METplus Practical Session Guide (Version 3.0)

METplus Practical Session Guide (Version 3.0)
Welcome to the METplus Practical Session Guide

The METplus practical consists of five sessions. Each session contains instructions for running individual MET tools directly on the command line followed by instructions for
running the same tools as part of a METplus use case.

Please follow the link to the appropriate session:

1. Session 1
METplus Setup/Grid-to-Grid

N

Session 2
Grid-to-Obs

w

Session 3
Ensemble and PQPF

4. Session 4
MODE and MTD

v

Session 5
Trk&Int/Feature Relative

admin Wed, 02/12/2020 - 18:37

Session 1: METplus Setup/Grid-to-Grid

Session 1: METplus Setup/Grid-to-Grid
METplus Practical Session 1

During the first METplus practical session, you will run the tools indicated below:

Page 1 of 75

During this practical session, please work on the Session 1 exercises. Proceed through the tutorial exercises by following the navigation links at the bottom of each page.
Each practical session builds on the output of previous practical sessions. So please work on them in the order listed.

Throughout this tutorial, code blocks in BOLD white text with a black background should be copied from your browser and pasted on the command line. You can copy-and-
paste the text using one of two methods:

1. Use the mouse:

¢ Hold down the left mouse button to select the text
e Place the mouse in the desired location and click the middle mouse button once to paste the selected text

N

Use the Copy and Paste options:
¢ Hold down the left mouse button to select the text

e Click the right mouse button and select the option for Copy
e Place the mouse in the desired location, click the right mouse button, and select the option for Paste

Page 2 of 75

Note: Instructions in this tutorial use vi to open and edit files. If you prefer to use a different file editor, feel free to substitute it whenever you see vi.

Note: Instructions in this tutorial use okular to view pdf, ps, and png files. If you prefer to use a different file viewer, feel free to substitute it whenever you see okular.
Click the 'METplus Setup >' on the bottom right to get started!

admin Wed, 06/12/2019 - 16:55

METplus Setup

METplus Setup

METplus Overview

METplus is a set of python modules that have been developed with the flexibility to run MET for various use cases or scenarios. The goal is to simplify the running of MET for
scientists. Currently, the primary means of achieving this is through the use of METplus configuration files, aka. "conf files". It is designed to provide a framework in which
additional MET use cases can be added. The conf file implementation utilizes a Python package called produtil that was developed by NOAA/NCEP/EMC for the HWRF system.

The METplus Python application is designed to be run as stand alone module files - calling one MET process; through a user defined process list - as in this tutorial; or within a
workflow management system on an HPC cluster - which is TBD.

Please be sure to follow the instructions in order.

METplus Useful Links

The following links are just for reference, and not required for this practical session. A METplus release is available on GitHub, and provides sample data and instructions.
GitHub METplus links

METplus User's Guide on GitHub
METplus Releases on GitHub

The METplus-related code repositories are available in GitHub in the following locations:

https://github.com/NCAR/METplus - Python wrappers and use cases
https://github.com/NCAR/MET - Core MET codebase
https://github.com/NCAR/METviewer - Display system for MET output
https://github.com/NCAR/METdb - Database system for MET output (currently private)
https://github.com/NCAR/METplotpy - Python plotting scripts (currently private)

METexpress - Streamlined display system (currently lives in NOAA's VLab)

New features are developed and bugs are tracked using GitHub issues in each repository.

admin Mon, 06/24/2019 - 15:58

METplus: Initial setup

METplus: Initial setup

Prerequisites: Software

The following is a full list of software that is required to utilize all the functionality in METplus.
NOTE: We will not by running the cyclone plotter or grid plotting scripts in this tutorial. So the additional libraries mentioned below are not installed.

e Python 3.6.3 or higher
e Additional Python libraries (not included in most base installations):
o Required to run all wrappers except the plotters
= dateutil
= all dependencies of above packages
o Required by the cyclone plotter and grid plotting scripts.
= numpy
= cartopy
= qall dependencies of above packages
MET 9.0 - already installed locally on the tutorial machines (NOAA hera).
R - used by TCMPRPIlotter wrapper, Wraps the MET plot_tcmpr.R script
ncap2 - NCO netCDF Operators
wgrib2 - only needed for series analysis wrappers (SeriesByLead and SeriesBylnit)
ncdump - NetCDF binaries
convert - Utilitity from ImageMagick software suite

Prerequisites: Environment

For this tutorial, the MET software is available on Dakota (NCAR) or via a module file on Hera (NOAA). In both cases, builds of MET9.0 and METplus3.0 have been installed
globally, so the MET software is available when you login and source the tutorial environment file.

The MET* environment variables are set to allow the METplus scripts to be run from any directory.

1. Create a directory called 'METplus_Tutorial' to hold all of the files you will create during the tutorial. This can be any directory that you have write permission. In the
following instructions, change "/path/to" to the directory you chose:

EDIT AFTER COPYING and BEFORE HITTING RETURN!

Page 3 of 75

cd /path/to
Then create a directory called METplus_Tutorial. This is the location of all of your tutorial work, including configuration files, output data, and any other notes you'd like to keep.
mkdir METplus_Tutorial
Go into the tutorial directory and run 'pwd' to get the full path to this directory. Set this path in an environment variable.
cd METplus_Tutorial
bash:
export METPLUS_TUTORIAL_DIR="pwd"
csh:
setenv METPLUS_TUTORIAL_DIR “pwd"
2. Now copy the tutorial setup shell script to configure your runtime environment for use with METplus. You will also copy over a METplus .conf file that you will use to run:
If tutorial setup scripts have been provided to you, then copy them into your tutorial directory and modify them. If you running these instructions on your own machine, you will
need to obtain the generic tutorial setup scripts and modify them to include the correct paths on your machine.
If tutorial scripts have been provided (bash):
(NOTE: replace /path/to with where the primary METplus tutorial files are located)

cp /path/to/TutorialSetup.linux-bash.sh ${METPLUS_TUTORIAL_DIR}
cp /path/to/tutorial.conf ${METPLUS_TUTORIAL_DIR}

If tutorial scripts have been provided (csh):

(NOTE: replace /path/to with where the primary METplus tutorial files are located)

cp /path/to/TutorialSetup.linux-csh.sh ${METPLUS_TUTORIAL_DIR}
cp /path/to/tutorial.conf ${METPLUS_TUTORIAL_DIR}

On hera:

cp /scratchl/BMC/dtc/Julie.Prestopnik/METplus/METplus_Tutorial/TutorialSetup.hera.sh ${METPLUS_TUTORIAL_DIR}
cp /scratchl/BMC/dtc/Julie.Prestopnik/METplus/METplus_Tutorial/tutorial.conf ${METPLUS_TUTORIAL_DIR}

On your machine (bash):

cd ${METPLUS_TUTORIAL_DIR}

wget https://dtcenter. org/sites/default/files/community-code/metplus/tutorial-data/TutorialSetup.linux-bash.sh.txt
mv TutorialSetup.linux-bash.sh.txt TutorialSetup.linux-bash.sh

wget https://dtcenter.org/sites/default/files/community-code/metplus/tutorial-data/tutorial.conf

On your machine (csh):

cd ${METPLUS_TUTORIAL_DIR}

wget https://dtcenter.org/sites/default/files/community-code/metplus/tutorial-data/TutorialSetup.linux-csh.sh.txt
mv TutorialSetup.linux-csh.sh.txt TutorialSetup.linux-csh.sh

wget https://dtcenter.org/sites/default/files/community-code/metplus/tutorial-data/tutorial.conf

The tutorial setup script sets the paths for METPLUS_TUTORIAL_DIR, METPLUS_BUILD_BASE, MET_BUILD_BASE, and METPLUS_DATA. On hera, it loads several modules
needed for the MET and METplus software to run correctly. Finally, it appends the $PATH environment variable to include the directory where the METplus python scripts are
located.
3. Open up the TutorialSetup script with your favorite editor and set the environment variable values. If the tutorial setup script was provided to you, you will only need to
change the value for METPLUS_TUTORIAL_DIR. If not, you will need to set each environment variable to the appropriate value. If you are unsure what to set for any of the
variables, please refer to the descriptions below. Be sure to save the file before you close it.

Note that the following echo and Is commands may not work correctly until the script is sourced in Step 4.
vi ${METPLUS_TUTORIAL_DIR}/TutorialSetup.*

The following describes what each environment variable should be set to and an example of the contents of these directories to help you determine where they are on your
machine.

METPLUS_TUTORIAL_DIR
The directory you created to store all of your tutorial files

Example contents:

1s ${METPLUS_TUTORIAL_DIR} -1

tutorial.conf
TutorialSetup.linux-bash.sh

Example value:

Page 4 of 75

/home/metplus_user/METplus_Tutorial

MET_BUILD_BASE
The directory where MET is installed
Example contents:

ls ${MET_BUILD_BASE} -1

bin
share

1ls ${MET_BUILD_BASE}/bin -1

ascii2nc
gis_dump_shp
gsid2mpr

mode

pb2nc
plot_point_obs
rmw_analysis
tc_dland

tc_stat
ensemble_stat
gis_dump_shx
gsidens2orank
mode_analysis
pcp_combine
point2grid
series_analysis
tc_gen
wavelet_stat
gen_vx_mask
grid_diag
lidar2nc
modis_regrid
plot_data_plane
point_stat
shift_data_plane
tc_pairs
wwmca_plot
gis_dump_dbf
grid_stat
madis2nc

mtd
plot_mode_field
regrid_data_plane
stat_analysis
tc_rmw
wwmca_regrid

Example value:

echo ${MET_BUILD_BASE}

/home/metplus_user/met-9.0

NOTE: If MET has not been installed on your machine, you can obtain it here: https://dtcenter.org/community-code/model-evaluation-tools-met/download

METPLUS_BUILD_BASE
The directory where METplus is installed

Example contents:

1s ${METPLUS_BUILD_BASE} -1

build_components
check_python.py
docs
environment.yml
internal_tests
manage_externals
parm

README.md
requirements.txt
sorc

ush

Example value:

Page 5 of 75

/home/metplus_user/METplus-3.0

NOTE: If the METplus wrappers have not been installed on your machine, you can follow the instructions here:
https://ncar.github.io/METplus/Users Guide/installation.html

METPLUS_DATA
The directory containing sample input data to use for the tutorial

Example contents:

1s ${METPLUS_DATA} -1

met_test
model_applications

Example value:
echo ${METPLUS_DATA}
/d1/metplus_user/METplus_Data

NOTE: If you have not downloaded the sample data tarballs, you can obtain them here (Refer to the "Sample Input Data" section for the version of METplus you are
going to use): https://github.com/ncar/metplus/releases

4. Source the environment file to apply the settings to the current shell. Each time you log in, you will have to source this file again.
On hera:

source ${METPLUS_TUTORIAL_DIR}/TutorialSetup.hera.sh
On linux server (bash):

source ${METPLUS_TUTORIAL_DIR}/TutorialSetup.linux-bash.sh
On linux server (csh):

source ${METPLUS_TUTORIAL_DIR}/TutorialSetup.linux-csh.sh

To avoid needing to source this file every time you log in, you can add a few lines to your shell settings file. For example for bash on hera, you can add these lines to the end of
~/.bashrc:

METPLUS_TUTORIAL_DIR=$HOME/METplus_Tutorial
source $METPLUS_TUTORIAL_DIR/TutorialSetup.hera.sh

5. Check to make sure the environment variables are set successfully by typing 'env'. If you did everything correctly, running 'which master_metplus.py' should show you the
path to the script in the shared location, ${METPLUS_BUILD_BASE}:

env
which master_metplus.py

And typing 'point_stat' will give you usage information for the MET command.
point_stat

You should see the usage statement for Point-Stat. The version number listed should correspond to the version listed in MET_BUILD_BASE. If it does not, you will need to either
reload the met module, or add ${MET_BUILD_BASE}/bin to your PATH.

Check that you have METPLUS_BUILD_BASE, MET_BUILD_BASE, and METPLUS_DATA set correctly:
echo ${METPLUS_BUILD_BASE}

echo ${MET_BUILD_BASE}
echo ${METPLUS_DATA}

METPLUS_BUILD_BASE is the full path to the METplus installation (/path/to/METplus-X.Y)

MET_BUILD_BASE is the full path to the MET installation (/path/to/met-X.Y)

METPLUS_DATA is the location of the sample test data directory
Using The Software
For this tutorial we'll use the METplus v3.0 release, which has been installed in a common location. We will configure METplus to run the met-9.0 software, which has also been
installed in a common location. Fo each exercise, we will copy the relevant parameter files from the shared METplus location to your own directory so you can modify them
without changing the shared installation settings.
Please use the following instructions to setup METplus on your tutorial machine:

1. Create a user_config and output directories to store METplus configuration files you will create:

mkdir -p ${METPLUS_TUTORIAL_DIR}/user_config ${METPLUS_TUTORIAL_DIR}/output

2. List the contents of the metplus_tutorial directory:

1s -1 ${METPLUS_TUTORIAL_DIR}

Page 6 of 75

output/

tutorial.conf
TutorialSetup.hera.sh
user_config/

Sample Data Input and Location of Output

The Sample Input Data used to run the examples in this tutorial already exist in a shared location, which is specified in TutorialSetup.[machine].sh.

When running METplus wrapper use cases, all output is placed in the ${METPLUS_TUTORIAL_DIR}/output directory. User-modified METplus config files may further
specify subdirectories in the output directory.

When running MET tools on the command line, all output will be written to ${METPLUS_TUTORIAL_DIR}/output/met_output

Information: MET and METplus Source Code

While installing your own copy of MET and METplus is beyond the scope of this tutorial, you can find the code tarballs and release notes here. A list of Existing builds covering
several NCAR and NOAA machines is here.

If you find the Existing Build entries for dakota (NCAR machines) and hera (NOAA machines), those correspond to the TutorialSetup.hera.sh and TutorialSetup.dakota.sh scripts.

admin Mon, 06/24/2019 - 15:59

METplus: Directories and Configuration Files - Overview

METplus: Directories and Configuration Files - Overview

METplus directory structure

Brief description and overview of the METplus/ directory structure.
ls ${METPLUS_BUILD_BASE}

build_components/ - files for downloading and building MET (not used here)

docs/ - Sphinx RST files used to generate the User's Guide.

internal_tests/ - for engineering tests

manage_externals/ - downloading additional software to run METplus (not used here)
parm/ - where METplus default config files and use case config files live

sorc/ - executables and doxygen documentation build system

ush/ - METplus python scripts

METplus default configuration files
Look inside the directory ${METPLUS_BUILD_BASE}/parm

1s ${METPLUS_BUILD_BASE}/parm
Look at the METplus default configuration files:

1s ${METPLUS_BUILD_BASE}/parm/metplus_config

The METplus default configuration files metplus_system.conf, metplus_data.conf, metplus_runtime.conf, and metplus_logging.conf are always read by default and in the
order shown. Any additional configuration files passed in on the command line are then processed in the order in which they are specified. This allows for each successive conf
file the ability to override variables defined in any previously processed conf files. It also allows for defining and setting up conf files from a general (settings used by all use
cases, ie. MET install dir) to more specific (Plot type when running track and intensity plotter) structure. The idea is to created a hiearchy of conf files that is easier to maintain,
read, and manage. It is important to note, running METplus creates a single configuration file, which can be viewed to understand the result of all the conf file processing.

When METplus is run, the final metplus conf file is generated here:
metplus_runtime.conf:METPLUS_CONF={OUTPUT_BASE}/metplus_final.conf
Use this file to see the result of all the conf file processing, this can be very helpful when troubleshooting,

NOTE: The syntax for METplus configuration files MUST include a "[section]" header with the variable names and values on subsequent lines.

The metplus_config directory - there are four config files:

1. metplus_system.conf
o contains "[dir]" and "[exe]" to set directory and executable paths
o any information specific to host machine
2. metplus_data.conf
o Sample data or Model input location
o filename templates and regex for filenames
3. metplus_runtime.conf
o contains "[config]" section
o var lists, stat lists, configurations, process list
o anything else needed at runtime
4. metplus_logging.conf

Page 7 of 75

~LUIILGIES [LUIIIE] STLUULT UL STLULIE VAT TUUD IUBEINE LUTITIEUL AUV UPUUL D,

The met_config directory (in ${METPLUS_BUILD_BASE}/parm) - this contains "wrapped" MET configuration files that are used by calls to MET via the METplus wrappers. The
wrappers set environment variables that control settings in the MET configuration files through these environment variables. See
https://ncar.github.io/METplus/Users Guide/met tool wrapper/GridStat/GridStat.html#met-configuration for more information.

METplus Use Cases

The use_cases directory - this is where the use cases you will be running exist. Under the use_cases directory are two subdirectories: met_tool_wrapper and
model_applications. The met_tool_wrapper directory contains use cases that run a single METplus wrapper. They are a good starting point to see how the wrapper scripts
generate commands that run the MET tools. The model_applications directory contains more complex use cases that often run multiple wrappers and demonstrate real
evaluations from users.

MET Tool Wrapper Use Cases
Look at the MET Tool Wrapper Use Cases
cd ${METPLUS_BUILD BASE}/parm/use_cases/met_tool_wrapper

The met_tool_wrapper use case files are organized into subdirectories by wrapper, e.g. Example or GridStat. They contain METplus configuration files (ending with .conf) and
Sphinx documentation files (ending with .py). If a MET tool that is called by a use case uses a MET configuration file, the file used for the met_tool_wrapper use cases is found in
parm/met_config.

met_tool_wrapper/Example - directory

met_tool_wrapper/Example/Example.conf - use case configuration file
met_tool_wrapper/Example/Example.py - Sphinx documentation file

met_tool_wrapper/GridStat - directory

met_tool_wrapper/GridStat/GridStat.conf - use case configuration file
met_tool_wrapper/GridStat/GridStat.py - Sphinx documentation file
parm/met_config/GridStatConfig_wrapped - MET configuration file used in the GridStat.conf use case

Model Application Use Cases
Look at the Model Application use cases
cd ${METPLUS_BUILD_ BASE}/parm/use_cases/model_applications

The model_applications use case files are organized in subdirectories by category, e.g. precipitation or convection_allowing_models. They contain METplus configuration
files (ending with .conf) and Sphinx documentation files (ending with .py). If a MET tool that is called by a use case uses a MET configuration file, the file used for the
model_applications use cases are also found in this directory. The follow the naming format <MET-tool-name>Config_<description>, i.e. GridStatConfig_PROB.

model_applications/precipitation - directory
model_applications/precipitation/GridStat_fcstGFS_obs_CCPA_GRIB.conf - use case configuration file
model_applications/precipitation/GridStat_fcstGFS_obs_CCPA_GRIB.py - Sphinx documentation file
model_applications/precipitation/GridStatConfig_precip - MET configuration file

Example Use Case
Let's look at the Example use case, Example.conf, under met_tool_wrapper/Example
less ${METPLUS_BUILD_BASE}/parm/use_cases/met_tool_wrapper/Example/Example.conf

Notice that there are dictionary sections, denoted by, e.g., [config], [dir], and [filename_template]. Contained in each section are variables, denoted in ALL_CAPS. These can be
modified as needed. In the METplus system, unmodified config files remain in the subdirectories of ${MET_BUILD_BASE}, while user-modified files are stored in
${METPLUS_TUTORIAL_DIR}/user_config.

No changes are needed in Example.conf. Close it and continue to the next page.

Unless otherwise indicated, all directories are relative to your ${METPLUS_TUTORIAL_DIR} directory.

admin Mon, 06/24/2019 - 15:59

METplus: User Configuration Settings

METplus: User Configuration Settings

Modify your Tutorial/User conf files

In this section you will modify the configuration files that will be read for each call to METplus.

The paths in this practical session guide assume:
* You have created a user_config directory in your ${METPLUS_TUTORIAL_DIR} directory
® You have added the shared METplus ush directory to your PATH (done in TutorialSetup.hera.sh)
* You are using the shared installation of MET.

If not, then you need to adjust accordingly.

1. Change to the ${METPLUS_TUTORIAL_DIR} directory. Try running master_metplus.py. You should see the usage statement output to the screen.

Page 8 of 75

master_metplus.py

The METplus python script master_metplus.py can be run from anywhere, but for consistency, we will change to ${METPLUS_TUTORIAL_DIR} so that all the subdirectories
including user_config and output are below the working directory.

2. Now try to pass in the example.conf configuration file found in your parm directory under use_cases/met_too_wrapper/Examples

master_metplus.py \
-c¢ ${METPLUS_BUILD_BASE}/parm/use_cases/met_tool_wrapper/Example/Example.conf

You should see output like this:

04/02 15:40:18.305 METplus (met_util.py:79) INFO: Starting METplus v3.0

04/02 15:40:18.306 metplus (config_metplus.py:77) INFO: Starting METplus configuration setup.

04/02 15:40:18.310 metplus (config_launcher.py:200) INFO: /contrib/METplus/METplus-3.0/parm/metplus_config/metplus_system.conf: Parsed this file

04/02 15:40:18.312 metplus (config_launcher.py:200) INFO: /contrib/METplus/METplus-3.0/parm/metplus_config/metplus_data.conf: Parsed this file

04/02 15:40:18.313 metplus (config_launcher.py:200) INFO: /contrib/METplus/METplus-3.0/parm/metplus_config/metplus_runtime.conf: Parsed this file

04/02 15:40:18.315 metplus (config_launcher.py:200) INFO: /contrib/METplus/METplus-3.0/parm/metplus_config/metplus_logging.conf: Parsed this file

04/02 15:40:18.315 metplus (config_launcher.py:200) INFO: /contrib/METplus/METplus-3.0/parm/use_cases/met_tool_wrapper/Example/Example.conf: Parsed this file
04/02 15:40:18.315 metplus (config_launcher.py:567) ERROR: Directory OUTPUT_BASE is set to or contains /path/to. Please set this to a valid location

04/02 15:40:18Z run-METplus-metplus: ERROR: Directory OUTPUT_BASE is set to or contains /path/to. Please set this to a valid location

Note it ends with an error message stating that OUTPUT_BASE was not set correctly. You will need to configure the METplus wrappers to be able to run a use case.

The values in the default metplus_system.conf, metplus_data.conf, metplus_runtime.conf, and metplus_logging.conf configuration files are read in first when you run
master_metplus.py. The settings in these files can be overridden in the use case conf files and/or a user's custom configuration file.

Some variables in the system conf are set to '/path/to' and must be overridden to run METplus, such as OUTPUT_BASE in metplus_system.conf.
3. View the metplus_system.conf file and notice how OUTPUT_BASE = /path/to . This implies it is REQUIRED to be overridden to a valid path.

less ${METPLUS_BUILD_BASE}/parm/metplus_config/metplus_system.conf

Note: The default installation of METplus has /path/to values for MET_INSTALL_DIR and INPUT_BASE. These values were set in the shared METplus configuration when it was
installed. This was done because these settings will likely be set to the same values for all users.

4. View the tutorial configuration files in your ${METPLUS_TUTORIAL_DIR} directory.
less ${METPLUS_TUTORIAL_DIR}/tutorial.conf

The [dir] INPUT_BASE, OUTPUT_BASE, and MET_INSTALL_DIR variables must all be set to run METplus.

Note: A METplus conf file is not a shell script. You CAN NOT refer to environment variables as you would in a shell script or command prompt, i.e. ${HOME}. Instead, you must
reference the environment variable $HOME as {ENV[HOME]}

Reminder: Make certain to maintain the KEY = VALUE pairs under their respective current [sections] in the conf file.

NOTE: When installing METplus, you will need to set the full path to the non-MET executables in the metplus_system.conf file if they are not found in the user's path. This step
was completed when METplus was installed in the shared location.

Creating user conf files
You can create additional configuration files to be read by the METplus wrappers to override variables.

Reminder: When adding variables to be overridden, make sure to place the variable under the appropriate section.

For example, [config], [dir], [exe]. If necessary, refer to the default appropriate ${METPLUS_BUILD_BASE}/parm/metplus_config conf files to determine the [section] that
corresponds to the variable you are overriding. The value set will be the last one in the sequence of configuration files. See output/metplus_final.conf to see what values
were used for a given METplus run.

1. Create a new configuration file in your user_config directory and override the [dir] OUTPUT_BASE variable to point to a different location.

cd ${METPLUS_TUTORIAL_DIR}/user_config
vi change_output_base.conf

Copy and paste the following text into the file and save it.

[dir]
OUTPUT_BASE = {ENV[METPLUS_TUTORIAL_DIR]}/output_changed

We will test out using these configurations on the next page.

admin Mon, 06/24/2019 - 16:00

METplus: How to Run

METplus: How to Run
Running METplus
Running METplus involves invoking the python script master_metplus.py followed by a list of configuration files using the -c option for each additional conf file.

Reminder: The default set of conf files are always read in and processed in the following order;
metplus_system.conf, metplus_data.conf, metplus_runtime.conf, metplus_logging.conf.

Page 9 of 75

TS A1 ISYUII©U LU PTHIUITTT G USSIUL LA, 1L W ZTIHSIALE A1 S1HEUL SLALSTHSHIL I SUTTITU TG 15 AT,

1. Review the example.conf configuration file
less ${METPLUS_BUILD_BASE}/parm/use_cases/met_tool_wrapper/Example/Example.conf

2. Call the master_metplus.py script again, this time passing in the Example.conf configuration file and the tutorial.conf configuration file with the -c command line option.
You should see logs output to the screen.

master_metplus.py \

-c ${METPLUS_TUTORIAL_DIR}/tutorial.conf \
-c¢ ${METPLUS_BUILD_BASE}/parm/use_cases/met_tool_wrapper/Example/Example.conf

Note: The environment variable METPLUS_BUILD_BASE determines where to look for paths to use_case files. The METPLUS_TUTORIAL_DIR environment variable determines
where to look for user-modified config files.

3. Check the directory specified by the OUTPUT_BASE configuration variable. You should see that files and sub-directories have been created

1s ${METPLUS_TUTORIAL_DIR}/output

4. Review the master log file to see what was run. Compare the log output to the example.conf configuration file to see how they correspond to each other. The log file will
have today's date in the filename. Since METplus was configured to list today's timestamp in YYYYMMDDHHMMSS format, each run of METplus will generate a separate
log file. List all of the log files and view the latest master_metplus log file:

cat < “1s -1 ${METPLUS_TUTORIAL_DIR}/output/logs/master_metplus.log.*"

You will notice that METplus ran for 5 valid times, processing 4 forecast hours for each valid time. For each run time, it ran twice using two different input templates to find files.

metplus INFO:
metplus INFO: * Running METplus

metplus INFO: * at valid time: 201702010000
metplus INFO:
metplus.Example INFO: Running ExampleWrapper at valid time 20170201000000

metplus.Example INFO: Input directory is /dir/containing/example/data

metplus.Example INFO: Input template is {init?fmt=%Y%m%d}/file_{init?fmt=%Y%m%d}_{init?fmt=%2H}_F{lead?fmt=%3H}.{custom?fmt=%s}
metplus.Example INFO: Processing custom string: ext

metplus.Example INFO: Processing forecast lead 3 hours initialized at 2017-01-31 21Z and valid at 2017-02-01 00Z

metplus.Example INFO: Looking in input directory for file: 20170131/file_20170131_21_F003.ext

metplus.Example INFO: Processing custom string: nc

metplus.Example INFO: Processing forecast lead 3 hours initialized at 2017-01-31 21Z and valid at 2017-02-01 00Z

metplus.Example INFO: Looking in input directory for file: 20170131/file_20170131_21_F003.nc

metplus.Example INFO: Processing custom string: ext

metplus.Example INFO: Processing forecast lead 6 hours initialized at 2017-01-31 18Z and valid at 2017-02-01 00Z

metplus.Example INFO: Looking in input directory for file: 20170131/file_20170131_18_F006.ext

metplus.Example INFO: Processing custom string: nc

metplus.Example INFO: Processing forecast lead 6 hours initialized at 2017-01-31 18Z and valid at 2017-02-01 00Z

metplus.Example INFO: Looking in input directory for file: 20170131/file_20170131_18_F006.nc

metplus.Example INFO: Processing custom string: ext

metplus.Example INFO: Processing forecast lead 9 hours initialized at 2017-01-31 15Z and valid at 2017-02-01 00Z

metplus.Example INFO: Looking in input directory for file: 20170131/file_20170131_15_F009.ext

metplus.Example INFO: Processing custom string: nc

metplus.Example INFO: Processing forecast lead 9 hours initialized at 2017-01-31 15Z and valid at 2017-02-01 00Z

metplus.Example INFO: Looking in input directory for file: 20170131/file_20170131_15_F009.nc

metplus.Example INFO: Processing custom string: ext

metplus.Example INFO: Processing forecast lead 12 hours initialized at 2017-01-31 12Z and valid at 2017-02-01 00Z

metplus.Example INFO: Looking in input directory for file: 20170131/file_20170131_12_F012.ext

metplus.Example INFO: Processing custom string: nc

metplus.Example INFO: Processing forecast lead 12 hours initialized at 2017-01-31 12Z and valid at 2017-02-01 00Z

metplus.Example INFO: Looking in input directory for file: 20170131/file_20170131_12_F012.nc

metplus INFO: *** ke ko kA ok

metplus INFO: * Running METplus

metplus INFO: * at valid time: 201702010600

metplus INFO: *** SRR AR AR IR T SRR AR AT I

5. Now run METplus passing in the Example.conf from the previous run AND your newly created configuration file that changes the value of OUTPUT_BASE.

master_metplus.py \

-¢ ${METPLUS_TUTORIAL_DIR}/tutorial.conf \

-c¢ ${METPLUS_BUILD_BASE}/parm/use_cases/met_tool_wrapper/Example/Example.conf \
-¢ ${METPLUS_TUTORIAL_DIR}/user_config/change_output_base.conf

6. Check the directory specified by the OUTPUT_BASE configuration variable that you set in the change_output_base.conf configuration file. You should see that files and
sub-directories have been created in the new location.

