin dsfcalc

prepbufr ps null ps 1.0 0 0
prepbufr t null t 1.0 0 0
prepbufr q null q 1.0 0 0
prepbufr pw null pw 1.0 0 0
satwndbufr uv null uv 1.0 0 0
prepbufr uv null uv 1.0 0 0
prepbufr spd null spd 1.0 0 0
prepbufr dw null dw 1.0 0 0
radarbufr rw null rw 1.0 0 0
prepbufr sst null sst 1.0 0 0
gpsrobufr gps_ref null gps 1.0 0 0
ssmirrbufr pcp_ssmi dmsp pcp_ssmi 1.0 -1 0
tmirrbufr pcp_tmi trmm pcp_tmi 1.0 -1 0
sbuvbufr sbuv2 n16 sbuv8_n16 1.0 0 0
sbuvbufr sbuv2 n17 sbuv8_n17 1.0 0 0
sbuvbufr sbuv2 n18 sbuv8_n18 1.0 0 0
hirs3bufr hirs3 n16 hirs3_n16 0.0 1 0
hirs3bufr hirs3 n17 hirs3_n17 6.0 1 0
hirs4bufr hirs4 metop-a hirs4_metop-a 6.0 2 0
hirs4bufr hirs4 n18 hirs4_n18 0.0 1 0
hirs4bufr hirs4 n19 hirs4_n19 1.0 2 0
hirs4bufr hirs4 metop-b hirs4_metop-b 1.0 1 0
gimgrbufr goes_img g11 imgr_g11 0.0 1 0
gimgrbufr goes_img g12 imgr_g12 0.0 1 0
airsbufr airs aqua airs281SUBSET_aqua 20.0 2 0
amsuabufr amsua n15 amsua_n15 10.0 2 0
amsuabufr amsua n18 amsua_n18 10.0 2 0
amsuabufr amsua n19 amsua_n19 10.0 2 0
amsuabufr amsua metop-a amsua_metop-a 10.0 2 0

132

B. Contents of Namelist Section OBS_INPUT

amsuabufr amsua metop-b amsua_metop-b 10.0 2 0
airsbufr amsua aqua amsua_aqua 5.0 2 0
amsubbufr amsub n17 amsub_n17 1.0 1 0
mhsbufr mhs n18 mhs_n18 3.0 2 0
mhsbufr mhs n19 mhs_n19 3.0 2 0
mhsbufr mhs metop-a mhs_metop-a 3.0 2 0
mhsbufr mhs metop-b mhs_metop-b 3.0 2 0
ssmitbufr ssmi f13 ssmi_f13 0.0 2 0
ssmitbufr ssmi f14 ssmi_f14 0.0 2 0
ssmitbufr ssmi f15 ssmi_f15 0.0 2 0
amsrebufr amsre_low aqua amsre_aqua 0.0 2 0
amsrebufr amsre_mid aqua amsre_aqua 0.0 2 0
amsrebufr amsre_hig aqua amsre_aqua 0.0 2 0
ssmisbufr ssmis_las f16 ssmis_f16 0.0 2 0
ssmisbufr ssmis_uas f16 ssmis_f16 0.0 2 0
ssmisbufr ssmis_img f16 ssmis_f16 0.0 2 0
ssmisbufr ssmis_env f16 ssmis_f16 0.0 2 0
gsnd1bufr sndrd1 g12 sndrD1_g12 1.5 1 0
gsnd1bufr sndrd2 g12 sndrD2_g12 1.5 1 0
gsnd1bufr sndrd3 g12 sndrD3_g12 1.5 1 0
gsnd1bufr sndrd4 g12 sndrD4_g12 1.5 1 0
gsnd1bufr sndrd1 g11 sndrD1_g11 1.5 1 0
gsnd1bufr sndrd2 g11 sndrD2_g11 1.5 1 0
gsnd1bufr sndrd3 g11 sndrD3_g11 1.5 1 0
gsnd1bufr sndrd4 g11 sndrD4_g11 1.5 1 0
gsnd1bufr sndrd1 g13 sndrD1_g13 1.5 1 0
gsnd1bufr sndrd2 g13 sndrD2_g13 1.5 1 0
gsnd1bufr sndrd3 g13 sndrD3_g13 1.5 1 0
gsnd1bufr sndrd4 g13 sndrD4_g13 1.5 1 0
gsnd1bufr sndrd1 g15 sndrD1_g15 1.5 2 0
gsnd1bufr sndrd2 g15 sndrD2_g15 1.5 2 0
gsnd1bufr sndrd3 g15 sndrD3_g15 1.5 2 0
gsnd1bufr sndrd4 g15 sndrD4_g15 1.5 2 0
iasibufr iasi metop-a iasi616_metop-a 20.0 1 0
gomebufr gome metop-a gome_metop-a 1.0 2 0
omibufr omi aura omi_aura 1.0 2 0
sbuvbufr sbuv2 n19 sbuv8_n19 1.0 0 0
tcvitl tcp null tcp 1.0 0 0
seviribufr seviri m08 seviri_m08 1.0 1 0
seviribufr seviri m09 seviri_m09 1.0 1 0
seviribufr seviri m10 seviri_m10 1.0 1 0
iasibufr iasi metop-b iasi616_metop-b 0.0 1 0
gomebufr gome metop-b gome_metop-b 0.0 2 0
atmsbufr atms npp atms_npp 0.0 1 0
crisbufr cris npp cris_npp 0.0 1 0
mlsbufr mls30 aura mls30_aura 0.0 0 0
oscatbufr uv null uv 0.0 0 0
prepbufr mta_cld null mta_cld 1.0 0 0
prepbufr gos_ctp null gos_ctp 1.0 0 0
refInGSI rad_ref null rad_ref 1.0 0 0
lghtInGSI lghtn null lghtn 1.0 0 0
larcInGSI larccld null larccld 1.0 0 0

::

133

C
GSI Namelist: Name, Default

Value, Explanation

The following are lists and explanations of the GSI namelist variables. You can also find
them in the source code gsimod.F90.

