HWRF Multi-storm Modeling System (HWRF-B)

Xuejin Zhang & Ghassan Alaka
AOML/HRD & UM/CIMAS

Acknowledgements

Collaborators: EMC Hurricane Project (Lead: M. Avichal); DTC (Lead: K. Newman); HRD Modeling Group (Lead: Gopalakrishnan)
Computer resource: Jet supercomputer
HFIP support
HFIP Vision and Goals (2009-2018)

VISION
Organize the hurricane community to dramatically improve numerical forecast guidance to NHC in 5-10 years.

GOALS
- Reduce numerical forecast errors in track and intensity by 20% in 5 years, 50% in 10 years
- Extend forecast guidance to 7 days with skill comparable to 5 days at project inception
- Increase probability of predicting rapid intensification (RI) at day 1 to 90% and 60% at day 5
- Improve products on storm surge prediction
Horizontal-Temporal Scales of Atmospheric Processes

Adopted from Orlanski (1975)
Scientific Objectives

• Preserve across-scale processes on TC genesis, intensifying, decaying, and landfall processes within an integrated modeling system to:
 – Represent the full-scale spectrum of atmospheric waves
 – Study on multi-scale interactions e.g. storm-storm interaction, TC-terrain interaction, and landfall processes and QPF etc.

• Enhance resolved resolution that can represent TC inner core physics and can predict TC dynamics (3 km or less)
 – Non-hydrostatic model becomes required
 – Physics schemes should be suitable to the high-resolution model
Model Development Objectives

- Tailor a tool that is operationally feasible and transferable at minimum cost in the near future
- Experiment new R&D for the next generation across-scale TC forecast model
- Facilitate coherent capacity of cycling and initialization that can be utilized for testing high-resolution physics, advanced data assimilation, ensemble forecast, etc. as operational HWRF does
- Quantify model bias and diagnose sources of model errors
Features of Current Models for Hurricanes

<table>
<thead>
<tr>
<th>Features</th>
<th>HWRF</th>
<th>HMON</th>
<th>HWRF-B</th>
<th>GFS</th>
<th>GEFS</th>
<th>FV3GFS</th>
<th>FV3NES</th>
</tr>
</thead>
<tbody>
<tr>
<td>SC/BC/G</td>
<td>SC</td>
<td>SC</td>
<td>SC/BC</td>
<td>G</td>
<td>G</td>
<td>G</td>
<td>BC/G</td>
</tr>
<tr>
<td>DA</td>
<td>Vor DA</td>
<td>N</td>
<td>Vor DA</td>
<td>DA</td>
<td>DA</td>
<td>DA</td>
<td>N</td>
</tr>
<tr>
<td>CYL</td>
<td>Partial</td>
<td>N</td>
<td>Partial</td>
<td>Full</td>
<td>Full</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>Ocn-CPL</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>NEST</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>Y</td>
</tr>
<tr>
<td>MOV</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>MAX RES</td>
<td>2 KM</td>
<td>2 KM</td>
<td>2 KM</td>
<td>13 KM</td>
<td>27 KM</td>
<td>13 KM</td>
<td>3 KM</td>
</tr>
<tr>
<td>PHY</td>
<td>Hi-Res</td>
<td>Hi-Res</td>
<td>Hi-Res</td>
<td>GFS</td>
<td>GFS</td>
<td>GFS</td>
<td>GFDL</td>
</tr>
</tbody>
</table>

HWRF, HMON, GFS, GEFS: Operational

HWRF-B, FV3NES: HFIP real-time demo, stream 2

FV3GFS: Real-time parallel
Idea of Moving Nest
Nesting scheme and feedback

The basin-scale HWRF
Operational HWRF vs. Basin-Scale HWRF

Outer black box: Basin-scale HWRF; Inner black box: Operational HWRF
Red box: NHC’s Areas of Responsibility
HWRF-B: Configuration

- Dynamical core is identical to the 2017 operational HWRF (H217)

- Most configuration options are identical
 - All physics, vertical resolution, 18-06-02km horizontal resolution

- Key configuration differences
 - **Outermost domain size**
 - Spans Atlantic & E. Pacific basins
 - **Multi-storm**
 - Up to 3 storms in real-time this year
 - **Data assimilation**
 - No TDR ensemble
 - **Ocean coupling**
 - Work in progress

Alaka et al. 2017
HWRF-B: Real-time Initialization
HWRF-B: Developing DA and Ensemble Prediction System

Developed by J. Poterjoy

Data Assimilation Step
EnKF updates HWRF ensemble and radiance bias correction coefficients for next cycle.

