
Introduction to Docker container
syntax and environment
Or… “What the heck is a container?”

What is a computer?
� Dr Wikipedia says:

� A computer is a machine that can be instructed to carry
out sequences of arithmetic or logical operations automatically
via computer programming

https://en.wikipedia.org/wiki/Sequence
https://en.wikipedia.org/wiki/Arithmetic
https://en.wikipedia.org/wiki/Boolean_algebra
https://en.wikipedia.org/wiki/Computer_programming

What is a computer?
� Dr Wikipedia says:

� A computer is a machine that can be instructed to carry
out sequences of arithmetic or logical operations automatically
via computer programming

All of these are computers:

https://en.wikipedia.org/wiki/Sequence
https://en.wikipedia.org/wiki/Arithmetic
https://en.wikipedia.org/wiki/Boolean_algebra
https://en.wikipedia.org/wiki/Computer_programming

What is a computer?
� Dr Wikipedia says:

� A computer is a machine that can be instructed to carry
out sequences of arithmetic or logical operations automatically
via computer programming

All of these are computers:We really only care about these kinds for this tutorial:

https://en.wikipedia.org/wiki/Sequence
https://en.wikipedia.org/wiki/Arithmetic
https://en.wikipedia.org/wiki/Boolean_algebra
https://en.wikipedia.org/wiki/Computer_programming

What is hardware? What is software?
� Hardware is the physical

metal, glass, and silicon
that makes up your
computer

� Software is programs running
on the hardware

� Google
Chrome
(web browser)

� Snapchat
(application)

� A WRF
simulation of
Typhoon Mawar

What is an operating system?
� The operating system is a piece of software that makes it easy

for programs and other software to communicate with and
make use of hardware

� Examples of operating systems:

MacOS Windows AndroidiOS

And of course, Linux

What is a virtual machine?
� Just like any other piece of software, an operating

system can run another operating system: this is
known as a Virtual Machine

� Incredibly useful for a lot of applications, two major
ones are
� Software developers who have to work on multiple

types of hardware and operating systems
� Cloud computing!

� Each AWS instance is a virtual machine: it runs much the same as
your laptop or desktop, but is just one of many “virtual” machines
running on a large rack of hardware, managed by a shell operating
system that is invisible to you

� When your instance is terminated, that same hardware will
instantiate someone else’s requested instance, probably very
different from yours!

AWS Cloud

Your
instance

Someone
else’s instance

Yet another
instance

What is a software container?
• A container is a self-contained “box” that allows you to build software

once in a custom, portable environment, and then take that “box” and
copy it to other machines and run it, so long as you can run the
software that runs that “box”

• Similar to a virtual machine, but much more lightweight and portable

Hardware Hardware
Host OS Operating system

Hypervisor Docker engine
Guest OS Bin/Lib Bin/Lib

Bin/Lib

App A

Guest OS

Bin/Lib

App A’

Guest OS

Bin/Lib

App B

App A App A’ App B App B’

Vi
rt

ua
l

M
ac

hi
ne

s C
ontainers

Why use containers for NWP?
• Numerical weather prediction systems are really complicated
• Many different components
• Most components have multiple programs
• Each of those programs depend on many other programs or software libraries
• Compiling and setting up any one of these components has a chance to go

horribly wrong

Stick figure trying to
compile WRF, c. 2017

WPS WRF UPP NCL MET

real.exe wrf.exe ndown.exe

netCDF-Cmpich netcdf-FORTRAN perl

hdf5 zlib

openmpi

curl

Why use containers for NWP?
• Containers mean someone still has to do all the work to get all

those things set up… but only once!
• Everything required for NWP can be packaged into

isolated components, ready for development, shipment,
and deployment to many different computing
environments

• Software should always run the same, regardless of where it
is deployed

Stick figure trying to
compile WRF, c. 2017

Build here

Run here Run here Run here Run here

Output = Output = Output = Output

What is Docker?
• Docker is one of the leading software containerization

platforms
• Home page: https://www.docker.com
• Documentation: https://docs.docker.com

• Works on Windows, Mac, and Linux machines

https://www.docker.com/
https://docs.docker.com/

Understanding the lingo: Images vs. containers

� Image:
� Inert, immutable snapshot
� Created from a recipe file (Dockerfile)

with the docker build command
� Can build from scratch (slower, but offers

customization!) or save to a tar file,
which can then be loaded for faster
deployment

� Once an image is built, you can use that
image to create a container

� Container:
� Instance of an image created with the

docker run command
� Can be manipulated just like an

operating system—data can be created,
deleted, and modified—and data can
be saved outside of the container with
proper settings

� Can have many running containers of
the same image

“The image is the recipe,
the container is the cake”

- some rando on the internet

Intro to docker commands

� Getting help:
� docker --help : lists all Docker commands
� docker run --help : lists all options for the docker run command

specifically
� Building or loading images:

� docker build -t my-name . : builds a Docker image from
Dockerfile
� All of the containers we will use in this class have been pre-built on the AMI

for you, mainly for time constraints.
� The online tutorial contains instructions on building each container from

scratch (example: https://dtcenter.org/tutorial-version-3/software-
containers/nwp-components)

� docker save my-name > my-name.tar.gz : saves a Docker image
to a tarfile

� docker load < my-name.tar.gz : loads a Docker image from a
tarfile

https://dtcenter.org/tutorial-version-3/software-containers/nwp-components

Intro to docker commands
� Listing images and containers:

