Reconfigure

Reconfigure

Point-Stat Tool: Reconfigure

Now we'll reconfigure and rerun Point-Stat.

Start by making a copy of the configuration file we just used:
cp PointStatConfig_tutorial_run1 PointStatConfig_tutorial_run2

    This time, we'll use two dictionary entries to specify the forecast field in order to set different thresholds for each vertical level. Point-Stat may be configured to verify as many or as few model variables and vertical levels as you desire.

    Edit the PointStatConfig_tutorial_run2 file as follows:
    vi PointStatConfig_tutorial_run2
    • Set:

      fcst = {
         field = [
          {
            name       = "TMP";
            level      = [ "Z2" ];
            cat_thresh = [ >273, >278, >283, >288 ];
          },
          {
            name       = "TMP";
            level      = [ "P750-850" ];
            cat_thresh = [ >278 ];
          }
        ];
      }
      obs = fcst;

      to verify 2-meter temperature and temperature fields between 750hPa and 850hPa, using the thresholds specified.

    • Set:
      message_type = ["ADPUPA","ADPSFC"];
      sid_inc = [];
      sid_exc = [];
      obs_quality = [];
      duplicate_flag = NONE;
      obs_summary = NONE;
      obs_perc_value = 50;

      to include the Upper Air (UPA) and Surface (SFC) observations in the evaluation

    • Set:
      mask = {
         grid  = [ "G212" ];
         poly  = [ "MET_BASE/poly/EAST.poly",
                   "MET_BASE/poly/WEST.poly" ];
         sid   = [];
         llpnt = [];
      }

      to compute statistics over the NCEP Grid 212 region and over the Eastern and Western United States, as defined by the polylines specified.

    • Set:
      interp = {
         vld_thresh = 1.0;
         shape       = SQUARE;
         type = [
            {
               method = NEAREST;
               width  = 1;
            },
            {
               method = DW_MEAN;
               width  = 5;
            }
         ];
      }

      to indicate that the forecast values should be interpolated to the observation locations using the nearest neighbor method and by computing a distance-weighted average of the forecast values over the 5 by 5 box surrounding the observation location.

    • Set:
      output_flag = {
         fho    = BOTH;
         ctc    = BOTH;
         cts    = BOTH;
         mctc   = NONE;
         mcts   = NONE;
         cnt    = BOTH;
         sl1l2  = BOTH;
         sal1l2 = NONE;
         vl1l2  = NONE;
         val1l2 = NONE;
         pct    = NONE;
         pstd   = NONE;
         pjc    = NONE;
         prc    = NONE;
         ecnt   = NONE;
         eclv   = BOTH;
         mpr    = BOTH;
      }

      to switch the SL1L2 and CTS output to BOTH and generate the optional ASCII output files for them.

    • Set:
      output_prefix = "run2";

      to customize the output file names for this run.

    Let's look at our configuration selections and figure out the number of verification tasks Point-Stat will perform:
    • 2 fields: TMP/Z2 and TMP/P750-850
    • 2 observing message types: ADPUPA and ADPSFC
    • 3 masking regions: G212, EAST.poly, and WEST.poly
    • 2 interpolations: UW_MEAN width 1 (nearest-neighbor) and DW_MEAN width 5

    Multiplying 2 * 2 * 3 * 2 = 24. So in this example, Point-Stat will accumulate matched forecast/observation pairs into 24 groups. However, some of these groups will result in 0 matched pairs being found. To each non-zero group, the specified threshold(s) will be applied to compute contingency tables.

    Can you diagnose why some of these verification tasks resulted in zero matched pairs? (Hint: Reread the tip two pages back!)
    cindyhg Tue, 06/25/2019 - 09:44