1s ${METPLUS_TUTORIAL_DIR}/output_changed

Remember: Additional conf files are processed after the metplus_config files in the order specified on the command line. OUTPUT_BASE was set in tutorial.conf and then
overridden in user_config/change_output_base.conf
Order matters, since each successive conf file will override any variable defined in a previous conf file.

Note: The processing order allows for structuring your conf files from general (variables shared-by-all) to specific (variables shared-by-few).
Always call tutorial.conf first.

admin Mon, 06/24/2019 - 16:04

Page 10 of 75

MET Tool: PCP-Combine

We now shift to a discussion of the MET PCP-Combine tool and will practice running it directly on the command line. Later in this session, we will run PCP-Combine as part of a
METplus use case.

PCP-Combine Functionality

The PCP-Combine tool is used (if needed) to add, subtract, or sum accumulated precipitation from several gridded data files into a single NetCDF file containing the desired
accumulation period. Its NetCDF output may be used as input to the MET statistics tools. PCP-Combine may be configured to combine any gridded data field you'd like.
However, all gridded data files being combined must have already been placed on a common grid. The copygb utility is recommended for re-gridding GRIB files. In addition, the
PCP-Combine tool will only sum model files with the same initialization time unless it is configured to ignore the initialization time.

PCP-Combine Usage
View the usage statement for PCP-Combine by simply typing the following:

pcp_combine

Usage:
pcp_combine

[[-sum] sum_args] | [-add input_files] | [-subtract

input_files] | [-derive stat_list input_files]

(Note: "|" means "or")
Precipitation from multiple files containing the same accumulation interval should be summed
up using the arguments provided.
Data from one or more files should be added together where the accumulation interval is
specified separately for each input file.
-subtract input_files Data from exactly two files should be subtracted.
The comma-separated list of statistics in "stat_list" (sum, min, max, range, mean, stdev,
vld_count) should be derived using data from one or more files.

[-sum] sum_args

-add input files

-derive stat_list input_files

out_file Output NetCDF file to be written.

[-field string] Overrides the default use of accumulated precipitation (optional).
[-name list] Overrides the default NetCDF variable name(s) to be written (optional).
[-log file] Outputs log messages to the specified file

[-v level] Level of logging

[-compress level] NetCDF file compression

Use the -sum, -add, -subtract, or -derive command line option to indicate the operation to be performed. Each operation has its own set of required arguments.

admin Mon, 06/24/2019 - 16:05

PCP-Combine Tool: Run Sum Command

PCP-Combine Tool: Run Sum Command
Since PCP-Combine performs a simple operation and reformatting step, no configuration file is needed.
1. Start by making an output directory for PCP-Combine and changing directories:

mkdir -p ${METPLUS_TUTORIAL_DIR}/output/met_output/pcp_combine
cd ${METPLUS_TUTORIAL_DIR}/output/met_output/pcp_combine

2. Now let's run PCP-Combine twice using some sample data that's included with the MET tarball:

pcp_combine \

-sum 20050807_000000 3 20050807_120000 12 \
sample_fcst_12L_2005080712V_12A.nc \

-pcpdir ${METPLUS_DATA}/met_test/data/sample_fcst/2005080700

pcp_combine \

-sum 00000000_000000 1 20050807_120000 12 \
sample_obs_121L_2005680712V_12A.nc \

-pcpdir ${METPLUS_DATA}/met_test/data/sample_obs/ST2ml

The "\" symbols in the commands above are used for ease of reading. They are line continuation markers enabling us to spread a long command line across multiple lines. They
should be followed immediately by "Enter". You may copy and paste the command line OR type in the entire line with or without the "\".

Both commands run the sum command which searches the contents of the -pcpdir directory for the data required to create the requested accmululation interval.

In the first command, PCP-Combine summed up 4 3-hourly accumulation forecast files into a single 12-hour accumulation forecast. In the second command, PCP-Combine
summed up 12 1-hourly accumulation observation files into a single 12-hour accumulation observation. PCP-Combine performs these tasks very quickly.

We'll use these PCP-Combine output files as input for Grid-Stat. So make sure that these commands have run successfully!

admin Mon, 06/24/2019 - 16:13

PCP-Combine Tool: Output

Page 11 of 75

When PCP-Combine is finished, you may view the output NetCDF files it wrote using the ncdump and ncview utilities. Run the following commands to view contents of the
NetCDF files:

ncview sample_fcst_12L_2005080712V_12A.nc &
ncview sample_obs_12L_2005080712V_12A.nc &

ncdump -h sample_fcst_12L_2005080712V_12A.nc
ncdump -h sample_obs_12L_2005080712V_12A.nc

The ncview windows display plots of the precipitation data in these files. The output of ncdump indicates that the gridded fields are named APCP_12, the GRIB code abbreviation
for accumulated precipitation. The accumulation interval is 12 hours for both the forecast (3-hourly * 4 files = 12 hours) and the observation (1-hourly * 12 files = 12 hours).

Note, if ncview is not found when you run it on your system, you may need to load it first. For example, on hera, you can use this command:

module load ncview

Plot-Data-Plane Tool

The Plot-Data-Plane tool can be run to visualize any gridded data that the MET tools can read. It is a very helpful utility for making sure that MET can read data from your file,
orient it correctly, and plot it at the correct spot on the earth. When using new gridded data in MET, it's a great idea to run it through Plot-Data-Plane first:

plot_data_plane \
sample_fcst_12L_2005080712V_12A.nc \

sample_fcst_12L_2005080712V_12A.ps \
'name="APCP_12"; level="(*,*)";"

gv sample_fcst_12L_2005080712V_12A.ps &

Ghostview (gv) can take a little while before it displays. If you don't have gv on your computer, try using display, or any tool that can visualize PostScript files, e.g.:
display sample_fcst_12L_2005080712V_12A.ps &

Another option is to create a PNG file from the PS file, also rotating it to appear the right way:

convert -rotate 90 sample_fcst_12L_2005080712V_12A.ps \
sample_fcst_12L_2005080712V_12A.png display sample_fcst_12L_2005080712V_12A.png

Next try re-running the command list above, but add the convert(x)=x/25.4; function to the config string (Hint: after the level setting and ; but before the last closing tick) to change
units from millimeters to inches. What happened to the values in the colorbar?

Now, try re-running again, but add the censor_thresh=I1t1.0; censor_val=0.0; options to the config string to reset any data values less 1.0 to a value of 0.0. How has your plot
changed?

The convert(x) and censor_thresh/censor_val options can be used in config strings and MET config files to transform your data in simple ways.

admin Mon, 06/24/2019 - 16:13

PCP-Combine Tool: Add and Subtract Commands

PCP-Combine Tool: Add and Subtract Commands

We have run examples of the PCP-Combine -sum command, but the tool also supports the -add, -subtract, and -derive commands. While the -sum command defines a
directory to be searched, for -add, -subtract, and -derive we tell PCP-Combine exactly which files to read and what data to process. The following command adds together 3-
hourly precipitation from 4 forecast files, just like we did in the previous step with the -sum command:

pcp_combine -add \
${METPLUS_DATA}/met_test/data/sample_fcst/2005080700/wrfprs_rucl3_03.tm0O_G212 03 \
${METPLUS_DATA}/met_test/data/sample_fcst/2005080700/wrfprs_rucl3_06.tm06_G6212 03 \
${METPLUS_DATA}/met_test/data/sample_fcst/2005080700/wrfprs_rucl3_09.tm06_6212 03 \
${METPLUS_DATA}/met_test/data/sample_fcst/2005080700/wrfprs_rucl3_12.tm0O_G212 03 \
add_APCP_12.nc

By default, PCP-Combine looks for accumulated precipitation, and the 03 tells it to look for 3-hourly accumulations. However, that 03 string can be replaced with a configuration
string describing the data to be processed, which doesn't have to be accumulated precipation. The configuration string should be enclosed in single quotes. Below, we add
together the U and V components of 10-meter wind from the same input file. You would not typically want to do this, but this demonstrates the functionality. We also use the -
name command line option to define a descriptive output NetCDF variable name:

pcp_combine -add \

${METPLUS_DATA}/met_test/data/sample_fcst/2005080700/wrfprs_rucl3_03.tm06_G212 'name="UGRD"; level="Z10";'
${METPLUS_DATA}/met_test/data/sample_fcst/2005080700/wrfprs_rucl3_03.tmOO_G212 'name="VGRD"; level="7Z10";'
add_WINDS.nc \

-name UGRD_PLUS_VGRD

\
\

While the -add command can be run on one or more input files, the -subtract command requires exactly two. Let's rerun the wind example from above but do a subtraction
instead:

pcp_combine -subtract \

${METPLUS_DATA}/met_test/data/sample_fcst/2005080700/wrfprs_rucl3_03.tm06_G212 'name="UGRD"; level="Z18";' \
${METPLUS_DATA}/met_test/data/sample_fcst/2005080700/wrfprs_rucl3_03.tm06_G212 'name="VGRD"; level="Z10";' \
subtract_WINDS.nc \

-name UGRD_MINUS_VGRD

Now run Plot-Data-Plane to visualize this output. Use the -plot_range option to specify a the desired plotting range, the -title option to add a title, and the -color_table option to
switch from the default color table to one that's good for positive and negative values:

Page 12 of 75

SUDLIacL_WINUD.MC

subtract_WINDS.ps \

'name="UGRD_MINUS_VGRD"; level="(*,*)";' \

-plot_range -15 15 \

-title "10-meter UGRD minus VGRD" \

-color_table ${MET_BUILD_BASE}/share/met/colortables/NCL_colortables/posneg_2.ctable

Now view the results:

gv subtract_WINDS.ps &

admin Mon, 06/24/2019 - 16:14

PCP-Combine Tool: Derive Command

PCP-Combine Tool: Derive Command

While the PCP-Combine -add and -subtract commands compute exactly one output field of data, the -derive command can compute multiple output fields in a single run. This
command reads data from one or more input files and derives the output fields requested on the command line (sum, min, max, range, mean, stdev, vid_count).

Run the following command to derive several summary metrics for both the 10-meter U and V wind components:

pcp_combine -derive min,max,mean,stdev \
${METPLUS_DATA}/met_test/data/sample_fcst/2005080700/wrfprs_rucl3_*.tm00_G212 \
-field 'name="UGRD"; level="Z710";' \

-field 'name="VGRD"; level="Z10";' \

derive_min_max_mean_stdev_WINDS.nc

In the above example, we used a wildcard to list multiple input file names. And we used the -field command line option twice to specify two input fields. For each input field,
PCP-Combine loops over the input files, derives the requested metrics, and writes them to the output NetCDF file. Run ncview to visualize this output:

ncview derive_min_max_mean_stdev_WINDS.nc &

This output file contains 8 variables: 2 input fields * 4 metrics. Note the output variable names the tool chose. You can still override those names using the -name command
line argument, but you would have to specify a comma-separated list of 8 names, one for each output variable.

johnhg Tue, 07/23/2019 - 17:13

MET Tool: Gen-Vx-Mask

MET Tool: Gen-Vx-Mask

Gen-Vx-Mask Functionality

The Gen-Vx-Mask tool may be run to speed up the execution time of the other MET tools. Gen-Vx-Mask defines a bitmap masking region for your domain. It takes as input a
gridded data file defining your domain and a second argument to define the area of interest (varies by masking type). It writes out a NetCDF file containing a bitmap for that
masking region. You can run Gen-Vx-Mask iteratively, passing its output back in as input, to define more complex masking regions.

You can then use the output of Gen-Vx-Mask to define masking regions in the MET statistics tools. While those tools can read ASCII lat/lon polyline files directly, they are able to

process the output of Gen-Vx-Mask much more quickly than the original polyline. The idea is to define your masking region once for your domain with Gen-Vx-Mask and apply
the output many times in the MET statistics tools.

Gen-Vx-Mask Usage
View the usage statement for Gen-Vx-Mask by simply typing the following:

gen_vx_mask

Usage: gen_vx_mask

input_file Gridded data file defining the domain

mask_file Defines the masking region and varies by -type

out_file Output NetCDF mask file to be written

[-type string] Masking type: poly, box, circle, track, grid, data, solar_alt, solar_azi, lat, lon, shape
[-input_field string] Define field from input_file for grid point initialization values, rather than 0.
[-mask_field string] Define field from mask_file for data masking.

[-complement, -union, -intersection, -symdiff] Set logic for combining input_field initialization values with the current mask values.
[-thresh string] Define threshold for circle, track, data, solar_alt, solar_azi, lat, and lon masking types.
[-height n, -width n] Define dimensions for box masking.

[-shapeno n] Define the index of the shape for shapefile masking.

[-value n] Output mask value to be written, rather than 1.

[-name str] Specifies the name to be used for the mask.

[-log file] Outputs log messages to the specified file

[-v level] Level of logging

[-compress level] NetCDF compression level

Page 13 of 75

admin Mon, 06/24/2019 - 16:06

Gen-Vx-Mask Tool: Run

Gen-Vx-Mask Tool: Run

Start by making an output directory for Gen-Vx-Mask and changing directories:

mkdir -p ${METPLUS_TUTORIAL_DIR}/output/met_output/gen_vx_mask
cd ${METPLUS_TUTORIAL_DIR}/output/met_output/gen_vx_mask

Since Gen-Vx-Mask performs a simple masking step, no configuration file is needed.

We'll run the Gen-Vx-Mask tool to apply a polyline for the CONUS (Contiguous United States) to our model domain. Run Gen-Vx-Mask on the command line using the following
command:

gen_vx_mask \
${METPLUS_DATA}/met_test/data/sample_obs/ST2ml/ST2m12005080712.6rb_G212 \
${MET_BUILD_BASE}/share/met/poly/CONUS.poly \

CONUS_mask.nc \
-v 2

Re-run using verbosity level 3 and look closely at the log messages. How many grid points were included in this mask?

Gen-Vx-Mask should run very quickly since the grid is coarse (185x129 points) and there are 244 lat/lon points in the CONUS polyline. The more you increase the grid resolution
and number of polyline points, the longer it will take to run. View the NetCDF bitmap file generated by executing the following command:

ncview CONUS_mask.nc &

Notice that the bitmap has a value of 1 inside the CONUS polyline and 0 everywhere else. We'll use the CONUS mask we just defined in the next step.
You could try running plot_data_plane to create a PostScript image of this masking region. Can you remember how?
Notice that there are several ways that gen_vx_mask can be run to define regions of interest, including the use of Shapefiles!

admin Mon, 06/24/2019 - 16:16

MET Tool: Grid-Stat

MET Tool: Grid-Stat

Grid-Stat Functionality

The Grid-Stat tool provides verification statistics for a matched forecast and observation grid. If the forecast and observation grids do not match, the regrid section of the
configuration file controls how the data can be interpolated to a common grid. All of the forecast gridpoints in each spatial verification region of interest are matched to
observation gridpoints. The matched gridpoints within each verification region are used to compute the verification statistics.

The output statistics generated by Grid-Stat include continuous partial sums and statistics, vector partial sums and statistics, categorical tables and statistics, probabilistic tables

and statistics, neighborhood statistics, and gradient statistics. The computation and output of these various statistics types is controlled by the output_flag in the configuration
file.

Grid-Stat Usage

View the usage statement for Grid-Stat by simply typing the following:
grid_stat

Usage: grid_stat

fest_file Input gridded forecast file containing the field(s) to be verified.
obs_file Input gridded observation file containing the verifying field(s).
config_file GridStatConfig file containing the desired configuration settings.
[-outdir path] Overrides the default output directory (optional).

[-log file] Outputs log messages to the specified file

[-v level] Level of logging (optional).

[-compress level] NetCDF compression level (optional).

The forecast and observation fields must be on the same grid. You can use copygb to regrid GRIB1 files, wgrib2 to regrid GRIB2 files, or the automated regridding within the
regrid section of the MET config files.

At a minimum, the input gridded fest_file, the input gridded obs_file, and the configuration config_file must be passed in on the command line.

admin Mon, 06/24/2019 - 16:06

Grid-Stat Tool: Configure

Grid-Stat Tool: Configure

Start by making an output directory for Grid-Stat and changing directories:

Page 14 of 75

CA I{MCIFLUD_TVIVURLIAL_VIK}/0OULPpUL/MEL_OQULPpUL/BII1a_bLdal

The behavior of Grid-Stat is controlled by the contents of the configuration file passed to it on the command line. The default Grid-Stat configuration file may be found in the
data/config/GridStatConfig default file. Prior to modifying the configuration file, users are advised to make a copy of the default:

cp ${MET_BUILD_BASE}/share/met/config/GridStatConfig_default GridStatConfig_tutorial
Open up the GridStatConfig_tutorial file for editing with your preferred text editor.
vi GridStatConfig_tutorial

The configurable items for Grid-Stat are used to specify how the verification is to be performed. The configurable items include specifications for the following:

The forecast fields to be verified at the specified vertical level or accumulation interval

The threshold values to be applied

The areas over which to aggregate statistics - as predefined grids, configurable lat/lon polylines, or gridded data fields
The confidence interval methods to be used

The smoothing methods to be applied (as opposed to interpolation methods)

The types of verification methods to be used

You may find a complete description of the configurable items in section 8.3.2 of the MET User's Guide. Please take some time to review them.

For this tutorial, we'll configure Grid-Stat to verify the 12-hour accumulated precipitation output of PCP-Combine. We'll be using Grid-Stat to verify a single field using NetCDF
input for both the forecast and observation files. However, Grid-Stat may in general be used to verify an arbitrary number of fields. Edit the GridStatConfig_tutorial file as
follows:

e Set:
fest = {
field =[
{
name ="APCP_12";
level =["(**"];
cat_thresh =[>0.0, >=5.0,>=10.0];
}
1f
obs = fcst;

To verify the field of precipitation accumulated over 12 hours using the 3 thresholds specified.

e Set:

mask = {
grid =[1;
poly = ["../gen_vx_mask/CONUS_mask.nc",
"MET_BASE/poly/NWC.poly",
"MET_BASE/poly/SWC.poly",
"MET_BASE/poly/GRB.poly",
"MET_BASE/poly/SWD.poly",
"MET_BASE/poly/NMT.poly",
"MET_BASE/poly/SMT.poly",
"MET_BASE/poly/NPL.poly",
"MET_BASE/poly/SPL.poly",
"MET_BASE/poly/MDW.poly",
"MET_BASE/poly/LMV.poly",
"MET_BASE/poly/GMC.poly",
"MET_BASE/poly/APL.poly",
"MET_BASE/poly/NEC.poly",
"MET_BASE/poly/SEC.poly" J;
}

To accumulate statistics over the Continental United States (CONUS) and the 14 NCEP verification regions in the United States defined by the polylines specified. To see a
plot of these regions, execute the following command:

gv ${MET_BUILD_BASE}/share/met/poly/ncep_vx_regions.pdf &
¢ In the boot dictionary, set:
n_rep = 500;
To turn on the computation of bootstrap confidence intervals using 500 replicates.
e In the nbrhd dictionary, set:

width =[3,5]
cov_thresh =[>=0.5, >=0.75];

To define two neighborhood sizes and two fractional coverage field thresholds.

e Set:

output_flag = {
fho =NONE;
ctc =BOTH;

Page 15 of 75

Ll T oaNwiNL,

mcts = NONE;
cnt =BOTH;
sl112 =BOTH;
sal1l2 = NONE;
vI112 = NONE;
val1l2 = NONE;
pct = NONE;
pstd = NONE;
pjc =NONE;
prc =NONE;
eclv. = NONE;

nbrctc = BOTH;

nbrcts = BOTH;

nbrcnt = BOTH;

grad =BOTH;

dmap = NONE;
}

To compute contingency table counts (CTC), contingency table statistics (CTS), continuous statistics (CNT), scalar partial sums (SL1L2), neighborhood contingency table
counts (NBRCTC), neighborhood contingency table statistics (NBRCTS), and neighborhood continuous statistics (NBRCNT).

admin Mon, 06/24/2019 - 16:17

Grid-Stat Tool: Run

Grid-Stat Tool: Run

Next, run Grid-Stat on the command line using the following command:

grid_stat \
../pcp_combine/sample_fcst_12L_2005080712V_12A.nc \
../pcp_combine/sample_obs_12L_2005080712V_12A.nc \
GridStatConfig_tutorial \

-outdir . \

-v 2

Grid-Stat is now performing the verification tasks we requested in the configuration file. It should take a minute or two to run. The status messages written to the screen
indicate progress.
In this example, Grid-Stat performs several verification tasks in evaluating the 12-hour accumulated precipiation field:
e For continuous statistics and partial sums (CNT and SL1L2), 15 output lines each:
(1 field * 15 masking regions)
e For contingency table counts and statistics (CTC and CTS), 45 output lines each:
(1 field * 3 raw thresholds * 15 masking regions)
e For neighborhood methods (NBRCNT, NBRCTC, and NBRCTS), 90 output lines each:
(1 field * 3 raw thresholds * 2 neighborhood sizes * 15 masking regions)

To greatly increase the runtime performance of Grid-Stat, you could disable the computation of bootstrap confidence intervals in the configuration file. Edit the
GridStatConfig_tutorial file as follows:

vi GridStatConfig_tutorial
¢ In the boot dictionary, set:
n_rep =0;

To disable the computation of bootstrap confidence intervals.

Now, try rerunning the Grid-Stat command listed above and notice how much faster it runs. While bootstrap confidence intervals are nice to have, they take a long time to
compute, especially for gridded data.

admin Mon, 06/24/2019 - 16:17

Grid-Stat Tool: Output

Grid-Stat Tool: Output

The output of Grid-Stat is one or more ASCII files containing statistics summarizing the verification performed and a NetCDF file containing difference fields. In this example, the
output is written to the current directory, as we requested on the command line. It should now contain 10 Grid-Stat output files beginning with the grid_stat_ prefix, one each
for the CTC, CTS, CNT, SL1L2, GRAD, NBRCTC, NBRCTS, and NBRCNT ASClI files, a STAT file, and a NetCDF matched pairs file.

The format of the CTC, CTS, CNT, and SL1L2 ASClI files will be covered for the Point-Stat tool. The neighborhood method and gradient output are unique to the Grid-Stat tool.
e Rather than comparing forecast/observation values at individual grid points, the neighborhood method compares areas of forecast values to areas of observation values.
At each grid box, a fractional coverage value is computed for each field as the number of grid points within the neighborhood (centered on the current grid point) that
exceed the specified raw threshold value. The forecast/observation fractional coverage values are then compared rather than the raw values themselves.
¢ Gradient statistics are computed on the forecast and observation gradients in the X and Y directions.

Since the lines of data in these ASCII files are so long, we strongly recommend configuring your text editor to NOT use dynamic word wrapping. The files will be much easier to
read that way.

Page 16 of 75

ncview grid_stat_120000L_20050807_120000V_pairs.nc &

Click through the 2d vars variable names in the ncview window to see plots of the forecast, observation, and difference fields for each masking region. If you see a warning
message about the min/max values being zero, just click OK.

Now dump the NetCDF header:
ncdump -h grid_stat_120000L_20050807_120000V_pairs.nc
View the NetCDF header to see how the variable names are defined.

Notice how *MANY* variables there are, separate output for each of the masking regions defined. Try editing the config file again by setting apply_mask = FALSE; and gradient
= TRUE; in the nc_pairs_flag dictionary. Re-run Grid-Stat and inspect the output NetCDF file. What affect did these changes have?

admin Mon, 06/24/2019 - 16:18

METplus Motivation

METplus Motivation
We have now successfully run the PCP-Combine and Grid-Stat tools to verify 12-hourly accumulated preciptation for a single output time. We did the following steps:

e |dentified our forecast and observation datasets.
e Constructed PCP-Combine commands to put them into a common accumulation interval.
e Configured and ran Grid-Stat to compute our desired verification statistics.

Now that we've defined the logic for a single run, the next step would be writing a script to automate these steps for many model initializations and forecast lead times. Rather
than every MET user rewriting the same type of scripts, use METplus to automate these steps in a use case!

admin Mon, 06/24/2019 - 16:19

METplus Use Case: GridStat

METplus Use Case: GridStat
The GridStat use case utilizes the MET Grid-Stat tool.

Optional: Refer to the MET Users Guide for a description of the MET tools used in this use case.
Optional: Refer to the METplus Config Glossary section of the METplus Users Guide for a reference to METplus variables used in this use case.

Change to the ${METPLUS_TUTORIAL_DIR}
cd ${METPLUS_TUTORIAL_DIR}

1. Review the use case configuration file: GridStat.conf

Open the file and look at all of the configuration variables that are defined. This use-case shows a simple example of running Grid-Stat on 3-hour accumulated precipitation
forecasts from WRF to Stage Il quantitative precipitation estimates.

less ${METPLUS_BUILD_BASE}/parm/use_cases/met_tool_wrapper/GridStat/GridStat.conf

Note: Forecast and observation variables are referred to individually including reference to both the NAMES and LEVELS, which relate to .

Name of forecast variable 1

FCST_VAR1_NAME = APCP

List of levels to evaluate for forecast variable 1

A03 = 3 hour accumulation in GRIB file
FCST_VAR1_LEVELS = A03

Name of observation variable 1

OBS_VAR1_NAME = APCP_03

List of levels to evaluate for observation variable 1
(*,*) is NetCDF notation - must include quotes around these values!
must be the same length as FCST_VAR1_LEVELS
OBS_VAR1_LEVELS = "(**)"

Which relates to the following fields in the MET configuration file

fest = {
field = [
{
name ="APCP";
level = ["A03"];
}
5
}
obs ={
field = [
{
name = "APCP_03";
level = ["(*%)"J;

I3

Page 17 of 75

s
Also note: Paths in GridStat.conf may reference other config options defined in a different configuration files. For example:
FCST_GRID_STAT_INPUT_DIR = {INPUT_BASE}/met_test/data/sample_fcst

where INPUT_BASE which is set in the tutorial.conf configuration file. METplus config variables can reference other config variables even if they are defined in a config file that is
read afterwards.

2. Run the use case:

master_metplus.py \

-c¢ ${METPLUS_TUTORIAL_DIR}/tutorial.conf \

-c¢ ${METPLUS_BUILD_BASE}/parm/use_cases/met_tool_wrapper/GridStat/GridStat.conf

METplus is finished running when control returns to your terminal console and you see the following text:

INFO: METplus has successfully finished running.

3. Review the output files:
You should have output files in the following directories:

1s ${METPLUS_TUTORIAL_DIR}/output/met_tool_wrapper/GridStat/GridStat/2005080700

e grid_stat WRF_APCP_vs_MC_PCP_APCP_03_120000L_20050807_120000V_eclv.txt
e grid_stat WRF_APCP_vs_MC_PCP_APCP_03_120000L_20050807_120000V.stat

e grid_stat WRF_APCP_vs_MC_PCP_APCP_03_120000L_20050807_120000V_grad.txt

Take a look at some of the files to see what was generated. Beyond the .stat file, the Economic Cost/Loss Value (eclv) and Gradient (grad) line types were also written to
separate .txt files. If you inspect ${METPLUS_BUILD_BASE}/parm/met_config/GridStatConfig_wrapped, you will notice that the ctc and cts line type settings are "STAT" while
eclv and grad line types are set to "BOTH".

less

${METPLUS_TUTORIAL_DIR}/output/met_tool_wrapper/GridStat/GridStat/2005080700/grid_stat_WRF_APCP_vs_MC_PCP_APCP_03_120000L_200508607_1
20000V.stat

4. Review the log output:
Log files for this run are found in ${METPLUS_TUTORIAL_DIR}/logs. The filename contains a timestamp of the current day.
1s -1 ${METPLUS_TUTORIAL_DIR}/output/logs/master_metplus.log.*
5. Review the Final Configuration File
The final configuration file is called metplus_final.conf. This contains all of the configuration variables used in the run. It is found in the top level of [dir] OUTPUT_BASE.
less ${METPLUS_TUTORIAL_DIR}/output/metplus_final.conf

admin Mon, 06/24/2019 - 16:07

End of Practical Session 1: Additional Exercises

End of Practical Session 1: Additional Exercises
Congratulations! You have completed Session 1!
If you have extra time, you may want to try these additional MET exercises:

* Run Gen-Vx-Mask to create a mask for Eastern or Western United States using the polyline files in the data/poly directory. Re-run Grid-Stat using the output of Gen-Vx-
Mask.

e Run Gen-Vx-Mask to exercise all the other masking types available.

e Reconfigure and re-run Grid-Stat with the distance-map (dmap) dictionary defined, the dmap output line type enabled, and the distance_map flag is "TRUE" in the
nc_pairs_flag dictionary.

