Model Evaluation Tools Version 9.0.2
User’s Guide

Developmental Testbed Center
Boulder, Colorado

Tara Jensen, Barbara Brown, Randy Bullock
Tressa Fowler, John Halley Gotway, and Kathryn Newman
with contributions from Julie Prestopnik, Eric Gilleland, Howard Soh,

Minna Win-Gildenmeister, George McCabe, James Frimel, David Fillmore, and Lindsay Blank

May 2020

Contents

21

[1.1 Purpose and organization of the User’s Guide| oo L. 21
[L.2 The Developmental Testbed Center (DTC)|, 22
1.3 MET goals and design philosophy|. oo 22
[1.4 MET components|. 0 e e e e e e e 23
1.5 Future development plans| oL 26
[1.6 Code support| e e e e e e e e 26
... 27
[2 Software Installation/Getting Started| 28
2.1 Introductionl. Lo 28
2.2 Supported architectures| L e e e e 28
2.3 Programming languages| L 28
2.4 Required compilers and scripting languages|o L oL Lo 29
2.5 Required libraries and optional utilities] oo oL 29
2.6 Installation of required libraries| oo 30
2.7 Installation of optional utilities| oo L 32
2.8 MET directory structure | o e 32
2.9 Building the MET package] 33
[2.10 Sample test cases| L oL e e 37

CONTENTS

(3 MET Data I/O|

3.1 Input data formats| . . .

3.3 Output data formats| . .

3.4 Data format summary| .

8.5 Configuration File Detauls| o o o

8.5.1 MET Configuration File Options| o o ..

8.5.2 MET-TC Configuration File Options|.

4 Re-Formatting of Point Observations|

4.1 PB2NC tooll

4.1.1 pb2nc usage|. . .

4.1.2 pb2nc configuration file]o Lo

4.1.3 pb2nc output| . .

4.2.1 ascii2nc usage|. .

4.2.1.1 Python Embedding tfor Point Observations|

4.2.2 ascii2nc configuration file] Lo

4.2.3 ascii2nc output| .

4.3.1 madis2nc usage| .

4.3.2 madis2nc configuration file] Lo L L

4.3.3 madis2nc output|

4.4.1 hdar2nc usage| .

4.4.2 lhidar2nc output| .

4.5.1 point2grid usage

4.5.2 point2grid output|

38

38

39

39

40

45

45

122

141

CONTENTS

[Re-Formatting of Gridded Fields|

b.1 Pcp-Combine tool]

p.1.1 pcp combine usage| Ll

p.1.2 pcp combine output|.o oL

b.2 Regrid data planetool|o

p.2.1 regrid data planeusage| Lo

p.2.2 Automated regridding within tools| oo oo

5.3 Shift data planetool|

[p.3.1 shift data planewusage] oo oo

b4 MODIS regrid tool] o e

4.1 modis regrid usage|

p.5.1 wwmca plot usage|.

0.5.2 wwmeca regrid usage|.o L e e

9.5.3 wwmca regrid configuration file| o000 o000

[6 Regional Verification using Spatial Masking|

7 Point-Stat Tool

7.2 Scientific and statistical aspects|o Lo Lo

[7.2.1 Imterpolation/matching methods| Lo

161

161

162

166

166

167

168

169

169

170

171

173

173

174

176

178

178

178

183

184

CONTENTS

[7.3.1 point stat usage|o

[7.3.2 point stat configuration file|. L0000

[7.3.3 point stat output|

8 Grid-Stat Tooll

8.3.1 grid stat usage|.

[8.3.2 grid stat configuration file| o oo oo oo

8.3.3 grid stat output| L oL

189

191

194

194

195

200

214

214

214

214

216

216

217

217

218

218

221

221

223

228

236

CONTENTS 5

9.2.2 FEnsemble statistics| oo o 237

[9.2.3 FEnsemble observation error]l Lo Lo 238

9.3 Practical Informationf. oL e 238
9.3.1 ensemble stat usage| e 239

9.3.2 ensemble stat configuration file|o oo o000 240

9.3.3 ensemble stat output| o L L o 247

[10 Wavelet-Stat Tooll 254
[10.1 Introductionl. L e e 254
110.2 Scientific and statistical aspects| L L e 255
10.2.1 Themethodl. o o e 255

110.2.2 The spatial domain constraints| Lo 261

110.2.3 Aggregation of statistics on multiple cases| oo 0oL 263

[10.3 Practical information|. o 264
110.3.1 wavelet stat usage|. oL L 264

110.3.2 wavelet stat configuration file] oo oo 265

110.3.3 wavelet stat output| oL 267

A1 GST Toolsl 270
ML GSID2MPRIEOON - - v v o oot e e e e e e e e e e e e 270
[L11.1.1 gsid2mpr Usage|« o v v e e e e e e e e e e e e e e e 271

[11.1.2 gsid2mpr output| e e e 272

11.2 GSIDENS20RANK tooll

[11.2.1 gsidens2orank usage|o 274

[11.2.2 gsidens2orank output| Lo L 275

CONTENTS

[12 Stat-Analysis Tooll

112.2.2 Summary statistics for columns|o o oo oL

112.2.3 Aggregated values from multiple STAT lines|.

112.2.4 Aggregate STAT lines and produce aggregated statistics|

112.2.5 Skill Score Index, including GO Index|.o o 0oL

112.2.6 Ramp Events|

[12.3.1 stat analysisusage| L

112.3.1.1 Python Embedding for Matched Pairs|

[12.3.2 stat analysis configuration file|o oo oo

[12.3.3 stat-analysis tool output|.

[13 Series-Analysis Tool|

[13.2.1 series analysisusage|.

[13.2.2 series analysis output| L Lo

[13.2.3 series analysis configuration file|o o000 o000 oo

(14 Grid-Diag Tooll

[14.2.1 grid diagusage| e e

114.2.2 grid diag configuration file] Lo Lo L L

14.2.3 grid diag output file|. Lo

278

278

278

278

279

279

280

280

281

281

282

282

284

284

293

296

296

296

297

298

299

302

CONTENTS 7

305
5.1 Introductionl. L 305
[15.2 Scientific and statistical aspects| L Lo 306

[15.2.1 Resolving objects|. o 306
[15.2.2 Attributes| 307
115.2.3 Fuzzy logicl 309
115.2.4 Summary statistics| L L e 310
[15.3 Practical information|.o 310
[15.3.1 mode usage| e e e 310
115.3.2 mode configuration file|.o Lo 312
115.3.3 mode output| L e e 320

16 -Analysis Too 330
6.1 Introductionl. L e 330
116.2 Scientific and statistical aspects|.o oL Lo 330
[16.3 Practical informationl. L 331

[16.3.1 mode analysis usage|. e 331
[16.3.2 mode analysis configuration file]o oo oo 342
[16.3.3 mode analysisoutput| L o 342

17 MODFE Time Domain Tooll 343
343
343
345
345

CONTENTS

17.3.1 mput|

[18.2 MET-TC components| e

18.3 Input data format| L e

[18.4 Output data format| e e e e e

[20.2.1 tc_pairs usage|o e e

[20.2.2 tc_ pairs configuration file]o Lo o oL

120.2.3 tc_pairsoutput|

346

348

349

350

351

351

352

353

356

360

360

360

361

363

364

364

364

365

365

367

CONTENTS 9

21 TC-Stat Tooll 377
21.1 Introductionl. 377
[21.2 Statistical aspects|o L 377

21.2.1 Filter TCST limes|. o . L 377
[21.2.2 Summary statistics for columns| Lo o o oo 378
[21.2.3 Rapid Intensification/Weakening|o 379
[21.2.4 Probability of Rapid Intensification|. oo oo 379
21.3 Practical information|.o Lo Lo 379
21.3.1 tc_statusage| L 379
[21.3.2 tc_stat configuration file] oo oo oo 381
21.3.3 tc_statoutput| 387

22 TC-Gen Tooll 390
22.1 Introductionl. L e 390
[22.2 Statistical aspects| L L e e 390
22.3 Practical informationl. oL L 391

[22.3.1 tc_genusage| e e e e e 391
[22.3.2 tc_gen configuration file]. oo o 392
[22.3. tc_genoutput| Lo e 397

398
23.1 Introductionl. 398
23.2 Practical information|. oo Lo 398

20.2.1 tc rmw usage|l 398
[23.2.2 tc rmw configuration file]o o o 399

23.2.3 tc_rmwoutput filefo 401

CONTENTS

24 -Analysis Too

[24.2.1 rmw analysis usage|

[24.2.2 rmw analysis configuration file|

[24.2.3 rmw_analysis output file] . . .

[25 Plotting and Graphics Support|

25.1 Plotting Utilities|

[25.1.1 plot point obs usage|

[25.1.2 plot data plane usage|

[25.1.3 plot mode field usage]

[25.2 Examples ot plotting ME'T output| . .

125.2.1 Grid-Stat tool examples|

125.2.2 MODE tool examples|

125.2.3 TC-Stat tool example]

A FAQs & How do I ... 7|

|A.1 Frequently Asked Questions|

|A.2 Troubleshootingl.

IA.3 Where to get help|

10

402

402

402

402

403

404

405

405

405

406

408

409

409

410

412

425

425

426

427

427

428

CONTENTS

IC Verification M |

IC.5 MET verification measures for neighborhood methods|

IC.6 ME'T verification measures for distance map methods|

|C.7 Calculating Percentiles|

[D_Confidence Intervals |

FE WWMCA Tools |

' Python Embedding |

[Vectors and Vector Statistics |

11

431

431

438

447

453

455

457

460

462

466

471

471

471

472

473

476

476

477

Foreword: A note to MET users

This User’s guide is provided as an aid to users of the Model Evaluation Tools (MET). MET is a set of
verification tools developed by the Developmental Testbed Center (DTC) for use by the numerical weather
prediction community to help them assess and evaluate the performance of numerical weather predictions.

It is important to note here that MET is an evolving software package. Previous releases of MET have
occurred each year since 2008. This documentation describes the 9.0.1 bugfix release from April 2020. MET
is also able to accept new modules contributed by the community. If you have code you would like to
contribute, we will gladly consider your contribution. Please send email to: met help@ucar.edul We will
then determine the maturity of new verification method and coordinate the inclusion of the new module in

a future version.