Variable name Default value Description
SETUP General control namelist
gencode 80 source generation code
factqmin 1 weighting factor for negative moisture constraint
factqmax 1 weighting factor for supersaturated moisture constraint

clip_supersaturation .false. flag to remove supersaturation during each outer loop
factv 1 weighting factor for negative visibility constraint
factl
factp
factg

factw10m
facthowv
deltim 1200 model timestep
dtphys 3600 physics timestep
biascor -1 background error bias correction coefficient

bcoption 1 0=ibc (no bias correction to bkg);
1= sbc(original implementation)

diurnalbc 0 1= diurnal bias; 0= persistent bias

134

C. GSI Namelist: Name, Default Value, Explanation

Variable name Default value Description

SETUP General control namelist
niter(0:50) 0,... Maximum number of inner loop iterations for each outer loop

niter_no_qc(0:50) 1000000 Inner loop iteration at which to turn on variational quality
control

miter 1 number of outer loops
qoption 1 option for moisture analysis variable; 1:q/qsatg 2:normalized

RH
cwoption

pseudo_q2 .false. breed between q1/q2 options, that is, (q1/sig(q))
nhr_assimilation 6 assimilation time interval (currently 6 hours for global, 3 hours

for regional)
min_offset 3 time of analysis in assimilation window
iout_iter 220 output file number for iteration information
npredp 6 number of predictors for precipitation bias correction
retrieval .false. logical to turn off or on the SST physical retrieval
nst_gsi 0 indicator to control the Tr Analysis mode:

0 = no nst info ingsi at all;
1 = input nst info, but used for monitoring only
2 = input nst info, and used in CRTM simulation, but no Tr
analysis
3 = input nst info, and used in CRTM simulation and Tr anal-
ysis is on

nst_tzr 0 indicator to control the Tzr_QC mode:
0 = no Tz retrieval;
1 = Do Tz retrieval and applied to QC

nstinfo 0 number of nst variables
fac_dtl 0 index to apply diurnal thermocline layer or not: 0 = no; 1 =

yes
fac_tsl 0 index to apply thermal skin layer or not: 0 = no; 1 = yes.
nst_tzr

tzr_bufrsave .false. logical to turn off or on the bufr Tz retrieval file true=on
diag_rad .true. logical to turn off or on the diagnostic radiance file (true=on)
diag_pcp .true. logical to turn off or on the diagnostic precipitation file

(true=on)
diag_conv .true. logical to turn off or on the diagnostic conventional file

(true=on)
diag_ozone .true. logical to turn off or on the diagnostic ozone file (true=on)
diag_aero .false. logical to turn off or on the diagnostic aerosol file (true=on)
diag_co .false. logical to turn off or on the diagnostic carbon monoxide file

(true=on)
iguess 1 flag for guess solution (currently not working)

-1 do not use guess file
0 write only guess file
1 read and write guess file
2 read only guess file

write_diag .false., ... logical to write out diagnostic files for outer iteration
reduce_diag .false. namelist logical to produce reduced radiance diagnostic files

135

C. GSI Namelist: Name, Default Value, Explanation

Variable name Default value Description
SETUP General control namelist

oneobtest .false. one observation test flag true=on
sfcmodel .false. if true, then use boundary layer forward model for surface

temperature data.
dtbduv_on .true. logical for switching on (.true.) sensitivity of uv winds to

microwave brightness temperatures. if true, use d(microwave
brightness temperature)/d(uv wind) in inner loop

ifact10 0 flag for recomputing 10m wind factor
= 1 compute using GFS surface physics
= 2 compute using MM5 surface physics
= 0 or any other value - DO NOT recompute - use value from
guess file

l_foto .false. option for First-Order Time extrapolation to observation
offtime_data .false. if true, then allow use of obs files with ref time different from

analysis time. default value = .false., in which case analysis
fails if observation file reference time is different from analysis
time.

npred_conv_max 0 maximum number of conventional observation bias correction
coefficients

id_bias_ps 0 prepbufr id to have conv_bias added for testing
id_bias_t 0 prepbufr id to have conv_bias added for testing

id_bias_spd 120 prepbufr id to have conv_bias added for testing
conv_bias_ps 0 magnitude of ps bias(mb)
conv_bias_t 0 magnitude of t bias(deg K)

conv_bias_spd 0 magnitude of spd bias(m/sec)
id_bias_pm2_5

conv_bias_pm2_5
id_bias_pm10

conv_bias_pm10
stndev_conv_ps 1.0
stndev_conv_t 1.0

stndev_conv_spd 1.0
use_pbl .false. Logical flag to include PBL effects in tendency model.

use_compress .false. option to turn on the use of compressibility factors in geopo-
tential heights

nsig_ext 13 number of layers above the model top which are necessary to
compute the bending angle for gpsro

gpstop 30.0 maximum height for gpsro data assimilation. Reject anything
above this height. (km)

perturb_obs .false. logical flag to perturb observation (true=on)
perturb_fact 1 magnitude factor for observation perturbation
oberror_tune .false. logical to tune (=true) oberror

preserve_restart_date .false. if true, then do not update regional restart file date.
crtm_coeffs_path ./ path of directory w/ CRTM coeffs files

berror_stats berror_stats filename if other than "berror_stats"
newpc4pred .false. option for additional preconditioning for pred coeff
adp_anglebc .false. option to perform variational angle bias correction

angord 0 order of polynomial for variational angle bias correction

136

C. GSI Namelist: Name, Default Value, Explanation

Variable name Default value Description
SETUP General control namelist

passive_bc .false. option to turn on bias correction for passive (monitored) chan-
nels