If you have extra time, you may want to try these additional METplus exercises. The answers are found on the next page.
EXERCISE 1.1: Run a Model_Application Use-Case
Instructions:

1. Explore the types of model_applications available

1s ${METPLUS_BUILD_BASE}/parm/use_cases/model_applications/*

Page 18 of 75

QI SAGIHTPIT LU LAl L UL 1S CUTIVET UV THUIUUED LIS LIVIL T7OLaUSULAIT T UUIS IS Y UE_UND 1y PU_LIINTIGLUIVEY | Y PSS QILEIU IULUE DL ST UIHTHAW.,

e.g. ${METPLUS_BUILD_BASE}/parm/use_cases/model_applications/medium_range/GridStat_fcstGFS_obsGFS_climoNCEP_MultiField.conf
is running Grid-Stat on GFS forecasts and GFS analysis files and using NCEP climatology to compute statistics for multiple fields.

2. Review the configuration file.

Note how the use of BOTH to specify the forecast field and observation/analysis field are configured the same. Also note how there are 4 fields specified at varying levels, which
will result in evaluation of 10 unique fields.

less ${METPLUS_BUILD_BASE}/parm/use_cases/model_applications/medium_range/GridStat_fcstGFS_obsGFS_c1imoNCEP_MultiField.conf

BOTH_VAR1_NAME = TMP
BOTH_VAR1_LEVELS = P850, P500, P250
BOTH_VAR2_NAME = UGRD
BOTH_VAR2_LEVELS = P850, P500, P250
BOTH_VAR3_NAME = VGRD
BOTH_VAR3_LEVELS = P850, P500, P250
BOTH_VAR4_NAME = PRMSL
BOTH_VAR4_LEVELS = Z0

3. Run master_metplus.py on this use-case

master_metplus.py \
-c ${METPLUS_TUTORIAL_DIR}/tutorial.conf \
-c ${METPLUS_BUILD_BASE}/parm/use_cases/model_applications/medium_range/GridStat_fcstGFS_obsGFS_climoNCEP_MultiField.conf

4. Inspect the output. Note metplus_final.conf indicates the subdirectories under ${METPLUS_TUTORIAL_DIR} where the data were written out.

EXERCISE 1.2: Add_RH - Add another field to grid_stat

Instructions: Modify the METplus configuration files to add relative humidity (RH) at pressure levels 500 and 250 (P500 and P250) to the output.
1. Copy the GridStat.conf configuration file and rename it to GridStat_add_rh.conf for this exercise.

cp ${METPLUS_BUILD_BASE}/parm/use_cases/model_applications/medium_range/GridStat_fcstGFS_obsGFS_climoNCEP_MultiField.conf
$ {METPLUS_TUTORIAL_DIR}/user_config/GridStat_add_rh.conf

2. Open GridStat_add_rh.conf with an editor and add the extra information.
vi ${METPLUS_TUTORIAL_DIR}/user_config/GridStat_add_rh.conf

Hint: The variables that you need to add must go under the [config] section.

You should also change OUTPUT_BASE to a new location so you can keep it separate from the other runs.

[dir]
OUTPUT_BASE = {ENV[METPLUS_TUTORIAL_DIR]}/output/exercises/add_rh

3. Rerun master_metplus passing in your new custom config file for this exercise

master_metplus.py \
-c¢ ${METPLUS_TUTORIAL_DIR}/tutorial.conf \
-¢ ${METPLUS_TUTORIAL_DIR}/user_config/GridStat_add_rh.conf

Recall that tutorial.conf sets the base directories while GridStat_add_rh.conf changes the output directory. tutorial.conf should always be called first.

You should see the relative humidity field appear in the log output from grid_stat.
1s -1 ${METPLUS_TUTORIAL_DIR}/output/exercises/add_rh/logs/master_metplus.log.*

Look for:

DEBUG 2: Processing RH/P500 versus RH/P500, for smoothing method NEAREST(1), over region FULL, using 10512 pairs.
DEBUG 2: Computing Scalar Partial Sums.

DEBUG 2: Processing RH/P500 versus RH/P500, for smoothing method NEAREST(1), over region NHX, using 3600 pairs.
DEBUG 2: Computing Scalar Partial Sums.

DEBUG 2: Processing RH/P500 versus RH/P500, for smoothing method NEAREST(1), over region SHX, using 3600 pairs.
DEBUG 2: Computing Scalar Partial Sums.

DEBUG 2: Processing RH/P500 versus RH/P500, for smoothing method NEAREST(1), over region TRO, using 2448 pairs.
DEBUG 2: Computing Scalar Partial Sums.

DEBUG 2: Processing RH/P500 versus RH/P500, for smoothing method NEAREST(1), over region PNA, using 1311 pairs.
DEBUG 2: Computing Scalar Partial Sums.

DEBUG 1: Regridding field RH/P250 to the verification grid.

DEBUG 1: Regridding field RH/P250 to the verification grid.

DEBUG 2:
DEBUG 2:
DEBUG 2:
DEBUG 2: Processing RH/P250 versus RH/P250, for smoothing method NEAREST(1), over region FULL, using 10512 pairs.
DEBUG 2: Computing Scalar Partial Sums.

DEBUG 2: Processing RH/P250 versus RH/P250, for smoothing method NEAREST(1), over region NHX, using 3600 pairs.
DEBUG 2: Computing Scalar Partial Sums.

Page 19 of 75

LLLUG 4. CUHIpULILE DLaian T aruan ouis,
DEBUG 2: Processing RH/P250 versus RH/P250, for smoothing method NEAREST(1), over region TRO, using 2448 pairs.
DEBUG 2: Computing Scalar Partial Sums.
DEBUG 2: Processing RH/P250 versus RH/P250, for smoothing method NEAREST(1), over region PNA, using 1311 pairs.
DEBUG 2: Computing Scalar Partial Sums.

Go to the next page for the solution to see if you were right!

EXERCISE 1.3: log_boost - Change the Logging Settings

Instructions: Modify the METplus configuration files to change the logging settings to see what is available.
1. Create a new custom configuration file and name it log_boost.conf for this exercise.
vi ${METPLUS_TUTORIAL_DIR}/user_config/log_boost.conf

Set OUTPUT_BASE to a new location so you can keep it separate from the other runs.

[dir]
OUTPUT_BASE = {ENV[METPLUS_TUTORIAL_DIR]}/output/exercises/log_boost

The sections at the bottom of this page describe different logging configurations you can change. Play around with changing these settings and see how it affects the log output.
You can refer to ${METPLUS_BUILD_BASE}/parm/metplus_config/metplus_logging.conf to see all possible configurations that affect logging.

2. Rerun the GridStat.conf use case passing in your new custom config file
master_metplus.py \
-¢ ${METPLUS_TUTORIAL_DIR}/tutorial.conf \

-c ${METPLUS_BUILD_BASE}/parm/use_cases/met_tool_wrapper/GridStat/GridStat.conf \
-¢ ${METPLUS_TUTORIAL_DIR}/user_config/log_boost.conf

3. Review the log output to see how things have changed from these settings

e.g. less ${METPLUS_TUTORIAL_DIR}/output/exercises/log_boost/logs/master_metplus.log.YYYYMMDDHHMMSS

For example, override LOG_METPLUS and add more text to the filename (or even use another METplus config variable).
Log Configurations
Separate METplus Logs from MET Logs

Setting [config] LOG_MET_OUTPUT_TO_METPLUS to no will create a separate log file for each MET application.

[config]
LOG_MET_OUTPUT_TO_METPLUS = no

For this use case, two log files will be created: master_metplus.log.YYYYMMDDHHMMSS and grid_stat.log.YYYYMMDDHHMMSS. If you don't see two files, make sure you put the
LOG_MET_OUTPUT_TO_METPLUS setting AFTER a line with [config] on it.

Increase Log Output Level for MET Applications

Setting [config] LOG_MET_VERBOSITY to a number between 1 and 10 will change the logging level for the MET applications logs. Increasing the number results in more log
output. The default value is 2.

[config]
LOG_MET_VERBOSITY = 3

You can also set [config] LOG_GRID_STAT_VERBOSITY to change the logging level for the GridStat log only. If set, the wrapper-specific value takes precedence over the generic
LOG_MET_VERBOSITY value.

[config]
LOG_GRID_STAT_VERBOSITY =5

Increase Log Output Level for METplus Wrappers

Setting [config] LOG_LEVEL will change the logging level for the METplus logs. Valid values are NOTSET, DEBUG, INFO, WARNING, ERROR, CRITICAL. Logs will contain all
information of the desired logging level and higher. The default value is INFO.

[config]
LOG_LEVEL = DEBUG

When an error occurs, boosting the log level to DEBUG will provide you with more information to help resolve the issue.
Change Format of Time in Logfile Names

Setting LOG_TIMESTAMP_TEMPLATE to %Y%m%d will remove hours, minutes, and seconds from the log file time. The default value is %Y%m%d%H%M%S which results in the
format YYYYMMDDHHMMSS.

Page 20 of 75

LOG_TIMESTAMP_TEMPLATE = %Y%m%d

For this use case, the log files will have the format: master_metplus.log.YYYYMMDD
Use Time of Data Instead of Current Time

Setting LOG_TIMESTAMP_USE_DATATIME to yes will use the first time of your data instead of the current time.

[config]
LOG_TIMESTAMP_USE_DATATIME = yes

For this use case, INIT_BEG = 2005080700, so the log files will have the format: master_metplus.log.20050807 instead of using today's date (if LOG_TIMESTAMP_TEMPLATE =
%Y%m%d)

admin Mon, 06/24/2019 - 16:08

Answers to Exercises from Session 1

Answers to Exercises from Session 1

Answers to Exercises from Session 1

These are the answers to the exercises from the previous page. Feel free to ask a MET representative if you have any questions!

ANSWER 1.1: add_rh - Add another field to grid_stat

Instructions: Modify the METplus configuration files to add relative humidity (RH) at pressure levels 500 and 250 (P500 and P250) to the output.

Answer: In the GridStat_add_rh.conf param file, add the following variables to the [config] section.

BOTH_VAR5_NAME = RH
BOTH_VAR5_LEVELS = P500, P250

cindyhg Tue, 06/25/2019 - 11:44

Session 2: Grid-to-Obs

Session 2: Grid-to-Obs

METplus Practical Session 2

During this practical session, you will run the tools indicated below:

Page 21 of 75

You may navigate through this tutorial by following the links at the bottom of each page or by using the menu navigation.

Since you already set up your runtime enviroment in Session 1, you should be ready to go! To be sure, run through the following instructions to check that your environment is
set correctly.

Prerequisites: Verify Environment is Set Correctly

Before running these instructions, you will need to ensure that you have a few environment variables set up correctly. If they are not set correctly, these instructions will not
work properly.

1. Check that you have METPLUS_TUTORIAL_DIR set correctly:

echo ${METPLUS_TUTORIAL_DIR}
1s ${METPLUS_TUTORIAL_DIR}

If you don't see a path in your user directory output to the screen, set this environment variable in your user profile before continuing.

Page 22 of 75

2. Check that you have METPLUS_BUILD_BASE, MET_BUILD_BASE, and METPLUS_DATA set correctly:
echo ${METPLUS_BUILD_BASE}

echo ${MET_BUILD_BASE}

echo ${METPLUS_DATA}

1s ${METPLUS_BUILD_BASE}

1s ${MET_BUILD_BASE}

1s ${METPLUS_DATA}

If any of these variables are not set, please set them. They will be referenced throughout the tutorial. You can do this by sourcing the appropriate TutorialSetup.
[hera/bash/cshrc].sh file, that is:

On hera:

source /path/to/METplus_Tutorial/TutorialSetup.hera.sh
On linux server (bash):

source /path/to/METplus_Tutorial/TutorialSetup.linux-bash.sh
On linux server (csh):

source /path/to/METplus_Tutorial/TutorialSetup.linux-csh.sh

where /path/to is the path to your METplus_Tutorial directory.

METPLUS_BUILD_BASE is the full path to the METplus installation (/path/to/METplus-X.Y)
MET_BUILD_BASE is the full path to the MET installation (/path/to/met-X.Y)
METPLUS_DATA is the location of the sample test data directory

3. Check that you have loaded the MET module correctly:
which point_stat

You should see the usage statement for Point-Stat. The version number listed should correspond to the version listed in MET_BUILD_BASE. If it does not, you will need to either
reload the met module, or add ${MET_BUILD_BASE}/bin to your PATH.

4. Check that the correct version of master_metplus.py is in your PATH:
which master_metplus.py
If you don't see the full path to script from the shared installation, please set it. It should look the same as the output from this command:

echo ${METPLUS_BUILD_BASE}/ush/master_metplus.py
1s ${METPLUS_BUILD_BASE}/ush/master_metplus.py

See the instructions in Session 1 for more information.

You are now ready to move on to the next section.

admin Wed, 06/12/2019 - 16:57

MET Tool: PB2NC

MET Tool: PB2NC

PB2NC Tool: General
PB2NC Functionality

The PB2NC tool is used to stratify (i.e. subset) the contents of an input PrepBufr point observation file and reformat it into NetCDF format for use by the Point-Stat or Ensemble-
Stat tool. In this session, we will run PB2NC on a PrepBufr point observation file prior to running Point-Stat. Observations may be stratified by variable type, PrepBufr message
type, station identifier, a masking region, elevation, report type, vertical level category, quality mark threshold, and level of PrepBufr processing. Stratification is controlled by a
configuration file and discussed on the next page.

The PB2NC tool may be run on both PrepBufr and Bufr observation files. As of met-6.1, support for Bufr is limited to files containing embedded tables. Support for Bufr files
using external tables will be added in a future release.

For more information about the PrepBufr format, visit:

https://emc.ncep.noaa.gov/emc/pages/infrastructure/bufrlib.php

For information on where to download PrepBufr files, visit:

https://dtcenter.org/community-code/model-evaluation-tools-met/input-data

PB2NC Usage
View the usage statement for PB2NC by simply typing the following:

pb2nc

Usage: pb2nc

Page 23 of 75

netcar_tile output netcdr path/filename

config_file configuration path/filename

[-pbfile prepbufr_file] additional input files

[-valid_beg time] Beginning of valid time window [YYYYMMDD_[HH[MMSS]]]
[-valid_end time] End of valid time window [YYYYMMDD_[HH[MMSS]]]

[-nmsg n] Number of PrepBufr messages to process

[-index] List available observation variables by message type (no output file)
[-dump path] Dump entire contents of PrepBufr file to directory

[-log file] Outputs log messages to the specified file

[-v level] Level of logging

[-compression level] NetCDF file compression

At a minimum, the input prepbufr_file, the output netcdf file, and the configuration config_file must be passed in on the command line. Also, you may use the -
pbfile command line argument to run PB2NC using multiple input PrepBufr files, likely adjacent in time.

When running PB2NC on a new dataset, users are advised to run with the -index option to list the observation variables that are present in that file.

cindyhg Tue, 06/25/2019 - 09:25

PB2NC Tool: Configure

PB2NC Tool: Configure
PB2NC Tool: Configure
Start by making an output directory for PB2NC and changing directories:

mkdir -p ${METPLUS_TUTORIAL_DIR}/output/met_output/pb2nc
cd ${METPLUS_TUTORIAL_DIR}/output/met_output/pb2nc

The behavior of PB2NC is controlled by the contents of the configuration file passed to it on the command line. The default PB2NC configuration may be found in
the data/config/PB2NCConfig_default file. Prior to modifying the configuration file, users are advised to make a copy of the default:

cp ${MET_BUILD_BASE}/share/met/config/PB2NCConfig_default PB2NCConfig_tutorial_runl
Open up the PB2NCConfig_tutorial_run1 file for editing with your preferred text editor.
vi PB2NCConfig_tutorial_runl

The configurable items for PB2NC are used to filter out the PrepBufr observations that should be retained or derived. You may find a complete description of the configurable
items in section 4.1.2 of the MET User's Guide or in the configuration README file.

For this tutorial, edit the PB2NCConfig_tutorial_run1 file as follows:
e Set:

message_type = ["ADPUPA", "ADPSFC"];

To retain only those 2 message types. Message types are described in:
http://www.emc.ncep.noaa.gov/mmb/data_processing/prepbufr.doc/table 1.htm

e Set:

obs_window = {
beg =-1800;
end = 1800;

}

So that only observations within 1800 second (30 minutes) of the file time will be retained.

e Set:

mask = {
grid ="G212";
poly ="

}

To retain only those observations residing within NCEP Grid 212, on which the forecast data resides.

e Set:
obs_bufr_var =["QOB", "TOB", "UOB", "VOB", "D_WIND", "D_RH" J;

To retain observations for specific humidity, temperature, the u-component of wind, and the v-component of wind and to derive observation values for wind speed and
relative humidity.

While we are request these observation variable names from the input file, the following corresponding strings will be written to the output file: SPFH, TMP, UGRD, VGRD,
WIND, RH. This mapping of input PrepBufr variable names to output variable names is specified by the obs_prepbufr_map config file entry. This enables the new features
in the current version of MET to be backward compatible with earlier versions.

Next, save the PB2NCConfig_tutorial_run1 file and exit the text editor.

Page 24 of 75

PB2NC Tool: Run

PB2NC Tool: Run

PB2NC Tool: Run

Next, run PB2NC on the command line using the following command:

pb2nc \

$ {METPLUS_DATA}/met_test/data/sample_obs/prepbufr/ndas.t00z.prepbufr.tml12.20070401.nr \
tutorial_pb_runl.nc \

PB2NCConfig_tutorial_runl \

-v 2

If this run fails due to runtime issues, please download a copy of the output file here and manually save it as tutorial_pb_run1.nc.

PB2NC is now filtering the observations from the PrepBufr file using the configuration settings we specified and writing the output to the NetCDF file name we chose. This
should take a few minutes to run. As it runs, you should see several status messages printed to the screen to indicate progress. You may use the -v command line option to turn
off (-v 0) or change the amount of log information printed to the screen.

Inspect the PB2NC status messages and note that 69833 PrepBufr messages were filtered down to 8394 messages which produced 52491 actual and derived observations. If
you'd like to filter down the observations further, you may want to narrow the time window or modify other filtering criteria. We will do that after inspecting the resultant
NetCDF file.

cindyhg Tue, 06/25/2019 - 09:27

PB2NC Tool: Output

PB2NC Tool: Output

PB2NC Tool: Output

When PB2NC is finished, you may view the output NetCDF file it wrote using the ncdump utility. Run the following command to view the header of the NetCDF output file:
ncdump -h tutorial_pb_runl.nc

In the NetCDF header, you'll see that the file contains nine dimensions and nine variables. The obs_arr variable contains the actual observation values. The obs_qty variable
contains the corresponding quality flags. The four header variables (hdr_typ, hdr_sid, hdr_vld, hdr_arr) contain information about the observing locations.

The obs_var, obs_unit, and obs_desc variables describe the observation variables contained in the output. The second entry of the obs_arr variable (i.e. var_id) lists the index
into these array for each observation. For example, for observations of temperature, you'd see TMP in obs_var, KELVIN in obs_unit, and TEMPERATURE
OBSERVATION in obs_desc. For observations of temperature in obs_arr, the second entry (var_id) would list the index of that temperature information.

Inspect the output of ncdump before continuing.

Plot-Point-Obs

The plot_point_obs tool plots the location of these NetCDF point observations. Just like plot_data_plane is useful to visualize gridded data, run plot_point_obs to make sure
you have point observations where you expect. Run the following command:

plot_point_obs \
tutorial_pb_runl.nc \
tutorial_pb_runl.ps
Display the output PostScript file by running the following command:

gv tutorial_pb_runl.ps &

Each red dot in the plot represents the location of at least one observation value. The plot_point_obs tool has additional command line options for filtering which observations
get plotted and the area to be plotted. View its usage statement by running the following command:

plot_point_obs
By default, the points are plotted on the full globe. Next, try rerunning plot_point_obs using the -data_file option to specify the grid over which the points should be plotted:
plot_point_obs \
tutorial_pb_runl.nc \
tutorial_pb_runl_zoom.ps \
-data_file ${METPLUS_DATA}/met_test/data/sample_fcst/2007033000/nam.100z.awipl236.tmb0O.20076330.grb

MET extracts the grid information from the first record of that GRIB file and plots the points on that domain. Display the output PostScript file by running the following
command:

gv tutorial_pb_runl_zoom.ps &

The plot_data_plane tool can be run on the NetCDF output of any of the MET point observation pre-processing tools (pb2nc, ascii2nc, madis2nc, and lidar2nc).

cindyhg Tue, 06/25/2019 - 09:29

PB2NC Tool: Reconfigure and Rerun

Page 25 of 75

PB2NC Tool: Reconfigure and Rerun

Now we'll rerun PB2NC, but this time we'll tighten the observation acceptance criteria. Start by making a copy of the configuration file we just used:
cp PB2NCConfig_tutorial_runl PB2NCConfig_tutorial_run2

Open up the PB2NCConfig_tutorial_run2 file and edit it as follows:
vi PB2NCConfig_tutorial_run2

e Set:
message_type = [J;

To retain all message types.

e Set:

obs_window = {
beg = -25*30;
end = 25*30;
}

So that only observations 25 minutes before and 25 minutes after the top of the hour are retained.

e Set:
quality_mark_thresh = 1;

To retain only the observations marked "Good" by the NCEP quality control system.
Next, run PB2NC again but change the output name using the following command:

pb2nc \
${METPLUS_DATA}/met_test/data/sample_obs/prepbufr/ndas.t®0z.prepbufr.tml2.20070401.nr \
tutorial_pb_run2.nc \

PB2NCConfig_tutorial_run2 \

-v 2

If this run fails due to runtime issues, please download a copy of the output file here and manually save it as tutorial_pb_run2.nc.

Inspect the PB2NC status messages and note that 4000 observations were retained rather than 52491 in the previous example. The majority of the observations were rejected
because their valid time no longer fell inside the tighter obs_window setting.

When configuring PB2NC for your own projects, you should err on the side of keeping more data rather than less. As you'll see, the grid-to-point verification tools (Point-Stat and
Ensemble-Stat) allow you to further refine which point observations are actually used in the verification. However, keeping a lot of point observations that you'll never actually
use will make the data files larger and slightly slow down the verification. For example, if you're using a Global Data Assimilation (GDAS) PREPBUFR file to verify a model over
Europe, it would make sense to only keep those point observations that fall within your model domain.

cindyhg Tue, 06/25/2019 - 09:31

METplus Use Case: PB2NC

METplus Use Case: PB2NC

METplus Use Case: PB2NC

This use case utilizes the MET PB2NC tool.

The default statistics created by this use case only dump the partial sums, so we will be also modifying the MET configuration file to add the continuous statistics to the output.
There is a little more setup in this use case, which will be instructive and demonstrate the basic structure, flexibility and setup of METplus configuration.

Optional: Refer to the MET Users Guide for a description of the MET tools used in this use case.
Optional: Refer to the METplus Config Glossary section of the METplus Users Guide for a reference to METplus variables used in this use case.

1. Review the settings in the PB2NC.conf file:
less ${METPLUS_BUILD_BASE}/parm/use_cases/met_tool_wrapper/PB2NC/PB2NC.conf

Note that the input and output directories are specified in the [dir] section, while CONFIG_DIR points to a directory of met_config files:

[dir]
location of configuration files used by MET applications
CONFIG_DIR = {PARM_BASE}/met_config

directory containing input to PB2NC
PB2NC_INPUT_DIR = {INPUT_BASE}/met_test/data/sample_obs/prepbufr

directory to write output from PB2NC
PB2NC_OUTPUT_DIR = {OUTPUT_BASE}/pb2nc

Page 26 of 75

Location of MET config file to pass to PB2NC
References CONFIG_DIR from the [dir] section
PB2NC_CONFIG_FILE = {CONFIG_DIR}/PB2NCConfig_wrapped

Let's look at the PB2Nc_CONFIG_FILE
cd ${METPLUS_BUILD_BASE}/parm/met_config
Values for the MET tool PB2NC are passed in from METplus config files, including PB2NC.conf

less PB2NCConfig_wrapped

i

Vi

// PB2NC configuration file.

Vi

// For additional information, see the MET_BASE/config/README file.
Vs

1

// PrepBufr message type

Vi

message_type = ${PB2NC_MESSAGE_TYPE} ;

/1

// Mapping of message type group name to comma-separated list of values
// Derive PRMSL only for SURFACE message types

v

message_type_group_map = [

{ key = "SURFACE"; val = "ADPSFC,SFCSHP,MSONET"; },

{ key = "ANYAIR"; val = "AIRCARAIRCFT"; },

{ key = "ANYSFC"; val = "ADPSFC,SFCSHP,ADPUPA,PROFLR,MSONET"; },

{ key = "ONLYSF"; val = "ADPSFC,SFCSHP" }

I8

No modifications are needed to run the PB2NC METplus tool. Go back to the Tutorial directory

cd ${METPLUS_TUTORIAL_DIR}
2. Run the PB2NC use case:
master_metplus.py \

-c ${METPLUS_TUTORIAL_DIR}/tutorial.conf \
-c¢ ${METPLUS_BUILD_BASE}/parm/use_cases/met_tool_wrapper/PB2NC/PB2NC.conf

3. Review the output files:
The following is the statistical ouput and files are generated from the command:

1s ${METPLUS_TUTORIAL_DIR}/output/pb2nc

e sample_pb.nc
cindyhg Tue, 06/25/2019 - 09:48

MET Tool: ASCII2NC

MET Tool: ASCII2NC

ASCII2NC Tool: General

ASCII2NC Functionality

The ASCII2NC tool reformats ASCII point observations into the intermediate NetCDF format that Point-Stat and Ensemble-Stat read. ASCII2NC simply reformats the data and
does much less filtering of the observations than PB2NC does. ASCII2NC supports a simple 11-column format, described below, the Little-R format often used in data
assimilation, surface radiation (SURFRAD) data, Western Wind and Solar Integration Studay (WWSIS) data, and AErosol RObotic NEtwork (Aeronet) data. Future version of MET
may be enhanced to support additional commonly used ASCII point observation formats based on community input.

MET Point Observation Format

The MET point observation format consists of one observation value per line. Each input observation line should consist of the following 11 columns of data:

1. Message_Type
2. Station_ID

Page 27 of 75

“. L@ I USE ST VU U
5. Lon in degrees East
6. Elevation in meters above sea level
7. Variable_Name for this observation (or GRIB_Code for backward compatibility)
8. Level as the pressure level in hPa or accumulation interval in hours
9. Height in meters above sea level or above ground level
10. QC_String quality control string
11. Observation_Value
It is the user's responsibility to get their ASCII point observations into this format.
ASCII2NC Usage
View the usage statement for ASCII2NC by simply typing the following:

ascii2nc

Usage: ascii2nc

ascii_file1[...] One or more input ASCII path/filename

netcdf file Output NetCDF path/filename

[-format ASCII_format] Set to met_point, little_r, surfrad, wwsis, or aeronet

[-config file] Configuration file to specify how observation data should be summarized
[-mask_grid string] Named grid or a gridded data file for filtering point observations spatially
[-mask_poly file] Polyline masking file for filtering point observations spatially

[-mask_sid file|list] Specific station ID's to be used in an ASCII file or comma-separted list
[-log file] Outputs log messages to the specified file

[-v level] Level of logging

[-compress level] NetCDF compression level

At a minimum, the input ascii_file and the output netcdf_file must be passed on the command line. ASCII2NC interrogates the data to determine it's format, but the user may
explicitly set it using the -format command line option. The -mask_grid, -mask_poly, and -mask_sid options can be used to filter observations spatially.

cindyhg Tue, 06/25/2019 - 09:32

ASCII2NC Tool: Run

ASCII2NC Tool: Run

ASCII2NC Tool: Run
Start by making an output directory for ASCII2NC and changing directories:

mkdir -p ${METPLUS_TUTORIAL_DIR}/output/met_output/ascii2nc
cd ${METPLUS_TUTORIAL_DIR}/output/met_output/ascii2nc

Since ASCII2NC performs a simple reformatting step, typically no configuration file is needed. However, when processing high-frequency (1 or 3-minute) SURFRAD data, a
configuration file may be used to define a time window and summary metric for each station. For example, you might compute the average observation value +/- 15 minutes at
the top of each hour for each station. In this example, we will not use a configuration file.

