Inter-comparison of AFWA Operational Configurations using WRFv3.3.1 and WRFv3.4

Mei Xu, Jamie Wolff and Michelle Harrold

National Center for Atmospheric Research (NCAR)
Research Applications Laboratory (RAL)
and
Developmental Testbed Center (DTC)
AFWA Configuration Testing

DTC 2012 AFWA testing and evaluation

- Impact assessment of WRF-ARW version upgrade (WRFv3.3.1/WRFv3.4)
- Performance assessment of two land surface input data sets (LIS2.7.1/LIS3.3)

in a functionally similar operational environment

- Data assimilation (WRFDA 3DVAR) and 6-hr warm start
- AFWA operational input datasets
- AFWA operational namelist options
AFWA Configuration Testing

Flowchart of the 6-hr “warm start” spin-up

Seasonal BE were generated from 2-week-long cold-start runs
Experimental Design

- **End-to-end system:** WPS, WRFDA, WRF, UPP, and MET

- **Test Period:** 1 July 2011 – 29 June 2012
 48-h warm start forecasts
 initialized every 36 h (244 cases)

- **Domain:** single 15-km CONUS grid
 56 vertical levels

- **Numerical experiments:**
 - WRFDAv3.3.1 + WRFv3.3.1 w/ LoBCs from LIS w/ Noahv2.7.1
 - WRFDAv3.4 + WRFv3.4 w/ LoBCs from LIS w/ Noahv2.7.1
 - WRFDAv3.4 + WRFv3.4 w/ LoBCs from LIS w/ Noahv3.3
Evaluation Matrix

- **Surface and Upper Air** [(BC)RMSE, bias]
 Temperature, Dew Point Temperature, Wind speed

- **Precipitation** (Gilbert skill score, frequency bias)
 3-h and 24-h accumulations (vs. Stage II analysis)

- **GO Index**
 weighted RMSE across variables, domain and lead time

- **Statistical Assessment**
 - confidence intervals (CI) at the 99% level
 - statistical significance (SS) and practical significance (PS)
Surface Verification: Bias v3.4 - v3.3.1

00 UTC initialization

- **Surface temperature**
 - v3.4: colder – larger cold bias

- **Surface dew point temp**
 - v3.4: colder during cold-bias hours, warmer during warm-bias hours – larger bias

- **Surface wind speed**
 - v3.4: smaller high bias; no differences are PS
A bug was found last week in the PrepBufr datasets used for verification, which may have exaggerated the cold temperature bias, especially for summer.
Surface Temperature: Bias

