Investigating the impact of surface drag parameterization schemes available in WRF on surface winds

Hongli Jiang1,3, Michelle Harrold2,3 and Jamie Wolff2,3

1: NOAA/ESRL/CIRA, Colorado State University
2: NCAR/Research Applications Laboratory
3: Developmental Testbed Center

Acknowledgements: Pedro Jimenez and Cliff Mass
Surface drag parameterization

New topo_wind options to improve topographic effects on surface winds in YSU PBL scheme:

– \texttt{topo_wind}=1 (v3.4, Jimenez and Dudhia 2012)

\[
\frac{\partial u}{\partial t} = \cdots - C_t \frac{u^* u}{\Delta z V}, \quad C_t = fn(\Delta^2 h, \sigma_{sso})
\]

- \(h \): topographic height
- \(\sigma_{sso} \): Standard deviation of subgrid-scale orography

– \texttt{topo_wind}=2 (v3.4.1+, Mass and Ovens 2010; 2011; 2012)

- \textit{Enhancing}: \(u^* \) (~subgrid terrain variance)
Testing the New `topo_wind` Option

- Year-long simulations: 1 July 2011 – 30 June 2012
- Initialized every 36 h, 48-h forecasts
- Domain: 15-km/5-km nest
- Focus on winds

- Three configurations:
 - `topo_wind`=0 (twind0)
 - `topo_wind`=1 (twind1)
 - `topo_wind`=2 (twind2)

- Comparisons: (5-km domain only)
 - twind0 - twind1
 - twind0 - twind2
 - twind0, twind1, twind2
 - twind1 - twind2

<table>
<thead>
<tr>
<th>Physics Suite</th>
<th>Test Configuration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Microphysics</td>
<td>WRF Single-Moment 5</td>
</tr>
<tr>
<td>Radiation (SW/LW)</td>
<td>Dudhia/RRTM</td>
</tr>
<tr>
<td>Surface Layer</td>
<td>Monin-Obukhov similarity theory</td>
</tr>
<tr>
<td>Land Surface Model</td>
<td>Noah</td>
</tr>
<tr>
<td>PBL</td>
<td>Yonsei University (topo_wind=0,1,2)</td>
</tr>
<tr>
<td>Convection</td>
<td>Kain-Fritsch</td>
</tr>
</tbody>
</table>

Visit P67 by Harrold et al. for information regarding additional variables for twind0
Surface wind speed bias \((twind0)\), 00 UTC INIT

- High wind bias
- Diurnal variation
- Regional variation (East vs. West)
- Yellow: 0.5 to 1.5 m/s
- Green: -0.5 to -1.5 m/s
Comparison among three configurations

00f12

Median Surface Wind Speed Bias

twind0

twind1

twind2

m s⁻¹

Median Surface Wind Speed Bias

twind0

twind1

twind2

Developmental Testbed Center
Breakdown by region: twind0, twind1, twind2

- **twind0**: high wind bias for all forecast lead times, maximum bias overnight and minimum during the day

- **twind1, twind2**: bias reduced over night, over-corrected during the day
Breakdown by region: twind0, twind1, twind2
Breakdown by season: \texttt{twind0} - \texttt{twind1}

\texttt{00f12h}

- Very complex pattern for any given day
- \textbf{Blue:} \texttt{twind1} stronger – generally over Mountain West
- \textbf{Orange:} \texttt{twind1} weaker – generally over East Plains
Breakdown by season/region: `twind0`, `twind1`

Wind (m/s) Bias

West region:
- `twind1` reduces bias to near zero 12h, 36h
- Over corrected during the day

East region:
- `twind1` shifts bias downward
- Bias still high overnight

General offset of ~0.5 m/s between the two configurations

Visit P68 by Lorente-Plazas et al for improvement
Breakdown by season: twind0 - twind2

- Orange: twind2 weaker
Breakdown by season/region: twind0, twind2

West region:
- twind2 reduces bias to below zero 12h, 36h
- over corrected during the day

East region:
- bias reduced
- higher than the West

General offset of ~0.5 m/s between the two configurations
Summary

topo_winds=0:
 - High surface wind bias (known issue)
 - maximum at 12 h and 36 h
 - minimum at 24 h
 - Higher bias over East, Lower over West (for all seasons)
 - unresolved subgrid topography
 - smoother or flatter topography used in the model
 - absence of topographic drag

topo_winds=1, 2:
 - Overall high bias reduced in both options
 - at night: improvement
 - during the day: over-corrected
 - Other factors
 - fewer stations over West/Mountains, Hills
 - representativeness error over West
 - is subgrid topography correctly resolved? at what resolution?