The sample ASCII observations in the MET tarball are still identified by GRIB code rather than the newer variable name option. Dump that file and notice that the GRIB codes in
the seventh column could be replaced by corresponding variable names. For example, 52 corresponds to RH:

cat ${METPLUS_DATA}/met_test/data/sample_obs/ascii/sample_ascii_obs.txt
Run ASCII2NC on the command line using the following command:

ascii2nc \

$ {METPLUS_DATA}/met_test/data/sample_obs/ascii/sample_ascii_obs.txt \

tutorial_ascii.nc \

-v 2

ASCII2NC should perform this reformatting step very quickly since the sample file only contains data for 5 stations.

cindyhg Tue, 06/25/2019 - 09:33

ASCII2NC Tool: Output

ASCII2NC Tool: Output

ASCII2NC Tool: Output

When ASCII2NC is finished, you may view the output NetCDF file it wrote using the ncdump utility. Run the following command to view the header of the NetCDF output file:
ncdump -h tutorial_ascii.nc

The NetCDF header should look nearly identical to the output of the NetCDF output of PB2NC. You can see the list of stations for which we have data by inspecting
the hdr_sid_table variable:

ncdump -v hdr_sid_table tutorial_ascii.nc

Page 28 of 75

This ASCII data only contains observations at a few locations. Use the plot_point_obs to plot the locations, increasing the level of verbosity to 3 to see more detail:
plot_point_obs \
tutorial_ascii.nc \
tutorial_ascii.ps \

-data_file ${METPLUS_DATA}/met_test/data/sample_fcst/2007033000/nam.t00z.awipl236.tm00O.20070330.2rb \
-v 3

gv tutorial_ascii.ps &

Next, we'll use the NetCDF output of PB2NC and ASCII2NC to perform Grid-to-Point verification using the Point-Stat tool.
cindyhg Tue, 06/25/2019 - 09:37

MET Tool: Point-Stat

MET Tool: Point-Stat

Point-Stat Tool: General

Point-Stat Functionality

The Point-Stat tool provides verification statistics for comparing gridded forecasts to observation points, as opposed to gridded analyses like Grid-Stat. The Point-Stat tool
matches gridded forecasts to point observation locations using one or more configurable interpolation methods. The tool then computes a configurable set of verification
statistics for these matched pairs. Continuous statistics are computed over the raw matched pair values. Categorical statistics are generally calculated by applying a threshold to
the forecast and observation values. Confidence intervals, which represent a measure of uncertainty, are computed for all of the verification statistics.

Point-Stat Usage

View the usage statement for Point-Stat by simply typing the following:

point_stat

Usage: point_stat

fest_file Input gridded file path/name

obs_file Input NetCDF observation file path/name

config_file Configuration file

[-point_obs file] Additional NetCDF observation files to be used (optional)

[-obs_valid_beg time] Sets the beginning of the matching time window in YYYYMMDD[_HH[MMSS]] format (optional)
[-obs_valid_end time] Sets the end of the matching time window in YYYYMMDD[_HH[MMSS]] format (optional)

[-outdir path] Overrides the default output directory (optional)
[-log file] Outputs log messages to the specified file (optional)
[-v level] Level of logging (optional)

At a minimum, the input gridded fcst_file, the input NetCDF obs_file (output of PB2NC, ASCII2NC, MADIS2NC, and LIDAR2NC, /ast two not covered in these exercises), and the
configuration config_file must be passed in on the command line. You may use the -point_obs command line argument to specify additional NetCDF observation files to be
used.

cindyhg Tue, 06/25/2019 - 09:38

Point-Stat Tool: Configure

Point-Stat Tool: Configure
Point-Stat Tool: Configure
Start by making an output directory for Point-Stat and changing directories:

mkdir -p ${METPLUS_TUTORIAL_DIR}/output/met_output/point_stat
cd ${METPLUS_TUTORIAL_DIR}/output/met_output/point_stat

The behavior of Point-Stat is controlled by the contents of the configuration file passed to it on the command line. The default Point-Stat configuration file may be found in
the data/config/PointStatConfig_default file.

The configurable items for Point-Stat are used to specify how the verification is to be performed. The configurable items include specifications for the following:

The forecast fields to be verified at the specified vertical levels.

The type of point observations to be matched to the forecasts.

The threshold values to be applied.

The areas over which to aggregate statistics - as predefined grids, lat/lon polylines, or individual stations.
The confidence interval methods to be used.

The interpolation methods to be used.

The types of verification methods to be used.

Let's customize the configuration file. First, make a copy of the default:
cp ${MET_BUILD_BASE}/share/met/config/PointStatConfig_default PointStatConfig_tutorial_runl

Next, open up the PointStatConfig_tutorial_run1 file for editing and modify it as follows:

Page 29 of 75

e Set:

fest =4
message_type = ["ADPUPA"];
field = [
{
name ="TMP";

level =["P850-1050", "P500-850" J;
cat_thresh = [<=273,>273;
}
1
}
obs = fcst;

e To verify temperature over two different pressure ranges against ADPUPA observations using the thresholds specified.
e Set:

ci_alpha=[0.050.101];

To compute confidence intervals using both a 5% and a 10% level of certainty.

e Set:

output_flag = {
fho =BOTH;
ctc =BOTH;
cts =STAT;
mctc = NONE;
mcts = NONE;
cnt = BOTH;
sl112 = STAT;
sal1l2 = NONE;
vi112 = NONE;
val1l2 = NONE;
pct =NONE;
pstd = NONE;
pjc =NONE;
prc = NONE;
ecnt = NONE;
eclv =BOTH;
mpr =BOTH;

}

To indicate that the forecast-hit-observation (FHO) counts, contingency table counts (CTC), contingency table statistics (CTS), continuous statistics (CNT), partial sums
(SL1L2), economic cost/loss value (ECLV), and the matched pair data (MPR) line types should be output. Setting SL1L2 and CTS to STAT causes those lines to only be
written to the output .stat file, while setting others to BOTH causes them to be written to both the .stat file and the optional LINE_TYPE.txt file.

e Set:
output_prefix = "run1";

To customize the output file names for this run.

Note that in the mask dictionary, the grid entry is set to FULL. This instructs Point-Stat to compute statistics over the entire input model domain. Setting grid to FULL has this
special meaning.

Next, save the PointStatConfig_tutorial_run1 file and exit the text editor.

cindyhg Tue, 06/25/2019 - 09:40

Point-Stat Tool: Run

Point-Stat Tool: Run

Point-Stat Tool: Run
Next, run Point-Stat to compare a GRIB forecast to the NetCDF point observation output of the ASCII2NC tool. Run the following command line:

point_stat \
${METPLUS_DATA}/met_test/data/sample_fcst/2007033000/nam.t00z.awipl236.tmo0.20070330.grb \
../ascii2nc/tutorial_ascii.nc \

PointStatConfig_tutorial_runl \

-outdir . \

-v 2

Point-Stat is now performing the verification tasks we requested in the configuration file. It should take less than a minute to run. You should see several status messages
printed to the screen to indicate progress.

If you receive a syntax error such as the one listed below, review PointStatConfig_tutorial_run1 for an extra comma after the "}" on line number 59

Page 30 of 75

cat_thresn = >2/3.0 J;
}, <---Remove the comma

DEBUG 1: Default Config File: /usr/local/met-9.0/share/met/config/PointStatConfig_default
DEBUG 1: User Config File: PointStatConfig_tutorial_run1

ERROR :

ERROR : yyerror() -> syntax error in file "/tmp/met_config_26760_0"
ERROR :

ERROR : line =59

ERROR :

ERROR : column=0

ERROR :

ERROR : text ="]"

ERROR :

ERROR :

ERROR : J;

ERROR :

ERROR :

Now try rerunning the command listed above, but increase the verbosity level to 3 (-v 3). Notice the more detailed information about which observations were used for each
verification task. If you run Point-Stat and get fewer matched pairs than you expected, try using the -v 3 option to see why the observations were rejected.

Users often write MET-Help to ask why they got zero matched pairs from Point-Stat. The first step is always rerunning Point-Stat using verbosity level 3 or higher to list the
counts of reasons for why observations were not used!

cindyhg Tue, 06/25/2019 - 09:41

Point-Stat Tool: Output

Point-Stat Tool: Output

Point-Stat Tool: Output

The output of Point-Stat is one or more ASCII files containing statistics summarizing the verification performed. Since we wrote output to the current directory, it should now
contain 6 ASCII files that begin with the point_stat_ prefix, one each for the FHO, CTC, CNT, ECLV, and MPR types, and a sixth for the STAT file. The STAT file contains all of the
output statistics while the other ASCII files contain the exact same data organized by line type.

Since the lines of data in these ASCI! files are so long, we strongly recommend configuring your text editor to NOT use dynamic word wrapping. The files will be much easier to
read that way:

¢ In the kwrite editor, select Settings->Configure Editor, de-select Dynamic Word Wrap and click OK.
¢ In the vi editor, type the command :set nowrap. To set this as the default behavior, run the following command:

echo "set nowrap" >> ~/.exrc
Open up the point_stat_run1_360000L_20070331_120000V_ctc.txt CTC file using the text editor of your choice and note the following:
vi point_stat_runl_360000L_26070331_120000V_ctc. txt

This is a simple ASCII file consisting of several rows of data.

Each row contains data for a single verification task.

The FCST_LEAD, FCST_VALID_BEG, and FCST_VALID_END columns indicate the timing information of the forecast field.

The OBS_LEAD, OBS_VALID_BEG, and OBS_VALID_END columns indicate the timing information of the observation field.

The FCST_VAR, FCST_LEV, OBS_VAR, and OBS_LEV columns indicate the two parts of the forecast and observation fields set in the configure file.

The OBTYPE column indicates the PrepBufr message type used for this verification task.

The VX_MASK column indicates the masking region over which the statistics were accumulated.

The INTERP_MTHD and INTERP_PNTS columns indicate the method used to interpolate the forecast data to the observation location.

The FCST_THRESH and OBS_THRESH columns indicate the thresholds applied to FCST_VAR and OBS_VAR.

The COV_THRESH column is not applicable here and will always have NA when using point_stat.

The ALPHA column indicates the alpha used for confidence intervals.

The LINE_TYPE column indicates that these are CTC contingency table count lines.

The remaining columns contain the counts for the contingency table computed by applying the threshold to the forecast/observation matched pairs. The FY_OY (forecast:
yes, observation: yes), FY_ON (forecast: yes, observation: no), FN_OY (forecast: no, observation: yes), and FN_ON (forecast: no, observation: no) columns indicate those
counts.

Next, answer the following questions about this contingency table output:

1. What do you notice about the structure of the contingency table counts with respect to the two thresholds used? Does this make sense?

2. Does the model appear to resolve relatively cold surface temperatures?

3. Based on these observations, are temperatures >273 relatively rare or common in the P850-500 range? How can this affect the ability to get a good score using
contingency table statistics? What about temperatures <=273 at the surface?

Close that file, open up the point_stat_run1_360000L_20070331_120000V_cnt.txt CNT file, and note the following:

vi point_stat_runl_360000L_20070331_120000V_cnt. txt

e The columns prior to LINE_TYPE contain the same data as the previous file we viewed.

e The LINE_TYPE column indicates that these are CNT continuous lines.

e The remaining columns contain continuous statistics derived from the raw forecast/observation pairs. See section 4.3.3 of the MET User's Guide for a thorough
description of the output.

e Again, confidence intervals are given for each of these statistics as described above.

Next, answer the following questions about these continuous statistics:

Page 31 of 75

TvaluauuUIi vYily Ul vy v

2. Comparing the first line with an alpha value of 0.05 to the second line with an alpha value of 0.10, how does the level of confidence change the upper and lower bounds of

the confidence intervals (Cls)?
3. Similarily, comparing the first line with few numbers of matched pairs in the TOTAL column to the third line with more, how does the sample size affect how you interpret

your results?

Close that file, open up the point_stat_run1_360000L_20070331_120000V_fho.txt FHO file, and note the following:
vi point_stat_runl_360000L_20070331_120000V_fho. txt

e The columns prior to LINE_TYPE contain the same data as the previous file we viewed.
e The LINE_TYPE column indicates that these are FHO forecast-hit-observation rate lines.
e The remaining columns are similar to the contingency table output and contain the total number of matched pairs, the forecast rate, the hit rate, and observation rate.

e The forecast, hit, and observation rates should back up your answer to the third question about the contingency table output.
Close that file, open up the point_stat_run1_360000L_20070331_120000V_mpr.txt MPR file, and note the following:

vi point_stat_runl_360000L_20070331_120000V_mpr.txt

e The columns prior to LINE_TYPE contain the same data as the previous file we viewed.

e The LINE_TYPE column indicates that these are MPR matched pair lines.
e The remaining columns are similar to the contingency table output and contain the total number of matched pairs, the matched pair index, the latitude, longitude, and

elevation of the observation, the forecasted value, the observed value, and the climatologic value (if applicable).
e Thereis a lot of data here and it is recommended that the MPR line_type is used only to verify the tool is working properly.

cindyhg Tue, 06/25/2019 - 09:42

Point-Stat Tool: Reconfigure

Point-Stat Tool: Reconfigure

Point-Stat Tool: Reconfigure

Now we'll reconfigure and rerun Point-Stat. Start by making a copy of the configuration file we just used:

cp PointStatConfig_tutorial_runl PointStatConfig_tutorial_run2

This time, we'll use two dictionary entries to specify the forecast field in order to set different thresholds for each vertical level. Point-Stat may be configured to verify as many or
as few model variables and vertical levels as you desire. Edit the PointStatConfig_tutorial_run2 file as follows:

vi PointStatConfig_tutorial_run2
e Set:

fest =4
field = [
{
name ="TMP";
level =["Z2"1];
cat_thresh = [>273, >278, >283, >288];
by
{
name ="TMP";
level =["P750-850"];
cat_thresh=[>2781;
}
I
}
obs = fcst;

To verify 2-meter temperature and temperature fields between 750hPa and 850hPa, using the thresholds specified.
o Set:

message_type = ["ADPUPA","ADPSFC"]
sid_inc =[J;

sid_exc=1[];

obs_quality = [I;

duplicate_flag = NONE;

obs_summary = NONE;
obs_perc_value = 50;

To include the Upper Air (UPA) and Surface (SFC) observations in the evaluation

e Set:

mask = {
grid =["G212"];
poly =["MET_BASE/poly/EAST.poly",
"MET_BASE/poly/WEST.poly" ;
sid =[J;
llpnt =[;
}

Page 32 of 75

e Set:

interp = {
vld_thresh = 1.0;
shape = SQUARE;
type =[
{

method = NEAREST;
width =1;

h

{
method = DW_MEAN;
width =5;

}

I
}

To indicate that the forecast values should be interpolated to the observation locations using the nearest neighbor method and by computing a distance-weighted
average of the forecast values over the 5 by 5 box surrounding the observation location.

e Set:

output_flag = {

fho =BOTH;
ctc =BOTH;
cts =BOTH;
mctc = NONE;
mcts = NONE;
cnt = BOTH;
sl112 = BOTH;
sal1l2 = NONE;
vI112 = NONE;
val1l2 = NONE;
pct =NONE;
pstd = NONE;
pjc =NONE;
prc = NONE;
ecnt = NONE;
eclv =BOTH;
mpr =BOTH;

}

To switch the SL1L2 and CTS output to BOTH and generate the optional ASCII output files for them.

e Set:
output_prefix = "run2";

To customize the output file names for this run.
Let's look at our configuration selections and figure out the number of verification tasks Point-Stat will perform:

o 2 fields: TMP/Z2 and TMP/P750-850

e 2 observing message types: ADPUPA and ADPSFC

e 3 masking regions: G212, EAST.poly, and WEST.poly

e 2interpolations: UW_MEAN width 1 (nearest-neighbor) and DW_MEAN width 5

Multiplying 2 * 2 * 3 * 2 = 24. So in this example, Point-Stat will accumulate matched forecast/observation pairs into 24 groups. However, some of these groups will result in 0
matched pairs being found. To each non-zero group, the specified threshold(s) will be applied to compute contingency tables.

Can you diagnose why some of these verification tasks resulted in zero matched pairs? (Hint: Reread the tip two pages back!)

cindyhg Tue, 06/25/2019 - 09:44

Point-Stat Tool: Rerun

Point-Stat Tool: Rerun
Point-Stat Tool: Rerun

Next, run Point-Stat to compare a GRIB forecast to the NetCDF point observation output of the PB2NC tool, as opposed to the much smaller ASCII2NC output we used in the first run.
Run the following command line:

point_stat \
${METPLUS_DATA}/met_test/data/sample_fcst/2007033000/nam.t00z.awipl236.tmo0.20070330.grb \
../pb2nc/tutorial_pb_runl.nc \

PointStatConfig_tutorial_run2 \

-outdir . \

-v 2

Point-Stat is now performing the verification tasks we requested in the configuration file. It should take a minute or two to run. You should see several status messages printed
to the screen to indicate progress. Note the number of matched pairs found for each verification task, some of which are 0.

Page 33 of 75

In this step, we have verified 2-meter temperature. The Plot-Data-Plane tool within MET provides a way to visualize the gridded data fields that MET can read. Run this utility to
plot the 2-meter temperature field:

plot_data_plane \
${METPLUS_DATA}/met_test/data/sample_fcst/2007033000/nam.t00z.awipl236.tmo0.20070330.grb \

nam.t00z.awipl236.tm00.20070330_TMPZ2.ps \
'name="TMP"; level="Z2";"'

Plot-Data-Plane requires an input gridded data file, an output postscript image file name, and a configuration string defining which 2-D field is to be plotted. View the output by
running:

display nam.t00z.awipl236.tm00.20070330_TMPZ2.ps &
View the usage for Plot-Data-Plane by running it with no arguments or using the --help option:
plot_data_plane --help
Now rerun this Plot-Data-Plane command but...
1. Set the title to 2-m Temperature.
2. Set the plotting range as 250 to 305.
3. Use the color table named ${MET_BUILD_BASE}/share/met/colortables/NCL_colortables/wgne15.ctable
Next, we'll take a look at the Point-Stat output we just generated.
See the usage statement for all MET tools using the --help command line option or with no options at all.

cindyhg Tue, 06/25/2019 - 09:45

Point-Stat Tool: Output

Point-Stat Tool: Output

Point-Stat Tool: Output
The format for the CTC, CTS, and CNT line types are the same. However, the numbers will be different as we used a different set of observations for the verification.
Open up the point_stat_run2_360000L_20070331_120000V_cts.txt CTS file, and note the following:

vi point_stat_run2_360000L_200706331_120000V_cts. txt

e The columns prior to LINE_TYPE contain header information.

e The LINE_TYPE column indicates that these are CTS lines.

e The remaining columns contain statistics derived from the threshold contingency table counts. See section 7.3.3 of the MET User's Guide for a thorough description of the
output.

e Confidence intervals are given for each of these statistics, computed using either one or two methods. The columns ending in _NCL(normal confidence lower)
and _NCU (normal confidence upper) give lower and upper confidence limits computed using assumptions of normality. The columns ending in _BCL (bootstrap
confidence lower) and _BCU (bootstrap confidence upper) give lower and upper confidence limits computed using bootstrapping.

Close that file, open up the point_stat_run2_360000L_20070331_120000V_sl1l2.txt SL1L2 partial sums file, and note the following:

vi point_stat_run2_360000L_26070331_120000V_s1112.txt

e The columns prior to LINE_TYPE contain header information.
e The LINE_TYPE column indicates these are SL1L2 partial sums lines.

Lastly, the point_stat_run2_360000L_20070331_120000V.stat file contains all of the same data we just viewed but in a single file. The Stat-Analysis tool, which we'll use later in
this tutorial, searches for the .stat output files by default but can also read the .txt output files.

vi point_stat_run2_360000L_20070331_120000V.stat

cindyhg Tue, 06/25/2019 - 09:46

METplus Use Case: PointStat

METplus Use Case: PointStat
METplus Use Case: PointStat

This use case utilizes the MET Point-Stat tool.

Optional: Refer to the MET Users Guide for a description of the MET tools used in this use case.
Optional: Refer to the METplus Config Glossary section of the METplus Users Guide for a reference to METplus variables used in this use case.

1. View Configuration File
Change to the ${METPLUS_TUTORIAL_DIR} directory:

cd ${METPLUS_TUTORIAL_DIR}

Define a unique directory under output that you will use for this use case. Create a configuration file to override OUTPUT_BASE to that directory.

Page 34 of 75

In the [dir] section the forecast and observations directories are specified in relation to INPUT_BASE (${METPLUS_DATA}, while the output directory is given in relation to
{OUTPUT_BASE} (${METPLUS_TUTORIAL_DATA}/output

FCST_POINT_STAT_INPUT_DIR = {INPUT_BASE}/met_test/data/sample_fcst
OBS_POINT_STAT_INPUT_DIR = {INPUT_BASE}/met_test/out/pb2nc

.F.’.OINT_STAT_OUTPUT_DIR ={OUTPUT_BASE}/point_stat
Using the PointStat configuration file, you should be able to run the use case using the sample input data set without any other changes.
2. Run the PointStat use case:
master_metplus.py \
-¢ ${METPLUS_TUTORIAL_DIR}/tutorial.conf \
-c¢ ${METPLUS_BUILD_BASE}/parm/use_cases/met_tool_wrapper/PointStat/PointStat.conf
3. Review the output files:

The following is the statistical output and files are generated from the command:

1s ${METPLUS_TUTORIAL_DIR}/output/point_stat

e point_stat_360000L_20070331_120000V.stat

4. Update configuration file and re-run

Copy the configuration file to the user_config directory and open for editing:
cp ${METPLUS_BUILD_BASE}/parm/use_cases/met_tool_wrapper/PointStat/PointStat.conf
${METPLUS_TUTORIAL_DIR}/user_config/PointStat_tutorial.conf
vi ${METPLUS_TUTORIAL_DIR}/user_config/PointStat_tutorial.conf

Update the POINT_STAT_OUTPUT_PREFIX and consolidate the FCST_VAR and OBS_VAR settings into BOTH_VAR being they are identical.

POINT_STAT_OUTPUT_PREFIX = run2

BOTH_VAR1_NAME = TMP
BOTH_VAR1_LEVELS = P750-900
BOTH_VAR1_THRESH = <=273, >273

BOTH_VAR2_NAME = UGRD
BOTH_VAR2_LEVELS =710

BOTH_VAR2_THRESH = >=5
BOTH_VAR3_NAME = VGRD

BOTH_VAR3_LEVELS = Z10
BOTH_VAR3_THRESH = >=5

5. Rerun the use-case and compare the output
master_metplus.py \
-¢ ${METPLUS_TUTORIAL_DIR}/tutorial.conf \
-c¢ ${METPLUS_TUTORIAL_DIR}/user_config/PointStat_tutorial.conf
Diff the original output file with run2. They should be identical.
diff \
${METPLUS_TUTORIAL_DIR}/output/point_stat/point_stat_360000L_20070331_120000V.stat \
${METPLUS_TUTORIAL_DIR}/output/point_stat/point_stat_run2_360000L_20070331_120000V.stat

cindyhg Tue, 06/25/2019 - 09:53

Additional Exercises

Additional Exercises

End of Practical Session 2

Congratulations! You have completed Session 2!

If you have extra time, you may want to try this additional METplus exercise.

The default statistics created by this use case only dump the partial sums, so we will be also modifying the MET configuration file to add the continuous statistics to the output.
There is a little more setup in this use case, which will be instructive and demonstrate the basic structure, flexibility and setup of METplus configuration.

EXERCISE 2.1: Rerun Point-Stat to produce additional continuous statistics file types.

Instructions: Modify the METplus MET configuration file for Upper Air to write Continuous statistics (cnt) and the Vector Continuous Statistics (vent) line types to both the stat
file and its own file.

Page 35 of 75

IVIL 1 PIUS LU LAl IVIL | LUUIS UlEEULLY Uy PasSiiig VAIUSS (UL IVIL | IIUS 10U VL 1.
cp ${METPLUS_BUILD_BASE}/parm/met_config/PointStatConfig_wrapped \
${METPLUS_TUTORIAL_DIR}/user_config/PointStatConfig_add_linetype
vi ${METPLUS_TUTORIAL_DIR}/user_config/PointStatConfig_add_linetype

Change the values for cnt and vent, in output flag, from NONE to BOTH
output_flag = {
... other entries ...
cnt = BOTH;

... other entries ...
vcnt = BOTH;

Also copy and modify the PointStat.conf file to point to the modified met_config file (PointStatConfig_add_linetype)

cp ${METPLUS_BUILD BASE}/parm/use_cases/met_tool_wrapper/PointStat/PointStat.conf \
${METPLUS_TUTORIAL_DIR}/user_config/PointStat_add_linetype.conf
vi ${METPLUS_TUTORIAL_DIR}/user_config/PointStat_add_linetype.conf

Change the line

POINT_STAT_CONFIG_FILE ={PARM_BASE}/met_config/PointStatConfig_wrapped
to

POINT_STAT_CONFIG_FILE = {ENV[METPLUS_TUTORIAL_DIR]}/user_config/PointStatConfig_add_linetype

Rerun master_metplus. Use -c dir.OUTPUT_BASE to change the output directory from the command line:

master_metplus.py \

-¢ ${METPLUS_TUTORIAL_DIR}/tutorial.conf \

-¢ ${METPLUS_TUTORIAL_DIR}/user_config/PointStat_add_linetype.conf \
-¢ dir.OUTPUT_BASE=${METPLUS_TUTORIAL_DIR}/output/PointStatAddLinetype

Review the additional output files generated under ${METPLUS_TUTORIAL_DIR}/output/PointStatAddLinetype/point_stat

point_stat_360000L_20070331_120000V.stat
point_stat_360000L_20070331_120000V_cnt.txt
point_stat_360000L_20070331_120000V_vcnt.txt

Open the stat file and notice there are two more linetypes, cnt and vent

cindyhg Tue, 06/25/2019 - 09:55

Session 3: Ensemble and PQPF

Session 3: Ensemble and PQPF
METplus Practical Session 3

During this practical session, you will run the tools indicated below:

Page 36 of 75

You may navigate through this tutorial by following the links at the bottom of each page or by using the menu navigation.

Since you already set up your runtime enviroment in Session 1, you should be ready to go! To be sure, run through the following instructions to check that your environment is
set correctly.

Prerequisites: Verify Environment is Set Correctly

Before running these instructions, you will need to ensure that you have a few environment variables set up correctly. If they are not set correctly, these instructions will not
work properly.

1. Check that you have METPLUS_TUTORIAL_DIR set correctly:

echo ${METPLUS_TUTORIAL_DIR}
1s ${METPLUS_TUTORIAL_DIR}

If you don't see a path in your user directory output to the screen, set this environment variable in your user profile before continuing.

Page 37 of 75

2. Check that you have METPLUS_BUILD_BASE, MET_BUILD_BASE, and METPLUS_DATA set correctly:
echo ${METPLUS_BUILD_BASE}

echo ${MET_BUILD_BASE}

echo ${METPLUS_DATA}

1s ${METPLUS_BUILD_BASE}

1s ${MET_BUILD_BASE}

1s ${METPLUS_DATA}

If any of these variables are not set, please set them. They will be referenced throughout the tutorial. You can do this by sourcing the appropriate TutorialSetup.
[hera/bash/cshrc].sh file, that is:

On hera:
source /path/to/METplus_Tutorial/TutorialSetup.hera.sh
On linux server (bash):
source /path/to/METplus_Tutorial/TutorialSetup.linux-bash.sh
On linux server (csh):
source /path/to/METplus_Tutorial/TutorialSetup.linux-csh.sh
where /path/to is the path to your METplus_Tutorial directory.
METPLUS_BUILD_BASE is the full path to the METplus installation (/path/to/METplus-X.Y)

MET_BUILD_BASE is the full path to the MET installation (/path/to/met-X.Y)
METPLUS_DATA is the location of the sample test data directory

3. Check that you have loaded the MET module correctly:
which point_stat

You should see the usage statement for Point-Stat. The version number listed should correspond to the version listed in MET_BUILD_BASE. If it does not, you will need to either
reload the met module, or add ${MET_BUILD_BASE}/bin to your PATH.