This User’s Guide was prepared by the developers of the MET, including Tressa Fowler, John Halley Gotway,
Randy Bullock, Kathryn Newman, Julie Prestopnik, Lisa Goodrich, Tara Jensen, Barbara Brown, Howard
Soh, Tatiana Burek, Minna Win-Gildenmeister, George McCabe, David Fillmore, Paul Prestopnik, Eric
Gilleland, Nancy Rehak, Paul Oldenburg, Anne Holmes, Lacey Holland, David Ahijevych and Bonny Strong.

Bugfixes for MET v9.0

Each of these release notes is followed by the GitHub issue number which describes the bugfix.

Bugfixes in v9.0.2: https://github.com/NCAR/MET /milestone/657closed—=1

e Fix Ensemble-Stat runtime error when requesting only RHIST, PHIST, or RELP output line types
(#1342).

Fix Grid-Stat to support MAXGAUSS smoothing method (#1335).

Check for bad data when computing the Gerrity Score (#1335).

Fix ascii2nc to compile without support for Python embedding (#1335).

Correct omissions in the MET User’s Guide (#1335).

12

mailto:
https://github.com/NCAR/MET/milestone/65?closed=1

CONTENTS 13
Bugfixes in v9.0.1: https://github.com/NCAR/MET /milestone/647closed—=1

e Correct the definition of ensemble spread (#1294).

— NOTE: This changes the spread statistics computed by MET!

Fix ascii2nc python embedding with observation variable names (#1306).

Fix python3 script.cc compilation error on a Mac (#1281).

Fix PB2NC memory corruption bug (#1286).

Fix point2grid segfault (#1298).

New for MET v9.0

MET version 9.0 includes some major enhancements. For Python embedding, these include the transition
from Python 2 to 3, adding support in ASCII2NC and Stat-Analysis, supporting multiple input files in
Ensemble-Stat, Series-Analysis, and MTD, supporting pandas, and handling the user’s Python environment.
Additional enhancements include the application of binned climatologies, the computation of the Ranked
Probability Score (RPS) and Distance Map (DMAP) output lines types, and the addition of five new tools:
Grid-Diag, Point2Grid, TC-Gen, TC-RMW, and RMW-Analysis.

When applicable, release notes are followed by the GitHub issue number which describes the bugfix, en-
hancement, or new feature: https://github.com/NCAR/MET //issues

Output Format Changes:

e Add new ensemble Ranked Probability Score (RPS) line type to the output of Ensemble-Stat and
Point-Stat (for HIRA) (#681).

e Add MTD header columns for "FCST CONV_TIME BEG", "FCST CONV_TIME END",
"OBS_CONV_TIME BEG", and "OBS_ CONV_TIME END" (#1133).

e Add MTD data column for a user-specified intensity percentile value INTENSITY _*, where * is the
user-specified percentile (#1134).

Configuration File Changes:

e Climatology Settings

— Add the "climo_stdev" and "climo_cdf" dictionaries for binned climatology logic (#1224).

— Replace the "climo__mean" dictionary options for "match _day" and "time _step" with "day _interval"
and "hour interval" (#1138).

https://github.com/NCAR/MET/milestone/64?closed=1
https://github.com/NCAR/MET/issues

CONTENTS 14

— Replace the "climo cdf bins" integer option with the "climo cdf" dictionary (#545).
e Ensemble-Stat

— Add the "nbrhd prob" and "nmep smooth" dictionaries for computing neighborhood ensemble
probability forecasts (#1089).

Add the "nep" and "nemp" entries to the "ensemble flag" dictionary (#1089).
— Add the "rps" entry to the "output flag" dictionary (#681).
— Add the "prob_cat_thresh" option to define probability thresholds for the RPS line type (#1262).

Add the "sid _inc" option to specify which stations should be included in the verification (#1235).
e Grid-Stat

— Replace the "nc_pairs var_ str" option with the "nc_pairs var suffix" and add the

"nc_pairs_var_name" option (#1271).

Add the "climo_cdf" entry to the "nc_pairs flag" dictionary (#545).
— Add the "distance map" dictionary to control output for the DMAP line type (#600).

Add the "dmap" entry to the "output flag" dictionary (#600).

Add the "distance map" entry to the "nc_pairs_flag" dictionary (#600).

Point-Stat

— Add the "sid_inc" option to specify which stations should be included in the verification (#1235).
— Add the "prob_cat_thresh" entry to the "hira" dictionary (#1262).
— Add the "rps" entry to the "output flag" dictionary (#681).

Series-Analysis
— Add the "climo_stdev" dictionary to support CDP thresholds (#1138).
e MTD

— Add the "conv_time window" dictionary to the "fcst" and "obs" dictionaries to control the
amount of temporal smoothing (#1084).
— Add the "inten perc_value" option to specify the desired intensity percentile to be reported

(#1134).
Point2Grid, Grid-Diag, TC-Gen, TC-RMW, RMW-Analysis

— Add default configuration files for these new tools.

Build Process Changes:

e Transition MET source code and issue tracking from Subversion and Jira to GitHub (#805).

e Enable the G2C library archive file name to be specified at configuration time by setting
"GRIB2CLIB_NAME" (default is libgrib2c.a) (#1240).

CONTENTS 15

e Enable the BUFRLIB library archive file name to be specified at configuration time by setting
"BUFRLIB_NAME" (default is libbufr.a) (#1185).

e Update the copyright date to 2020 and switch to the Apache 2.0 license (#1230).

e Integrate the Dockerfile into MET GitHub repository and automatically build the master v8.1 branch,
the develop branch, and all tagged releases on DockerHub (#1123).

e Document the option to install MET into "exec" rather than "bin" (#1189).

e Continued tracking and reduction of Fortify findings.

Enhancements to Existing Tools:

e Changes for all bugs fixed by met-8.1.1 and met-8.1.2.

— https://github.com/NCAR/MET /milestone/617closed=1
— https://github.com/NCAR/MET /milestone/607closed=1

e Grid Library

— Add definitions for 51 missing pre-defined NCEP grids (#893).

— Fix bug in the handling of some pre-defined NCEP grids (#1253).

— Fix inconsistencies for many of the pre-defined NCEP grids (#1254).
— Fix segfault when passing as input a thinned lat/lon grid (#1252).

— Fix for Lambert Conformal grids crossing the international date line (#1276).
e Python Embedding

— Switch Python embedding from Python 2 to Python 3 (#1080).
— Enhance Python embedding to support multiple input data types (#1056).

— Restructure the Python embedding logic to check for the "MET PYTHON EXE" environment
variable and run the user-specified instance of Python to write a temporary pickle file (#1205).

— Refine and simplify the Python embedding pickle logic by testing on NOAA machines, Hera and
WCOSS (#1264).

— For Python embedding, support the use of the "MET PYTHON INPUT ARG" constant (#1260).
e NetCDF and GRIB Libraries

— Fix bug in processing CF Compliant NetCDF valid time stamps (#1238).
— Update the vx_data2d nccf library to support all documented variants of time units (#1245).
— Fix bug to allow for negative values of unixtime, prior to 1/1/1970 (#1239).

— Add "GRIB1 tri" configuration file option to filter GRIB1 records based on the time range
indicator value (#1263).

— Bugfix for reporting the units for GRIB2 probabilities as "%" (#1212).

https://github.com/NCAR/MET/milestone/61?closed=1
https://github.com/NCAR/MET/milestone/60?closed=1

CONTENTS 16

e Common Libraries

— Print a warning message when a user specifies a config file entry as the wrong type (#1225).

— Fix bug in the parsing of file lists and make this logic consistent across Series-Analysis, Ensemble-
Stat, MTD, and TC-RMW (#1226).

— When the climo mean and/or standard deviation fields contain bad data, exclude that matched
pair from the verification (#1204).

— Break out the Gaussian algorithm into "GAUSSIAN" and "MAXGAUSS" where "GAUSSIAN"
applies a Gaussian filter using the "gaussian _dx" and "gaussian _radius" options while
"MAXGAUSS" computes the maximum over the neighborhood prior to applying the Gaussian
filter (#1234).

— Report AW _MEAN regridding width at 1, not NA (#1186).
— Add support for climatological distribution percentile thresholds, such as >CDP50 (#1138).
— Fix MET-TC bug in the computation of initialization hour and valid hour (#1227).

PB2NC

— Add the derivation of PBL and ensure consistency with VSDB (#1199).

n

— Remove non-printable characters that are included in the output of the "-index" command line

option (#1241).
e ASCII2NC

— Enhance ascii2nc to read point observations via Python embedding with the new "-format python"

command line option (#1122).

Point2Grid

— Initial release of the new point to grid tool (#1078).
— Enhance to process GOES16/17 smoke and dust data from ADP files (#1194).

Update quality control processing logic (#1168).

Derive AOD at 550nm from 440 and 675 (#1121).

Regrid-Data-Plane

— Remove GOES16/17 data processing since it was reimplemented in the new Point2Grid tool
(#1243).

— Add support for Gaussian regridding method to support the definition of surrogate-severe forecasts

(#1136).

PCP-Combine

— Support multiple arguments for the "-pcpdir" command line option (#1191).

— Fix bug in the handling of bad data for the "-subtract" command (#1255).

Point-Stat

CONTENTS 17
— Enhance the HiRA logic to support CDP threshold types (#1251).
— Add new ensemble Ranked Probability Score (RPS) output line type for HIRA (#681).
o Grid-Stat

— Add an "nc_ pairs_var _name" configuration file option to explicitly define the NetCDF matched

pairs output variable names (#1271).
— Add new distance map (DMAP) output line type (#600).

e Ensemble-Stat

Enhance to support Python embedding with "MET PYTHON INPUT_ ARG" (#1140).

Add the computation of neighborhood probability forecasts (#1089).

— Apply binned climatology logic using the "climo cdf" config file option to the computation of
ECNT statistics (#1224).

— Fix logic for computing the lead time of a time-lagged ensemble to use the minimum lead time of
the ensemble members (#1244).

— Fix bug for initializing output variables when the first field processed contains missing data
(#1242).

— Add new ensemble Ranked Probability Score (RPS) output line type (#681).

Point-Stat and Ensemble-Stat

— Add the new "sid _inc" configuration option to explicitly specify which stations should be included
in the verification (#1235).

Point-Stat, Grid-Stat, and Ensemble-Stat

— When applying climatology bins, report the mean of statistics across the bins for SL1L2, SAL1L2,
CNT, PSTD, and ECNT line types (#1138).