� docker images : lists the images that currently exist, including the image
names and ID's

� docker ps -a : lists the containers that currently exist, including the
container names and ID's

� All of this and more (including solutions to common docker
problems) can be found on the tutorial page:
https://dtcenter.org/tutorial-version-3/introduction/docker-
commands-tips

https://dtcenter.org/tutorial-version-3/introduction/docker-commands-tips

Try it yourself
� docker images
REPOSITORY TAG IMAGE ID CREATED SIZE
dtc-metviewer latest 393d706ab6c2 5 days ago 1.43GB
mysql 5.7 db39680b63ac 2 weeks ago 437MB
dtc-gsi latest ddaa4a2f0e3f 3 weeks ago 2.62GB
dtc-nwp-gsi_data latest 5767d897c037 3 weeks ago 1.61GB
dtc-met latest 2cead505a231 3 weeks ago 4.28GB
dtc-ncl latest ca23ab83fd60 3 weeks ago 2.97GB
dtc-upp latest 67e16bf40248 3 weeks ago 2.56GB
dtc-wps_wrf latest a09c530d2d4d 3 weeks ago 2.95GB
dtc-nwp-derecho latest d1b991e8b35c 3 weeks ago 845MB
dtc-nwp-snow latest d819065690cd 3 weeks ago 1.2GB
dtc-nwp-sandy latest e8d3c9285d4e 3 weeks ago 803MB
dtc-nwp-wps_geog latest 36bf70df233e 3 weeks ago 2.53GB

� Take one of the repository names you see above (I arbitrarily choose
dtc-wps_wrf), and run it this way:

docker run --rm -it dtc-wps_wrf /bin/bash

� You can do all sorts of things: create a file, run commands, delete everything under /comsoftware
(seriously, try it!)

� Once you are done, you can exit the container by typing “exit”. If you want to re-create the same
container from the original image, just type your original “docker run” command again…and the
container will be recreated in its original state!

But wait…
� If all that I’ve done inside my container disappears when I type

“exit”, what good is it?
� We instruct you to use the “--rm” flag; this actually removes the

container when you exit
� If you omit this flag, the container remains in the background, and

can be restarted
� Even better: we can map directories inside the container to the

world outside of the container
� The “-v” flag is a very powerful option

� It allows us to mount data containers
� It allows us to mount a “local” directory (outside of the container) into the

system inside the container (“bind mount”)
� Files in a bind-mounted volume that are changed inside the container

will be changed outside of the container, and vice-versa
� This is the way that we can get data into and out of containers

Try it yourself…again
� In your home directory (type cd to get there), make a new directory

and create a new file in it
mkdir /home/ec2-user/magic_portal
touch magic_portal/new_file_outside_container

� Run the same container you did earlier, but with an extra option:
docker run --rm -it -v /home/ec2-user/magic_portal:/home/other_portal
dtc-wps_wrf /bin/bash

� Now in your container, you should see a directory /home/other_portal. If
you create a file in here, the same file will appear outside the container

bash-4.2$ ls /home/other_portal/
new_file_outside_container
bash-4.2$ touch /home/other_portal/new_file_inside_container

cannot touch '/home/other_portal/new_file_inside_container’:
Permission denied

The possible problems and pitfalls of
permissions
� As “magic” as containers seem to be at times, they are constrained

by all the same rules imposed on other software by the operating
system
� This includes file and directory attributes such as user (UID) group (GID)

and associated file permissions
� A file or directory mounted into a container will have the same UID and

GID as it did outside of the container: these numbers can’t be changed
� On different platforms, this can present a problem if you are not careful:

since the user properties such as UID are set when you build the container,
moving to a different machine with a different UID can present problems for
getting files into and out of containers

� We have taken care of these potential problems for you, but they
are worth keeping in mind if you want to use containers for your
own purposes

Try it yourself…a third time
� In your home directory, we have already created our example directory and file

[ec2-user@ip-172-31-20-202 ~]$ ls magic_portal/
new_file_outside_container

� Run the same container you did in the last step, but with yet another extra option:
docker run --rm -it -e LOCAL_USER_ID=`id -u $USER` -v /home/ec2-
user/magic_portal:/home/other_portal dtc-wps_wrf /bin/bash

� Now in your container, as before, you should see a directory /home/other_portal.
If you create a file in here, the same file will appear outside the container
bash-4.2$ ls /home/other_portal/
new_file_outside_container
bash-4.2$ touch /home/other_portal/new_file_inside_container

� Now exit the container by typing “exit”. This time, if you look at the contents of
the magic_portal directory, you should see another file in there!
bash-4.2$ exit
exit
[ec2-user@ip-172-31-46-86 ~]$ ls magic/
new_file_inside_container new_file_outside_container

What is in the DTC containers?
� DTC containers package everything that is needed to build and run the WRF model and

produce graphics and verification
� Repository: https://github.com/NCAR/container-dtc-nwp/
� Components included: WPS, GSI, WRF, UPP, NCL, MET, and METviewer
� Components can be run individually or as part of an entire workflow
� Uses open source software such as GNU compilers; can be run serially or with

distributed memory

� README files and online tutorial with explicit instructions for building and running

� Necessary namelist and configuration files
� Vtable.GFS
� namelist.wps and namelist.input
� MET configuration files

� Case-specific data
� GFS files for ICs/LBCs
� Observation data for data assimilation and gridded and point verification

https://github.com/NCAR/container-dtc-nwp/