4. Check that METPLUS_PARM_BASE was set correctly.

echo ${METPLUS_PARM_BASE}
1s ${METPLUS_PARM_BASE}

If you don't see the full path to your METplus/parm directory under the tutorial directory, please set it. See the instructions in Session 1 for more information.
METPLUS_PARM_BASE is the full path to the user's configuration file directory (${METPLUS_TUTORIAL_DIR}/METplus/parm)
5. Check that the correct version of master_metplus.py is in your PATH:
which master_metplus.py

If you don't see the full path to script from the shared installation, please set it. It should look the same as the output from this command:

echo ${METPLUS_BUILD_BASE}/ush/master_metplus.py
1s ${METPLUS_BUILD_BASE}/ush/master_metplus.py

See the instructions in Session 1 for more information.
You are now ready to move on to the next section.

admin Wed, 06/12/2019 - 16:58

MET Tool: Ensemble-Stat

MET Tool: Ensemble-Stat

Ensemble-Stat Tool: General

Ensemble-Stat Functionality

The Ensemble-Stat tool may be used to derive several summary fields, such as the ensemble mean, spread, and relative frequencies of events (i.e. similar to a probability). The
summary fields produced by Ensemble-Stat may then be verified using the other MET statistics tools. Ensemble-Stat may also be used to verify the ensemble directly by
comparing it to gridded and/or point observations. Statistics are then derived using those observations, such as rank histograms and the continuous ranked probability score.
Ensemble-Stat Usage

View the usage statement for Ensemble-Stat by simply typing the following:

ensemble_stat

At a minimum, the input gridded ensembile files and the configuration config_file must be passed in on the command line. You can specify the list of ensemble files to be used
either as a count of the number of ensemble members followed by the file name for each (n_ens ens_fil e_1 ... ens_file_n) or as an ASCII file containing the names of the

Page 38 of 75

SPTULIY BIHIUUTU GIHU/ UL PUITIL UNSTE VALV LU T USTU 1UI LUTTHIPULITE TGN THOLUEI GID AU UUHIST SHOTHIVIT SLaUSUL.,

As with the other MET statistics tools, all ensemble data and gridded verifying observations must be interpolated to a common grid prior to processing. This may be done using
the automated regrid feature in the Ensemble-Stat configuration file or by running copygb and/or wgrib2 first.

cindyhg Tue, 06/25/2019 - 08:31

Ensemble-Stat Tool: Configure

Ensemble-Stat Tool: Configure

Start by making an output directory for Ensemble-Stat and changing directories:

mkdir -p ${METPLUS_TUTORIAL_DIR}/output/met_output/ensemble_stat
cd ${METPLUS_TUTORIAL_DIR}/output/met_output/ensemble_stat

The behavior of Ensemble-Stat is controlled by the contents of the configuration file passed to it on the command line. The default Ensemble-Stat configuration file may be
found in the data/config/EnsembleStatConfig_default file. The configurations used by the test script may be found in the scripts/config/EnsembleStatConfig* files. Prior to
modifying the configuration file, users are advised to make a copy of the default:

cp ${MET_BUILD_BASE}/share/met/config/EnsembleStatConfig_default EnsembleStatConfig_tutorial
Open up the EnsembleStatConfig_tutorial file for editing with your preferred text editor.
vi EnsembleStatConfig_tutorial

The configurable items for Ensemble-Stat are broken out into two sections. The first section specifies how the ensemble should be processed to derive summary fields, such as
the ensemble mean and spread. The second section specifies how the ensemble should be verified directly, such as the computation of rank histograms and spread/skill. The
configurable items include specifications for the following:

e Section 1: Ensemble Processing (ens dictionary)
o The ensemble fields to be summarized at the specified vertical level or accumulation interval.
o The threshold values to be applied in computing ensemble relative frequencies (e.g. the percent of ensemble members exceeding some threshold at each point).
o Thresholds to specify how many of the ensemble members must actually be present with valid data.
e Section 2: Verification (fcst and obs dictionaries)
o The forecast and observation fields to be verified at the specified vertical level or accumulation interval.
The matching time window for point observations.
The type of point observations to be matched to the forecasts.
The areas over which to aggregate statistics - as predefined grids or configurable lat/lon polylines.
The interpolation or smoothing methods to be used.

© 0 0 o

You may find a complete description of the configurable items in section 9.3.2 of the MET User's Guide. Please take some time to review them.

For this tutorial, we'll configure Ensemble-Stat to summarize and verify 24-hour accumulated precipitation. While we'll run Ensemble-Stat on a single field, please note that it
may be configured to operate on multiple fields. The ensemble we're verifying consists of 6 members defined over the west coast of the United States. Edit
the EnsembleStatConfig tutorial file as follows:

¢ In the ens dictionary, set

field = [
{
name ="APCP";
level =["A24"];
cat_thresh =[>0, >=5.0, >=10.0 ;
}
I

To read 24-hour accumulated precipitation from the input GRIB files and compute ensemble relative frequencies for the thresolds listed.

¢ In the fest dictionary, set

field = [
{
name ="APCP";
level =["A24"];
}

L
To also verify the 24-hour accumulated precipitation fields.

¢ In the fest dictionary, set:
message_type = ["ADPSFC"];

To verify against surface observations.

¢ In the point observation filtering section, set:
prob_cat_thresh=[>=0, >=5.0,>=10.0];

To specify thresholds to use for computation of the Ranked Probability Score (RPS).

¢ In the mask dictionary, set

Page 39 of 75

"MET_BASE/poly/SWC.poly" J;

To also verify over the northwest coast (NWC) and southwest coast (SWC) subregions.

e Set:

output_flag = {
ecnt = BOTH;
rhist = BOTH;
phist = BOTH;
orank = BOTH;
ssvar = BOTH;
relp =BOTH;

}

To compute continuous ensemble statistics (ECNT), ranked histogram (RHIST), probability integral transform histogram (PHIST), observation ranks (ORANK), spread-skill
variance (SSVAR), and relative position (RELP).

Save and close this file.

johnhg Thu, 07/25/2019 - 16:07

Ensemble-Stat Tool: Run

Ensemble-Stat Tool: Run
Next, run Ensemble-Stat on the command line using the following command, using wildcards to list the 6 input ensemble member files:

ensemble_stat \

6 ${METPLUS_DATA}/met_test/data/sample_fcst/2009123112/*gep*/d01_2009123112_02400.grib \
EnsembleStatConfig_tutorial \

-grid_obs ${METPLUS_DATA}/met_test/data/sample_obs/ST4/5T4.2010010112.24h \

-point_obs ${METPLUS_DATA}/met_test/out/ascii2nc/precip24_2010010112.nc \

-outdir . \

-v 2

Ensemble-Stat is now performing the tasks we requested in the configuration file. Note that we've passed the input ensemble data directly on the command line by specifying
the number of ensemble members (6) followed by their names using wildcards. We've also specified one gridded StagelV analysis field (-grid_obs) and one file containing point
rain gauge observations (-point_obs) to be used in computing rank histograms. This tool should run pretty quickly.

When Ensemble-Stat is finished, it will have created 9 output files in the current directory: 7 ASCII statistics files (.stat, _ecnt.txt, _rhist.txt, _phist.txt, _orank.txt, _ssvar.txt,
and _relp.txt), a NetCDF ensemble file (_ens.nc), and a NetCDF matched pairs file (_orank.nc).

johnhg Thu, 07/25/2019 - 16:09

Ensemble-Stat Tool: Output

Ensemble-Stat Tool: Output

The _ens.nc output from Ensemble-Stat is a NetCDF file containing the derived ensemble fields, one or more ASCII files containing statistics summarizing the verification
performed, and a NetCDF file containing the gridded matched pairs.

All of the line types are written to the file ending in .stat. The Ensemble-Stat tool currently writes six output line types, ECNT, RHIST, PHIST, RELP, SSVAR, and ORANK.

1. The ECNT line type contains contains continuous ensemble statistics such as spread and skill. Ensemble-Stat uses assumed observation errors to compute both
perturbed and unperturbed versions of these statistics. Statistics to which observation error have been applied can be found in columns which include the _OERR (for
observation error) suffix.

The RHIST line type contains counts for a ranked histogram. This ranks each observation value relative to ensemble member values. Ideally, observation values would fall
equally across all available ranks, yielding a flat rank histogram. In practice, ensembles are often under-(U shape) or over-(inverted U shape) dispersive. In the event of
ties, ranks are randomly assigned.

The PHIST line type contains counts for a probability integral transform histogram. This scales the observation ranks to a range of values between 0 and 1 and allows
ensembles of different size to be compared. Similarly, when ensemble members drop out, RHIST lines cannot be aggregated together but PHIST lines can.

4. The RELP line is the relative position, which indicates how often each ensemble member's value was closest to the observation's value. In the event of ties, credit is
divided equally among the tied members.

The ORANK line type is similar to the matched pair (MPR) output of Point-Stat. For each point observation value, one ORANK line is written out containing the observation
value, its rank, and the corresponding ensemble values for that point. When verifying against a griddedanalysis, the ranks can be written to the NetCDF output file.

The SSVAR line contains binned spread/skill information. For each observation location, the ensemble variance is computed at that point. Those variance values are
binned based on the ens_ssvar_bin_size configuration setting. The skill is determined by comparing the ensemble mean value to the observation value. One SSVAR line is
written for each bin summarizing the all the observation/ensemble mean pairs that it contains.

N

w

w

o

The STAT file contains all the ASCII output while the _ecnt.txt, _rhist.txt, _phist.txt, _orank.txt, _ssvar.txt, and _relp.txt files contain the same data but sorted by line type.
Since so much data can be written for the ORANK line type, we recommend disabling the output of the optional text file using the output_flag parameter in the configuration
file.

Since the lines of data in these ASCII file are so long, we strongly recommend configuring your text editor to NOT use dynamic word wrapping. The files will be much easier to
read that way.

Open up the ensemble_stat_20100101_120000V_rhist.txt RHIST file using the text editor of your choice and note the following:
vi ensemble_stat_20100101_120000V_rhist.txt

e There are 6 lines in this output file resulting from using 3 verification regions in the VX_MASK column (FULL, NWC, and SWC) and two observations datasets in
the OBTYPE column (ADPSFC point observations and gridded observations).

Page 40 of 75

~ IHISIT IS UULPUL UL 7 TGRS =~ DHHILE WE VEIISU G UTHHISIHTHIVET SHSTHINIT, UISIC AIT / PUSSINIT TGRS UIT UNDTI VAUUIT VAIUTD LUUIU audli .

Close this file, and open up the ensemble_stat_20100101_120000V_phist.txt PHIST file, and note the following:
vi ensemble_stat_20100101_120000V_phist. txt

e There are 5 lines in this output file resulting from using 3 verification regions (FULL, NWC, and SWC) and two observations datasets (ADPSFC point observations and
gridded observations), where the ADPSFC point observations for the SWC region were all zeros for which the probability integral transform is not defined.

e Each line contains columns for the BIN_SIZE and counts for each bin. The bin size is set in the configuration file using the ens_phist_bin_size field. In this case, it was set
to .05, therefore creating 20 bins (1/ens_phist_bin_size).

Close this file, and open up the ensemble_stat_20100101_120000V_orank.txt ORANK file, and note the following:
vi ensemble_stat_20100101_120000V_orank. txt

e This file contains 1866 lines, 1 line for each observation value falling inside each verification region (VX_MASK).

e Each line contains 44 columns, including header information, the observation location and value, its rank, and the 6 values for the ensemble members at that point.

e When there are ties, Ensemble-Stat randomly assigns a rank from all the possible choices. This can be seen in the SWC masking region where all of the observed values
are 0 and the ensemble forecasts are 0 as well. Ensemble-Stat randomly assigns a rank between 1 and 7.

Close this file, and use the ncview utility to view the NetCDF ensemble fields file:

ncview ensemble_stat_20100101_120000V_ens.nc &

This file contains variables for the following:

Ensemble Mean

Ensemble Standard Deviation

Ensemble Mean minus 1 Standard Deviation
Ensemble Mean plus 1 Standard Deviation
Ensemble Minimum

Ensemble Maximum

Ensemble Range

Ensemble Valid Data Count

Ensemble Relative Frequency (for 3 thresholds)

OLRONOIUTAWN =

The output of any of these summary fields may be disabled using the output_flag parameter in the configuration file.

Use the ncview utility to view the NetCDF gridded observation rank file:
ncview ensemble_stat_20100101_120000V_orank.nc &

This file is only created when you've verified using gridded observations and have requested its output using the output_flag parameter in the configuration file. Click through
the variables in this file. Note that for each of the three verification areas (FULL, NWC, and SWC) this file contains 4 variables:

1. The gridded observation value

2. The observation rank

3. The probability integral transform
4. The ensemble valid data count

In ncview, the random assignment of tied ranks is evident in areas of zero precipitation.
Close this file.
Feel free to explore using this dataset. Some options to try are:

e Try setting skip_const = TRUE; in the config file to discard points where all ensemble members and the observation are tied (i.e. zero precip). If you want to save it to a
different file, make sure you set output_prefix to something meaningful, such as "run2", or "skip-constant".

e Try setting obs_thresh =[>0.01]; in the config file to only consider points where the observation meets this threshold. How does this differ from the using skip_const?

e Use wgrib to inventory the input files and add additional entries to the ens.field list. Can you process 10-meter U and V wind?

johnhg Thu, 07/25/2019 - 16:11

MET Tool: Stat-Analysis

MET Tool: Stat-Analysis

Stat-Analysis Tool: General
Stat-Analysis Functionality

The Stat-Analysis tool reads the ASCII output files from the Point-Stat, Grid-Stat, Wavelet-Stat, and Ensemble-Stat tools. It provides a way to filter their STAT data and summarize
the statistical information they contain. If you pass it the name of a directory, Stat-Analysis searches that directory recursively and reads any .stat files it finds. Alternatively, if
you pass it an explicit file name, it'll read the contents of the file regardless of the suffix, enabling it to the optional _LINE_TYPE.txt files. Stat-Analysis runs one or more analysis
jobs on the input data. It can be run by specifying a single analysis job on the command line or multiple analysis jobs using a configuration file. The analysis job types are
summarized below:

e The filter job simply filters out lines from one or more STAT files that meet the filtering options specified.

e The summary job operates on one column of data from a single STAT line type. It produces summary information for that column of data: mean, standard deviation, min,
max, and the 10th, 25th, 50th, 75th, and 90th percentiles.

e The aggregate job aggregates STAT data across multiple time steps or masking regions. For example, it can be used to sum contingency table data or partial sums across
multiple lines of data. The -line_type argument specifies the line type to be summed.

e The aggregate_stat job also aggregates STAT data, like the aggregate job above, but then derives statistics from that aggregated STAT data. For example, it can be used
to sum contingency table data and then write out a line of the corresponding contingency table statistics. The -line_type and -out_line_type arguments are used to
specify the conversion type.

e The ss_index job computes a skill-score index, of which the GO Index (go_index) is a special case. The GO Index is a performance metric used primarily by the United
States Air Force.

Page 41 of 75

PUPUIGUE @ £AZ CUTILIEST LY LGS 11U11 WU T CaLSEUT ILaT SLAUSULS GI S USHIveu.
Stat-Analysis Usage
View the usage statement for Stat-Analysis by simply typing the following:

stat_analysis

Usage:
stat_analysis

Space-separated list of input paths where each is a _TYPE.txt file, STAT file, or directory which should be

-lookin path searched recursively for STAT files. Allows the use of wildcards (required).

[-out filename] Output path or specific filename to which output should be written rather than the screen (optional).
[-tmp_dir path] Override the default temporary directory to be used (optional).

[-log file] Outputs log messages to the specified file

[-v level] Level of logging

[-config config_file] | JOB COMMAND
LINE] (Note: "|" means "or")

[-config config_file] STATAnalysis config file containing Stat-Analysis jobs to be run.

All the arguments necessary to perform a single Stat-Analysis job. See the MET Users Guide for complete

[JOB COMMAND LINE] description of options.

At a minimum, you must specify at least one directory or file in which to find STAT data (using the -lookin path command line option) and either a configuration file (using the -
config config_file command line option) or a job command on the command line.

cindyhg Tue, 06/25/2019 - 08:36

Stat-Analysis Tool: Configure

Stat-Analysis Tool: Configure

Stat-Analysis Tool: Configure
Start by making an output directory for Stat-Analysis and changing directories:

mkdir -p ${METPLUS_TUTORIAL_DIR}/output/met_output/stat_analysis
cd ${METPLUS_TUTORIAL_DIR}/output/met_output/stat_analysis

The behavior of Stat-Analysis is controlled by the contents of the configuration file or the job command passed to it on the command line. The default Stat-Analysis configuration
may be found in the data/config/StatAnalysisConfig_default file. Let's start with a configuration file that's packaged with the met-8.0 test scripts:

cp ${MET_BUILD_BASE}/share/met/config/STATAnalysisConfig_default STATAnalysisConfig_tutorial
Open up the STATAnalysisConfig_tutorial file for editing with your preferred text editor.
vi STATAnalysisConfig_tutorial

You will see that most options are left blank, so the tool will use whatever it finds or whatever is specified in the command or job line. If you go down to the jobs[Isection you
will see a list of the jobs run for the test scripts. Remove those existing jobs and add the following 2 analysis jobs:

jobs=[

"-job aggregate -line_type CTC -fcst_thresh >273.0 -vx_mask FULL -interp_mthd NEAREST",

"-job aggregate_stat -line_type CTC -out_line_type CTS -fcst_thresh >273.0 -vx_mask FULL -interp_mthd NEAREST"
L

The first job listed above will select out only the contingency table count lines (CTC) where the threshold applied is >273.0 over the FULL masking region. This should result in 2
lines, one for pressure levels P850-500 and one for pressure P1050-850. So this job will be aggregating contingency table counts across vertical levels.

The second job listed above will perform the same aggregation as the first. However, it'll dump out the corresponding contingency table statistics derived from the aggregated
counts.

Close the file and run it on the next page.

cindyhg Tue, 06/25/2019 - 08:38

Stat-Analysis Tool: Run on Point-Stat output

Stat-Analysis Tool: Run on Point-Stat output
Stat-Analysis Tool: Run on Point-Stat output
Now, run Stat-Analysis on the command line using the following command:
stat_analysis \
-config STATAnalysisConfig_tutorial \
-lookin ../point_stat \
-v 2

The output for these two jobs are printed to the screen. Try redirecting their output to a file by adding the -out command line argument:

Page 42 of 75

—CONI 18 DIAITANALYSIDLONI 18 _LUuLoridL
-lookin ../point_stat \

-v 2\

-out aggr_ctc_lines.out

The output was written to aggr_ctc_lines.out. We'll ook at this file in the next section.

Next, try running the first job again, but entirely on the command line without a configuration file:

stat_analysis \

-lookin ../point_stat \
-v 2\

-job aggregate \
-line_type CTC \
-fcst_thresh ">273.0" \
-vx_mask FULL \
-interp_mthd NEAREST

Note that we had to put double quotes (") around the forecast theshold string for this to work.

Next, run the same command but add the -dump_row command line option. This will redirect all of the STAT lines used by the job to a file. Also, add the -out_stat command line
option. This will write a full STAT output file, including the 22 header columns:

stat_analysis \

-lookin ../point_stat \

-v 2\

-job aggregate \

-line_type CTC \

-fcst_thresh ">273.0" \
-vx_mask FULL \

-interp_mthd NEAREST \
-dump_row aggr_ctc_job.stat \
-out_stat aggr_ctc_job_out.stat

Open up the file aggr_ctc_job.stat to see the 2 STAT lines used by this job.
vi aggr_ctc_job.stat
Open up the file aggr_ctc_job_out.stat to see the 1 output STAT line. Notice that the FCST_LEV and OBS_LEV columns contain the input strings concatenated together.
vi aggr_ctc_job_out.stat
Try re-running this job using -set_hdr FCST_LEV P1050-500 and -set_hdr OBS_LEV P1050-500. How does that affect the output?
The use of the -dump_row option is highly recommended to ensure that your analysis jobs run on the exact set of data that you intended. It's easy to make mistakes here!

cindyhg Tue, 06/25/2019 - 08:39

Stat-Analysis Tool: Output

Stat-Analysis Tool: Output

Stat-Analysis Tool: Output

On the previous page, we generated the output file aggr_ctc_lines.out by using the -out command line argument. Open that file using the text editor of your choice, and be
sure to turn word-wrapping off.

This file contains the output for the two jobs we ran through the configuration file. The output for each job consists of 3 lines as follows:

1. The JOB_LIST line contains the job filtering parameters applied for this job.
2. The COL_NAME line contains the column names for the data to follow in the next line.
3. The third line consists of the line type generated (CTC and CTS in this case) followed by the values computed for that line type.

Next, try running the Stat-Analysis tool on the output file ../point_stat/point_stat_run2_360000L_20070331_120000V.stat. Start by running the following job:

stat_analysis \

-lookin ../point_stat/point_stat_run2_360000L_20070331_120000V.stat \
-v 2\

-job aggregate \

-fest_var TMP A

-fest_lev 72 \

-vx_mask EAST -vx_mask WEST \

-interp_pnts 1 \

-line_type CTC \

-fcst_thresh ">278.0"

This job should aggregate 2 CTC lines for 2-meter temperature across the EAST and WEST regions. Next, try creating your own Stat-Analysis command line jobs to do the
following:

1. Do the same aggregation as above but for the 5x5 interpolation output (i.e. 25 points instead of 1 point).

2. Do the aggregation listed in (1) but compute the corresponding contingency table statistics (CTS) line. Hint: you will need to change the job type to aggregate_stat and
specify the desired -out_line_type.
How do the scores change when you increase the number of interpolation points? Did you expect this?

3. Aggregate the scalar partial sums lines (SL1L2) for 2-meter temperature across the EAST and WEST masking regions.
How does aggregating the East and West domains affect the output?

Page 43 of 75

2. UL Al @I SEALE_ILAt JUL U ELUY Ul UIT HHALWHISU Pail uaid (IVIE I\ HEHIES)/, @1HU UST LIS "UUL_IINIE_LY P LUTTHTIAINU HHTE @1 SUTTITTHL LU STITLL UIT Ly PE Ul UULPUL WU U

generated. You'll likely have to supply additional command line arguments depending on what computation you request.

Now answer this question about this Stat-Analysis output:
1. How do the scores compare to the original (separated by level) scores? What information is gained by aggregating the statistics?
When doing the exercises above, don't forget to use the -dump_row command line option to verify that you're running the job over the STAT lines you intended.
If you get stuck on any of these exercises, you may refer to the exercise answers on the next page. We will return to the Stat-Analysis tool in the future practical sessions.

cindyhg Tue, 06/25/2019 - 09:13

Stat-Analysis Tool: Exercise Answers

Stat-Analysis Tool: Exercise Answers

1. Job Number 1:

stat_analysis \

-lookin ../point_stat/point_stat_run2_360000L_20070331_120000V.stat -v 2 \

-job aggregate -fcst_var TMP -fcst_lev Z2 -vx_mask EAST -vx_mask WEST -interp_pnts 25 -fcst_thresh ">278.0" \
-line_type CTC \

-dump_row jobl_ps.stat

2. Job Number 2:

stat_analysis \

-lookin ../point_stat/point_stat_run2_360000L_20070331_120000V.stat -v 2 \

-job aggregate_stat -fcst_var TMP -fcst_lev Z2 -vx_mask EAST -vx_mask WEST -interp_pnts 25 -fcst_thresh ">278.0" \
-line_type CTC -out_line_type CTS \

-dump_row job2_ps.stat

3. Job Number 3:

stat_analysis \

-lookin ../point_stat/point_stat_run2_360000L_20070331_120000V.stat -v 2 \

-job aggregate -fcst_var TMP -fcst_lev Z2 -vx_mask EAST -vx_mask WEST -interp_pnts 25 \
-line_type SL1L2 \

-dump_row job3_ps.stat

4. Job Number 4:

stat_analysis \

-lookin ../point_stat/point_stat_run2_360000L_20070331_120000V.stat -v 2 \

-job aggregate_stat -fcst_var TMP -fcst_lev Z2 -vx_mask EAST -vx_mask WEST -interp_pnts 25 \
-line_type SL1L2 -out_line_type CNT \

-dump_row job4_ps.stat

5. This MPR job recomputes contingency table statistics for 2-meter temperature over G212 using a new threshold of ">=285":

stat_analysis \

-lookin ../point_stat/point_stat_run2_360000L_200670331_120000V.stat -v 2 \
-job aggregate_stat -fcst_var TMP -fcst_lev Z2 -vx_mask G212 -interp_pnts 25 \
-line_type MPR -out_line_type CTS \

-out_fcst_thresh ge285 -out_obs_thresh ge285 \

-dump_row job5_ps.stat

johnhg Thu, 07/25/2019 - 22:07

Use Case: Ensemble

Use Case: Ensemble
The EnsembleStat MET Tool Wrapper use case utilizes the MET Ensemble-Stat tool.

Optional: Refer to the MET Users Guide for a description of the MET tools used in this use case.
Optional: Refer to the METplus Config Glossary section of the METplus Users Guide for a reference to METplus variables used in this use case.

Change to the ${METPLUS_TUTORIAL_DIR} directory:
cd ${METPLUS_TUTORIAL_DIR}

1. Review the use case configuration file: EnsembleStat.conf

Open the file and look at all of the configuration variables that are defined.

Page 44 of 75

Note that variables in EnsembleStat.conf reference other config variables that have been defined in other configuration files. For example:
FCST_ENSEMBLE_STAT_INPUT_DIR = {INPUT_BASE}/met_test/data/sample_fcst

This references INPUT_BASE which is set in the tutorial.conf configuration file. METplus config variables can reference other config variables even if they are defined in a config
file that is read afterwards.

2. Run the use case:
master_metplus.py \

-c ${METPLUS_TUTORIAL_DIR}/tutorial.conf \
-c ${METPLUS_BUILD_BASE}/parm/use_cases/met_tool_wrapper/EnsembleStat/EnsembleStat.conf

METplus is finished running when control returns to your terminal console and you see the following text:

INFO: METplus has successfully finished running.

3. Review the output files:
You should have output files in the following directories:

1s ${METPLUS_TUTORIAL_DIR}/output/ensemble/200912311200/ensemble_stat

e ensemble_stat_20100101_120000V_ecnt.txt

e ensemble_stat_20100101_120000V_ens.nc
e ensemble_stat_20100101_120000V_orank.nc
e ensemble_stat_20100101_120000V_orank.txt
e ensemble_stat_20100101_120000V_phist.txt
e ensemble_stat_20100101_120000V_relp.txt

e ensemble_stat_20100101_120000V_rhist.txt
e ensemble_stat_20100101_120000V_ssvar.txt

e ensemble_stat_20100101_120000V.stat

Take a look at some of the files to see what was generated.
less ${METPLUS_TUTORIAL_DIR}/output/ensemble/200912311200/ensemble_stat/ensemble_stat_20100101_120000V.stat
4. Review the log output:
Log files for this run are found in ${METPLUS_TUTORIAL_DIR}/logs. The filename contains a timestamp of the current day.
1s -1 ${METPLUS_TUTORIAL_DIR}/output/logs/master_metplus.log.*
View the log file with the latest timestamp.
5. Review the Final Configuration File
The final configuration file is called metplus_final.conf. This contains all of the configuration variables used in the run. It is found in the top level of [dir] OUTPUT_BASE.

less ${METPLUS_TUTORIAL_DIR}/output/metplus_final.conf

Note: metplus_final.conf is overwritten with every call to master_metplus.py

cindyhg Tue, 06/25/2019 - 09:15

Use Case: PQPF

Use Case: PQPF
METplus Use Case: QPF Probabilistic
The QPF Probabilistic use case utilizes the MET Pcp-Combine, Regrid-Data-Plane, and Grid-Stat tools.

Optional: Refer to the MET Users Guide for a description of the MET tools used in this use case.
Optional: Refer to the METplus Config Glossary section of the METplus Users Guide for a reference to METplus variables used in this use case.

Review Use Case Configuration File

The configuration file is located in use_cases/model_applications/precipitation and is called GridStat_fcstHRRR-TLE_obsStgIV_GRIB.conf

Page 45 of 75

less ${METPLUS_BUILD_BASE}/parm/use_cases/model_applications/precipitation/GridStat_fcstHRRR-TLE_obsStgIV_GRIB.conf

Note that several processes are called in this use-case and that there is a specific setting to tell METplus that the forecast field is probabilistic. For example:

PROCESS_LIST = PcpCombine, RegridDataPlane, GridStat
FCST_IS_PROB = true

Also note that variables in GridStat_fcstHRRR-TLE_obsStglV_GRIB.conf reference other config variables that have been defined in configuration files. For example:

REGRID_DATA_PLANE_VERIF_GRID = {INPUT_BASE}/model_applications/precipitation/mask/CONUS_HRRRTLE.nc
OBS_PCP_COMBINE_INPUT_DIR = {INPUT_BASE}/model_applications/precipitation/StagelV

This references INPUT_BASE which is set in the METplus tutorial.conf file (${METPLUS_TUTORIAL_DIR}/tutorial.conf). METplus config variables can reference other config
variables even if they are defined in a config file that is read afterwards.

Run METplus
Run the following command:

master_metplus.py \
-¢ ${METPLUS_TUTORIAL_DIR}/tutorial.conf \
-¢ ${METPLUS_BUILD_BASE}/parm/use_cases/model_applications/precipitation/GridStat_fcstHRRR-TLE_obsStgIV_GRIB.conf

METplus is finished running when control returns to your terminal console and you see the following text:
INFO: METplus has successfully finished running.

Review the Output Files
You should have output files in the following directories:

1s ${METPLUS_TUTORIAL_DIR}/output/model_applications/precipitation/GridStat_fcstHRRR-TLE_obsStgIV_GRIB/GridStat/201609041200

grid_stat_PROB_PHPT_APCP_vs_STAGE4_GRIB_APCP_A06_060000L_20160904_180000V_pct.txt
grid_stat_PROB_PHPT_APCP_vs_STAGE4_GRIB_APCP_A06_060000L_20160904_180000V_pjc.txt
grid_stat_PROB_PHPT_APCP_vs_STAGE4_GRIB_APCP_A06_060000L_20160904_180000V_prc.txt
grid_stat_ PROB_PHPT_APCP_vs_STAGE4_GRIB_APCP_A06_060000L_20160904_180000V_pstd.txt
grid_stat_PROB_PHPT_APCP_vs_STAGE4_GRIB_APCP_A06_060000L_20160904_180000V.stat
grid_stat_PROB_PHPT_APCP_vs_STAGE4_GRIB_APCP_A06_070000L_20160904_190000V_pct.txt
grid_stat_PROB_PHPT_APCP_vs_STAGE4_GRIB_APCP_A06_070000L_20160904_190000V_pjc.txt
grid_stat_PROB_PHPT_APCP_vs_STAGE4_GRIB_APCP_A06_070000L_20160904_190000V_prc.txt
grid_stat_PROB_PHPT_APCP_vs_STAGE4_GRIB_APCP_A06_070000L_20160904_190000V_pstd.txt
grid_stat_PROB_PHPT_APCP_vs_STAGE4_GRIB_APCP_A06_070000L_20160904_190000V.stat

Take a look at some of the files to see what was generated.

less ${METPLUS_TUTORIAL_DIR}/output/model_applications/precipitation/GridStat_fcstHRRR-
TLE_obsStgIV_GRIB/GridStat/201609041200/grid_stat_PROB_PHPT_APCP_vs_STAGE4_GRIB_APCP_A0G6_060000L_20160904_180000V.stat

Review the Log Files

Log files for this run are found in ${METPLUS_TUTORIAL_DIR}/output/logs. The filename contains a timestamp of the year, month, day, hour, minute, second that the METplus
command was run. The log file for this command will be the most recent one.