Stat-Analysis

— Add support for evaluating point forecasts by reading matched pairs via Python embedding
(#1143).

e MODE
— Fix bug in the computation of the aspect ratio of objects with an area of 1 (#1215).

e MTD

Enhance to support Python embedding with "MET PYTHON INPUT_ ARG" (#1140).
— Make the amount of temporal smoothing a configurable option (#1084).

— Add a user-specified object intensity percentile to the output (#1134).

Fix bug for the centroid longitude being reported in degrees west rather than degrees east (#1214).

Series-Analysis

CONTENTS 18

— Enhance to support Python embedding with "MET PYTHON INPUT ARG" (#1140).

— Fix the memory allocation logic to dramatically reduce memory usage by up to a factor of 30

(#1267).

Grid-Diag

— Initial release of the new grid diagnostics tool (#1106).

— Fix bug in the application of the masking regions (#1261).

TC-Gen

— Initial release of the new TC genesis tool (#1127).

— Fix bug when checking the "min duration", update log messages, and refine configuration file
options (#1127).

TC-RMW

— Initial version of the Tropical Cyclone, Radius of Maximum Winds tool (#1085).
e RMW-Analysis

— Initial version of the Radius of Maximum Winds Analysis tool (#1178).

TERMS OF USE

IMPORTANT!

Copyright 2020, UCAR/NCAR, NOAA, and CSU/CIRA Licensed under the Apache License, Version 2.0
(the "License"); You may not use this file except in compliance with the License. You may obtain a copy of

the License at
http://www.apache.org/licenses/ LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed under the License is distributed
on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
implied. See the License for the specific language governing permissions and limitations under the License.

The following notice shall be displayed on any scholarly works associated with, related
to or derived from the Software:

"Model Evaluation Tools (MET) was developed at the National Center for Atmospheric Research
(NCAR) through grants from the National Science Foundation (NSF), the National Oceanic and
Atmospheric Administration (NOAA), the United States Air Force (USAF), and the United States
Department of Energy (DOE). NCAR is sponsored by the United States National Science

Foundation.”

By using or downloading the Software, you agree to be bound by the terms and conditions of

this Agreement.
The citation for this User’s Guide should be:

T. Jensen, Brown, B., R. Bullock, T. Fowler, J. Halley Gotway, K. Newman, 2020:

The Model Evaluation Tools v9.0.2 (METv9.0.2) User’s Guide. Developmental Testbed Center.

Available at:
https://dtcenter.org/sites/default /files/community-code /met /docs/user-guide/MET _Users Guide v9.0.2.pdf
481 pp.

19

Acknowledgments

We thank the the National Science Foundation (NSF) along with three organizations within the National
Oceanic and Atmospheric Administration (NOAA): 1) Office of Atmospheric Research (OAR); 2) Next
Generation Global Prediction System project (NGGPS); and 3) United State Weather Research Program
(USWRP), the United States Air Force (USAF), and the United States Department of Energy (DOE) for
their support of this work. Funding for the development of MET-TC is from the NOAA’s Hurricane Forecast
Improvement Project (HFIP) through the Developmental Testbed Center (DTC). Funding for the expansion
of capability to address many methods pertinent to global and climate simulations was provided by NOAA’s
Next Generation Global Prediction System (NGGPS) and NSF Earth System Model 2 (EaSM2) projects. We
would like to thank James Franklin at the National Hurricane Center (NHC) for his insight into the original
development of the existing NHC verification software. Thanks also go to the staff at the Developmental
Testbed Center for their help, advice, and many types of support. We released METv1.0 in January 2008
and would not have made a decade of cutting-edge verification support without those who participated in
the original MET planning workshops and the now dis-banded verification advisory group (Mike Baldwin,
Matthew Sittel, Elizabeth Ebert, Geoff DiMego, Chris Davis, and Jason Knievel).

The National Center for Atmospheric Research (NCAR) is sponsored by NSF. The DTC is sponsored by the
National Oceanic and Atmospheric Administration (NOAA), the United States Air Force, and the National
Science Foundation (NSF). NCAR is sponsored by the National Science Foundation (NSF).

20

Chapter 1

Overview of MET

1.1 Purpose and organization of the User’s Guide

The goal of this User’s Guide is to provide basic information for users of the Model Evaluation Tools
(MET) to enable them to apply MET to their datasets and evaluation studies. MET was originally designed
for application to the post-processed output of the Weather Research and Forecasting (WRF) model (see
http://www.wrf-model.org/index.php| for more information about the WRF). However, MET may also
be used for the evaluation of forecasts from other models or applications if certain file format definitions

(described in this document) are followed.

The MET User’s Guide is organized as follows. Chapter [I] provides an overview of MET and its components.
Chapter [2| contains basic information about how to get started with MET - including system requirements,
required software (and how to obtain it), how to download MET, and information about compilers, libraries,
and how to build the code. Chapter [3] - [f] focuses on the data needed to run MET, including formats
for forecasts, observations, and output. These chapters also document the reformatting and masking tools
available in MET. Chapters [7] - focus on the main statistics modules contained in MET, including the
Point-Stat, Grid-Stat, Ensemble-Stat, Wavelet-Stat and GSI Diagnostic Tools. These chapters include an
introduction to the statistical verification methodologies utilized by the tools, followed by a section containing
practical information, such as how to set up configuration files and the format of the output. Chapters
and focus on the analysis modules, Stat-Analysis and Series-Analysis, which aggregate the output
statistics from the other tools across multiple cases. Chapters [I5] - [I7] describe a suite of object-based tools,
including MODE, MODE-Analysis, and MODE-TD. Chapters [1§] - 24] describe tools focused on tropical
cyclones, including MET-TC Overview, TC-Dland, TC-Pairs, TC-Stat, TC-Gen, TC-RMW and RMW-
Analysis. Finally, Chapter 25]includes plotting tools included in the MET release for checking and visualizing
data, as well as some additional tools and information for plotting MET results. The appendices provide
further useful information, including answers to some typical questions (Appendix E How do I... ?); and
links and information about map projections, grids, and polylines (Appendix [B). Appendices [C] and [D]
provide more information about the verification measures and confidence intervals that are provided by

MET. Sample code that can be used to perform analyses on the output of MET and create particular types

21

http://www.wrf-model.org/index.php

CHAPTER 1. OVERVIEW OF MET 22

of plots of verification results is posted on the MET website (https://dtcenter.org/community-code/
model-evaluation-tools-met). Note that the MET development group also accepts contributed analysis
and plotting scripts which may be posted on the MET website for use by the community. It should be noted
there are References plus a List of Tables and Figures between Chapter 25| and Appendices.

The remainder of this chapter includes information about the context for MET development, as well as
information on the design principles used in developing MET. In addition, this chapter includes an overview

of the MET package and its specific modules.

1.2 The Developmental Testbed Center (DTC)

MET has been developed, and will be maintained and enhanced, by the Developmental Testbed Center (DTC;
http://www.dtcenter.org/|). The main goal of the DTC is to serve as a bridge between operations and
research, to facilitate the activities of these two important components of the numerical weather prediction
(NWP) community. The DTC provides an environment that is functionally equivalent to the operational
environment in which the research community can test model enhancements; the operational community
benefits from DTC testing and evaluation of models before new models are implemented operationally.
MET serves both the research and operational communities in this way - offering capabilities for researchers
to test their own enhancements to models and providing a capability for the DTC to evaluate the strengths

and weaknesses of advances in NWP prior to operational implementation.

The MET package will also be available to DTC visitors and to the WRF modeling community for testing

and evaluation of new model capabilities, applications in new environments, and so on.

1.3 MET goals and design philosophy

The primary goal of MET development is to provide a state-of-the-art verification package to the NWP
community. By "state-of-the-art" we mean that MET will incorporate newly developed and advanced ver-
ification methodologies, including new methods for diagnostic and spatial verification and new techniques
provided by the verification and modeling communities. MET also utilizes and replicates the capabilities
of existing systems for verification of NWP forecasts. For example, the MET package replicates existing
National Center for Environmental Prediction (NCEP) operational verification capabilities (e.g., I/O, meth-
ods, statistics, data types). MET development will take into account the needs of the NWP community -
including operational centers and the research and development community. Some of the MET capabilities
include traditional verification approaches for standard surface and upper air variables (e.g., Equitable Threat
Score, Mean Squared Error), confidence intervals for verification measures, and spatial forecast verification
methods. In the future, MET will include additional state-of-the-art and new methodologies.

The MET package has been designed to be modular and adaptable. For example, individual modules can
be applied without running the entire set of tools. New tools can easily be added to the MET package

due to this modular design. In addition, the tools can readily be incorporated into a larger "system" that

https://dtcenter.org/community-code/model-evaluation-tools-met
https://dtcenter.org/community-code/model-evaluation-tools-met
http://www.dtcenter.org/

CHAPTER 1. OVERVIEW OF MET 23

may include a database as well as more sophisticated input/output and user interfaces. Currently, the
MET package is a set of tools that can easily be applied by any user on their own computer platform. A
suite of Python scripts for low-level automation of verification workflows and plotting has been developed
to assist users with setting up their MET-based verification. It is called METplus and may be obtained at
https://github.com/NCAR/METplus.

The MET code and documentation is maintained by the DTC in Boulder, Colorado. The MET package is
freely available to the modeling, verification, and operational communities, including universities, govern-

ments, the private sector, and operational modeling and prediction centers.

1.4 MET components

The major components of the MET package are represented in Figure The main stages represented are
input, reformatting, plotting, intermediate output, statistical analyses, and output and aggregation/analysis.
The MET-TC package functions independently of the other MET modules, as indicated in the Figure. Each
of these stages is described further in later chapters. For example, the input and output formats are discussed
in[3]as well as in the chapters associated with each of the statistics modules. MET input files are represented
on the far left.