use_edges .true. option to exclude radiance data on scan edges
biaspredvar 0.1 set background error variance for radiance bias coeffs
lobsdiagsave .false. write out additional observation diagnostics

l4dvar .false. turn 4D-Var on/off (default=off=3D-Var)
lbicg .false. use B-precond w/ bi-conjugate gradient for minimization
lsqrtb .false. Use sqrt(B) preconditioning

lcongrad .false. Use conjugate gradient/Lanczos minimizer
lbfgsmin .false. Use L-BFGS minimizer

ltlint .false. Use TL inner loop (ie TL intall)
nhr_obsbin -1 length of observation bins
nhr_subwin -1 length of weak constraint 4d-Var sub-window intervals

nwrvecs -1 Number of precond vectors (Lanczos) or pairs of vectors (QN)
being saved

iorthomax 0 max number of vectors used for orthogonalization of various
CG options

ladtest .false. Run adjoint test
ladtest_obs .false. if true, doing the adjoint check for the observation operators

lgrtest .false. Run gradient test
lobskeep .false. keep obs from first outer loop for subsequent OL

lsensrecompute .false. does adjoint by recomputing forward solution
jsiga -1 calculate approximate analysis errors from lanczos for

jiter=jsiga
ltcost .false. calculate true cost when using Lanczos (this is very expensive)

lobsensfc .false. compute forecast sensitivity to observations
lobsensjb .false. compute Jb sensitivity to observations

lobsensincr .false. compute increment sensitivity to observations
lobsensadj .false. use adjoint of approx. Hessian to compute obs sensitivity
lobsensmin .false. use minimisation to compute obs sensitivity
iobsconv 0 compute convergence test in observation space

=1 at final point, =2 at every iteration
idmodel .false. uses identity model when running 4D-Var (test purposes)
iwrtinc .false. when .t., writes out increments instead of analysis
jiterstart 1 first outloop iteration number
jiterend 1 last outloop iteration number

lobserver .false. when .t., calculate departure vectors only
lanczosave .false. save lanczos vectors for forecast sensitivity computation
llancdone .false. use to tell adjoint that Lanczos vecs have been pre-computed
lferrscale .false. Something related to forecast error

print_diag_pcg .false. logical turn on of printing of GMAO diagnostics in pcgsoi.f90
tsensible .false. option to use sensible temperature as the analysis variable.

Works only for twodvar_regional=.true.
lgschmidt .false. option for re-biorthogonalization of the gradx and grady set

from pcgsoi when twodvar_regional=.true.

137

C. GSI Namelist: Name, Default Value, Explanation

Variable name Default value Description
SETUP General control namelist

lread_obs_save .false. option to write out collective obs selection info
lread_obs_skip .false. option to read in collective obs selection info
use_gfs_ozone .false. option to read in gfs ozone and interpolate to regional model

domain
check_gfs_ozone_date .false. option to date check gfs ozone before interpolating to regional

model domain
regional_ozone .false. option to turn on ozone in regional analysis

lwrite_predterms .false. option to write out actual predictor terms instead of predicted
bias to the radiance diagnostic files

lwrite_peakwt .false. option to writ out the approximate pressure of the peak of the
weighting function for satellite data to the radiance diagnostic
files

use_gfs_nemsio .false. option to use nemsio to read global model NEMS/GFS first
guess

liauon .false. treat 4dvar CV as tendency perturbation (default=false)
use_prepb_satwnd .false. allow using satwnd’s from prepbufr (historical) file

l4densvar .false. logical to turn on ensemble 4dvar
ens4d_nstarthr 3 start hour for ensemble perturbations (generally should match

min_offset)
use_gfs_stratosphere When true, a guess gfs valid at the same time as the nems-

nmmb guess is used to replace the upper levels with gfs values.
The purpose of this is to allow direct use of gdas derived sat
radiance bias correction coefs.

pblend0 152 The nems-nmmb vertical coordinate is smoothly merged with
gfs above this level. Below this level, is original nems-nmmb.

pblend1 79.0 The nems-nmmb vertical coordinate is smoothly merged with
gfs below this level. Above this level,is gfs.

step_start 1.e-4 initial stepsize in minimization
diag_precon .false. if true do preconditioning
lrun_subdirs .false. logical to toggle use of subdirectires at runtime for pe specific

files
emiss_bc .false. option to turn on emissivity bias predictor
upd_pred 1 bias update indicator for radiance bias correction; 1.0=bias cor-

rection coefficients evolve
use_reflectivity .false. option of using reflectivity
lnested_loops .false. allow for nested resolution outer/inner loops
lwrite4danl .false. logical to write out 4d analysis states if 4dvar or 4denvar mode
lsingleradob .false. logical for single radiance observation assimilation. Uses ex-

isting bufr file and rejects all radiances that don’t fall within a
tight threshold around oblat/oblon (SINGLEOB_TEST)

ssmis_method 1 choose method for SSMIS noise reduction 0=no smoothing
1=default

ssmis_precond 0.01 weighting factor for SSMIS preconditioning (if not using
newpc4pred)

