Configuration Testing of GSI within an Operational Environment

Kathryn M. Newman1, M. Hu2, H. Shao1,2
1Developmental Testbed Center (DTC)
2National Center for Atmospheric Research (NCAR) / Research Applications Laboratory (RAL)
3National Oceanic and Atmospheric Administration (NOAA) / Global Systems Division (GSD)

Introduction

- The Developmental Testbed Center (DTC) has developed a functionally similar end-to-end testing environment constructed to follow the Air Force Weather Agency (AFWA) pre-operational testbed.
- Testing and Evaluation efforts are to help test and assist in Grid Point Statistical Interpolation (GSI) configuration, aiming for a 2013 implementation.
- GSI is a 3D-var data assimilation system developed at NCEP/EMC, NOAA/GSD, NASA/GMAO, and NCAR/MMM. The GSI community is maintained and supported through the DTC.

Experimental Design

- Full end-to-end system runs 1x/day:
 - WPS (v3.3.1), cosGSI (v3.1), WRF-ARW (v3.3.1), UPP (v1.0), & MET (v4.0).
 - 06 Z cold start cycle
 - 12 Z continuous cycle
 - 57 vertical levels, 10 hPa model top
 - Continuous cycling bias correction coefficients
 - 20-km Northern Hemisphere Domain
 - 48-hr forecasts initialized at 12 Z
 - Grid-to-point verification against conventional observations.

Methodology

GO Index

General Operations (GO) Index is used for quantitative assessment of forecast performance

- Skill scores (S) computed for specific variables, levels, and lead times
 \[S = \frac{1}{\sqrt{1-N}} \times \frac{RMSE_{ref} - RMSE_{sys}}{RMSE_{ref}} \]
- For each variable, level and lead time, predefined weights (w) are applied and a weighted sum (Sw) is computed
- Given Sw, the index value is defined as \[N = \frac{1}{\sqrt{1-S}} \]

Values N < 1 indicate the reference forecast has higher skill, and values N > 1 indicate the developmental forecast has higher skill.

Results

- Real-time tests of the primary configuration indicated degradation in forecast skill during the initial set-up. This drop corresponded to the change from regional NAM BE to global GFS BE as well as the inclusion of GSPRO data.
- Overall skill of the basic primary configuration showed SS improvement over a parallel cold start real-time test.

Conclusions

- The DTC built a GSI testbed based on the AFWA pre-operational testing system.
- Real-time tests showed the primary configuration showed more forecast skill than corresponding cold start runs, but indicated a reduction in skill stemming from the BE.
- Retrospective testing focusing on BE suggested NAM BE produced more forecast skill over the primary configuration (Global BE).
- Developmental real-time testing using current channel selection research resulted in neutral impact.

Future Work

- Generate and tune-domain-specific BE using 3-mo collected real-time forecasts from primary configuration.
- Test forecast skill using domain-specific BE against GFS, NAM, and RR BEs.
- Further studies on impact of radiance data over operational domain and impact of cycling scheme on channel selection.

Acknowledgments

This work is funded through the DTC by the Air Force Weather Agency (AFWA). NCAR is sponsored by the National Science Foundation (NSF).

Figure 1: GSI index of the primary configuration (black) compared to the corresponding cold start (Right).

Figure 2: Schematic of DTC GSI testbed.

Figure 3a: GO index of the primary configuration (blue) compared to the pair-wise difference (black): AFWA pre-operational configuration with corresponding cold start (RTdev).

Figure 4: GO index of Retrospective tests with Regional BE (green), the primary configuration (blue), and the pair-wise difference (black). Difference is SS CI’s do not encompass 0.

Figure 5: Vertical profiles of 12hr HGT (left) and 24hr TMP (right) showing the Regional BE (lower) for a Temperature increment at 38°N, 81°W (domain is subset), with improved forecast skill over the primary configuration.

Figure 6: Vertical (right) and horizontal (left) length scales for global BE (upper) and regional BE (lower) for a Temperature increment at 38°N, 81°W (domain is subset).

Figure 7: Forks single observation (POT) not using the global BE support and regional BE (green) on a Temperature increment at 38°N, 81°W (domain is subset).

NSF 436-2013/01/08, sponsorship = 1.4 megagrants-0.3

Developmental Testbed Center

National Center for Atmospheric Research (NCAR)
Research Applications Laboratory (RAL)
10212 Mesa Lane, Boulder, CO 80301
Email: NewmanK@ucar.edu

Author contact:
Kathryn M. Newman
National Science Foundation (NSF)