Forecast Step
A 6-h HWRF forecast runs from each posterior EnKF member using GFS surface and lateral boundary conditions.

Prior member 1
Prior member 2
...
Prior member 60

Radiance bias correction coefficients

Observations

Post member 1
Post member 2
...
Post member 60

Updated Radiance bias correction coefficients

HWRF

Prior member 1
Prior member 2
...
Prior member 60

Cycled Radiance bias correction coefficients
HWRF-B: Major Findings & Milestones

Scientific Findings
- Better track forecasts than **H217 & GFS** at longer lead times (> 72h)
- Improved track forecasts when “far-field TCs” were present
- Excellent track forecasts for high-impact TCs (Harvey, Irma, Maria)
- Excellent rapid intensification forecasts for Harvey
- Irma forecasts shifted west near FL before **H217/GFS**

Project-Oriented Milestones
- Ran 4x daily in real-time under the HFIP demo on Jet
- Provided guidance in near-real-time for the NOAA Hurricane Field Program
- Assimilated TDR & HDOB data in real-time starting with Harvey
- All Basin-Scale HWRF options were committed to the DTC trunk (thx to Evan & Jim)
- Created interpolated (early) forecasts in real-time
- Cycled data assimilation system developed for the outermost domain
Suggested Pathway for Model Developments and Priorities

- **Potential R2O transitions [low costs]**
 - All current basin-scale HWRF developments are built in the operational HWRF workflow, scripting, and source code using software packages in NOAA’s R&D supercomputers

- **Research and forecast applications**
 - Basin-scale HWRF DA has no dependence on GFS for initial conditions and GEFS radiance bias correction, thus allowing for more vigorous validations of the HWRF potential model and physics upgrades
 - Basin-scale HWRF system provides a platform for satellite DA research that transitions seamlessly into community packages used by operational models
 - Basin-scale HWRF system is capable of probabilistic multi-scale weather prediction and deterministic forecast of TC track and intensity
HWRF-B: 2017 Atlantic Verification

- **HB17** excels at long lead times
 - Best improvement at 108 h (7%)
 - Better than **H217** & GFS at 60+ h lead times
 - Improvements amplified for 06z/18z cycles \(\rightarrow \) Why? Restricted data?
 - Note actual errors are small at short lead times

- Track was the primary focus with Basin-Scale HWRF this year
 - TC-TC interactions
 - TC-land interactions
 - TC-environment interactions
HWRF-B: Verification of Multiple Storms

- **For 2 extra TC/invest anywhere**
 - 96/124 cases at 120 h
 - **HB17** track skill increases to 8% at 96 h, 108 h
 - **GFS** track skill too

- **Far-field Storms** are TCs/invests that are >3500 km away from the verified TC.
 - See Alaka et al. 2016

- **For 1+ extra Far-Field Storm**
 - 59/124 cases retained at 120 h
 - **HB17** track skill increases to over 14% at 96 h
 - **GFS** track skill also increases
Basin-Scale HWRF DA and Ensemble Prediction System

Provided by J. Poterjoy
HWRF-B: Hurricane Harvey

- Basin-Scale HWRF was the best NOAA model for Harvey track forecasts
- RECON data was successfully assimilated in real-time for the first time
- Excellent rapid intensification forecasts
HWRF-B: Severe Weather in Harvey

- HB17 predicted high CAPE and helicity along the Texas coast 48+ h prior to landfall
 - Matagorda Bay to Galveston Bay
- Matched up well with SPC Storm Reports

HWRF-B can provide useful guidance on TC-induced severe weather
HWRF-B: Hurricane Irma

- Basin-Scale HWRF was the best NOAA model for Irma track forecasts at Days 4-5.
- Rainband structure accurately predicted along FL east coast.
- RECON data was successfully assimilated.

Westward shift happened earlier than HWRF & GFS
HWRF-B: Hurricane Maria

- Multi-storm interactions
 - Interactions with Jose (not shown), Lee, and Invest 99E
 - Subtropical high provided primary steering currents → variations?
Summary

• The HWRF multi-storm modeling system was developed in AOML/HRD in collaboration with NCEP/EMC and DTC under the support of NOAA’s HFIP
• The system can support multiple high-resolution movable nests centered on storms that may exist in the regional domain
• The system can not only provide simultaneous high-resolution forecasts for multiple storms, but also improve the representation of storm-storm interactions, synoptic-scale flows, and the TC life cycle from genesis, intensifying, decaying to landfall
• The system may apply to various unique researches on TCs, such as storm-storm interaction, model bias diagnostics, physical scheme evaluation and improvement, and localized multiple-vortex initialization and advanced data assimilation