R_option .false. Option to use variable correlation length for lcbas based
on data density - follows Hayden and Purser (1995) (twod-
var_regional only)

thin4d

138

C. GSI Namelist: Name, Default Value, Explanation

Variable name Default value Description
GRIDOPTS Grid setup variables, including regional specific variables

jcap 62 spectral resolution of the analysis
jcap_b 62 spectral resolution of background (model guess field)
nsig 42 number of sigma levels
nlat 96 number of latitudes
nlon 384 number of longitudes

hybrid logical hybrid data file flag true=hybrid
nlat_regional 0 Number of y grid point in whole regional domain
nlon_regional 0 Number of x grid point in whole regional domain
diagnostic_reg .false. logical for regional debugging
update_regsfc .false. logical to write out updated surface fields to the regional anal-

ysis file (default = false)
netcdf .false. if true, then wrf files are in netcdf format, otherwise wrf files

are in binary format.
regional .false. logical for regional GSI run

wrf_nmm_regional .false. logical for input from WRF NMM
nems_nmmb_regional .false. logical for input from NEMS NMMB

wrf_mass_regional .false. logical for input from WRF MASS-CORE (ARW)
twodvar_regional .false. logical for regional 2d-var analysis

filled_grid .false. logical to fill in points on WRF-NMM E-grid
half_grid .false. logical to use every other row of WRF-NMM E-Grid

nvege_type 24 number of types of vegetation; old=24, IGBP=20
nlayers(100) 1 number of sub-layers to break indicated model layer into prior

to calling radiative transfer model
cmaq_regional .false. Background input is from CMAQ model

nmmb_reference_grid H =’H’, then analysis grid covers H grid domain
= ’V’, then analysis grid covers V grid domain

grid_ratio_nmmb sqrt(2) ratio of analysis grid to nmmb model grid in nmmb model grid
units.

grid_ratio_wrfmass 1.0 ratio of analysis grid to wrf mass grid in wrf grid units
jcap_gfs spectral truncation used to transform high wavenum-

ber spectral coefficients to a coarser resolution grid,when
use_gfs_ozone = .true. or use_gfs_stratosphere = .true.

jcap_cut
use_sp_eqspac .false. if .true., then ensemble grid is equal spaced, staggered 1/2 grid

unit off poles. if .false., then gaussian grid assumed for ensem-
ble (global only)

139

C. GSI Namelist: Name, Default Value, Explanation

Variable name Default value Description
BKGERR Background error related variables

vs 1/1.5 scale factor for vertical correlation lengths for background er-
ror

nhscrf 3 number of horizontal scales for recursive filter
hzscl(3) 1, 1, 1 scale factor for horizontal smoothing, n=1,number of scales (3

for now)
specifies factor by which to reduce horizontal scales (i.e. 2
would then apply 1/2 of the horizontal scale)

hswgt(3) 1/3, 1/3, 1/3 empirical weights to apply to each horizontal scale
norh 2 order of interpolation in smoothing
ndeg 4 degree of smoothing in recursive filters
noq 3 1/4 of accuracy in compact finite differencing
bw 0 factor in background error calculation

norsp 0 order of interpolation for smooth polar cascade routine de-
fault is norsp=0, in which case norh is used with original polar
cascade interpolation (global only).

fstat .false. logical to separate f from balance projection
pert_berr .false. logical to turn on random inflation/deflation of background

error tuning parameters
pert_berr_fct 0 factor for increasing/decreasing berror parameters, this is mul-

tiplied by random number
bkgv_flowdep .false. flag to turn on flow dependence to background error variances
bkgv_rewgtfct 0 factor used to perform flow dependent reweighting of error

variances
bkgv_write .false. flag to turn on=.true. /off=.false. generation of binary file with

reweighted variances
fpsproj .true. controls full nsig projection to surface pressure
fut2ps controls the projection from unbalance T to surface pressure

adjustozvar adjusts ozone variances in the stratosphere based on guess field
cwcoveqqcov sets cw Bcov to be the same as B-cov(q) (presently glb default)

140

C. GSI Namelist: Name, Default Value, Explanation

Variable name Default value Description
ANBKGERR Anisotropic background error related variables

anisotropic .false. if true, then use anisotropic background error covariance
ancovmdl 0 covariance model settings - 0: pt-based, 1: ensemble based

triad4 .true. for 2d variables, if true, use blended triad algorithm
ifilt_ord 4 filter order for anisotropic filters
npass 1 2ÃŮnpass = number of factors in background error

normal 200 number of random vectors to use for filter normalization (if
< 0 then slightly slower, but results independent of number of
processors)

binom .true. if true, weight correlation lengths of factors using binomial
distribution, with shortest scales on outside, longest scales on
inside. This can help to produce smoother correlations in the
presence of strong anisotropy

ngauss 3 number of Gaussians to add together in each factor
rgauss 0 multipliers on reference aspect tensor for each Gaussian factor

anhswgt 1.0 empirical weights to apply to each gaussian
an_vs 1 scale factor for background error vertical scales (temporary

carry over from isotropic inhomogeneous option)
grid_ratio 2.0 ratio of coarse to fine grid in fine grid units

grid_ratio_p 0 ratio of coarse to fine grid in fine grid units for polar patches
nord_f2a 4 order of interpolation for transfer operators between filter grid

and analysis grid
an_flen_u 1 coupling parameter for connecting horizontal wind to back-

ground error
an_flen_t 1 coupling parameter for connecting grad(potential temperature)

to background error
an_flen_z 1 coupling parameter for connecting grad(terrain) to background

error
rtma_subdomain_option .false. if true, then call alternative code which calls recursive filter

directly from subdomain mode, bypassing transition to/from
horizontal slabs. This is mainly to improve efficiency for
2d rtma analysis. at the moment, this only works for twod-
var_regional=.true. rtma_subdomain_option will be forced to
false when twodvar_regional=.false.

lreadnorm .false. if true, then read normalization from fixed files
nsmooth 0 number of 1-2-1 smoothing passes before and after background

error application
nsmooth_shapiro 0 number of 2nd moment preserving (shapiro) smoothing passes

before and after background error application.
NOTE: default for nsmooth and nsmooth_shapiro is 0.
if both are > 0, then nsmooth will be forced to zero.

afact0 0.0 anistropy effect parameter, the range must be in 0.0-1.0.
covmap .false. if true, covariance map would be drawn