The reformatting stage of MET consists of the Gen-Vx-Mask, PB2NC, ASCII2NC, Pcp-Combine, MADIS2NC,
MODIS regrid, WWMCA Regrid, and Ensemble-Stat tools. The PB2NC tool is used to create NetCDF files
from input PrepBUFR files containing point observations. Likewise, the ASCII2NC tool is used to create
NetCDF files from input ASCII point observations. Many types of data from the MADIS network can be
formatted for use in MET by the MADIS2NC tool. MODIS and WWMCA files are regridded and formatted
into NetCDF files by their respective tools. These NetCDF files are then used in the statistical analysis step.
The Gen-Vx-Mask and Pcp-Combine tools are optional. The Gen-Vx-Mask tool will create a bitmapped
masking area in a variety of ways. The output mask can then be used to efficiently limit verification to the
interior of a user specified region. The Pcp-Combine tool can be used to add, subtract, or derive fields across
multiple time steps. Often it is run to accumulate precipitation amounts into the time interval selected by
the user - if a user would like to verify over a different time interval than is included in their forecast or
observational dataset. The Ensemble-Stat tool will combine many forecasts into an ensemble mean or prob-
ability forecast. Additionally, if gridded or point observations are included, ensemble verification statistics

are produced.

Several optional plotting utilities are provided to assist users in checking their output from the data pre-
processing step. Plot-Point-Obs creates a postscript plot showing the locations of point observations. This
can be quite useful for assessing whether the latitude and longitude of observation stations was specified
correctly. Plot-Data-Plane produces a similar plot for gridded data. For users of the MODE object based
verification methods, the Plot-MODE-Field utility will create graphics of the MODE object output. Finally,
WWDMCA-Plot produces a plot of the raw WWMCA data file.

The main statistical analysis components of the current version of MET are: Point-Stat, Grid-Stat, Series-
Analysis, Ensemble-Stat, MODE, MODE-TD (MTD), and Wavelet-Stat. The Point-Stat tool is used for

https://github.com/NCAR/METplus

CHAPTER 1. OVERVIEW OF MET 24

MET Overview v9.0

Legend
o] @ GED = =
Gridded
Fest L r File

MNetCDF

STAT Analysis
ASCIT [‘o0l

Data /0
— || MetCDF
Gridded
Anly '
Data
Plot
ASCII
= - —*|netcDF | *(MODE PNG
Gridded Field
sl . | NetCDF » L~ L~
Data ASCIL Plot
L/ || NetcDF __, ASCII Tool
wwmca [g
Data > —
STAT
L/ »| ASCIL

ASCIT
Point | 4
Data
| I—

w] @ fH
|

BUFR MetCDF —
Point [L ASCIT
Data Point STAT
L NetCDF > | | ascir ||
MADIS Obs NetCDF
Point f——p| L~ L~
Data
. STAT
| asci [
HDF
LIDAR | L
Data
L~ [
=531 .
A Gridded STAT
Diag > »| STAT | & -
L~ 7
ASCII
Track || NetCDF |—p(RMW. NetCDF
Data Analysis
4 — —
ASCIT DlLand
Land > »| NetCDF | | TCST | —» EST[A;;
Data Data
L~ L~ 7 L7

Figure 1.1: Basic representation of current MET structure and modules. Gray areas represent
input and output files. Dark green areas represent reformatting and pre-processing tools.
Light green areas represent plotting utilities. Blue areas represent statistical tools. Yellow
areas represent aggregation and analysis tools.

grid-to-point verification, or verification of a gridded forecast field against a point-based observation (i.e.,
surface observing stations, ACARS, rawinsondes, and other observation types that could be described as a
point observation). In addition to providing traditional forecast verification scores for both continuous and
categorical variables, confidence intervals are also produced using parametric and non-parametric methods.
Confidence intervals take into account the uncertainty associated with verification statistics due to sampling
variability and limitations in sample size. These intervals provide more meaningful information about forecast
performance. For example, confidence intervals allow credible comparisons of performance between two

models when a limited number of model runs is available.

Sometimes it may be useful to verify a forecast against gridded fields (e.g., Stage IV precipitation analyses).
The Grid-Stat tool produces traditional verification statistics when a gridded field is used as the observational
dataset. Like the Point-Stat tool, the Grid-Stat tool also produces confidence intervals. The Grid-Stat tool
also includes "neighborhood" spatial methods, such as the Fractional Skill Score (Roberts and Lean 2008).
These methods are discussed in Ebert (2008). The Grid-Stat tool accumulates statistics over the entire

domain.

CHAPTER 1. OVERVIEW OF MET 25

Users wishing to accumulate statistics over a time, height, or other series separately for each grid location
should use the Series-Analysis tool. Series-Analysis can read any gridded matched pair data produced by
the other MET tools and accumulate them, keeping each spatial location separate. Maps of these statistics

can be useful for diagnosing spatial differences in forecast quality.

The MODE (Method for Object-based Diagnostic Evaluation) tool also uses gridded fields as observational
datasets. However, unlike the Grid-Stat tool, which applies traditional forecast verification techniques,
MODE applies the object-based spatial verification technique described in Davis et al. (2006a,b) and Brown
et al. (2007). This technique was developed in response to the "double penalty" problem in forecast
verification. A forecast missed by even a small distance is effectively penalized twice by standard categorical
verification scores: once for missing the event and a second time for producing a false alarm of the event
elsewhere. As an alternative, MODE defines objects in both the forecast and observation fields. The objects
in the forecast and observation fields are then matched and compared to one another. Applying this technique
also provides diagnostic verification information that is difficult or even impossible to obtain using traditional
verification measures. For example, the MODE tool can provide information about errors in location, size,

and intensity.

The MODE-TD tool extends object-based analysis from two-dimensional forecasts and observations to in-
clude the time dimension. In addition to the two dimensional information provided by MODE, MODE-TD
can be used to examine even more features including displacement in time, and duration and speed of moving

areas of interest.

The Wavelet-Stat tool decomposes two-dimensional forecasts and observations according to the Intensity-
Scale verification technique described by Casati et al. (2004). There are many types of spatial verification
approaches and the Intensity-Scale technique belongs to the scale-decomposition (or scale-separation) ver-
ification approaches. The spatial scale components are obtained by applying a wavelet transformation to
the forecast and observation fields. The resulting scale-decomposition measures error, bias and skill of the
forecast on each spatial scale. Information is provided on the scale dependency of the error and skill, on the
no-skill to skill transition scale, and on the ability of the forecast to reproduce the observed scale structure.
The Wavelet-Stat tool is primarily used for precipitation fields. However, the tool can be applied to other

variables, such as cloud fraction.

Though Ensemble-Stat is a preprocessing tool for creation of ensemble forecasts from a group of files, it also

produces several types of ensemble statistics. Thus, it is included as a statistics tool in the flowchart.

Results from the statistical analysis stage are output in ASCII, NetCDF and Postscript formats. The Point-
Stat, Grid-Stat, and Wavelet-Stat tools create STAT (statistics) files which are tabular ASCII files ending
with a ".stat" suffix. In earlier versions of MET, this output format was called VSDB (Verification System
DataBase). VSDB, which was developed by the NCEP, is a specialized ASCII format that can be easily
read and used by graphics and analysis software. The STAT output format of the Point-Stat, Grid-Stat, and
Wavelet-Stat tools is an extension of the VSDB format developed by NCEP. Additional columns of data and
output line types have been added to store statistics not produced by the NCEP version.

The Stat-Analysis and MODE-Analysis tools aggregate the output statistics from the previous steps across
multiple cases. The Stat-Analysis tool reads the STAT output of Point-Stat, Grid-Stat, Ensemble-Stat, and

CHAPTER 1. OVERVIEW OF MET 26

Wavelet-Stat and can be used to filter the STAT data and produce aggregated continuous and categorical
statistics. The MODE-Analysis tool reads the ASCII output of the MODE tool and can be used to produce
summary information about object location, size, and intensity (as well as other object characteristics) across

one Oor more cases.

Tropical cyclone forecasts and observations are quite different than numerical model forecasts, and thus
they have their own set of tools. The MET-TC package includes several modules: TC-Dland, TC-Pairs,
TC-Stat, TC-Gen, TC-RMW, and RMW-Analysis. The TC-Dland module calculates the distance to land
from all locations on a specified grid. This information can be used in later modules to eliminate tropical
cyclones that are over land from being included in the statistics. TC-Pairs matches up tropical cyclone
forecasts and observations and writes all output to a file. In TC-Stat, these forecast / observation pairs are
analyzed according to user preference to produce statistics. TC-Gen evaluates the performance of Tropical
Cyclone genesis forecast using contingency table counts and statistics. TC-RMW performs a coordinate
transformation for gridded model or analysis fields centered on the current storm location. RMW-Analysis

filters and aggregates the output of TC-RMW across multiple cases.

The following chapters of this MET User’s Guide contain usage statements for each tool, which may be
viewed if you type the name of the tool. Alternatively, the user can also type the name of the tool followed
by -help to obtain the usage statement. Each tool also has a -version command line option associated with

it so that the user can determine what version of the tool they are using.

1.5 Future development plans

MET is an evolving verification software package. New capabilities are planned in controlled, succes-
sive version releases. Bug fixes and user-identified problems will be addressed as they are found and
posted to the known issues section of the MET Users web page (https://dtcenter.org/community-code/
model-evaluation-tools-met/user-support|). Plans are also in place to incorporate many new capabili-
ties and options in future releases of MET. Please refer to the issues listed in the MET GitHub repository

(https://github.com/NCAR/MET/issues) to see our development priorities for upcoming releases.

1.6 Code support

MET support is provided through a MET-help e-mail address: met help@ucar.edu. We will endeavor to
respond to requests for help in a timely fashion. In addition, information about MET and tools that can
be used with MET are provided on the MET Users web page (https://dtcenter.org/community-code/

model-evaluation-tools-met).

We welcome comments and suggestions for improvements to MET, especially information regarding errors.
Comments may be submitted using the MET Feedback form available on the MET website. In addition,
comments on this document would be greatly appreciated. While we cannot promise to incorporate all

suggested changes, we will certainly take all suggestions into consideration.

https://dtcenter.org/community-code/model-evaluation-tools-met/user-support
https://dtcenter.org/community-code/model-evaluation-tools-met/user-support
https://github.com/NCAR/MET/issues
https://dtcenter.org/community-code/model-evaluation-tools-met
https://dtcenter.org/community-code/model-evaluation-tools-met

CHAPTER 1. OVERVIEW OF MET 27

-help and -version command line options are available for all of the MET tools. Typing the name of the

tool with no command line options also produces the usage statement.

The MET package is a "living" set of tools. OQur goal is to continually enhance it and add to its capabilities.
Because our time, resources, and talents are limited, we welcome contributed code for future versions of
MET. These contributions may represent new verification methodologies, new analysis tools, or new plotting

functions. For more information on contributing code to MET, please contact met_help@ucar.edu.