1s ${METPLUS_TUTORIAL_DIR}/output/logs

Note: the time zone of your computer may not be the same as the time zone you are in. For example, hera uses UTC which is 6 hours ahead of Mountain Daylight Time and 7
hours ahead of Mountain Standard Time (the time zone in Boulder, Colorado).

Review the Final Configuration File
The final configuration file is metplus_final.conf. This contains all of the configuration variables used in the run.
less ${METPLUS_TUTORIAL_DIR}/output/metplus_final.conf

cindyhg Tue, 06/25/2019 - 09:17

Additional Exercises

Additional Exercises

End of Practical Session 3
Congratulations! You have completed Session 3!

If you have extra time, you may want to try these additional METplus exercises. The answers are found on the next page.

EXERCISE 3.1: accum_3hr - Build a 3 Hour Accumulation Instead of 6

Page 46 of 75

VoL IVINIVIO AT L SAGHTIPIS, 11IS1H LUNHPEAIS 0 1IUUT GUULUTHUIGUUIES 1 U IS 1U1SLasL G1HU UUSSH Vauu T uaea witti giiu_stat.
Copy your custom configuration file and rename it to GridStat-ensemble.accum_3hr.conf for this exercise.

cp ${METPLUS_BUILD_BASE}/parm/use_cases/model_applications/precipitation/GridStat_fcstHRRR-TLE_obsStgIV_GRIB.conf \
$ {METPLUS_TUTORIAL_DIR}/user_config/GridStat-ensemble.accum_3hr.conf

Open GridStat-ensemble.accum_3hr.conf with an editor and change values.
vi ${METPLUS_TUTORIAL_DIR}/user_config/GridStat-ensemble.accum_3hr.conf

HINT: There is a variable in the observation data named BOTH_VAR_LEVELS that currently contains a 6 hour accumulation.
You can also set the OUTPUT_BASE entry under the [dir] section on the command line to define a new location so you can keep it separate from the other runs.

Rerun master_metplus passing in your new custom config file, tutorial.conf, and setting the new OUTPUT_BASE for this exercise.

master_metplus.py \

-c ${METPLUS_TUTORIAL_DIR}/tutorial.conf \

-c ${METPLUS_TUTORIAL_DIR}/user_config/GridStat-ensemble.accum_3hr.conf \
-¢ dir.OUTPUT_BASE=${METPLUS_TUTORIAL_DIR}/output/exercises/accum_3hr

Review the log file. You should see Pcp-Combine read 3 files and run Grid-Stat comparing both 3 hour accumulations.

1s ${METPLUS_TUTORIAL_DIR}/output/exercises/accum_3hr/logs/master_metplus.log.*

DEBUG 1: Reading data (name="APCP"; level="A01";) from input file:
/d1/projects/METplus/METplus_Data/model_applications/precipitation/StagelV/20160904/5T4.2016090418.01h

DEBUG 1: Reading data (name="APCP"; level="A01";) from input file:
/d1/projects/METplus/METplus_Data/model_applications/precipitation/StagelV/20160904/ST4.2016090417.01h

DEBUG 1: Reading data (name="APCP"; level="A01";) from input file:
/d1/projects/METplus/METplus_Data/model_applications/precipitation/StagelV/20160904/ST4.2016090416.01h

DEBUG 2: Skipping 480079 of 987601 grid points which do not meet the valid data threshold (1).

DEBUG 1: Creating output file: /path/to/tutorial/output/exercises/accum_3hr/model_applications/precipitation/GridStat_fcstHRRR-
TLE_obsStglV_GRIB/uswrp/StagelV_grib/bucket/20160904/5T4.2016090418_A03h

DEBUG 2: Writing output variable "APCP_03" for the "sum" of "APCP/A01".

Go to the next page for the solution to see if you were right!

EXERCISE 3.2: input_1hr - Force Pcp-Combine to only use 1 hour accumulation files

Instructions: Modify the METplus configuration files to force Pcp-Combine to use six 1 hour accumulation files instead of one 6 hour accumulation file of observation data
in the PHPT vs. StagelV GRIB example.

Tip: Recall from the original QPF exercise that METplus used a 6 hour observation accumulation file as input to Pcp-Combine to build a 6 hour accumulation file for the example
where forecast lead = 6.

From the log output found in ${METPLUS_TUTORIAL_DIR}/output/logs:

DEBUG 2: Performing derivation command (sum) for 1 files.

DEBUG 1: Reading data (name="APCP"; level="A6";) from input file: /path/to/METplus_Data/qpf/uswrp/StagelV/20160904/ST4.2016090418.06h
DEBUG 2: Skipping 399779 of 987601 grid points which do not meet the valid data threshold (1).

DEBUG 1: Creating output file: /path/to/tutorial/output/qpf-prob/uswrp/StagelV_grib/bucket/20160904/5T4.2016090418_A06h

DEBUG 2: Writing output variable "APCP_06" for the "sum" of "APCP/A6".

Copy your custom configuration file and rename it to GridStat-ensemble.input_1hr.conf for this exercise.

cd ${METPLUS_TUTORIAL_DIR}/user_config
cp GridStat-ensemble.accum_3hr.conf GridStat-ensemble.input_1lhr.conf

Open GridStat-ensemble.input_1hr.conf with an editor and add the extra information.
vi ${METPLUS_TUTORIAL_DIR}/user_config/GridStat-ensemble.input_1lhr.conf

HINT 1: The variables that you need to add must go under the [config] section.

HINT 2: The FCST_PCP_COMBINE_INPUT_LEVEL and OBS_PCP_COMBINE_INPUT_LEVEL variables set the accumulation interval that is found in grib2 input data for forecast and
observation data respectively.

You should also change OUTPUT_BASE to a new location so you can keep it separate from the other runs.

[dir]
OUTPUT_BASE = {ENV[METPLUS_TUTORIAL_DIR]}/output/exercises/input_1hr

Rerun master_metplus passing in your new custom config file for this exercise keeping in mind to order of configuration files matters and the OUTPUT_BASE in GridStat-
ensemble.input_1hr.conf will override what is in the tutorial.conf file

master_metplus.py \

-¢ ${METPLUS_TUTORIAL_DIR}/tutorial.conf \
-¢ ${METPLUS_TUTORIAL_DIR}/user_config/GridStat-ensemble.input_1lhr.conf

DEBUG 2: Performing derivation command (sum) for 6 files.
DEBUG 1: Reading data (name="APCP"; level="A01";) from input file:

Page 47 of 75

LLLUG 1L NSaUI g Uaa \ianic= A wr |, ISVEI= AU) U HIPUL s,
/d1/projects/METplus/METplus_Data/model_applications/precipitation/StagelV/20160904/5T4.2016090417.01h

DEBUG 1: Reading data (name="APCP"; level="A01";) from input file:
/d1/projects/METplus/METplus_Data/model_applications/precipitation/StagelV/20160904/5T4.2016090416.01h

DEBUG 1: Reading data (name="APCP"; level="A01";) from input file:
/d1/projects/METplus/METplus_Data/model_applications/precipitation/StagelV/20160904/ST4.2016090415.01h

DEBUG 1: Reading data (name="APCP"; level="A01";) from input file:
/d1/projects/METplus/METplus_Data/model_applications/precipitation/StagelV/20160904/5T4.2016090414.01h

DEBUG 1: Reading data (name="APCP"; level="A01";) from input file:
/d1/projects/METplus/METplus_Data/model_applications/precipitation/StagelV/20160904/5T4.2016090413.01h

DEBUG 2: Skipping 480079 of 987601 grid points which do not meet the valid data threshold (1).

DEBUG 1: Creating output file: /path/to/tutorial/output/exercises/input_Thr/model_applications/precipitation/GridStat_fcstHRRR-
TLE_obsStgIV_GRIB/uswrp/StagelV_grib/bucket/20160904/5T4.2016090418_A06h

DEBUG 2: Writing output variable "APCP_06" for the "sum" of "APCP/A01".

Go to the next page for the solution to see if you were right!

cindyhg Tue, 06/25/2019 - 09:21

Answers to Exercises from Session 3

Answers to Exercises from Session 3

Answers to Exercises from Session 3
These are the answers to the exercises from the previous page. Feel free to ask a MET representative if you have any questions!
ANSWER 3.1: accum_3hr - Build a 3 Hour Accumulation Instead of 6

Instructions: Modify the METplus configuration files to build a 3 hour accumulation instead of a 6 hour accumulation from forecast data using Pcp-Combine in the HREF MEAN
vs. MRMS QPE example. Then compare 3 hour accumulations in the forecast and observation data with grid_stat.

Answer: In the user_config/GridStat-ensemble.accum_3hr.conf file, change the following variables in the [config] section:

Change:

BOTH_VAR1_LEVELS = A06
To:

BOTH_VAR1_LEVELS = A03

ANSWER 3.2: input_1hr - Force Pcp-Combine to only use 1 hour accumulation files

Instructions: Modify the METplus configuration files to force Pcp-Combine to use six 1 hour accumulation files instead of one 6 hour accumulation file of observation data in
the PHPT vs. StagelV GRIB example.

Answer: In the user_config/GridStat-ensemble.input_1hr.conf file, change the following variable to the [config] section:

Change:
BOTH_VAR1_LEVELS = A03
Back to:
BOTH_VAR1_LEVELS = A06
Also change:
OBS_PCP_COMBINE_INPUT_ACCUMS = 6,1
To:
OBS_PCP_COMBINE_INPUT_ACCUMS =1

cindyhg Tue, 06/25/2019 - 09:23

Session 4: MODE and MTD

Session 4: MODE and MTD

METplus Practical Session 4

During this practical session, you will run the tools indicated below:

Page 48 of 75

You may navigate through this tutorial by following the links at the bottom of each page or by using the menu navigation.

Since you already set up your runtime environment in Session 1, you should be ready to go! To be sure, run through the following instructions to check that your environment
is set correctly.

Prerequisites: Verify Environment is Set Correctly

Before running these instructions, you will need to ensure that you have a few environment variables set up correctly. If they are not set correctly, these instructions will not
work properly.

1. Check that you have METPLUS_TUTORIAL_DIR set correctly:

echo ${METPLUS_TUTORIAL_DIR}

If you don't see a path in your user directory output to the screen, set this environment variable in your user profile before continuing.

Page 49 of 75

2. Use the "env" command to check that you have METPLUS_BUILD_BASE, MET_BUILD_BASE, and METPLUS_DATA set correctly:
> env | grep MET

If any of these variables are not set, please set them. They will be referenced throughout the tutorial. You can do this by sourcing the appropriate TutorialSetup.
[hera/bash/cshrc].sh file, that is:

On hera:

source /path/to/METplus_Tutorial/TutorialSetup.hera.sh
On linux server (bash):

source /path/to/METplus_Tutorial/TutorialSetup.linux-bash.sh
On linux server (csh):

source /path/to/METplus_Tutorial/TutorialSetup.linux-csh.sh

where /path/to is the path to your METplus_Tutorial directory.

METPLUS_BUILD_BASE is the full path to the METplus installation (/path/to/METplus-X.Y)
MET_BUILD_BASE is the full path to the MET installation (/path/to/met-X.Y)
METPLUS_DATA is the location of the sample test data directory

3. Check that you have loaded the MET module correctly:
point_stat

You should see the usage statement for Point-Stat. The version number listed should correspond to the version listed in MET_BUILD_BASE. If it does not, you will need to either
reload the met module, or add ${MET_BUILD_BASE}/bin to your PATH.

4. Check that the correct version of master_metplus.py is in your PATH:
which master_metplus.py

If you don't see the full path to script from the shared installation, please set it. It should look the same as the output from this command:
echo ${METPLUS_BUILD_BASE}/ush/master_metplus.py

See the instructions in Session 1 for more information.

You are now ready to move on to the next section.

admin Wed, 06/12/2019 - 16:58

MET Tool: MODE

MET Tool: MODE

MODE Tool: General
MODE Functionality

MODE, the Method for Object-Based Diagnostic Evaluation, provides an object-based verification for comparing gridded forecasts to gridded observations. MODE may be used
in a generalized way to compare any two fields containing data from which objects may be well defined. It has most commonly been applied to precipitation fields and radar
reflectivity. The steps performed in MODE consist of:

Define objects in the forecast and observation fields based on user-defined parameters.

Compute attributes for each of those objects: such as area, centroid, axis angle, and intensity.

For each forecast/observation object pair, compute differences between their attributes: such as area ratio, centroid distance, angle difference, and intensity ratio.
Use fuzzy logic to compute a total interest value for each forecast/observation object pair based on user-defined weights.

Based on the computed interest values, match objects across fields and merge objects within the same field.

Write output statistics summarizing the characteristics of the single objects, the pairs of objects, and the matched/merged objects.

MODE may be configured to use a few different sets of logic with which to perform matching and merging. In this tutorial, we'll use the most simple approach, but users are
encouraged to read Chapter 14 of the MET User's Guide for a more thorough description of MODE's capabilities.

MODE Usage
View the usage statement for MODE by simply typing the following:

mode

Usage: mode

fest_file Input gridded forecast file containing the field to be verified

obs_file Input gridded observation file containing the verifying field

config_file MODEConfig file containing the desired configuration settings

[-config_merge merge_config_file] Overrides the default fuzzy engine settings for merging within the fcst/obs fields (optional).
[-outdir path] Overrides the default output directory (optional).

[-log file] Outputs log messages to the specified file

Page 50 of 75

[-compress level] NetCDF compression level

The forecast and observation fields must be on the same grid. You can use copygb to regrid GRIB1 files, wgrib2 to regrid GRIB2 files, or use the automated regridding
functionality within the MET config files.

At a minimum, the input gridded fcst_file, the input gridded obs_file, and the configuration config_file must be passed in on the command line.

cindyhg Tue, 06/25/2019 - 07:58

MODE Tool: Configure

MODE Tool: Configure

MODE Tool: Configure

Start by making an output directory for MODE and changing directories:

mkdir -p ${METPLUS_TUTORIAL_DIR}/output/met_output/mode
cd ${METPLUS_TUTORIAL_DIR}/output/met_output/mode

The behavior of MODE is controlled by the contents of the configuration file passed to it on the command line. The default MODE configuration file may be found in
the data/config/MODEConfig_default file. Prior to modifying the configuration file, users are advised to make copies of existing configuration files:

cp ${METPLUS_DATA}/met_test/scripts/config/MODEConfig_APCP_12 MODEConfig_APCP_12
cp ${METPLUS_DATA}/met_test/scripts/config/MODEConfig_APCP_24 MODEConfig_APCP_24
cp ${METPLUS_DATA}/met_test/scripts/config/MODEConfig_RH MODEConfig_RH

We'll be using these three configuration files during this session. Open up the MODEConfig_ APCP_12 file to view it.
vi MODEConfig_APCP_12

The configuration items for MODE are used to specify how the object-based verification approach is to be performed. In MODE, as in the other MET statistics tools, you can
compare any two fields. When necessary, the items in the configuration file are specified separately for the forecast and observation fields. In most cases though, users will be
comparing the same forecast and observation fields. The configurable items include parameters for the following:

The forecast and observation fields and vertical levels or accumulation intervals to be compared
Options to mask out a portion of or threshold the raw fields

The forecast and observation object definition parameters

Options to filter out objects that don't meet a size or intensity criteria

Flags to control the logic for matching/merging

Weights to be applied for the fuzzy engine matching/merging algorithm

Interest functions to be used for the fuzzy engine matching/merging algorithm

Total interest threshold for matching/merging

Various plotting options

While the MODE configuration file contains many options, beginning users will typically only need to modify a few of them. You may find a complete description of the
configurable items in section 14.3.2 of the MET User's Guide. Please take some time to review them.

At the bottom of MODE_Config_APCP_12, change "version" to "9.0"
I 1T

output_prefix ="";
version = "V9.0";

s

Close MODEConfig_APCP_12. Also change the version number in MODEConfig_APCP_24 and MODEConfig_RH. We'll start here using by running the configuration files we
copied over, as-is.

cindyhg Tue, 06/25/2019 - 08:01

MODE Tool: Run

MODE Tool: Run

MODE Tool: Run
Next, run MODE three times on the command line using those three configuration files with the following commands:

mode \
${METPLUS_DATA}/met_test/out/pcp_combine/sample_fcst_12L_2005080712V_12A.nc \
${METPLUS_DATA}/met_test/out/pcp_combine/sample_obs_2005080712V_12A.nc \
MODEConfig_APCP_12 \

-outdir .\

-v 2

Page 51 of 75

DLMCIFLUD_VAITA}/MEL_LESL/UALA/S5AMPLE_1COL/ LZUVDUDU/WY/WIIPIS_FNUCLS_£4. LMYW_VZlZ
$ {METPLUS_DATA}/met_test/out/pcp_combine/sample_obs_2005080800V_24A.nc \
MODEConfig_APCP_24 \

-outdir . \

-v 2

It is very possible you will receive and error message after running the APCP_24 case that includes this:

ERROR :

ERROR : check_met_version() -> The version number listed in the config file (V8.1) is not compatible with the current
version of the code (V9.0).

ERROR:

HDF5-DIAG: Error detected in HDF5 (1.10.4) thread 0:

This is not an HDF5 error. Instead, follow the instructions and make sure you updated the version to be V9.0 in both the MODEConfig_APCP_24 and MODEConfig_RH prior to re-
running the above command and then the RH command below.

mode \
${METPLUS_DATA}/met_test/data/sample_fcst/2005080700/wrfprs_rucl3_12.tm06_G212 \
${METPLUS_DATA}/met_test/data/sample_fcst/2005080712/wrfprs_rucl3_00.tm06_G212 \
MODEConfig_RH \

-outdir .\

-v 2

These commands make use of sample data that's distributed with the MET tarball. They run MODE on 12-hour accumulated precipitation, 24-hour accumulated precipitation,
and on a field of relative humidity.

cindyhg Tue, 06/25/2019 - 08:02

MODE Tool: Output

MODE Tool: Output
MODE Tool: Output

The output of MODE typically consists of 4 files: 2 ASCII statistics files, 1 NetCDF object file, and 1 PostScript summary plot. The output of any of these files may be disabled using
the appropriate MODE command line argument. In this example, the output is written to the current mode directory, as we requested on the command line.

The MODE output file naming convention is similar to that of the other MET tools. It contains timing information about the forecast being evaluated (forecast valid, lead, and
accumulation times). If you rerun MODE on the same fields but with a slightly different configuration, the new output will override the old output, unless you redirect it to a
different directory using the -outdir command line argument. You can also edit the output_prefix in the MODE configuration file to customize the output file names. The 4
MODE output files are described briefly below:

e The PostScript file ends in .ps and is described below.

e The NetCDF object file ends in _obj.nc and contains the object indices.

e The ASCII contingency table statistics file and ends in _cts.txt.

e The ASCII object statistics file ends in _obj.txt and contains all of the object and object comparison data.

You can use ghostview (gv) to look at the postscript file output from each of these three forecasts.
gv mode_240000L_20050808_000000V_240000A.ps &

If ghostview is not available, use display to view the files. Click on the image to get a command box, then use File -> Next to move to the next page of the image.
There are multiple pages of output. Take a moment to look them over:

1. Page 1 summarizes the entire MODE run. Thumbnail images show the input data, resolved objects, and numbers identifying each object for both the forecast and
observation fields. The color indicates object matching between the forecast and observation fields. Royal blue indicates an unmatched object. The object definition
information is listed at the bottom of the page, and a sorted list of total object interest is listed on the right side.

2. Page 2 is an expanded view of the forecast thumbnail images.

3. Page 3 is an expanded view of the observation thumbnail images.

4. Page 4 has images showing the forecast objects with observation object outlines overlaid, and vice-versa.

5. Page 5 shows images and statistics for matching object clusters (i.e. one or more forecast objects matching one or more observation objects). These statistics also appear

in the ASCII output from MODE.
6. When double-thresholding or fuzzy engine merging is enabled, additional PostScript pages are added to illustrate those methods.

You may view the output NetCDF file using ncview. Execute the following command to view the NetCDF object output of MODE:

ncview mode_120000L_20050807_120000V_120000A_obj.nc &

Click through the 2D variable names in the ncview window to see plots of the four object fields in the file (NOTE: if a window pops up informing you "the min and max are
both...", just Click "OK" and then the field will render). The fcst_obj_id and obs_obj_id contain the indices for the forecast and observation objects defined by MODE.

The fest_clus_id and obs_clus_id contain indices for the matched cluster objects.

What are the benefits of spatial methods over traditional statistics? The weaknesses? What are some examples where an object-based verification would be inappropriate?

To accumulate the output of the object based verification, you use the MODE-Analysis Tool. We will use this next.

cindyhg Tue, 06/25/2019 - 08:04

Use Case: MODE

Page 52 of 75

METplus Use Case: MODE
The MODE use case utilizes the MET Mode tools.

Optional: Refer to the MET Users Guide for a description of the MET tools used in this use case.
Optional: Refer to A-Z Config Glossary section of the METplus Users Guide for a reference to METplus variables used in this use case.

Review Use Case Configuration File: MODE.conf
Open the file and look at all of the configuration variables that are defined.

less ${METPLUS_BUILD_BASE}/parm/use_cases/met_tool_wrapper/MODE/MODE.conf

Note that variables in MODE.conf reference other config variables that have been defined in other configuration files. For example:
OBS_MODE_INPUT_DIR = {INPUT_BASE}/met_test/data/sample_fcst

This references INPUT_BASE which is the METplus tutorial configuration file ${METPLUS_TUTORIAL_DIR}/tutorial.conf. METplus config variables can reference other config
variables even if they are defined in a config file that is read afterwards.

Run METplus
Change to ${METPLUS_TUTORIAL_DIR}
cd ${METPLUS_TUTORIAL_DIR}
Run the following command:
master_metplus.py \
-c ${METPLUS_TUTORIAL_DIR}/tutorial.conf \
-¢ ${METPLUS_BUILD_BASE}/parm/use_cases/met_tool_wrapper/MODE/MODE.conf

METplus is finished running when control returns to your terminal console and you see the following text:

INFO: METplus has successfully finished running.

Review the Output Files
You should have output files in the following directories:

ls ${METPLUS_TUTORIAL_DIR}/output/mode/2005080712

mode_WRF_RH_vs_WRF_RH_P500_120000L_20050807_120000V_000000A _cts.txt
mode_WRF_RH_vs_WRF_RH_P500_120000L_20050807_120000V_000000A_obj.nc
mode_WRF_RH_vs_WRF_RH_P500_120000L_20050807_120000V_000000A_obj.txt
mode_WRF_RH_vs_WRF_RH_P500_120000L_20050807_120000V_000000A.ps

Take a look at some of the files to see what was generated.
less ${METPLUS_TUTORIAL_DIR}/output/mode/2005080712/mode_WRF_RH_vs_WRF_RH_P500_120000L_20056807_120000V_000000A_ obj.txt
Review the Log Files
Log files for this run are found in ${METPLUS_TUTORIAL_DIR}/output/mode/logs/.
The filename contains a timestamp of when it was run, in format YYYYMMDDhhmmss. The most recent timestamp will be from running the MODE use case.
1s ${METPLUS_TUTORIAL_DIR}/output/logs/master_metplus.log.*
NOTE: If you ran METplus on a different day than today, the log file will correspond to the day you ran. Note that some computers, such as NOAA's hera are set to UTC.
Review the Final Configuration File
The final configuration file is output/metplus_final.conf. This contains all of the configuration variables used in the run.
less ${METPLUS_TUTORIAL_DIR}/output/metplus_final.conf

cindyhg Tue, 06/25/2019 - 08:07

MET Tool: MTD

MET Tool: MTD
MODE-Time-Domain: General

MODE-Time-Domain Functionality
The MODE-Time-Domain (MTD) tool was added in MET version 6.0. It applies an object-based verification technique in comparing a gridded forecast to a gridded analysis. It

defines 3-dimensional space/time objects, tracking 2-dimensional objects through time. It writes summary object information to ASCII statistics files and writes object fields to
NetCDF format. The MTD tool can be used to quantify the duration of events and timing errors.

Page 53 of 75

View the usage statement for MODE-Time-Domain by simply typing the following:

mtd

The forecast and observation fields must be on the same grid. You can use copygb to regrid GRIB1 files, wgrib2 to regrid GRIB2 files, or use the automated regridding
functionality within the MET config files.

At a minimum, the -fest and -obs options must be used to specify the data to be processed. Alternatively, the -single option specifies that MTD should be run on a single
dataset. The -config option specifies the name of the configuration file.

cindyhg Tue, 06/25/2019 - 08:13

MTD: Configure

MTD: Configure

MTD: Configure

Start by making an output directory for MTD and changing directories:

mkdir -p ${METPLUS_TUTORIAL_DIR}/output/met_output/mtd
cd ${METPLUS_TUTORIAL_DIR}/output/met_output/mtd

The behavior of MTD is controlled by the contents of the configuration file passed to it on the command line. The default MTD configuration file may be found in
the data/config/MTDConfig_default file. Prior to modifying the configuration file, make a copy of the default:

cp ${MET_BUILD_BASE}/share/met/config/MTDConfig_default MTDConfig_tutorial

The configuration items for MTD are used to specify how the space-time-object-based verification approach is to be performed. Just as MODE may be used to compare any two
fields, the same is true of MTD. When necessary, the items in the configuration file are specified separately for the forecast and observation fields. In most cases though, users
will be comparing the same forecast and observation fields. The configurable items include specifications for the following:

The verification domain.

The forecast and observation fields and vertical levels or accumulation intervals to be compared.
The forecast and observation object definition parameters.

Options to filter out objects that don't meet a minimum volume.

Matching/merging weights and interest functions.

Total interest threshold for matching/merging.

Flags to control output files.

For this tutorial, we'll configure MTD to process the same series of data we ran through the Series-Analysis tool. Just like MODE, MTD compares a single forecast field to a single
observation field in each run.

Open up the MTDConfig_tutorial file for editing with the text editor of your choice and edit it as follows:

vi MTDConfig_tutorial

Set the fecst dictionary as follows:

fest={
field = {
name ="APCP";
level = "A03";
}

conv_radius = 2;
conv_thresh =>=2.54;
}

Set the obs dictionary as follows:

obs ={
field = {
name ="APCP_03";
level = "(*,*)";
}
conv_radius = 2;
conv_thresh = >=2.54;

}
Set:
min_volume = 0;

To retain all objects regardless of their volume.
Save and close this file.

cindyhg Tue, 06/25/2019 - 08:15

MTD: Run

Page 54 of 75

MTD: Run

First, we need to prepare our observations by putting 1-hourly Stagell precipitation forecasts into 3-hourly buckets. Create an output directory:
mkdir -p sample_obs/ST2ml_3h

Run the following PCP-Combine commands to prepare the observations:

pcp_combine -sum 00000000_000000 01 20050807_036000 03 \
sample_obs/ST2m1l_3h/sample_obs_2005080703V_03A.nc \
-pcpdir ${METPLUS_DATA}/met_test/data/sample_obs/ST2ml

pcp_combine -sum 00000000_000000 01 20050807_060000 03 \
sample_obs/ST2m1_3h/sample_obs_2005080706V_03A.nc \
-pcpdir ${METPLUS_DATA}/met_test/data/sample_obs/ST2ml

pcp_combine -sum 00000000_000000 01 20050807_090000 03 \
sample_obs/ST2ml_3h/sample_obs_2005080709V_03A.nc \
-pcpdir ${METPLUS_DATA}/met_test/data/sample_obs/ST2ml

pcp_combine -sum 00000000_000000 01 200560807_1260000 03 \
sample_obs/ST2ml_3h/sample_obs_2005080712V_03A.nc \
-pcpdir ${METPLUS_DATA}/met_test/data/sample_obs/ST2ml

pcp_combine -sum 00000000_000000 01 20050807_150000 03 \
sample_obs/ST2m1_3h/sample_obs_2005080715V_03A.nc \
-pcpdir ${METPLUS_DATA}/met_test/data/sample_obs/ST2ml

pcp_combine -sum 00000000_000000 01 20050807_186000 03 \
sample_obs/ST2m1_3h/sample_obs_2005080718V_03A.nc \
-pcpdir ${METPLUS_DATA}/met_test/data/sample_obs/ST2ml

pcp_combine -sum 00000000_000000 01 20050807_210000 03 \
sample_obs/ST2m1_3h/sample_obs_2005080721V_03A.nc \
-pcpdir ${METPLUS_DATA}/met_test/data/sample_obs/ST2ml

pcp_combine -sum 00000000_000000 01 20050808_000000 03 \
sample_obs/ST2ml_3h/sample_obs_2005080800V_03A.nc \
-pcpdir ${METPLUS_DATA}/met_test/data/sample_obs/ST2ml

Rather than listing 8 input forecast and observation files on the command line, we will write them to a file list first. Since the 0-hour forecast does not contain 3-hourly
accumulated precip, we will exclude that from the list. We will use the 3-hourly APCP output from PCP-Combine that we prepared above:

1s -1 ${METPLUS_DATA}/met_test/data/sample_fcst/2005080700/wrfprs* | egrep -v "_00.tm00" > fcst_file_list
1s -1 sample_obs/ST2ml_3h/sample_obs* > obs_file_list

Next, run the following MTD command:

mtd \

-fest fest_file_list \

-obs obs_file_list \
-config MTDConfig_tutorial \
-outdir . \

-v 2

Just as with MODE, MTD applies a convolution operation to smooth the data. However, there are two important differences. In MODE, the convolution shape is a circle (radius =
conv_radius). In MTD, the convolution shape is a square (width = 2*conv_radius+1) and for time t, the values in that square are averaged for times t-1, t, and t+1. Convolving in
space plus time enables MTD to identify more continuous space-time objects.