141

C. GSI Namelist: Name, Default Value, Explanation

Variable name Default value Description
JCOPTS Constraint term in cost function (Jc)

ljcdfi .false. if .false., uses original formulation based on wind, temp, and
ps tends
when .t. uses digital filter initialization of increments (4dvar)

alphajc 10.0 parameter for digital filter
switch_on_derivatives .false., âĂę if true, then compute horizontal derivatives of all state vari-

ables (to be used eventually for time derivatives, dynamic con-
straints and observation forward models that need horizontal
derivatives)

tendsflag .false. if true, compute time tendencies
ljcpdry .false. when .t. uses dry pressure constraint on increment

bamp_jcpdry 0.0 parameter for pdry_jc
eps_eer -1.0 Errico-Ehrendofer parameter for q-term in energy norm
ljc4tlevs .false. when true and in 4D mode, apply any weak constraints over

all time levels instead of just at a single time

Variable name Default value Description
STRONGOPTS Strong dynamic constraint
reg_tlnmc_type 1 =1 for 1st version of regional strong constraint

=2 for 2nd version of regional strong constraint
tlnmc_option 0 integer flag for strong constraint (various capabilities for hy-

brid):
=0: no TLNMC
=1: TLNMC for 3DVAR mode
=2: TLNMC on total increment for single time level only (for
3D EnVar) or if 4D EnVar mode, TLNMC applied to increment
in center of window
=3: TLNMC on total increment over all time levels (if in 4D
EnVar mode)
=4: TLNMC on static contribution to increment ONLY for any
EnVar mode

nstrong 0 if > 0, then number of iterations of implicit normal mode ini-
tialization to apply for each inner loop iteration

period_max 1000000.0 cutoff period for gravity waves included in implicit normal
mode initialization (units = hours)

period_width 1.0 defines width of transition zone from included to excluded
gravity waves

nvmodes_keep 0 number of vertical modes to use in implicit normal mode ini-
tialization

baldiag_full .false. flag to toggle balance diagnostics for the full fields
baldiag_inc .false. flag to toggle balance diagnostics for the analysis increment

142

C. GSI Namelist: Name, Default Value, Explanation

Variable name Default value Description
OBSQC Observation quality control variables

Parameters used for gross error checks are set in file con-
vinfo (ermin, ermax, ratio) Parameters below used for non-
linear (variational) quality control

dfact 0 factor for duplicate observation at same location for conven-
tional data

dfact1 3.0 time factor for duplicate observation at same location for con-
ventional data

erradar_inflate 1 radar error inflation factor
tdrerr_inflate .false. logical for tdr obs error inflation
tdrgross_fact 1 factor applied to tdr gross error

oberrflg .false. logical for reading in new observation error table (if set to true)
vadfile ’none’ character(10) variable holding name of VAD wind bufr file
noiqc .false. logical flag to bypass OI QC (if set to true)

c_varqc 1 constant number to control variance qc turning on speed
blacklst .false. logical for reading in raob blacklist (if set to true)

use_poq7 .false. Logical to toggle accept (.true.) or reject (.false.) SBUV/2 ozone
observations flagged with profile ozone quality mark

hilbert_curve .false. option for hilbert-curve based cross-validation. works only
with twodvar_regional=.true.

tcp_refps 1000.0 reference pressure for tcps oberr calculation (mb)
tcp_width 50.0 parameter for tcps oberr inflation (width, mb)
tcp_ermin 0.75 parameter for tcps oberr inflation (minimum oberr, mb)
tcp_ermax 5.0 parameter for tcps oberr inflation (maximum oberr, mb)

qc_noirjaco3 .false. controls whether to use O3 Jac from IR instruments
qc_noirjaco3_pole .false. controls wheter to use O3 Jac from IR instruments near poles

qc_satwnds .true. allow bypass sat-winds qc normally removing lots of mid-tropo
obs

njqc
vqc

aircraft_t_bc_pof .false. logical for aircraft temperature bias correction, pof is used for
predictor

aircraft_t_bc .false. logical for aircraft temperature bias correction
aircraft_t_bc_ext .false. logical for reading aircraft temperature bias correction from

external file
buddycheck_t .false. When true, run buddy check algorithm on temperature obser-

vations
buddydiag_save .false. When true, output files containing buddy check QC info for all

obs run through the buddy check
biaspredt 1 berror var for temperature bias correction coefficients

upd_aircraft .true. indicator if update bias at 06Z & 18Z
cleanup_tail .false. logical to remove tail number no longer used

143

C. GSI Namelist: Name, Default Value, Explanation

Variable name Default value Description
OBS_INPUT Controls input data

dfile ’ ’ input observation file name
dtype ’ ’ observation type
dplat ’ ’ satellite (platform) id (for satellite data)
dsis ’ ’ sensor/instrument/satellite flag from satinfo files

dthin ’ ’ satellite group
dval ’ ’ relative value of each profile within group relative weight for

observation = dval/sum(dval) within grid box
dmesh(max(dthin)) thinning mesh for each group

mesh size (km) for radiance thinning grid (used in satthin)
dsfcalc ’ ’ specifies method to determine surface fields within a FOV.

when equal to one, integrate model fields over FOV. when not
one, bilinearly interpolate model fields to FOV center.

time_window_max 3 upper limit on time window for all input data
ext_sonde .false. logical for extended forward model on sonde data

l_foreaft_thin .false. separate TDR fore/aft scan for thinning

Variable name Default value Description
SINGLEOB_TEST Single observation test case setup

maginnov 1 magnitude of innovation for one observation
magoberr 1 magnitude of observational error

oneob_type ’ ’ observation type (t, u, v, etc.)
oblat 0 observation latitude
oblon 0 observation longitude
obpres 1000.0 observation pressure (hPa)

obdattim 2000010100 observation date (YYYYMMDDHH)
obhourset 0 observation delta time from analysis time
pctswitch .false. if .true. innovation & oberr are relative (%) of background value

(level ozone only)
obchan 0 if > 0, selects the channel number. If <= zero, it will use all

channels that pass qc in setuprad.