1.7 Fortify

Requirements from various government agencies that use MET have resulted in our code being analyzed
by Fortify, a proprietary static source code analyzer owned by HP Enterprise Security Products. Fortify
analyzes source code to identify for security risks, memory leaks, uninitialized variables, and other such
weaknesses and bad coding practices. Fortify categorizes any issues it finds as low priority, high priority, or
critical, and reports these issues back to the developers for them to address. A development cycle is thus
established, with Fortify analyzing code and reporting back to the developers, who then make changes in
the source code to address these issues, and hand the new code off to Fortify again for re-analysis. The goal
is to drive the counts of both high priority and critical issues down to zero.

The MET developers are pleased to report that Fortify reports zero critical issues in the MET code. Users
of the MET tools who work in high security environments can rest assured about the possibility of security
risks when using MET, since the quality of the code has now been vetted by unbiased third-party experts.
The MET developers continue using Fortify routinely to ensure that the critical counts remain at zero and

to further reduce the counts for lower priority issues.

met_help@ucar.edu

Chapter 2

Software Installation/Getting Started

2.1 Introduction

This chapter describes how to install the MET package. MET has been developed and tested on Linux
operating systems. Support for additional platforms and compilers may be added in future releases. The
MET package requires many external libraries to be available on the user’s computer prior to installation.
Required and recommended libraries, how to install MET, the MET directory structure, and sample cases

are described in the following sections.

2.2 Supported architectures

The MET package was developed on Debian Linux using the GNU compilers and the Portland Group (PGI)
compilers. The MET package has also been built on several other Linux distributions using the GNU, PGI,
and Intel compilers. Past versions of MET have also been ported to IBM machines using the IBM compilers,
but we are currently unable to support this option as the development team lacks access to an IBM machine
for testing. Other machines may be added to this list in future releases as they are tested. In particular, the

goal is to support those architectures supported by the WRF model itself.

The MET tools run on a single processor. Therefore, none of the utilities necessary for running WRF on
multiple processors are necessary for running MET. Individual calls to the MET tools have relatively low
computing and memory requirements. However users will likely be making many calls to the tools and

passing those individual calls to several processors will accomplish the verification task more efficiently.

2.3 Programming languages

The MET package, including MET-TC, is written primarily in C/C++ in order to be compatible with an
extensive verification code base in C/C++ already in existence. In addition, the object-based MODE and

28

CHAPTER 2. SOFTWARE INSTALLATION/GETTING STARTED 29

MODE-TD verification tools relies heavily on the object-oriented aspects of C++. Knowledge of C/C++
is not necessary to use the MET package. The MET package has been designed to be highly configurable
through the use of ASCII configuration files, enabling a great deal of flexibility without the need for source
code modifications.

NCEP’s BUFRLIB is written entirely in Fortran. The portion of MET that handles the interface to the
BUFRLIB for reading PrepBUFR point observation files is also written in Fortran.

The MET package is intended to be a tool for the modeling community to use and adapt. As users make up-
grades and improvements to the tools, they are encouraged to offer those upgrades to the broader community
by offering feedback to the developers.

2.4 Required compilers and scripting languages

The MET package was developed and tested using the GNU g++-/gfortran compilers and the Intel icc/ifort
compilers. As additional compilers are successfully tested, they will be added to the list of supported

platforms/compilers.
The GNU make utility is used in building all executables and is therefore required.

The MET package consists of a group of command line utilities that are compiled separately. The user may
choose to run any subset of these utilities to employ the type of verification methods desired. New tools
developed and added to the toolkit will be included as command line utilities.

In order to control the desired flow through MET, users are encouraged to run the tools via a script or
consider using the METplus package (https://dtcenter.org/community-code/metplus). Some sample
scripts are provided in the distribution; these examples are written in the Bourne shell. However, users are

free to adapt these sample scripts to any scripting language desired.

2.5 Required libraries and optional utilities

Three external libraries are required for compiling/building MET and should be downloaded and installed
before attempting to install MET. Additional external libraries required for building advanced features in
MET are discussed in Section :

1. NCEP’s BUFRLIB is used by MET to decode point-based observation datasets in PrepBUFR, format.
BUFRLIB is distributed and supported by NCEP and is freely available for download from NCEP’s
website at https://www.emc.ncep.noaa.gov/index.php?branch=BUFRLIB. BUFRLIB requires C

and Fortran-90 compilers that should be from the same family of compilers used when building MET.

https://dtcenter.org/community-code/metplus
https://www.emc.ncep.noaa.gov/index.php?branch=BUFRLIB

CHAPTER 2. SOFTWARE INSTALLATION/GETTING STARTED 30

2. Several tools within MET use Unidata’s NetCDF libraries for writing output NetCDF files. NetCDF
libraries are distributed and supported by Unidata and are freely available for download from Unidata’s
website at http://www.unidata.ucar.edu/software/netcdf. The same family of compilers used to
build NetCDF should be used when building MET. MET is now compatible with the enhanced data
model provided in NetCDF version 4. The support for NetCDF version 4 requires HDF5 which is
freely available for download at https://support.hdfgroup.org/HDF5/.

3. The GNU Scientific Library (GSL) is used by MET when computing confidence intervals. GSL is dis-
tributed and supported by the GNU Software Foundation and is freely available for download from the
GNU website at http://www.gnu.org/software/gsl.

4. The Zlib is used by MET for compression when writing postscript image files from tools (e.g. MODE,
Wavelet-Stat, Plot-Data-Plane, and Plot-Point-Obs). Zlib is distributed and supported Zlib.org and is
freely available for download from the Zlib website at http://www.z1lib.net!

Two additional utilities are strongly recommended for use with MET:

1. The Unified Post-Processor is recommended for post-processing the raw WRF model output prior to
verifying the model forecasts with MET. The Unified Post-Processor is freely available for download
https://dtcenter.org/community-code/unified-post-processor-upp. MET can read data on
a standard, de-staggered grid and on pressure or regular levels in the vertical. The Unified Post-
Processor outputs model data in this format from both WRF cores, the NMM and the ARW. However,
the Unified Post-Processor is not strictly required as long as the user can produce gridded model output
on a standard de-staggered grid on pressure or regular levels in the vertical. Two-dimensional fields

(e.g., precipitation amount) are also accepted for some modules.

2. The copygb utility is recommended for re-gridding model and observation datasets in GRIB version 1
format to a common verification grid. The copygb utility is distributed as part of the Unified Post-
Processor and is available from other sources as well. While earlier versions of MET required that all
gridded data be placed on a common grid, MET version 5.1 added support for automated re-gridding
on the fly. After version 5.1, users have the option of running copygb to regrid their GRIB1 data ahead
of time or leveraging the automated regridding capability within MET.

2.6 Installation of required libraries

As described in Section [2.5] some external libraries are required for building the MET:

1. NCEP’s BUFRLIB is used by the MET to decode point-based observation datasets in PrepBUFR format.
Once you have downloaded and unpacked the BUFRLIB tarball, refer to the README BUFRLIB
file. When compiling the library using the GNU C and Fortran compilers, users are strongly encouraged
to use the -DUNDERSCORE and -fno-second-underscore options. Compiling the BUFRLIB using the
GNU compilers consists of the following 3 steps:

http://www.unidata.ucar.edu/software/netcdf
https://support.hdfgroup.org/HDF5/
http://www.gnu.org/software/gsl
http://www.zlib.net
https://dtcenter.org/community-code/unified-post-processor-upp

CHAPTER 2. SOFTWARE INSTALLATION/GETTING STARTED 31

* gcc -c -DUNDERSCORE *.c
* gfortran -c -DUNDERSCORE -fno-second-underscore *.f *.F

* ar crv libbufr.a *.o
Compiling the BUFRLIB using the PGI C and Fortran-90 compilers consists of the following 3 steps:

* pgcc -c -DUNDERSCORE *.c
* pgf90 -c -DUNDERSCORE -Mnosecond_underscore *.f *.F

* ar crv libbufr.a *.o
Compiling the BUFRLIB using the Intel icc and ifort compilers consists of the following 3 steps:

* icc -c -DUNDERSCORE *.c
* ifort -c -DUNDERSCORE *.f *.F

* ar crv libbufr.a *.o

In the directions above, the static library file that is created will be named libbufr.a. MET will check for
the library file named libbufr.a, however in some cases (e.g. where the BUFRLIB is already available
on a system) the library file may be named differently (e.g. libbufr v11.3.0 4 64.a). If the library
is named anything other than libbufr.a, users will need to tell MET what library to link with by
passing the BUFRLIB_NAME option to MET when running configure (e.g. BUFRLIB NAME=-
Ibufr v11.3.0_4 64).

2. Unidata’s NetCDF libraries are used by several tools within MET for writing output NetCDF files. The
same family of compilers used to build NetCDF should be used when building MET. Users may also
find some utilities built for NetCDF such as ncdump and ncview useful for viewing the contents of
NetCDF files. Detailed installation instructions are available from Unidata at http://www.unidata.
ucar.edu/software/netcdf/docs/netcdf-install/. Support for NetCDF version 4 requires HDF5.
Detailed installation instructions for HDF5 are available at https://support.hdfgroup.org/HDF5/

release/obtainsrc.html.

3. The GNU Scientific Library (GSL) is used by MET for random sampling and normal and binomial
distribution computations when estimating confidence intervals. Precompiled binary packages are
available for most GNU/Linux distributions and may be installed with root access. When installing
GSL from a precompiled package on Debian Linux, the developer’s version of GSL must be used;
otherwise, use the GSL version available from the GNU website (http://www.gnu.org/software/
gsl/). MET requires access to the GSL source headers and library archive file at build time.