WRF v3.3.1

00 UTC 12 h forecast

00 UTC 48 h forecast

valid at 12 UTC

valid at 00 UTC
Surface Temperature: Bias

WRF v3.4

00 UTC 12 h forecast

Median Temperature Bias

cold bias

valid at 12 UTC

00 UTC 48 h forecast

Median Temperature Bias

cold bias

valid at 00 UTC
Surface Temperature: Bias

|v3.4| – |v3.3.1|

00 UTC 12 h forecast

Median Temperature Bias - Difference

00 UTC 48 h forecast

Median Temperature Bias - Difference

v3.4 better v3.3.1 better
valid at 12 UTC

v3.4 better v3.3.1 better
valid at 00 UTC
Surface Dew Point: Bias

WRF v3.3.1

00 UTC 12 h forecast

00 UTC 48 h forecast

Median Dew Point Temperature Bias

valid at 12 UTC

valid at 00 UTC

cold / dry bias

warm / wet bias
Surface Dew Point: Bias

WRF v3.4

00 UTC 12 h forecast

Median Dew Point Temperature Bias

cold / dry bias
valid at 12 UTC

00 UTC 48 h forecast

Median Dew Point Temperature Bias

warm / wet bias
valid at 00 UTC
Surface Dew Point: Bias

| v3.4 | – | v3.3.1 |

00 UTC 12 h forecast

Median Dew Point Temperature Bias - Difference

v3.4 better

valid at 12 UTC

00 UTC 48 h forecast

Median Dew Point Temperature Bias - Difference

v3.4 better

valid at 00 UTC
Surface Temperature: Bias v3.4 vs v3.3.1

pair-wise differences for **bias** by initialization time, lead time, and season

<table>
<thead>
<tr>
<th>Surface Temperature</th>
<th>00 UTC Initializations</th>
<th>12 UTC Initializations</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>f03</td>
<td>f06</td>
</tr>
<tr>
<td>00 UTC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Annual</td>
<td>v3.3.1</td>
<td>v3.3.1</td>
</tr>
<tr>
<td>Summer</td>
<td>v3.3.1</td>
<td>v3.3.1</td>
</tr>
<tr>
<td>Fall</td>
<td>v3.3.1</td>
<td>v3.3.1</td>
</tr>
<tr>
<td>Winter</td>
<td>v3.3.1</td>
<td>v3.3.1</td>
</tr>
<tr>
<td>Spring</td>
<td>v3.3.1</td>
<td>v3.3.1</td>
</tr>
</tbody>
</table>

SS (light shading) and **PS** (dark shading)
Surface Dew Point: Bias v3.4 vs v3.3.1

pair-wise differences for *bias* by initialization time, lead time, and season

<table>
<thead>
<tr>
<th>Surface Dew Point Temperature</th>
<th>00 UTC Initializations</th>
<th>12 UTC Initializations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Annual</td>
<td>v3.3.1</td>
<td>v3.3.1</td>
</tr>
<tr>
<td>Summer</td>
<td>v3.3.1</td>
<td>v3.3.1</td>
</tr>
<tr>
<td>Fall</td>
<td>v3.3.1</td>
<td>v3.3.1</td>
</tr>
<tr>
<td>Winter</td>
<td>v3.4</td>
<td>v3.4</td>
</tr>
<tr>
<td>Spring</td>
<td>v3.3.1</td>
<td>v3.3.1</td>
</tr>
</tbody>
</table>

SS (light shading) and PS (dark shading)
Upper Air Temperature: v3.4 vs v3.3.1

pair-wise differences for **RMSE and bias** by initialization time, lead time, and season

| Upper Air Temperature | Annual | | | | Summer | | | | Fall | | | | Winter | | | | Spring | | | |
|-----------------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| | F12 | F24 | F36 | F48 |
| 850 | v3.5.1 | v3.3.1 | | | v3.3.1 | | | | v3.3.1 | | | | v3.3.1 | | | |
| 700 | v3.3.1 | | | |
| 500 | | | | | v3.3.1 | v3.3.1 | | | v3.3.1 | | | | v3.3.1 | | | |
| 400 | | | | | | | | | | | | | | | | |
| 300 | v3.4 |
| 200 | v3.4 |
| 150 | v3.3.1 | v3.3.1 | v3.3.1 | v3.3.1 | v3.4 |
| 100 | v3.4 |

v3.4 temp is generally colder – smaller warm bias at upper levels except 150 mb
GO Index: v3.4 vs v3.3.1

- v3.3.1 more skillful during summer
- v3.4 more skillful during winter
- comparative for annual, spring and fall
- outlier cases: v3.3.1 better than v3.4

N<1 *baseline configuration has higher skill*

N>1 *comparison configuration has higher skill.*
Summary of Results

- Most PS pair-wise differences are noted in temperature and dew point temperature bias
 - **Surface temperature and dew point:** WRFv3.3.1 is generally favored.
 - **Upper air temperature:** Mixed results dependent on vertical levels.

- No PS pair-wise differences are noted in **wind speed**. The SS differences favor WRFv3.4.

- No SS differences are noted in **precipitation skills**.

- **GO Index:** WRFv3.3.1 is more skillful during summer, and WRFv3.4 is more skillful during winter
http://www.dtcenter.org/config/

THANK YOU!