Variable name Default value Description
SUPEROB_RADAR Level 2 bufr file to radar wind superobs

del_azimuth 5.0 azimuth range for superob box (default 5 degrees)
del_elev 0.25 elevation angle range for superob box (default .05 degrees)

del_range 5000.0 radial range for superob box (default 5 km)
del_time 0.5 1/2 time range for superob box (default .5 hours)

elev_angle_max 5.0 max elevation angle (default of 5 deg) minnum 50 minimum
number of samples needed to make a superob

range_max 100000.0 max radial range in meters to use in constructing superobs
(default 100km)

l2superob_only .false. if true, then process level 2 data creating superobs, then quit.
(added for easier retrospective testing, since level 2 bufr files
are very large and hard to work with)

Variable name Default value Description
LAG_DATA| Lagrangian data assimilation related variables

lag_accur 1.0e-6 Accuracy used to decide whether or not a balloon is on the
grid

infile_lag inistate_lag.dat File containing the initial position of the balloon
lag_stepduration 900.0 Duration of one time step for the propagation model
lag_nmax_bal 1000 Maximum number of balloons at starting time

lag_vorcore_stderr_a 2.0e3 Observation error for vorcore balloon
lag_vorcore_stderr_b 0.0 error = b + a*timestep(in hours)

144

C. GSI Namelist: Name, Default Value, Explanation

Variable name Default value Description
HYBRID_ENSEMBLE Parameters for use with hybrid ensemble option

l_hyb_ens .false. if true, then turn on hybrid ensemble option
uv_hyb_ens .false. if true, then ensemble perturbation wind variables are u,v, oth-

erwise, ensemble perturbation wind variables are stream, pot.
Functions.

q_hyb_ens .false. if true, then use specific humidity ensemble perturbations, oth-
erwise, use relative humidity

aniso_a_en .false. if true, then use anisotropic localization of hybrid ensemble
control variable a_en.

generate_ens .true. if true, then generate internal ensemble based on existing back-
ground error

n_ens 0 number of ensemble members.
nlon_ens 0 number of longitudes on ensemble grid (may be different from

analysis grid nlon)
nlat_ens 0 number of latitudes on ensemble grid (may be different from

analysis grid nlat)
jcap_ens 0 for global spectral model, spectral truncation

pseudo_hybens .false. if true, turn on pseudo ensemble hybrid for HWRF
merge_two_grid_ensperts .false. if true, merge ensemble perturbations from two forecast do-

mains to analysis domain (one way to deal with hybrid DA for
HWRF moving nest)

regional_ensemble_option 0 integer, used to select type of ensemble to read in for regional
application. Currently takes values from 1 to 4
=1: use GEFS internally interpolated to ensemble grid.
=2: ensembles are WRF NMM format
=3: ensembles are ARW netcdf format.
=4: ensembles are NEMS NMMB format.

full_ensemble .false. if true, first ensemble perturbation on first guess istead of on
ens mean

betaflg .false. if true, use vertical weighting on beta1_inv and beta2_inv, for
regional

coef_bw 0.9 fraction of weight given to the vertical boundaries when betaflg
is true

pwgtflg .false. if true, use vertical integration function on ensemble contribu-
tion of Psfc

jcap_ens_test 0 for global spectral model, test spectral truncation (to test dual
resolution)

beta1_inv 1 1/beta1, the default weight given to static background error
covariance if (.not. readin_beta)
0 <= beta1_inv <= 1, tuned for optimal performance
=1, then ensemble information turned off
=0, then static background turned off the weights are applied
per vertical level such that :
betas_inv(:) = beta1_inv , vertically varying weights given to
static B ;
betae_inv(:) = 1 - beta1_inv , vertically varying weights given
ensemble derived covariance.
If (readin_beta) then betas_inv and betae_inv are read from a
file and beta1_inv is not used.

145

C. GSI Namelist: Name, Default Value, Explanation

Variable name Default value Description
HYBRID_ENSEMBLE Parameters for use with hybrid ensemble option

s_ens_h 2828 homogeneous isotropic horizontal ensemble localization scale
(km)

s_ens_v 30 vertical localization scale (grid units for now) s_ens_h, s_ens_v,
and beta1_inv are tunable parameters.

use_gfs_ens .true. controls use of global ensemble: .t. use GFS (default); .f. uses
user-defined ens

readin_localization .false. flag to read (.true.)external localization information file
readin_beta .false. flag to read (.true.) the vertically varying beta parameters be-

tas_inv and betae_inv from a file.
eqspace_ensgrid .false. if .true., then ensemble grid is equal spaced, staggered 1/2 grid

unit off ploes.
if .false., then gaussian grid assumed for ensemble (global only)

use_localization_grid .false. if true, then use extra lower res gaussian grid for horizontal lo-
calization (global runs only–allows possiblity for non-gaussian
ensemble grid)

grid_ratio_ens 1 for regional runs, ratio of ensemble grid resolution to analysis
grid resolution
default value = 1 (dual resolution off)

oz_univ_static .false. if true, decouple ozone from other variables and defaults to
static B (ozone only)

write_ens_sprd .false. writing global ensemble spread in byte addressable format for
plotting with grads

enspreproc .false. flag to read(.true.) pre-processed ensemble data already
i_en_perts_io 0 flag to read in ensemble perturbations in ensemble grid.