4. For users wishing to compile MET with GRIB2 file support, NCEP’s GRIB2 Library in C (g2clib)
must be installed, along with jasperlib, libpng, and zlib. (http://www.nco.ncep.noaa.gov/pmb/
codes/GRIB2). Please note that compiling the GRIB2C library with the -D 64BIT _ option
requires that MET also be configured with CFLAGS="-D 64BIT __ ". Compiling MET and
the GRIB2C library inconsistently may result in a segmentation fault when reading GRIB2 files.
MET looks for the GRIB2C library to be named libgrib2c.a, which may be set in the GRIB2C make-
file as LIB=libgrib2c.a. However in some cases, the library file may be named differently (e.g.
libg2c v1.6.0.a). If the library is named anything other than libgrib2c.a, users will need to tell MET

http://www.unidata.ucar.edu/software/netcdf/docs/netcdf-install/
http://www.unidata.ucar.edu/software/netcdf/docs/netcdf-install/
https://support.hdfgroup.org/HDF5/release/obtainsrc.html
https://support.hdfgroup.org/HDF5/release/obtainsrc.html
http://www.gnu.org/software/gsl/
http://www.gnu.org/software/gsl/
http://www.nco.ncep.noaa.gov/pmb/codes/GRIB2
http://www.nco.ncep.noaa.gov/pmb/codes/GRIB2

CHAPTER 2. SOFTWARE INSTALLATION/GETTING STARTED 32

what library to link with by passing the GRIB2CLIB NAME option to MET when running configure
(e.g. GRIB2CLIB_NAME=-lg2c_v1.6.0).

5. Users wishing to compile MODIS-regrid and/or lidar2nc will need to install both the HDF4 and HDF-
EOS2 libraries available from the HDF group websites (http://www.hdfgroup.org/products/hdf4)
and (http://www.hdfgroup.org/hdfeos.html).

6. The MODE-Graphics utility requires Cairo and FreeType. Thus, users who wish to compile this util-
ity must install both libraries, available from (http://cairographics.org/releases) and (http:
//www.freetype.org/download.html). In addition, users will need to download Ghostscript font

data required at runtime (http://sourceforge.net/projects/gs-fonts).

2.7 Installation of optional utilities

As described in the introduction to this chapter, two additional utilities are strongly recommended for use
with MET.

1. The Unified Post-Processor is recommended for post-processing the raw WRF model output prior to
verifying the data with MET. The Unified Post-Processor may be used on WRF output from both the
ARW and NMM cores. https://dtcenter.org/community-code/unified-post-processor-upp .

2. The copygb utility is recommended for re-gridding model and observation datasets in GRIB format to a
common verification grid. The copygb utility is distributed as part of the Unified Post-Processor and
is available from other sources as well. Please refer to the "Unified Post-processor" utility mentioned

above for information on availability and installation.

2.8 MET directory structure

The top-level MET directory consists of a README file, Makefiles, configuration files, and several subdi-
rectories. The top-level Makefile and configuration files control how the entire toolkit is built. Instructions
for using these files to build MET can be found in Section [2.9]

When MET has been successfully built and installed, the installation directory contains two subdirectories.
The bin/ directory contains executables for each module of MET as well as several plotting utilities. The
share/met/ directory contains many subdirectories with data required at runtime and a subdirectory of
sample R scripts utilities. The colortables/, map/, and ps/ subdirectories contain data used in creating
PostScript plots for several MET tools. The poly/ subdirectory contains predefined lat/lon polyline regions
for use in selecting regions over which to verify. The polylines defined correspond to verification regions
used by NCEP as described in Appendix B. The config/ directory contains default configuration files for
the MET tools. The table_files/ and tc_data/ subdirectories contain GRIB table definitions and tropical

cyclone data, respectively. The Rscripts/ subdirectory contains a handful of plotting graphic utilities for

http://www.hdfgroup.org/products/hdf4
http://www.hdfgroup.org/hdfeos.html
http://cairographics.org/releases
http://www.freetype.org/download.html
http://www.freetype.org/download.html
http://sourceforge.net/projects/gs-fonts
https://dtcenter.org/community-code/unified-post-processor-upp

CHAPTER 2. SOFTWARE INSTALLATION/GETTING STARTED 33

MET-TC. These are the same Rscripts that reside under the top-level MET scripts/Rscripts directory, other

than it is the installed location.

The data/ directory contains several configuration and static data files used by MET. The sample fcst/ and
sample obs/ subdirectories contain sample data used by the test scripts provided in the scripts/ directory.

The doc/ directory contains documentation for MET, including the MET User’s Guide.
The out/ directory will be populated with sample output from the test cases described in the next section.
The src/ directory contains the source code for each of the tools in MET.

The scripts/ directory contains test scripts that are run by make test after MET has been successfully built,
and a directory of sample configuration files used in those tests located in the scripts/config/ subdirectory.
The output from the test scripts in this directory will be written to the out/ directory. Users are encouraged

to copy sample configuration files to another location and modify them for their own use.

The share/met/Rscripts directory contains a handful of sample R scripts, include plot tcmpr.R, which

provides graphic utilities for MET-TC. For more information on the graphics capabilities, see Section [25.2.3]
of this User’s Guide.

2.9 Building the MET package
Building the MET package consists of three main steps: (1) install the required libraries, (2) configure the
environment variables, and (3) configure and execute the build.

Install the required libraries.

e Please refer to Section [2.6] and 2.7 on how to install the required and optional libraries.

e If installing the required and optional libraries in a non-standard location, the user may need to tell
MET where to find them. This can be done by setting or adding to the LD LIBRARY PATH to
included the path to the library files.

Set Environment Variables

The MET build uses environment variables to specify the locations of the needed external libraries. For each
library, there is a set of three environment variables to describe the locations: SMET _<lib>, $MET _<lib>INC
and $SMET _ <lib>LIB.

The $MET _<lib> environment variable can be used if the external library is installed such that there is a
main directory which has a subdirectory called "lib" containing the library files and another subdirectory

called "include" containing the include files. For example, if the NetCDF library files are installed in

CHAPTER 2. SOFTWARE INSTALLATION/GETTING STARTED 34

/opt/netcdf/lib and the include files are in /opt/netcdf/include, you can just define the SMET NETCDF

environment variable to be " /opt/netcdf".

The $SMET _ <lib>INC and $MET _<lib>LIB environment variables are used if the library and include files
for an external library are installed in separate locations. In this case, both environment variables must be
specified and the associated SMET <lib> variable will be ignored. For example, if the NetCDF include
files are installed in /opt/include/netcdf and the library files are in /opt/lib/netcdf, then you would set
$MET_NETCDFINC to "/opt/include/netcdf" and $SMET_NETCDFLIB to "/opt/lib/netcdf".

The following environment variables should also be set:

- Set SMET _NETCDF to point to the main NetCDF directory, or set SMET NETCDFINC to point to
the directory with the NetCDF include files and set $SMET NETCDFLIB to point to the directory with the
NetCDF library files.

- Set $SMET _HDFS5 to point to the main HDF5 directory.

- Set SMET _BUFR to point to the main BUFR directory, or set $SMET BUFRLIB to point to the directory
with the BUFR library files. Because we don’t use any BUFR library include files, you don’t need to specify
$MET BUFRINC.

- Set SMET _GSL to point to the main GSL directory, or set $MET GSLINC to point to the directory with
the GSL include files and set $MET GSLLIB to point to the directory with the GSL library files.

- If compiling support for GRIB2, set $MET GRIB2CINC and $MET GRIB2CLIB to point to the main
GRIB2C directory which contains both the include and library files. These are used instead of SMET GRIB2C

since the main GRIB2C directory does not contain include and lib subdirectories.

- If compiling support for PYTHON, set $SMET PYTHON CC and $MET PYTHON LD to specify
the compiler (-I) and linker (-L) flags required for python. Set $MET PYTHON CC for the directory
containing the "Python.h" header file. Set SMET PYTHON LD for the directory containing the python
library file and indicate the name of that file. For example:

MET_PYTHON_ CC="-1/usr/include/python3.6’
MET PYTHON LD='"-L/usr/lib/python3.6/config-x86 64-linux-gnu -lpython3.6m’
For more information about Python support in MET, please refer to [F]

- If compiling MODIS-Regrid and/or lidar2nc, set $SMET HDF to point to the main HDF4 directory, or set
$MET HDFINC to point to the directory with the HDF4 include files and set $MET HDFLIB to point
to the directory with the HDF4 library files. Also, set SMET HDFEOS to point to the main HDF EOS
directory, or set $SMET HDFEOSINC to point to the directory with the HDF EOS include files and set
$MET HDFEOSLIB to point to the directory with the HDF EOS library files.

- If compiling MODE Graphics, set $MET _CAIRO to point to the main Cairo directory, or set
$MET _CAIROINC to point to the directory with the Cairo include files and set $MET _CAIROLIB to point

CHAPTER 2. SOFTWARE INSTALLATION/GETTING STARTED 35

to the directory with the Cairo library files. Also, set SMET FREETYPE to point to the main FreeType
directory, or set SMET FREETYPEINC to point to the directory with the FreeType include files and set
$MET FREETYPELIB to point to the directory with the FreeType library files.

- When running MODE Graphics, set $MET FONT DIR to the directory containing font data required
at runtime. A link to the tarball containing this font data can be found on the MET website.

For ease of use, you should define these in your .cshrc or equivalent file.

Configure and execute the build

Example: To configure MET to install all of the available tools in the "bin" subdirectory of your current

directory, you would use the following commands:

1. ./configure --prefix=‘pwd‘ --enable-grib2 --enable-python \
--enable-modis --enable-mode_graphics --enable-lidar2nc

2. Type ’make install >& make_install.log &’

3. Type ’tail -f make_install.log’ to view the execution of the make.

4. When make is finished, type ’CNTRL-C’ to quit the tail.

If all tools are enabled and the build is successful, the "<prefix>/bin" directory (where <prefix> is the
prefix you specified on your configure command line) will contain 36 executables:

- asciiZ2nc

- ensemble_stat

- gen_vx_mask

- grid_stat

- gis_dump_dbf

- gis_dump_shp

- gis_dump_shx

- grid_diag

- gsid2mpr

- gsidens2orank

- lidar2nc

- madis2nc

- mode

- mode_analysis

- modis_regrid

- mtd

- pb2nc

- pcp_combine

- plot_data_plane
- plot_mode_field

CHAPTER 2. SOFTWARE INSTALLATION/GETTING STARTED 36

- plot_point_obs

- point2grid

- point_stat

- rmw_analysis

- regrid_data_plane
- series_analysis
- shift_data_plane
- stat_analysis

- tc_dland

- tc_gen

- tc_pairs

- tc_rmw

- tc_stat

- wavelet_stat

- wwmca_plot

- wwmca_regrid

NOTE: Several compilation warnings may occur which are expected. If any errors occur, please refer to the

appendix on troubleshooting for common problems.

-help and -version command line options are available for all of the MET tools. Typing the name of the

tool with no command line options also produces the usage statement.