If your data has high enough time frequency that the features at one timestep overlap those at the next timestep, it may be well-suited for MTD.

cindyhg Tue, 06/25/2019 - 08:16

MTD: Output

MTD: Output

MTD: Output

The MTD output typically consists of 6 files: 5 ASCII statistics files and 1 NetCDF object file. MTD does not create any graphical output. In this example, the output is written to
the current mtd directory as we requested on the command line.

mtd_20050807_030000V_2d.txt
mtd_20050807_030000V_3d_pair_cluster.txt
mtd_20050807_030000V_3d_pair_simple.txt
mtd_20050807_030000V_3d_single_cluster.txt
mtd_20050807_030000V_3d_single_simple.txt
mtd_20050807_030000V_obj.nc

Page 55 of 75

T LIS CUTTHZUTGUUTT TS, WL SHIUUIU VT USTU LU PITVETIL LIS UULPUL UL VLIS TUTE U UVET “WHIUTE LIS UULPUL UL G PESVIVUD UL THE U IV L UULPUL THED AT UTOUTHIUTEU MEITTHY

below:

e The NetCDF object file ends in .nc and contains gridded fields of the raw data, simple object indices, and cluster object indices for each forecast and observed timestep.

e The ASCII file ending with _2D.txt contains many columns similar to the output of MODE. This data summarizes the 2-dimensional object attributes for each individual
time slice of the 3D forecast and observation objects.

e The ASClI files ending with _single_simple.txt and _single_cluster.txt contain 3D space-time attributes for simple and cluster objects, respectively.

e The ASCII files ending with _pair_simple.txt and _pair_cluster.txt contain 3D space-time attributes for pairs of simple and cluster objects, respectively.

Use the ncview utility to view the NetCDF object output of MTD:

ncview mtd_20050807_030000V_obj.nc &

Select the variable named fecst_raw and click the time index to advance through the timesteps. Now, do the same for the fcst_object_id variable. Notice that the objects are
defined in the active areas in the raw fields. Also notice some features merging (i.e. combining) as time passes while other features split (i.e. break apart). While they may be
disconnected at a particular timestep, they remain part of the same space-time object.

Next, explore the ASCII output files and pay close attention to the header columns. Notice the generalization of the 2D MODE object attributes to 3 dimensions. Area measure
becomes volume. MTD measures the object speed. Each object has a beginning and ending time.

cindyhg Tue, 06/25/2019 - 08:17

Use Case: MTD

Use Case: MTD

METplus Use Case: MTD
Reference Material
The MTD (Mode Time Domain) use case utilizes the MET MTD tools.

Optional: Refer to the MET Users Guide for a description of the MET tools used in this use case.
Optional: Refer to the A-Z Config Glossary section of the METplus Users Guide for a reference to METplus variables used in this use case.

Review Use Case Configuration File: MTD.conf
Open the file and look at all of the configuration variables that are defined.
less ${METPLUS_BUILD_BASE}/parm/use_cases/met_tool_wrapper/MTD/MTD.conf

Note that there are options to specify to run the tool with one file or two, depending on the science question being answered, as well configuration options for the settings
regularly adjusted by users. For example:

MTD_SINGLE_RUN = False
MTD_SINGLE_DATA_SRC = OBS
FCST_MTD_CONV_RADIUS = 0
FCST_MTD_CONV_THRESH = >=10
OBS_MTD_CONV_RADIUS = 15
OBS_MTD_CONV_THRESH = >=1.0

Also note that there is a configuration option to run MTD variables in MTD.conf reference other config variables that have been defined in other configuration files. For example:
OBS_MTD_INPUT_DIR = {INPUT_BASE}/met_test/new

This references INPUT_BASE which is set in the METplus data configuration file (metplus_config/metplus_data.conf). METplus config variables can reference other config
variables even if they are defined in a config file that is read afterwards.

Run METplus

Change to the $METPLUS_TUTORIAL_DIR directory
cd ${METPLUS_TUTORIAL_DIR}

Run the following command:

master_metplus.py \

-¢ ${METPLUS_TUTORIAL_DIR}/tutorial.conf \

-c¢ ${METPLUS_BUILD_BASE}/parm/use_cases/met_tool_wrapper/MTD/MTD.conf
METplus is finished running when control returns to your terminal console and you see the following text:
INFO: METplus has successfully finished running.

Review the Output Files
You should have output files including the following:

1s ${METPLUS_TUTORIAL_DIR}/output/mtd/2005080712

e mtd_WRF_APCP_vs_MC_PCP_APCP_03_A03_20050807_060000V_2d.txt
e mtd_WRF_APCP_vs_MC_PCP_APCP_03_A03_20050807_060000V_3d_single_simple.txt
e mtd_WRF_APCP_vs_MC_PCP_APCP_03_A03_20050807_060000V_obj.nc

Page 56 of 75

Iake a ook at some of the Tiles to see what was generated.

Open the output NetCDF file with ncview to look at the data:
ncview ${METPLUS_TUTORIAL_DIR}/output/mtd/2005080712/mtd_WRF_APCP_vs_MC_PCP_APCP_03_A03_20050807_060000V_obj.nc

Click on the buttons in the Var: section (i.e. fcst_raw) to view the fields.

Open an output text file to view the contents:
less ${METPLUS_TUTORIAL_DIR}/output/mtd/2005080712/mtd_WRF_APCP_vs_MC_PCP_APCP_03_A03_20050807_060000V_3d_single_simple.txt

Review the Log Files

Log files for this run are found in ${METPLUS_TUTORIAL_DIR}/output/mtd/logs. The filename contains a timestamp of the current year, month, day, hour, minute, and second.
1s ${METPLUS_TUTORIAL_DIR}/output/logs/master_metplus.log.*

NOTE: If you ran METplus on a different day than today, the log file will correspond to the day you ran.

Review the Final Configuration File

The final configuration file is metplus_final.conf. This contains all of the configuration variables used in the run.
less ${METPLUS_TUTORIAL_DIR}/output/metplus_final.conf

cindyhg Tue, 06/25/2019 - 08:20

Additional Exercises

Additional Exercises

End of Practical Session 4

Congratulations! You have completed Session 4!

If you have extra time, you may want to try these additional METplus exercises.
EXERCISE 4.1: Change Forecast Lead List to Using Intervals

Instructions: Modify the METplus configuration files to change the forecast leads that are processed by MTD. Following these instructions will give you more insight on how
METplus configures MTD.

To do this, copy your MTD configuration file and rename it to mtd.skip.conf for this exercise.
cp \
${METPLUS_BUILD_BASE}/parm/use_cases/met_tool_wrapper/MTD/MTD.conf \
$METPLUS_TUTORIAL_DIR/user_config/mtd.skip.conf

Open mtd.skip.conf with an editor to change forecast lead values and add an additional lead time.

vi ${METPLUS_TUTORIAL_DIR}/user_config/mtd.skip.conf

Change LEAD_SEQ to process the same forecasts but using an increment rather than listing the explicit values
LEAD_SEQ = begin_end_incr(6, 15, 3)

Close the file and rerun master_metplus passing in your new custom config file for this exercise and changing OUTPUT_BASE to a new location so you can keep it separate from
the other runs.

master_metplus.py \

-c¢ ${METPLUS_TUTORIAL_DIR}/tutorial.conf \

-¢ ${METPLUS_TUTORIAL_DIR}/user_config/mtd.skip.conf \

-¢ dir.OUTPUT_BASE=${METPLUS_TUTORIAL_DIR}/output/exercises/mtd_skip

Did you see the WARNING message?
WARNING: Could not find OBS file /d1/projects/METplus/METplus_Data/met_test/new/ST2m[2005080715_A03h.nc using template ST2ml{valid?fmt=%Y%m%d%H} A03h.nc

If you look in the data directories for this run, you will see that while the forecast for the 15 hour lead exists, the observation file does not. METplus will only add items to the
MTD lists if both corresponding files are available.

1s -1 ${METPLUS_DATA}/met_test/data/sample_fcst/2005080709
1s -1 ${METPLUS_DATA}/met_test/new/ST2*

Now look at the file lists that were generated by METplus for MTD

less ${METPLUS_TUTORIAL_DIR}/output/exercises/mtd_skip/stage/file_lists/20050807000000_mtd_fcst_APCP.txt

less ${METPLUS_TUTORIAL_DIR}/output/exercises/mtd_skip/stage/file_lists/20050807000000_mtd_obs_APCP_83.txt
Check the log file for any differences from the last run that processed forecast leads 6, 9, and 12 hour.

1s ${METPLUS_TUTORIAL_DIR}/output/exercises/mtd_skip/logs/master_metplus.log.*

Page 57 of 75

Instructions: Modify the METplus configuration files to change the forecast leads that are processed by MTD. Following these instructions will give you more insight on how
METplus configures MTD.

To do this, copy your MTD configuration file and rename it to mtd.unzip.conf for this exercise.
cp ${METPLUS_BUILD_BASE}/parm/use_cases/met_tool_wrapper/MTD/MTD.conf ${METPLUS_TUTORIAL_DIR}/user_config/mtd.unzip.conf
Open mtd.unzip.conf with an editor and change the LEAD_SEQ to process forecast leads 3 and 6 hours.

vi ${METPLUS_TUTORIAL_DIR}/user_config/mtd.unzip.conf
LEAD_SEQ = 3H, 6H
Close the file and rerun master_metplus passing in your new custom config file and OUTPUT_BASE for this exercise
master_metplus.py \
-¢ ${METPLUS_TUTORIAL_DIR}/tutorial.conf \
-¢ ${METPLUS_TUTORIAL_DIR}/user_config/mtd.unzip.conf \
-¢ dir.OUTPUT_BASE=${METPLUS_TUTORIAL_DIR}/output/exercises/unzip
Now look at the file list that were generated by METplus for MTD observation files

less ${METPLUS_TUTORIAL_DIR}/output/exercises/unzip/stage/file_lists/20050807000000_mtd_obs_APCP_03.txt

Notice that the path of the 3 hour file is under your ${METPLUS_TUTORIAL_DIR}, while the 6 hour file is under ${METPLUS_DATA}. If you look in the data directories for this run,
you will see that the 3 hour observation file is gzipped in ${METPLUS_DATA}.

1s -1 ${METPLUS_DATA}/met_test/new/ST2*

METplus can recognize that files with gz, bzip2, or zip extensions are compressed and will do so automatically, placing the uncompressed file in the staging directory so that
METplus doesn't modify any data in the input directory. METplus can be configured to scrub the staging directory after the run completes to save space, or leave the files so that
they may be used by subsequent METplus runs without having to uncompress again (See SCRUB_STAGING_DIR and STAGING_DIR in the METplus User's Guide).

cindyhg Tue, 06/25/2019 - 08:25

Session 5: Trk&Int/Feature Relative

Session 5: Trk&Int/Feature Relative

During this practical session, you will run the tools indicated below:

Page 58 of 75

You may navigate through this tutorial by following the links at the bottom of each page or by using the menu navigation.

Since you already set up your runtime environment in Session 1, you should be ready to go! To be sure, run through the following instructions to check that your environment
is set correctly.

Prerequisites: Verify Environment is Set Correctly

Before running these instructions, you will need to ensure that you have a few environment variables set up correctly. If they are not set correctly, these instructions will not
work properly.

1. Check that you have METPLUS_TUTORIAL_DIR set correctly:

echo ${METPLUS_TUTORIAL_DIR}

If you don't see a path in your user directory output to the screen, set this environment variable in your user profile before continuing.

Page 59 of 75

2. Check that you have METPLUS_BUILD_BASE, MET_BUILD_BASE, and METPLUS_DATA set correctly using another option, "printenv":
printenv | grep MET

If any of these variables are not set, please set them. They will be referenced throughout the tutorial. You can do this by sourcing the appropriate TutorialSetup.
[hera/bash/cshrc].sh file, that is:

On hera:

source /path/to/METplus_Tutorial/TutorialSetup.hera.sh
On linux server (bash):

source /path/to/METplus_Tutorial/TutorialSetup.linux-bash.sh
On linux server (csh):

source /path/to/METplus_Tutorial/TutorialSetup.linux-csh.sh

where /path/to is the path to your METplus_Tutorial directory.

METPLUS_BUILD_BASE is the full path to the METplus installation (/path/to/METplus-X.Y)
MET_BUILD_BASE is the full path to the MET installation (/path/to/met-X.Y)
METPLUS_DATA is the location of the sample test data directory

3. Check that you have loaded the MET module correctly:
which point_stat

You should see the usage statement for Point-Stat. The version number listed should correspond to the version listed in MET_BUILD_BASE. If it does not, you will need to either
reload the met module, or add ${MET_BUILD_BASE}/bin to your PATH.

4. Check that the correct version of master_metplus.py is in your PATH:
which master_metplus.py

If you don't see the full path to script from the shared installation, please set it. It should look the same as the output from this command:
echo ${METPLUS_BUILD_BASE}/ush/master_metplus.py

See the instructions in Session 1 for more information.

You are now ready to move on to the next section.

admin Wed, 06/12/2019 - 16:59

MET Tool: TC-Pairs

MET Tool: TC-Pairs

TC-Pairs Tool: General
TC-Pairs Functionality

The TC-Pairs tool provides position and intensity information for tropical cyclone forecasts in Automated Tropical Cyclone Forecast System (ATCF) format. Much like the Point-

Stat tool, TC-Pairs produces matched pairs of forecast model output and an observation dataset. In the case of TC-Pairs, both the model output and observational dataset (or

reference forecast) must be in ATCF format. TC-Pairs produces matched pairs for position errors, as well as wind, sea level pressure, and distance to land values for each input
dataset.

TC-Pairs input data format

As mentioned above, the input to TC-Pairs is two ATCF format files, in addition to the distance_to_land.nc file generated with the TC-Dland tool. The ATCF file format is a
comma-separated ASCII file containing the following fields:

Basin basin

cY annual cyclone number (1-99)

YYYYMMDDHH Date - Time - Group

TECHNUM/MIN Objective sorting technique number, minutes in Best Track

TECH acronym for each objective technique

TAU forecast period

LatN/s Latitude for the date time group

LonE/W Longitude for date time group

VMAX Maximum sustained wind speed

MSLP Minimum sea level pressure

TY Highest level of tropical cyclone development
RAD wind intensity for the radii at 34, 50, 64 kts
WINDCODE radius code

RAD1 full circle radius of wind intensity, 1st quadrant wind intensity
RAD2 radius of 2nd quadrant wind intensity

Page 60 of 75

RAD4 radius or 4th quadrant wind intensity

These are the first 17 columns in the ATCF file format. MET-TC requires the input file has all 17 comma-separated columns present (although valid data is not required). For a full
list of the columns as well as greater detail on the file format, see: http://www.nrlmry.navy.mil/atcf web/docs/database/new/abdeck.txt

Model data must be run through a vortex tracking algorithm prior to becoming input for MET-TC. Running a vortex tracker is outside the scope of this tutorial, however a freely
available and supported vortex tracking software is available at: http://www.dtcenter.org/HurrWRF/users/downloads/index.php

If users choose to use operational model data for input to MET-TC, all U.S. operational model output in ATCF format can be found at: ftp://ftp.nhc.noaa.gov/atcf/archive. Finally,
the most common use of MET-TC is to use the best track analysis (used as observations) to generate pairs between the model forecast and the observations. Best track analyses
can be found at the same link as the operational model output.

Open files aal112017.dat (model data) and bal112017.dat (BEST track). Take a look at the columns and gain familiarity with ATCF format. These files are input ATCF files for TC-
Pairs.

vi ${METPLUS_DATA}/met_test/atcf_data/aall82012.dat
vi ${METPLUS_DATA}/met_test/atcf_data/bal182012.dat

In addition to the files above, data from five total storms over hurricane seasons 2011-2012 in the AL basin will be used to run TC-Pairs. Rather than running a single storm,
these storms were chosen to provide a larger sample size to provide more robust statistics.

aal092011: Irene
aal182011: Rina
aal052012: Ernesto
aal092012: Isaac
aal182012: Sandy

cindyhg Mon, 06/24/2019 - 11:18

TC-Pairs Tool: General

TC-Pairs Tool: General

TC-Pairs Tool: General
TC-Pairs Usage
View the usage statement for TC-Pairs by simply typing the following:

tc_pairs

Usage: tc_pairs
-adeck source Input ATCF format track files
-edeck source Input ATCF format ensemble probability files
-bdeck source Input ATCF format observation (or reference forecast) file path/name
-config file Configuration file
[-out_base] path of output file base
[-log_file] name of log associated with tc_pairs output
[-v level] Level of logging (optional)

At a minimum, the input ATCF format -adeck (or -edeck) source, the input ATCF format -bdeck source, and the configuration -config file must be passed in on the command
line.

The -adeck, -edeck, and -edeck options can be set to either a specific file name or a top-level directory which will be searched for files ending in ".dat".

cindyhg Mon, 06/24/2019 - 11:56

TC-Pairs Tool: Configure

TC-Pairs Tool: Configure

TC-Pairs Tool: Configure

Start by making an output directory for TC-Pairs and changing directories:

mkdir -p ${METPLUS_TUTORIAL_DIR}/output/met_output/tc_pairs
cd ${METPLUS_TUTORIAL_DIR}/output/met_output/tc_pairs

Like the Point-Stat tool, the TC-Pairs tool is controlled by the contents of the configuration file passed to it on the command line. The default TC-Pairs configuration file may be
found in the data/config/TCPairsConfig_default file.

The configurable items for TC-Pairs are used to specify which data are ingested and how the input data are filtered. The configurable items include specifications for the
following:

e All model names to include in matched pairs

e Storms to include in verification: parsed by storm_id, basin, storm_name, cyclone
e Date/Time/Space restrictions: initialization time, valid time, lead time, masking

e User defined consensus forecasts

Page 61 of 75

The first step is to set-up the configuration file. Keep in mind, TC-Pairs should be run with the largest desired sample in mind to minimize re-running this tool! First, make a copy
of the default:

cp ${MET_BUILD_BASE}/share/met/config/TCPairsConfig_default TCPairsConfig_tutorial_run
Next, open up the TCPairsConfig_tutorial_run file for editing and modify it as follows:
vi TCPairsConfig_tutorial_run

Set:

model = ["HWRF", "AVNO", "GFDL" J;
basin =["AL"];

To identify the models that we want to verify, as well as the basin. The three models identified are all U.S. operational models: HWRF, GFS (AVNO), and GFDL. Any field left blank
will assume no restictions.

Set:

consensus = [
{
name ="CONS";
members = ["HWRF", "AVNQO", "GFDL" J;
required = [false, false, false I;
min_req = 2;
}
I

To compute a user defined consensus named "CONS". The membership of the consensus are the three listed models, none are required, but 2 must be present to calculate the
consensus.

Set:
match_points = TRUE;

To only keep pairs that are the intersection of the model forecast and observation.
Next, save the TCPairsConfig_tutorial_run file and exit the text editor.
This run uses the default distance to land output file. Run ncview to see it:
ncview ${MET_BUILD BASE}/share/met/tc_data/dland_global_tenth_degree.nc &
Water points have distance to land values greater than 0 while land points have distances <= 0.

cindyhg Mon, 06/24/2019 - 11:57

TC-Pairs Tool: Run

TC-Pairs Tool: Run

TC-Pairs Tool: Run
Next, run TC-Pairs to compare all three ATCF forecast models specified in configuration file to the ATCF format best track analysis. Run the following command line:

tc_pairs \

-adeck ${METPLUS_DATA}/met_test/atcf_data/aal*dat \
-bdeck ${METPLUS_DATA}/met_test/atcf_data/bal*dat \
-config TCPairsConfig_tutorial_run \

-out tc_pairs \

-v 2

TC-Pairs is now grabbing the model data we requested in the configuration file, generating the consensus, and performing the additional filtering criteria. It should take
approximate 20 seconds to run. You should see several status messages printed to the screen to indicate progress.

There should be an output file "tc_pairs.tcst" in the directory, where .tcst stands for TC statistics. The next page will describe what is in the file.

If you are running many models over many storms/seasons, it is best to run TC-Pairs using a script to call TC-Pairs for each storm. This avoids potential memory issues when
parsing very large datasets.

cindyhg Mon, 06/24/2019 - 11:58

TC-Pairs Tool: Output

TC-Pairs Tool: Output

TC-Pairs Tool: Output

The output of TC-Pairs is an ASClII file containing matched pairs for each of the models requested. In this example, the output is written to the tc_pairs.tcst file as we requested
on the command line. This output file is in TCST format, which is similar to the STAT output from the Point-Stat and Grid-Stat tools. For more header information on the TCST

Page 62 of 75

Remember to configure your text editor to NOT use dynamic word wrapping. The files will be much easier to read that way:

¢ In the kwrite editor, select Settings->Configure Editor, de-select Dynamic Word Wrap and click OK.
e In the vi editor, type the command :set nowrap. To set this as the default behavior, run the following command:

echo "set nowrap" >> ~/.exrc
Open tc_pairs.tcst
vi tc_pairs.tcst

Notice this is a simple ASCII file with rows for each matched pair for a single valid time and similar to the MPR line type written by other tools.

Any field that has A in the column name (such as AMAX_WIND, ALAT) indicate the model forecast.

Any field that has B in the column name (such as BMAX_WIND, BLAT) indicate the observation field (Best Track).

The TK_ERR, X_ERR, Y_ERR, ALTK_ERR, CRTK_ERR columns are calculated track error, X component position error, Y component postion error, along track error, and
cross track error, respectively.

e Columns 34-63 are the 34-, 50-, and 64-kt wind radii for each quadrant.

cindyhg Mon, 06/24/2019 - 11:59

MET Tool: TC-Stat

MET Tool: TC-Stat
TC-Stat Tool: General
TC-Stat Functionality
The TC-Stat tool reads the .test output file(s) of the TC-Pairs tool. This tools provides the ability to further filter the TCST output files as well as summarize the statistical
information. The TC-Stat tool reads .test files and runs one or more analysis jobs on the data. TC-Stat can be run by specifying a single job on the command line or multiple jobs
using a configuration file. The TC-Stat tool is very similar to the Stat-Analysis tool. The two analysis job types are summarized below:

e The filter job simply filters out lines from one or more TCST files that meet the filtering options specified.

e The summary job operates on one column of data from TCST file. It produces summary information for that column of data: mean, standard deviation, min, max, and the

10th, 25th, 50th, 75th, and 90th percentiles, independence time, and frequency of superior performance.

e The rirw job identifies rapid intensification or weakening events in the forecast and analysis tracks and applies categorical verification methods.
e The probrirw job applies probabilistic verification methods to evaluate probability of rapid inensification forecasts found in edeck's.

TC-Stat Usage

View the usage statement for TC-Stat by simply typing the following:

tc_stat
Usage:
tc_stat

looki TCST file or top-level directory containing TCST files (where TC-Pairs output resides). It allows the use of

-lookin path N S .

wildcards (at least one tcst file is required).

[-out file] Output path or specific filename to which output should be written rather than the screen (optional).

[-log file] Outputs log messages to the specified file

[-v level] Level of logging

[-config config_file] | [JOB COMMAND

LINE] (Note: "|" means "or")

[-config config file] TCStat config file containing TC-Stat jobs to be run.
[JOB COMMAND LINE] Arguments necessary to perform a TC-Stat job.

At a minimum, you must specify at least one directory or file in which to find TCST data (using the -lookin path command line option) and either a configuration file (using the -
config config_file command line option) or a job command on the command line.

cindyhg Mon, 06/24/2019 - 12:01

TC-Stat Tool: Configure

TC-Stat Tool: Configure
TC-Stat Tool: Configure
Start by making an output directory for TC-Stat and changing directories:

mkdir -p ${METPLUS_TUTORIAL_DIR}/output/met_output/tc_stat
cd ${METPLUS_TUTORIAL_DIR}/output/met_output/tc_stat

The behavior of TC-Stat is controlled by the contents of the configuration file or the job command passed to it on the command line. The default TC-Stat configuration may be
found in the data/config/TCStatConfig_default file. Make a copy of the default configuration file and make following modifications:

cp ${MET_BUILD_BASE}/share/met/config/TCStatConfig_default TCStatConfig_tutorial
Open up the TCStatConfig_tutorial file for editing with your preferred text editor.

vi TCStatConfig_tutorial

Page 63 of 75

amodel = ["HWRF", "GFDL"];
bmodel = ["BEST"];
event_equal = TRUE;

To only parse over two of the three model names in the tc_pairs.tcst file. The event_equal=TRUE flag will keep pairs for specified forecast valid and lead times that are only in
both HWRF and GFDL pairs.

Many of the filter options are left blank, indicating TC-Stat should parse over all available fields. You will notice many more available filter options beyond what was available
with the TCPairsConfig.

Now, scroll all the way to the bottom of the TCStatConfig, and you will find the jobs[] section. Edit this section as follows, then save and close the editor:
jobs =["-job filter -dump_row tc_stat.tcst" J;

cindyhg Mon, 06/24/2019 - 12:02

TC-Stat: Run on TC-Pairs output

TC-Stat: Run on TC-Pairs output

TC-Stat: Run on TC-Pairs output
Run the TC-Stat using the following command:

tc_stat \
-lookin ../tc_pairs/tc_pairs.tcst \
-config TCStatConfig_tutorial -v 3

Open the output file tc_stat.tcst. We can see that this filter job simply event equalized the two models specified in amodel.
vi tc_stat.test

Let's try to filter further, this time using the command line rather than the configuration file:

tc_stat \

-job filter -lookin ../tc_pairs/tc_pairs.tcst \
-dump_row tc_stat2.tcst \

-water_only TRUE \

-column_str LEVEL HU,TS,TD,SS,SD \

-event_equal TRUE \

-match_points TRUE -v 3

Here, we ran a filter job at the command line: only keeping tracks over water (not encountering land) and with categories Hurricane (HU), Tropical Storm (TS), Tropical
Depression (TD), Subtropical Storm (SS), and Subtropical Depression (SD).

Open the output file tc_stat2.tcst: notice fewer lines have been kept. Look at the "LEVEL" column ... note all the non-tropical and subtropical level classifications have been
filtered out of the sample.

vi tc_stat2.tcst

Also, find the columns ADLAND and BDLAND. All these values are now positive, meaning the tracks over land (negative values) have been filtered.
With the filtering jobs mastered, lets give the second type of job - summary jobs - a try!

cindyhg Mon, 06/24/2019 - 12:03

TC-Stat: Run on TC-Pairs output

TC-Stat: Run on TC-Pairs output
TC-Stat: Run on TC-Pairs output

Now, we will run a summary job using TC-Stat on the command line using the following command:

tc_stat \

-job summary -lookin ../tc_pairs/tc_pairs.tcst \
-amodel HWRF,GFDL \

-by LEAD,AMODEL \

-column TK_ERR \

-event_equal TRUE \

-out tc_stat_summary.tcst

Open up the file tc_stat_summary.tcst. Notice this output is much different from the filter jobs.
vi tc_stat_summary.tcst

The track data is event equalized for the HWRF and GFDL models, and summary statistics are produced for the TK_ERR column for each model by lead time.

cindyhg Mon, 06/24/2019 - 12:03

Page 64 of 75

TC-Stat: Plotting with R
TC-Stat: Plotting with R

In this section, you will use the R statistics software package to produce a plot of a few results. R was introduced in practical session 1.