This is to speed up RAP/HRRR hybrid runs because the same
ensemble perturbations are used in 6 cycles
=0: No ensemble perturbations IO (default)
=2: skip get_gefs_for_regional and read in ensemble perturba-
tions from saved files.

l_ens_in_diff_time .false. if use ensembles that are available at different time from anal-
ysis time.
=false: only ensembles available at analysis time can be used
for hybrid. (default)
=true: ensembles available time can be different from analysis
time in hybrid analysis

ensemble_path

146

C. GSI Namelist: Name, Default Value, Explanation

Variable name Default value Description
rapidrefresh_cldsurf Options for cloud analysis and surface en-

hancement for RR application
dfi_radar_latent_heat_time_period 30.0 DFI forward integration window in minutes

metar_impact_radius 10.0 metar cloud observation impact radius in grid
number

metar_impact_radius_lowCloud 4.0 impact radius for METAR cloud observation that
indicate low cloud base

l_gsd_terrain_match_surfTobs .false. if .true., GSD terrain match for surface tempera-
ture observation

l_sfcobserror_ramp_t .false. namelist logical for adjusting surface tempera-
ture observation error

l_sfcobserror_ramp_q .false. namelist logical for adjusting surface moisture
observation error

l_PBL_pseudo_SurfobsT .false. if .true. produce pseudo-obs in PBL layer based
on surface obs T

l_PBL_pseudo_SurfobsQ .false. if .true. produce pseudo-obs in PBL layer based
on surface obs Q

l_PBL_pseudo_SurfobsUV .false. if .true. produce pseudo-obs in PBL layer based
on surface obs UV

pblH_ration 0.75 percent of the PBL height within which to add
pseudo-obs

pps_press_incr 30hPa pressure increase for each additional pseudo-obs
on top of previous level

l_gsd_limit_ocean_q .false. if .true. do GSD limitation of Q over ocean
l_pw_hgt_adjust .false. if .true. do GSD PW adjustment for model vs.

obs station height
l_limit_pw_innov .false. if .true. do GSD limitation of PW obs
max_innov_pct 0.1 sets limit of PW ob to a percent of the back-

ground value (0-1)
l_cleanSnow_WarmTs .false. if .true. do GSD limitation of using

retrieved snow over warn area (Ts >
r_cleanSnow_WarmTs_threshold)

l_conserve_thetaV .false. if .true. conserve thetaV during moisture adjust-
ment in cloud analysis

r_cleanSnow_WarmTs_threshold 8.0 threshold for using retrieved snow over warn
area

i_conserve_thetaV_iternum 3 iteration number for conserving thetaV during
moisture adjustment

l_gsd_soilTQ_nudge .false. if .true. do GSD GOES cloud building
l_cld_bld .false. if .true. do GSD soil T and Q nudging based on

the lowest t analysis increment
cld_bld_hgt 1200m sets limit below which GOES cloud building oc-

curs
build_cloud_frac_p 0.95 sets the threshold for building clouds from satel-

lite
clear_cloud_frac_p 0.1 sets the threshold for clearing clouds from satel-

lite
nesdis_npts_rad 1 NESDIS cloud product impact radiu (grid points)

iclean_hydro_withRef 1 if =1, then clean hydrometeors if the grid point
has no echo and maxref=0

iclean_hydro_withRef_allcol 0 if =1, then clean whole column hydrometeors
if the observed max ref =0 and satellite cloud
shows clean

147

C. GSI Namelist: Name, Default Value, Explanation

Variable name Default value Description
rapidrefresh_cldsurf Options for cloud analysis and surface en-

hancement for RR application
l_use_2mq4b 0 background used for calculate surface moisture

observation innovation
=0 Use Q from the 1st model level. (default)
=1 use 2m Q as part of background

i_use_2mt4b 0 background used for calculate surface tempera-
ture observation innovation
=0 Use T from the 1st model level. (default)
=1 use 2m T as part of background

i_gsdcldanal_type 0 options for how GSD cloud analysis should be
conducted
=0. no cloud analysis (default)
=1. cloud analysis after var analysis
=5. skip cloud analysis and NETCDF file update

i_gsdsfc_uselist 0 options for how to use surface observation use
or rejection list
=0 . EMC method (default)
=1 . GSD method

i_lightpcp 0 options for how to deal with light precipitation
=0 . don’t add light precipitation (default)
=1 . add light precipitation in warm section

i_sfct_gross 0 if use extended threshold for surface T gross
check
=0 use threshold from convinfo (default)
=1 for cold surface, threshold for gross check is
enlarged to bring more large negative innovation
into analysis.

148

C. GSI Namelist: Name, Default Value, Explanation

Variable name Default value Description
CHEM Chemistry data assimilation

berror_chem .false. if berror file is supplied for chemistry
oneobtest_chem .false. single observation test for chemistry
maginnov_chem 30.0 if oneobtest_chem=T magnitude of innovation

for chemistry
magoberr_chem 2.0 if oneobtest_chem=T magnitude of observation

error for chemistry
oneob_type_chem pm2_5 if oneobtest_chem=T type of chemical observa-

tion
oblat_chem 45.0 if oneobtest_chem=T latitude of the observation
oblon_chem 270.0 if oneobtest_chem=T longitude of the observa-

tion
obpres_chem 1000.0 if oneobtest_chem=T pressure of the observation

diag_incr .false. if user wishes to output to a binary file increment
elev_tolerance 500.0 for surface chemical observation sometimes ele-

vation (elev_obs) of the measurement is available
(sometimes not).

tunable_error 0.5 tuning parameter to specify representativeness
error for in-situ observations

in_fname cmaq_input.bin name of background file for cmaq
out_fname cmaq_output.bin name analysis file for cmaq
incr_fname chem_increment.bin if diag_incr=T name of the binary dump for

pm2_5
laeroana_gocart .false. when true, do chem analysis with wrfchem and

modis
l_aoderr_table
aod_qa_limit
luse_deepblue

aero_ratios
wrf_pm2_5

149

Bibliography

[1] J. Purser, W.-S. Wu, D. F. Parrish, and N. M. Roberts. Numerical aspects of the application
of recursive filters to variational statistical analysis. part i: Spatially homogeneous and
isotropic gaussian covariances. Mon. Wea. Rev., 131:1524–1535, 2003.