The configure script has command line options to specify where to install MET and which MET utilities to
install. Include any of the following options that apply to your system:

--prefix=PREFIX

By default, MET will install all the files in " /usr/local/bin". You can specify an installation prefix other
than " /usr/local" using "--prefix", for instance "--prefix=$HOME" or "--prefix=‘pwd*".

--enable-grib2

Enable compilation of utilities using GRIB2. Requires SMET GRIB2C.

--enable-python

Enable compilation of python interface. Requires SMET PYTHON_ CC and $MET PYTHON LD.
--disable-block4

Disable use of BLOCK4 in the compilation. Use this if you have trouble using PrepBUFR files.

Run the configure script with the --help argument to see the full list of configuration options.

Make Targets

The autoconf utility provides some standard make targets for the users. In MET, the following standard

targets have been implemented and tested:

CHAPTER 2. SOFTWARE INSTALLATION/GETTING STARTED 37

1. all - compile all of the components in the package, but don’t install them.

2. install - install the components (where is described below). Will also compile if "make all" hasn’t been

done yet.
3. clean - remove all of the temporary files created during the compilation.
4. uninstall - remove the installed files. For us, these are the executables and the files in $MET BASE.
MET also has the following non-standard targets:

5. test - runs the scripts/test all.sh script. You must run "make install" before using this target.

2.10 Sample test cases

Once the MET package has been built successfully, the user is encouraged to run the sample test scripts
provided. They are run using make test in the top-level directory. Execute the following commands:

[y

. Type 'make test >& make test.log &’ to run all of the test scripts in the directory. These test scripts
use test data supplied with the tarball. For instructions on running your own data, please refer to the
MET User’s Guide.

2. Type ’tail -f make test.log’ to view the execution of the test script.

3. When the test script is finished, type ’'CNTRL-C’ to quit the tail. Look in "out" to find the output files
for these tests. Each tool has a separate, appropriately named subdirectory for its output files.

[

. In particular, check that the PB2NC tool ran without error. If there was an error, run "make clean" then
rerun your configure command adding "--disable-block4" to your configure command line and rebuild
MET.

Chapter 3

MET Data I/0

Data must often be preprocessed prior to using it for verification. Several MET tools exist for this purpose.
In addition to preprocessing observations, some plotting utilities for data checking are also provided and
described at the end of this chapter. Both the input and output file formats are described in this chapter.
Sections and are primarily concerned with re-formatting input files into the intermediate files required
by some MET modules. These steps are represented by the first three columns in the MET flowchart depicted
in Figure Output data formats are described in later Section Common configuration files options
are described in Section [3.5] Description of software modules used to reformat the data may now be found
in Chapters] and

3.1 Input data formats

The MET package can handle gridded input data in one of four formats: GRIB version 1, GRIB version 2,
NetCDF files following the Climate and Forecast (CF) conventions, and NetCDF files produced by the MET
tools themselves. MET supports standard NCEP, USAF, UKMet Office and ECMWF grib tables along
with custom, user-defined GRIB tables and the extended PDS including ensemble member metadata. See
[B-5.1] for more information. Point observation files may be supplied in either PrepBUFR, ASCII, or MADIS
format. Note that MET does not require the Unified Post-Processor to be used, but does require that the
input GRIB data be on a standard, de-staggered grid on pressure or regular levels in the vertical. While the
Grid-Stat, Wavelet-Stat, MODE, and MTD tools can be run on a gridded field at virtually any level, the
Point-Stat tool can only be used to verify forecasts at the surface or on pressure or height levels. MET does

not interpolate between native model vertical levels.

When comparing two gridded fields with the Grid-Stat, Wavelet-Stat, Ensemble-Stat, MODE, MTD, or
Series-Analysis tools, the input model and observation datasets must be on the same grid. MET will regrid
files according to user specified options. Alternately, outside of MET, the copygb and wgrib2 utilities
are recommended for re-gridding GRIB1 and GRIB2 files, respectively. To preserve characteristics of the

38

CHAPTER 3. MET DATA I/0 39

observations, it is generally preferred to re-grid the model data to the observation grid, rather than vice

versa.

Input point observation files in PrepBUFR format are available through NCEP. The PrepBUFR, observation
files contain a wide variety of point-based observation types in a single file in a standard format. However,
some users may wish to use observations not included in the standard PrepBUFR files. For this reason, prior
to performing the verification step in the Point-Stat tool, the PrepBUFR file is reformatted with the PB2NC
tool. In this step, the user can select various ways of stratifying the observation data spatially, temporally,
and by type. The remaining observations are reformatted into an intermediate NetCDF file. The ASCII2NC
tool may be used to convert ASCII point observations that are not available in the PrepBUFR files into
this NetCDF format for use by the Point-Stat verification tool. Users with METAR or RAOB data from
MADIS can convert these observations into NetCDF format with the MADIS2NC tool, then use them with

the Point-Stat or Ensemble-Stat verification tools.

Tropical cyclone forecasts and observations are typically provided in a specific ASCII format, in A Deck and
B Deck files.

3.2 Intermediate data formats

MET uses NetCDF as an intermediate file format. The MET tools which write gridded output files write to
a common gridded NetCDF file format. The MET tools which write point output files write to a common
point observation NetCDF file format.

3.3 Output data formats

The MET package currently produces output in the following basic file formats: STAT files, ASCII files,
NetCDF files, PostScript plots, and png plots from the Plot-Mode-Field utility.

The STAT format consists of tabular ASCII data that can be easily read by many analysis tools and software
packages. MET produces STAT output for the Grid-Stat, Point-Stat, Ensemble-Stat, Wavelet-Stat, and TC-
Gen tools. STAT is a specialized ASCII format containing one record on each line. However, a single STAT
file will typically contain multiple line types. Several header columns at the beginning of each line remain the
same for each line type. However, the remaining columns after the header change for each line type. STAT
files can be difficult for a human to read as the quantities represented for many columns of data change from

line to line.

For this reason, ASCII output is also available as an alternative for these tools. The ASCII files contain
exactly the same output as the STAT files but each STAT line type is grouped into a single ASCII file with
a column header row making the output more human-readable. The configuration files control which line

types are output and whether or not the optional ASCII files are generated.

CHAPTER 3. MET DATA I/0 40

The MODE tool creates two ASCII output files as well (although they are not in a STAT format). It generates
an ASCII file containing contingency table counts and statistics comparing the model and observation fields
being compared. The MODE tool also generates a second ASCII file containing all of the attributes for the
single objects and pairs of objects. Each line in this file contains the same number of columns, and those
columns not applicable to a given line type contain fill data. Similarly, the MTD tool writes one ASCII
output file for 2D objects attributes and four ASCII output files for 3D object attributes.

The TC-Pairs and TC-Stat utilities produce ASCII output, similar in style to the STAT files, but with TC
relevant fields.

Many of the tools generate gridded NetCDF output. Generally, this output acts as input to other MET
tools or plotting programs. The point observation preprocessing tools produce NetCDF output as input to
the statistics tools. Full details of the contents of the NetCDF files is found in Section [3.4] below.

The MODE, Wavelet-Stat and plotting tools produce PostScript plots summarizing the spatial approach
used in the verification. The PostScript plots are generated using internal libraries and do not depend on an
external plotting package. The MODE plots contain several summary pages at the beginning, but the total
number of pages will depend on the merging options chosen. Additional pages will be created if merging is
performed using the double thresholding or fuzzy engine merging techniques for the forecast and observation
fields. The number of pages in the Wavelet-Stat plots depend on the number of masking tiles used and
the dimension of those tiles. The first summary page is followed by plots for the wavelet decomposition of
the forecast and observation fields. The generation of these PostScript output files can be disabled using

command line options.

Users can use the optional plotting utilities Plot-Data-Plane, Plot-Point-Obs, and Plot-Mode-Field to pro-
duce graphics showing forecast, observation, and MODE object files.

3.4 Data format summary

The following is a summary of the input and output formats for each of the tools currently in MET. The
output listed is the maximum number of possible output files. Generally, the type of output files generated

can be controlled by the configuration files and/or the command line options:

1. PB2NC Tool

* Input: One PrepBUFR point observation file and one configuration file.

* Qutput: One NetCDF file containing the observations that have been retained.
2. ASCII2NC Tool

* Input: One or more ASCII point observation file(s) that has (have) been formatted as expected,

and optional configuration file.

* Qutput: One NetCDF file containing the reformatted observations.

CHAPTER 3. MET DATA I/0 41

3. MADIS2NC Tool

* Input: One MADIS point observation file.

* Qutput: One NetCDF file containing the reformatted observations.
4. LIDAR2NC Tool

* Input: One CALIPSO satellite HDF file

* Qutput: One NetCDF file containing the reformatted observations.
5. Point2Grid Tool

* Input: One NetCDF file containing point observation from the ASCII2NC, PB2NC, MADIS2NC,
or LIDAR2NC tool.

* Qutput: One NetCDF file containing a gridded representation of the point observations.
6. Pcp-Combine Tool

* Input: Two or more gridded model or observation files (in GRIB format for “sum” command, or
any gridded file for “add”, “subtract”, and “derive” commands) containing data (often accumulated
precipitation) to be combined.

* Qutput: One NetCDF file containing output for the requested operation(s).
7. Regrid-Data-Plane Tool

* Input: One gridded model or observation field and one gridded field to provide grid specification if
desired.

* Output: One NetCDF file containing the regridded data field(s).
8. Shift-Data-Plane Tool

* Imput: One gridded model or observation field.
* Qutput: One NetCDF file containing the shifted data field.

9. MODIS-Regrid Tool

* Input: One gridded model or observation field and one gridded field to provide grid specification.
* Qutput: One NetCDF file containing the regridded data field.

10. Gen-VX-Mask Tool

* Inmput: One gridded model or observation file and one file defining the masking region (varies based

on masking type).

* Qutput: One NetCDF file containing a bitmap for the resulting masking region.

11. Point-Stat Tool

CHAPTER 3. MET DATA I/0 42

* Input: One gridded model file, at least one point observation file in NetCDF format (as the output
of the PB2NC, ASCII2NC, MADIS2NC, or LIDAR2NC tool), and one configuration file.

* OQutput: One STAT file containing all of the requested line types and several ASCII files for each
line type requested.

12. Grid-Stat Tool

* Input: One gridded model file, one gridded observation file, and one configuration file.