The MET release includes a number of plotting tools for TC graphics. All of the Rscripts are included with the MET distribution in the Rscripts directory. The script for TC graphics
is plot_tcmpr.R, which uses the TCST output files from TC-Pairs as input. At this time, there are two additional environment variables that need to be set to make this work.
They are MET_INSTALL_DIR and MET_BASE. To get the usage statement, type:

For Bash:

export MET_INSTALL_DIR=${MET_BUILD_BASE}
export MET_BASE=${MET_INSTALL_DIR}/share/met
Rscript ${MET_BASE}/Rscripts/plot_tcmpr.R

For C-shell:

setenv MET_INSTALL_DIR ${MET_BUILD_BASE}
setenv MET_BASE ${MET_INSTALL_DIR}/share/met
Rscript ${MET_BASE}/Rscripts/plot_tcmpr.R

The TC-Stat tool can be called from the Rscript to do additional filter jobs on the TCST output from TC-Pairs. This can be done on the command line by calling a filter job
(following tc-stat), or a configuraton file can be used to select filtering criteria. A default configuration file can be found in Rscripts/include/plot_tcmpr_config_default.R.

The configuration file also includes various plot types to generate: MEAN, MEDIAN, SCATTER, REFPERF, BOXPLOT, and RANK. All of the plot commands can be called on the
command line as well as with the configuration file. Plots are configurable (title, colors, axis labels, etc) either by modifying the configuration file or setting options on the
command line. To run from the command line:

Rscript ${MET_BASE}/Rscripts/plot_tcmpr.R \
-lookin ../tc_pairs/tc_pairs.tcst \

-filter "-amodel HWRF,CONS" \

-dep "TK_ERR" \

-series AMODEL HWRF,CONS \

-plot MEAN,BOXPLOT,RANK \

-outdir .

This plots the track error for two models: HWRF and CONS. CONS is the user defined consensus you generated in TC-Pairs.

Next, open up the output *png files:
display TK_ERR_boxplot.png &
display TK_ERR_mean.png &
display TK_ERR_rank.png &
The script produces the three plot types called in the configuration file:
1. Boxplot showing distribution of errors for a homogeneous sample of the two models (TK_ERR_boxplot.png).
2. Mean Errors with 95% Cl for the same sample (TK_ERR_mean.png).
3. Rank plot indicating performance of HWRF model relative to CONS (TK_ERR_rank.png).

cindyhg Mon, 06/24/2019 - 12:03

Use Case: Track and Intensity

Use Case: Track and Intensity

METplus Use Case: Track and Intensity TCMPR (Tropical Cyclone Matched Pair) Plotter

This is a wrapper to the MET plot_tcmpr.R Rscript.

Setup

Create Custom Configuration File

Change to the METplus Tutorial Directory:
cd ${METPLUS_TUTORIAL_DIR}

Define a unique directory under output that you will use for this use case. Create a configuration file to override OUTPUT_BASE to that directory.
vi ${METPLUS_TUTORIAL_DIR}/user_config/track_and_intensity.output.conf

Set OUTPUT_BASE to contain a subdirectory specific to the Track and Intensity use case. Make sure to put it under the [dir] section.

[dir]
OUTPUT_BASE = {ENV[METPLUS_TUTORIAL_DIR]}/output/track_and_intensity

Using this custom configuration file and the Track and Intensity use case configuration files that are distributed with METplus, you should be able to run the use case using the
sample input data set without any other changes.

Review: Take a look at the following settings.

Page 65 of 75

NOUHIUL GHIU LHATHBTD UIT USIAUIL G1HU TSUULED LT HTIAET J14T. 1L 13 A SHTIPIT UIIT HIHT IS, MUL U AU LONRT O IVUR.

less ${METPLUS_BUILD_BASE}/parm/use_cases/met_tool_wrapper/TCMPRPlotter/TCMPRPlotter.conf

The plot_tcmpr.R script knows to read this TCMPRPlotterConfig_Customize R config file since it is defined in the TCMPRPIlotter.conf file.
TCMPR_PLOTTER_CONFIG_FILE = {PARM_BASE}/use_cases/met_tool_wrapper/TCMPRPlotter/TCMPRPIlotterConfig_Customize

Note: If you modify the TCMPR_PLOTTER_CONFIG_FILE variable and leave it undefined (not set), then no configuration file will be read by the R script and the default setting of
img_res=300 will be used.

These are some common settings for the track and intensity use case. These have already been defined in the track_and_intensity.output.conf file. If desired or needed, these
can be overridden in this track and intensity use case conf files

TCMPR_PLOT_OUT_DIR - directory where the final plots will be stored.

TCMPR_DATA - the path to the input data, in this example, we are using the data in the TC_PAIRS_DIR directory.
MODEL_DATA_DIR - path to the METplus input data.

TRACK_DATA_DIR - path to the METplus input data.

Optional, Refer to the TC-Stat tool example section of the MET Users Guide for a description of plot_tcmpr.R

If you wish, refer to Table 19.2 Format Information for TCMPR output line type, for a tabular description of the TC-Pairs output TCST format. After running this Track and
Intensity example, you can view the TC-Pairs TCST output files generate by this example under your ${METPLUS_TUTORIAL_DIR}/output/track_and_intensity/tc_pairs
directory while comparing to the information in the table.

The tcmpr defaults are used for any conf settings left as, unset, For example as: XLAB =
The current settings in the conf files are ok and no changes are required. However, after running the exercise feel free to experiment with these settings.

The R script that Track and Intensity runs is located in the MET installation; share/met/Rscripts/plot_tcmpr.R. The usage statement with a short description of the options for
plot_tcmpr.R can be obtained by typing: Rscript plot_tcmpr.R with no additional arguments. The usage statement can be helpful when setting some of the option in METplus,
below is a description of these settings.

e CONFIG_FILE is a plotting configuration file
PREFIX is the output file name prefix.
TITLE overrides the default plot title. Bug: CAN_NOT_HAVE_SPACES
SUBTITLE overrides the default plot subtitle.
XLAB overrides the default plot x-axis label.
YLAB overrides the default plot y-axis label.
XLIM is the min,max bounds for plotting the X-axis.
YLIM is the min,max bounds for plotting the Y-axis.
FILTER is a list of filtering options for the tc_stat tool.
FILTERED_TCST_DATA _FILE is a tcst data file to be used instead of running the tc_stat tool.
DEP_VARS is a comma-separated list of dependent variable columns to plot.
SCATTER_X is a comma-separated list of x-axis variable columns to plot.
SCATTER_Y is a comma-separated list of y-axis variable columns to plot.
SKILL_REF is the identifier for the skill score reference.
LEGEND is a comma-separted list of strings to be used in the legend.
LEAD is a comma-separted list of lead times (h) to be plotted.
RP_DIFF is a comma-separated list of thresholds to specify meaningful differences for the relative performance plot.
DEMO_YR is the demo year
HFIP_BASELINE is a string indicating whether to add the HFIP baseline and which version (no, 0, 5, 10 year goal)
FOOTNOTE_FLAG to disable footnote (date).
PLOT_CONFIG_OPTS to read model-specific plotting options from a configuration file.
SAVE_DATA to save the filtered track data to a file instead of deleting it.
PLOT_TYPES

o is.a comma-separated list of plot types to create:
BOXPLOT, POINT, MEAN, MEDIAN, RELPERF, RANK, SKILL_MN, SKILL_MD
-for this example, set to MEAN,MEDIAN to generate MEAN and MEDIAN plots.

SERIES

o is the column whose unique values define the series on the plot,
optionally followed by a comma-separated list of values, including:
ALL, OTHER, and colon-separated groups.

SERIES_CI

o s a list of true/false for confidence intervals.
optionally followed by a comma-separated list of values, including:
ALL, OTHER, and colon-separated groups.

Run METplus: Run Track and Intensity use case.

Examples: Run the track and intensity plotting script
Generates plots using the MET plot_tcmpr.R Rscript.

Example 1:
In this case, the track_and_intensity.output.conf file PLOT_TYPES is left unset, so the default MEAN and MEDIAN will be generated.
Run the following command:

master_metplus.py \

-¢ ${METPLUS_TUTORIAL_DIR}/tutorial.conf \

-c¢ ${METPLUS_BUILD_BASE}/parm/use_cases/met_tool_wrapper/TCMPRPlotter/TCMPRPlotter.conf \
-¢ ${METPLUS_TUTORIAL_DIR}/user_config/track_and_intensity.output.conf

The following directory lists the files generated from running these use cases:

Page 66 of 75

AMAX_WIND-BMAX_WIND_boxplot.log AMAX_WIND-BMAX_WIND_boxplot.png
AMAX_WIND-BMAX_WIND_mean.png

AMAX_WIND-BMAX_WIND_median.png

AMSLP-BMSLP_mean.png

AMSLP-BMSLP_median.png

TK_ERR_mean.png

TK_ERR_median.png

Example 2:
In this case, add the following to your user_config track_and_intensity.output.conf file

vi ${METPLUS_TUTORIAL_DIR}/user_config/track_and_intensity.output.conf

[config]
TCMPR_PLOTTER_PLOT_TYPES = BOXPLOT

Close the file and rerun the master_metplus.py command:

master_metplus.py \

-c¢ ${METPLUS_TUTORIAL_DIR}/tutorial.conf \

-c¢ ${METPLUS_BUILD_BASE}/parm/use_cases/met_tool_wrapper/TCMPRPlotter/TCMPRPlotter.conf \
-¢ ${METPLUS_TUTORIAL_DIR}/user_config/track_and_intensity.output.conf

The following directory lists the additional files generated from running this use case:

1s ${METPLUS_TUTORIAL_DIR}/output/track_and_intensity/tcmpr_plots

AMAX_WIND-BMAX_WIND_boxplot.log
AMAX_WIND-BMAX_WIND_boxplot.png
AMSLP-BMSLP_boxplot.log
AMSLP-BMSLP_boxplot.png
TK_ERR_boxplot.log
TK_ERR_boxplot.png

To view the png images generated by running these examples, use the display command.
cd to your OUTPUT_BASE/tcmpr_plots directory.

cd ${METPLUS_TUTORIAL_DIR}/output/track_and_intensity/tcmpr_plots
display AMAX_WIND-BMAX_WIND_mean.png &

display AMAX_WIND-BMAX_WIND_median.png &

display AMAX_WIND-BMAX_WIND_boxplot.png &

cindyhg Mon, 06/24/2019 - 14:24

MET Tool: Series-Analysis

MET Tool: Series-Analysis

Series-Analysis Tool: General
Series-Analysis Functionality

The Series-Analysis Tool accumulates statistics separately for each horizontal grid location over a series. Usually, the series is defined as a time series, however any type of series
is possible, including a series of vertical levels. This differs from the Grid-Stat tool in that Grid-Stat computes statistics aggregated over a spatial masking region at a single point
in time. The Series-Analysis Tool computes statistics for each individual grid point and can be used to quantify how the model performance varies over the domain.

Series-Analysis Usage
View the usage statement for Series-Analysis by simply typing the following:

series_analysis

Usage: series_analysis
-fest file_1 ... file_n Gridded forecast files or ASCII file containing a list of file names.
-obs file_1 ... file_n Gridded observation files or ASCII file containing a list of file names.

Sets the -fcst and -obs options to the same list of files
(e.g. the NetCDF matched pairs files from Grid-Stat).

Indicates that the -fcst and -obs file lists are already matched up

[-both file_1 ... file_n]

[-paired] (i.e. the n-th forecast file matches the n-th observation file).

-out file NetCDF output file name for the computed statistics.

-config file SeriesAnalysisConfig file containing the desired configuration settings.
[-log file] Outputs log messages to the specified file

[-v level] Level of logging (optional).

[-compress level] NetCDF compression level (optional).

At a minimum, the -fcst, -obs (or -both), -out, and -config settings must be passed in on the command line. All forecast and observation fields must be interpolated to a
common grid prior to running Series-Analysis.

cindyhg Mon, 06/24/2019 - 14:28

Page 67 of 75

Series-Analysis Tool: Configure
Series-Analysis Tool: Configure
Start by making an output directory for Series-Analysis and changing directories:

mkdir -p ${METPLUS_TUTORIAL_DIR}/output/met_output/series_analysis
cd ${METPLUS_TUTORIAL_DIR}/output/met_output/series_analysis

The behavior of Series-Analysis is controlled by the contents of the configuration file passed to it on the command line. The default Series-Analysis configuration file may be
found in the data/config/SeriesAnalysisConfig_default file. Prior to modifying the configuration file, users are advised to make a copy of the default:

cp ${MET_BUILD_BASE}/share/met/config/SeriesAnalysisConfig_default SeriesAnalysisConfig_tutorial
The configurable items for Series-Analysis are used to specify how the verification is to be performed. The configurable items include specifications for the following:

The forecast fields to be verified at the specified vertical level or accumulation interval.

The threshold values to be applied.

The area over which to limit the computation of statistics - as predefined grids or configurable lat/lon polylines.
The confidence interval methods to be used.

The smoothing methods to be applied.

The types of statistics to be computed.

You may find a complete description of the configurable items in section 13.2.3 of the MET User's Guide. Please take some time to review them.

For this tutorial, we'll run Series-Analysis to verify a time series of 3-hour accumulated precipitation. We'll use GRIB1 for the forecast files and NetCDF for the observation files.
Since the forecast and observations are different file formats, we'll specify the name and level information for them slightly differently.

Open up the SeriesAnalysisConfig_tutorial file for editing with your preferred text editor and edit it as follows:

vi SeriesAnalysisConfig_tutorial

e Set the fest dictionary to

fest =4
field =[
{
name ="APCP";
level =["A3"];
}
I
}

To request the GRIB abbreviation for precipitation (APCP) accumulated over 3 hours (A3).

e Delete obs = fcst; and insert

obs ={
field =[
{
name ="APCP_03";
level =["(*,*)"];
}
I
}

To request the NetCDF variable named APCP_03 where its two dimensions are the gridded dimensions (*,*).

e Look up a few lines above the fest dictionary and set
cat_thresh =[>0.0,>=5.0];

To define the categorical thresholds of interest. By defining this at the top level of config file context, these thresholds will be applied to both the fcst and obs settings.
¢ In the mask dictionary, set
grid = "G212";
To limit the computation of statistics to only those grid points falling inside the NCEP Grid 212 domain.
e Set

block_size = 10000;

To process 10,000 grid points in each pass through the data. Setting block_size larger should make the tool run faster but use more memory.

¢ In the output_stats dictionary, set

fho =["F_RATE", "O_RATE"];
ctc =["FY_OY","FN_ON"J;
cts =["CSI","GSS";

mctc =[];

mcts =[];

Page 68 of 75

Stz =,

pct =[I;
pstd =[I;
pic =[0I
prc =[I;

For each line type, you can select statistics to be computed at each grid point over the series. These are the column names from those line types. Here, we select the
forecast rate (FHO: F_RATE), observation rate (FHO: O_RATE), number of forecast yes and observation yes (CTC: FY_OY), number of forecast no and observation no (CTC:
FN_ON), critical success index (CTS: CSl), and the Gilbert Skill Score (CTS: GSS) for each threshold, along with the root mean squared error (CNT: RMSE).

Save and close this file.

johnhg Thu, 07/25/2019 - 23:03

Series-Analysis Tool: Run

Series-Analysis Tool: Run

Series-Analysis Tool: Run

First, we need to prepare our observations by putting 1-hourly Stagell precipitation forecasts into 3-hourly buckets. We already ran PCP-Combine prior to running MTD to
prepare this data. Check that the 8 expected NetCDF files exist:

1s ../mtd/sample_obs/ST2ml_3h
If they do, copy that directory over to the current working directory:
cp -r ../mtd/sample_obs .

If they do not, go back and run the PCP-Combine commands listed here.

Note that the previous set of PCP-Combine commands could easily be run by looping through times in a shell script or through a METplus use case! The MET tools are often run
using a scripting language rather than typing individual commands by hand. You'll learn more about automation using the METplus python scripts.

Next, we'll run Series-Analysis using the following command:

series_analysis \

-fcst ${METPLUS_DATA}/met_test/data/sample_fcst/2005080700/wrfprs_rucl3_03.tm0O_G212 \
${METPLUS_DATA}/met_test/data/sample_fcst/2005080700/wrfprs_rucl3_06.tm06_G212
${METPLUS_DATA}/met_test/data/sample_fcst/2005080700/wrfprs_rucl3_09.tmd6_G212
${METPLUS_DATA}/met_test/data/sample_fcst/2005080700/wrfprs_rucl3_12.tm0O_G212
${METPLUS_DATA}/met_test/data/sample_fcst/2005080700/wrfprs_rucl3_15.tm006_G212
${METPLUS_DATA}/met_test/data/sample_fcst/2005080700/wrfprs_rucl3_18.tm06_G212
${METPLUS_DATA}/met_test/data/sample_fcst/2005080700/wrfprs_rucl3_21.tm0o_G212
${METPLUS_DATA}/met_test/data/sample_fcst/2005080700/wrfprs_rucl3_24.tm006_G212
-obs sample_obs/ST2ml_3h/sample_obs_2005080703V_03A.nc \
sample_obs/ST2m1l_3h/sample_obs_2005080706V_03A.nc
sample_obs/ST2ml_3h/sample_obs_2005080709V_03A.nc
sample_obs/ST2m1_3h/sample_obs_2005080712V_03A.nc
sample_obs/ST2m1_3h/sample_obs_2005080715V_03A.nc
sample_obs/ST2ml_3h/sample_obs_2005080718V_03A.nc
sample_obs/ST2m1l_3h/sample_obs_2005080721V_03A.nc
sample_obs/ST2m1_3h/sample_obs_2005080800V_03A.nc
-out series_analysis_2005080700_2005080800_3A.nc \
-config SeriesAnalysisConfig_tutorial \

-v 2

P |

S

The statistics we requested in the configuration file will be computed separately for each grid location and accumulated over a time series of eight three-hour accumulations
over a 24-hour period. Each grid point will have up to 8 matched pair values.

Note how long this command line is. Imagine how long it would be for a series of 100 files! Instead of listing all of the input files on the command line, you can list them in an
ASClI file and pass that to Series-Analysis using the -fcst and -obs options.

johnhg Fri, 07/26/2019 - 11:44

Series-Analysis Tool: Output

Series-Analysis Tool: Output

Series-Analysis Tool: Output

The output of Series-Analysis is one NetCDF file containing the requested output statistics for each grid location on the same grid as the input files.

You may view the output NetCDF file that Series-Analysis wrote using the ncdump utility. Run the following command to view the header of the NetCDF output file:
ncdump -h series_analysis_2005080700_2005080800_3A.nc

In the NetCDF header, we see that the file contains many arrays of data. For each threshold (>0.0 and >=5.0), there are values for the requested statistics: F_RATE, O_RATE,
FY_OY, FN_ON, CSI, and GSS. The file also contains the requested RMSE and TOTAL number of matched pairs for each grid location over the 24-hour period.

Next, run the ncview utility to display the contents of the NetCDF output file:

Page 69 of 75

Click through the different variables to see how the performance varies over the domain. Looking at the series_cnt_RMSEvariable, are the errors larger in the south eastern or
north western regions of the United States?

Why does the extent of missing data increase for CSI for the higher threshold? Compare series_cts_CSI_gt0.0 to series_cts_CSI_ge5.0. (Hint: Find the definition of CSI in Appendix C
of the MET User's Guide and look closely at the denominator.)

Try running Plot-Data-Plane to visualize the observation rate variable for non-zero precipitation (i.e. series_fho_O_RATE_gt0.0). Since the valid range of values for this data is 0
to 1, use that to set the -plot_range option.

Setting block_size to 10000 still required 3 passes through our 185x129 grid (= 23865 grid points). What happens when you increase block_size to 24000 and re-run? Does it run
slower or faster?

johnhg Fri, 07/26/2019 - 14:29

Use Case: Feature Relative

Use Case: Feature Relative

METplus Use Case: Feature Relative (Series-Analysis by init)

Setup

In this exercise, you will perform a series analysis based on the init time of your sample data. This use case focuses on using the latitude and longitude pairs for a "feature", such

as a tropical cyclone or extra-tropical cyclone, to identify a user specified tile around the feature. The tiles are then used to compute statistics using Series_Analysis. Therefore,

this use-case utilizes the MET Tc-Pairs, Tc-Stat, and Series-Analysis tools, and the METplus wrappers: TcPairs, ExtractTiles, TcStat, and SeriesBylnit. Please refer to the MET Users

Guide for a description of the MET tools and the METplus Users Guide for more details about the wrappers.

Review Use Case Configuration File: feature_relative.conf

View the file and study the configuration variables that are defined.
less
${METPLUS_BUILD_BASE}/parm/use_cases/model_applications/medium_range/TCStat_SeriesAnalysis_fcstGFS_obsGFS_FeatureRelative_SeriesByIn
it.conf

Note the configuration settings for this complex use-case. The PROCESS_LIST is calling three wrappers. The SERIES_ANALYSIS_STAT_LIST is set to four statistics, but can be set

to many more. The size of the tiles are configurable using the EXTRACT_TILES settings. Also, note that variables in feature_relative.conf reference other variable you defined in
other configuration files. For example:

TC_STAT_INPUT_DIR = {OUTPUT_BASE}/tc_pairs

This references OUTPUT_BASE which you set in the METplus system configuration file (metplus_config/metplus_system.conf). METplus config variables can reference other
config variables, even if they are defined in a config file that is read afterwards.

Run METplus

Change to the METplus Tutorial Directory:
cd ${METPLUS_TUTORIAL_DIR}

Run the following command. Use -c dir.OUTPUT_BASE to change the output directory from the command line:
master_metplus.py \
-¢ ${METPLUS_TUTORIAL_DIR}/tutorial.conf \
;{:METPLUS_BUILD_BASE}/parm/use_cases/model_appl1‘cations/medium_range/TCStat_SeriesAnalysis_fcstGFS_obsGFS_FeatureRelative_SeriesByIn
12.(ci?:1.=0l\JTPUT_BASE=$(METPLUS_TUTORIAL_DIR)/output/feature_relative_by_in'it

You will see output streaming to your screen. This may take up to 4 minutes to complete. METplus is finished running when control returns to your terminal console and you see
the following text:

INFO: METplus has successfully finished running.

Review the Output Files

You should have output files in the following directories from the intermediate wrappers TcPairs, ExtractTiles, and TcStat, respectively:

1s ${METPLUS_TUTORIAL_DIR}/output/feature_relative_by_init

tc_pairs
extract_tiles
series_init_filtered

and the output of interest, from the SeriesBylInit wrapper:
series_analysis_init
which has a directory corresponding to the date(s) of data in the data window:

1s ${METPLUS_TUTORIAL_DIR}/output/feature_relative_by_init/series_analysis_init

Page 70 of 75

and under that directory are subdirectories named by the storm:

1s ${METPLUS_TUTORIAL_DIR}/output/feature_relative_by_init/series_analysis_init/20141214_00

ML1201032014
ML1201042014

and under each of those directories lies the files of interest:

1s ${METPLUS_TUTORIAL_DIR}/output/feature_relative_by_init/series_analysis_init/20141214 00/ML1201042014

ANLY_ASCII_FILES_ML1201042014
FCST_ASCII_FILES_ML1201042014
series_TMP_Z2_FBAR.png
series_TMP_Z2_FBAR.ps
series_TMP_Z2_ME.png
series_TMP_Z2_ME.ps
series_TMP_Z2.nc
series_TMP_Z2_OBAR.png
series_TMP_Z2_OBAR.ps
series_TMP_Z2_TOTAL.png
series_TMP_Z2_TOTAL.ps

The ANLY_ASCII_FILES_ML########## (Where ########## is the storm) is a text file that contains a list of the analysis data included in the series analysis. The
FCST_ASCII_FILES_ML########## (Where ##t######## is the storm) is a text file that contains a list of forecast data included in the series analysis.

The .nc files are the series analysis output generated from the MET series_analysis tool.

The .png and .ps files are graphics files that can be viewed using display or ghostview, respectively:

display ${METPLUS_TUTORIAL_DIR}/output/feature_relative_by_ init/series_analysis_init/20141214 00/ML1201042014/series_TMP_Z2_FBAR.png
&

or

gv ${METPLUS_TUTORIAL_DIR}/output/feature_relative_by_init/series_analysis_init/20141214 00/ML1201042014/series_TMP_Z2_FBAR.ps &
Note: the & is used to run this command in the background
Review the Log File

A log file is generated in your logging directory: ${METPLUS_TUTORIAL_DIR}/output/feature_relative_by_init/logs. The filename contains the timestamp corresponding to the
current day. To view the log file:

1s ${METPLUS_TUTORIAL_DIR}/output/feature_relative_by_init/logs/master_metplus.log.*
Review the Final Configuration File
The final configuration file is metplus_final.conf. This contains all of the configuration variables used in the run.
less ${METPLUS_TUTORIAL_DIR}/output/feature_relative_by_init/metplus_final.conf

cindyhg Mon, 06/24/2019 - 14:34

Use Case: Feature Relative

Use Case: Feature Relative

METplus Use Case: Feature Relative (Series-Analysis by lead, by forecast hour grouping)

Setup

In this exercise, you will perform a series analysis based on the lead time (forecast hour) of your sample data and organize your results by forecast hour groupings. This use case
utilizes the MET Tc-Pairs, Tc-Stat, and Series-Analysis tools, and the METplus wrappers: TcPairs, ExtractTiles, TcStat, and SeriesByLead. Please refer to the MET User's Guide for a

description of the MET tools and the METplus Users Guide for more details about the wrappers. Please note that the METplus User's Guide is a work-in-progress and may have
missing content.

Change to the METplus Tutorial Directory:

cd ${METPLUS_TUTORIAL_DIR}

Review Use Case Configuration File: series_by_lead_by_fhr_grouping.conf

View the file and study the configuration variables that are defined
less
${METPLUS_BUILD_ BASE}/parm/use_cases/model_applications/medium_range/TCStat_SeriesAnalysis_fcstGFS_obsGFS_FeatureRelative_SeriesByLe
ad.conf

Note that the SERIES_ANALYSIS_GROUP_FCSTS = True and Lead time groupings are specified by the LEAD_SEQ config options.

Page 71 of 75

forecast lead sequence 1 list (0, 6, 12, 18)
LEAD_SEQ_1 = begin_end_incr(0,18,6)

forecast lead sequence 1 label
LEAD_SEQ_1_LABEL = Day1

forecast lead sequence 2 list (24, 30, 36, 42)
LEAD_SEQ_2 = begin_end_incr(24,42,6)

forecast lead sequence 2 label
LEAD_SEQ_2_LABEL = Day2

This references OUTPUT_BASE which you set in the METplus system configuration file (metplus_config/metplus_system.conf). METplus config variables can reference other
config variables, even if they are defined in a config file that is read afterwards.

Run METplus
Run the following command:

master_metplus.py \

-c ${METPLUS_TUTORIAL_DIR}/tutorial.conf \
${METPLUS_BUILD_BASE}/parm/use_cases/model_applications/medium_range/TCStat_SeriesAnalysis_fcstGFS_obsGFS_FeatureRelative_SeriesBylLe
ad.conf \

-¢ dir.OUTPUT_BASE=${METPLUS_TUTORIAL_DIR}/output/feature_relative_by lead_fhr_groupings

You will see output streaming to your screen. This may take up to 3 minutes to complete. When it is complete, your prompt returns.

If you see an error that references NCAP2, this is correctable. NCAP2 is a netCDF tool that can usually be found in the location where nco is installed. Check /usr/local/nco first
or with your system administrator if you are having trouble.

metplus (config_launcher.py:546) ERROR: Executable NCAP2 does not exist at ncap2
run-METplus-metplus: ERROR: Executable NCAP2 does not exist at ncap2

This error can be overcome by adding the path to the executable in your ${METPLUS_TUTORIAL_DIR}/tutorial.conf file. Add the following and then re-run.
[exe]

NCAP2 = /path/to/ncap2
e.g. NCAP2=/usr/local/nco/bin/ncap2

Review the Output Files

You should have output directories including the following that result from running the wrappers TcPairs, ExtractTiles, and TcStat, respectively:
1s ${METPLUS_TUTORIAL_DIR}/output/feature_relative_by_lead_fhr_groupings
track_data_atcf

extract_tiles
series_lead_filtered

and the output directory of interest, from the SeriesByLead wrapper:
series_analysis_lead

That directory contains the following directories:

1s ${METPLUS_TUTORIAL_DIR}/output/feature_relative_by_lead_fhr_groupings/series_analysis_lead

Day1
Day2
series_animate

Day1 contain the following files:

1s ${METPLUS_TUTORIAL_DIR}/output/feature_relative_by_ lead_fhr_groupings/series_analysis_lead/Dayl

ANLY_FILES_F000_to_F018
series_FO00_to_FO18_TMP_Z2_ME.png
series_FO00_to_FO18_TMP_Z2_OBAR.ps
FCST_FILES_FO00_to_F018
series_FO00_to_F018_TMP_Z2_ME.ps
series_FO00_to_FO18_TMP_Z2_TOTAL.png
series_FO00_to_FO18_TMP_Z2_FBAR.png
series_F000_to_F018_TMP_Z2.nc
series_FO00_to_FO18_TMP_Z2_TOTAL.ps
series_FO00_to_FO18_TMP_Z2_FBAR.ps
series_FO00_to_FO18_TMP_Z2_OBAR.png

The ANLY_FILES_F000_to_F018 is a text file that contains a list of the data that is included in the series analysis.
Day2 contains equivalent files for forecast leads 24 to 42.
The .nc files are the series analysis output generated from the MET Series-Analysis tool.

The .png and .ps files are graphics files that can be viewed using ImageMagick:

Page 72 of 75