[2] J. Purser, W.-S. Wu, D. F. Parrish, and N. M. Roberts. Numerical aspects of the application
of recursive filters to variational statistical analysis. part ii: Spatially inhomogeneous and
anisotropic general covariances. Mon. Wea. Rev., 131:1536–1548, 2003.

[3] H. Shao, J. Derber, X.-Y. Huang, M. Hu, K. Newman, D. Stark, M. Lueken, C. Zhou,
L. Nance, Y.-H. Kuo, and B. Brown. Bridging research to operations transitions: Status
and plans of community gsi. Bulletin of the American Meteorological Society, 2016.

[4] W.-S. Wu, J. Purser, and D. F. Parrish. Three-dimensional variational analysis with spa-
tially inhomogeneous covariances. Mon. Wea. Rev., 130:2905–2916, 2002.

150

	1 Overview
	1.1 GSI History and Background
	1.2 GSI Becomes Community Code
	1.2.1 GSI Code Management and Review Committee
	1.2.2 Community Code Contributions

	1.3 About This GSI Release
	1.3.1 What Is New in This Release Version
	1.3.2 Observations Used by This Version

	2 Software Installation
	2.1 Introduction
	2.2 Obtaining and Setting Up the Source Code
	2.3 Directory Structure, Source Code and Supplemental Libraries
	2.4 Compiling GSI
	2.4.1 Build Overview
	2.4.2 Environment Variables
	2.4.3 Configure and Compile

	2.5 Example of Build
	2.5.1 Intel Build
	2.5.2 PGI Build
	2.5.3 GNU Build

	2.6 System Requirements and External Libraries
	2.6.1 Compilers Tested for Release

	2.7 Getting Help and Reporting Problems
	2.8 CMake Build System
	2.8.1 CMake build process with the DTC script
	2.8.2 Build notes and additional requirements
	2.8.3 How the helper script works

	3 Running GSI
	3.1 Input Data Required to Run GSI
	3.1.1 Background or First Guess Field
	3.1.2 Observations
	3.1.3 Fixed Files (Statistics and Control Files)

	3.2 GSI Run Script
	3.2.1 Steps in the GSI Run Script
	3.2.2 Customization of the GSI Run Script
	3.2.3 Description of the Sample Regional Run Script to Run GSI

	3.3 GSI Analysis Result Files in Run Directory
	3.4 Introduction to Frequently Used GSI Namelist Options
	3.4.1 Set Up the Number of Outer and Inner Loops
	3.4.2 Set Up the Analysis Variable for Moisture
	3.4.3 Set Up the Background File
	3.4.4 Set Up the Output of Diagnostic Files
	3.4.5 Set Up the GSI Recognized Observation Files
	3.4.6 Set Up Observation Time Window
	3.4.7 Set Up Data Thinning
	3.4.8 Set Up Background Error Factor
	3.4.9 Single Observation Test

	4 GSI Diagnostics and Tuning
	4.1 Understanding Standard Output (stdout)
	4.2 Single Observation Test
	4.2.1 Setup a Single Observation Test
	4.2.2 Examples of Single Observation Tests for GSI

	4.3 Control Data Usage
	4.4 Domain Partition for Parallelization and Observation Distribution
	4.5 Observation Innovation Statistics
	4.5.1 Conventional observations
	4.5.2 Satellite Radiance

	4.6 Convergence Information
	4.7 Conventional Observation Errors
	4.7.1 Getting Original Observation Errors
	4.7.2 Observation Error Gross Error Check within GSI

	4.8 Background Error Covariance
	4.8.1 Tuning Background Error Covariance through the Namelist and Anavinfo File

	4.9 Analysis Increments
	4.10 Running Time and Memory Usage

	5 GSI Applications for Regional 3DVar, Hybrid 3DEnVar and Hybrid 4DEnVar
	5.1 Assimilating Conventional Observations with Regional GSI
	5.1.1 Run Script
	5.1.2 Run GSI and Check the Run Status
	5.1.3 Check for Successful GSI Completion
	5.1.4 Diagnose GSI Analysis Results
	5.1.4.1 Check Analysis Fit to Observations
	5.1.4.2 Check the Minimization
	5.1.4.3 Check the Analysis Increment

	5.2 Assimilating Radiance Data with Regional GSI
	5.2.1 Run Script
	5.2.2 Run GSI and Check Run Status
	5.2.3 Diagnose GSI Analysis Results
	5.2.3.1 Check File fort.207
	5.2.3.2 Check the Analysis Increment

	5.3 Assimilating GPS Radio Occultation Data with Regional GSI
	5.3.1 Run Script
	5.3.2 Run GSI and Check the Run Status
	5.3.3 Diagnose GSI Analysis Results
	5.3.3.1 Check File fort.212
	5.3.3.2 Check the Analysis Increment

	5.4 Introduction to GSI Hybrid 3DEnVar Analysis
	5.5 Introduction to GSI Hybrid 4DEnVar Analysis
	5.6 Summary

	6 Introduction to more GSI Applications
	6.1 Introduction to Global GSI analysis
	6.1.1 The Difference between Global and Regional GSI
	6.1.2 Global GFS Scripts
	6.1.3 Sample Results

	6.2 Introduction to Chemical Analysis
	6.2.1 Setup GSI Run Scripts for Chemical Analysis
	6.2.2 Sample Results

	A GSI Community Tools
	A.1 BUFR Format and BUFR Tools
	A.2 Read GSI Diagnostic Files
	A.3 Read and Plot Convergence Information from fort.220
	A.4 Plot Single Observation Test Result and Analysis Increment
	A.5 Generate initial regional ensembles

	B Contents of Namelist Section OBS_INPUT
	C GSI Namelist: Name, Default Value, Explanation
	Bibliography