* Qutput: One STAT file containing all of the requested line types, several ASCII files for each line
type requested, and one NetCDF file containing the matched pair data and difference field for

each verification region and variable type/level being verified.
13. Ensemble Stat Tool

* Input: An arbitrary number of gridded model files, one or more gridded and/or point observation

files, and one configuration file. Point and gridded observations are both accepted.

* Output: One NetCDF file containing requested ensemble forecast information. If observations are
provided, one STAT file containing all requested line types, several ASCII files for each line type
requested, and one NetCDF file containing gridded observation ranks.

14. Wavelet-Stat Tool

* Input: One gridded model file, one gridded observation file, and one configuration file.

* Output: One STAT file containing the “ISC” line type, one ASCII file containing intensity-scale
information and statistics, one NetCDF file containing information about the wavelet decomposi-
tion of forecast and observed fields and their differences, and one PostScript file containing plots

and summaries of the intensity-scale verification.
15. GSID2MPR Tool

* Input: One or more binary GSI diagnostic files (conventional or radiance) to be reformatted.

* OQutput: One ASCII file in matched pair (MPR) format.
16. GSID20RANK Tool

* Imput: One or more binary GSI diagnostic files (conventional or radiance) to be reformatted.

* Qutput: One ASCII file in observation rank (ORANK) format.
17. Stat-Analysis Tool

* Input: One or more STAT files output from the Point-Stat, Grid-Stat, Ensemble Stat, Wavelet-Stat,
or TC-Gen tools and, optionally, one configuration file containing specifications for the analysis
job(s) to be run on the STAT data.

* Qutput: ASCII output of the analysis jobs is printed to the screen unless redirected to a file using
the “-out” option or redirected to a STAT output file using the “~out _stat” option.

CHAPTER 3. MET DATA I/0 43

18. Series-Analysis Tool

* Input: An arbitrary number of gridded model files and gridded observation files and one configura-
tion file.

* Output: One NetCDF file containing requested output statistics on the same grid as the input files.
19. Grid-Diag Tool

* Input: An arbitrary number of gridded data files and one configuration file.

* Output: One NetCDF file containing individual and joint histograms of the requested data.
20. MODE Tool

* Input: One gridded model file, one gridded observation file, and one or two configuration files.

* Qutput: One ASCII file containing contingency table counts and statistics, one ASCII file containing
single and pair object attribute values, one NetCDF file containing object indices for the gridded
simple and cluster object fields, and one PostScript plot containing a summary of the features-
based verification performed.

21. MODE-Analysis Tool

* Input: One or more MODE object statistics files from the MODE tool and, optionally, one config-

uration file containing specification for the analysis job(s) to be run on the object data.
* Output: ASCII output of the analysis jobs will be printed to the screen unless redirected to a file
using the “-~out” option.

22. MODE-TD Tool

* Input: Two or more gridded model files, two or more gridded observation files, and one configuration
file.

* Output: One ASCII file containing 2D object attributes, four ASCII files containing 3D object
attributes, and one NetCDF file containing object indices for the gridded simple and cluster
object fields.

23. TC-Dland Tool

* Input: One or more files containing the longitude (Degrees East) and latitude (Degrees North) of
all the coastlines and islands considered to be a significant landmass.

* Qutput: One NetCDF format file containing a gridded field representing the distance to the nearest

coastline or island, as specified in the input file.
24. TC-Pairs Tool

* Input: At least one A-deck and one B-deck ATCF format file containing output from a tropical
cyclone tracker and one configuration file. The A-deck files contain forecast tracks while the
B-deck files are typically the NHC Best Track Analysis but could also be any ATCF format

reference.

CHAPTER 3. MET DATA I/0 44

25.

26.

27.

28.

29.

30.

31.

32.

* Output: ASCII output with the suffix .tcstat.
TC-Stat Tool

* Input: One or more TCSTAT output files output from the TC-Pairs tool and, optionally, one

configuration file containing specifications for the analysis job(s) to be run on the TCSTAT data.

* Output: ASCII output of the analysis jobs will be printed to the screen unless redirected to a file

using the “-out” option.
TC-Gen Tool

* Input: One or more Tropical Cyclone genesis format files, one or more verifying operational and
BEST track files in ATCF format, and one configuration file.

* Qutput: One STAT file containing all of the requested line types and several ASCII files for each
line type requested.

TC-RMW Tool

* Input: One or more gridded data files, one ATCF track file defining the storm location, and one

configuration file.

* Output: One gridded NetCDF file containing the requested model fields transformed into cylindrical

coordinates.
RMW-Analysis Tool

* Input: One or more NetCDF output files from the TC-RMW tool and one configuration file.
* Qutput: One NetCDF file for results aggregated across the filtered set of input files.

Plot-Point-Obs Tool

* Input: One NetCDF file containing point observation from the ASCII2NC, PB2NC, MADIS2NC,
or LIDAR2NC tool.

* Output: One postscript file containing a plot of the requested field.
Plot-Data-Plane Tool

* Input: One gridded data file to be plotted.
* Output: One postscript file containing a plot of the requested field.

Plot-MODE-Field Tool

* Input: One or more MODE output files to be used for plotting and one configuration file.
* Output: One PNG file with the requested MODE objects plotted. Options for objects include raw,

simple or cluster and forecast or observed objects.
GIS-Util Tools

* Input: ESRI shape files ending in .dbf, .shp, or .shx.

* Output: ASCII description of their contents printed to the screen.

CHAPTER 3. MET DATA I/0 45

3.5 Configuration File Details

Part of the strength of MET is the leveraging of capability across tools. There are several config options

that are common to many of the tools. They are described in this section.

Many of the MET tools use a configuration file to set parameters. This prevents the command line from
becoming too long and cumbersome and makes the output easier to duplicate.

Settings common to multiple tools are described in the following sections while those specific to individual
tools are explained in the chapters for those tools. In addition, these configuration settings are described
in the share/met/config/README file and the share/met/config/README-TC file for the MET-Tropical

Cyclone tools.

3.5.1 MET Configuration File Options

The information listed below may also be found in the data/config/README file.

LI11177077
//

// Configuration file overview.

//
LI11177077

The configuration files that control many of the MET tools contain formatted
ASCII text. This format has been updated for METv4.0 and continues to be used

in subsequent releases.

Settings common to multiple tools are described in the top part of this README
file and settings specific to individual tools are described beneath the common
settings. Please refer to the MET User’s Guide in the "doc" directory for more

details about the settings if necessary.

A configuration file entry is an entry name, followed by an equal sign (=),
followed by an entry value, and is terminated by a semicolon (;). The
configuration file itself is one large dictionary consisting of entries, some of

which are dictionaries themselves.

The configuration file language supports the following data types:
- Dictionary:
- Grouping of one or more entries enclosed by curly braces {}.
- Array:

- List of one or more entries enclosed by square braces [].

CHAPTER 3. MET DATA I/0

- Array elements are separated by commas.

- String:

- A character string enclosed by double quotation marks "".

- Integer:

- A numeric integer value.

- Float:

- A numeric float value.

- Boolean:
- A boolean value (TRUE or FALSE).
- Threshold:
- A threshold type (<, <=, ==, !-, >=, or >) followed by a numeric value.

- The threshold type may also be specified using two letter abbreviations

(1t, le, eq, ne, ge, gt).

- Multiple thresholds may be combined by specifying the logic type of AND
(&&) or OR (||). For example, ">=5&&<=10" defines the numbers between 5

and 10 and "==1]||==2" defines numbers exactly equal to 1 or 2.

- Percentile Thresholds:

- Thresholds may be defined as percentiles of the data being processed in

several places:

In Point-Stat and Grid-Stat when setting "cat_thresh", "wind_thresh",
and "cnt_thresh".

In Wavelet-Stat when setting "cat_thresh".

In MODE when setting "conv_thresh" and "merge_thresh".

In Ensemble-Stat when setting "obs_thresh".

When using the "censor_thresh" config option.

In the Stat-Analysis "-out_fcst_thresh" and "-out_obs_thresh" job
command options.

In the Gen-Vx-Mask "-thresh" command line option.

- The following percentile threshold types are supported:

"SFP" for a percentile of the sample forecast values.

e.g. ">SFP50" means greater than the 50-th forecast percentile.
"SOP" for a percentile of the sample observation values.

e.g. ">SO0P75" means greater than the 75-th observation percentile.
"SCP" for a percentile of the sample climatology values.

e.g. ">SCP90" means greater than the 90-th climatology percentile.
"USP" for a user-specified percentile threshold.

e.g. "<USP90(2.5)" means less than the 90-th percentile values which
the user has already determined to be 2.5 outside of MET.

"==FBIAS1" to automatically de-bias the data. This option must be
used in conjunction with a simple threshold in the other field.

For example, when "obs.cat_thresh = >5.0" and

"fcst.cat_thresh = ==FBIAS1;", MET applies the >5.0 threshold to the

observations and then chooses a forecast threshold which results in a

46

CHAPTER 3. MET DATA I/0

frequency bias of 1.

- "CDP" for climatological distribution percentile thresholds.
These thresholds require that the climatological mean and standard
deviation be defined using the climo_mean and climo_stdev config file
options, respectively. The categorical (cat_thresh), conditional
(cnt_thresh), or wind speed (wind_thresh) thresholds are defined
relative to the climatological distribution at each point. Therefore,
the actual numeric threshold applied can change for each point.
e.g. ">CDP50" means greater than the 50-th percentile of the
climatological distribution for each point.

- When percentile thresholds of type SFP, SOP, SCP, or CDP are requested
for continuous filtering thresholds (cnt_thresh), wind speed thresholds
(wind_thresh), or observation filtering thresholds (obs_thresh in
ensemble_stat), the following special logic is applied. Percentile
thresholds of type equality are automatically converted to percentile
bins which span the values from 0 to 100.

For example, "==CDP25" is automatically expanded to 4 percentile bins:
>=CDP0&&<CDP25 , >=CDP25&&<CDP50 , >=CDP50&&<CDP75 , >=CDP75&&<=CDP100

- When sample percentile thresholds of type SFP, SOP, SCP, or FBIAS1 are
requested, MET recomputes the actual percentile that the threshold
represents. If the requested percentile and actual percentile differ by
more than 5%, a warning message is printed. This may occur when the
sample size is small or the data values are not truly continuous.

- When percentile thresholds of type SFP, S0P, SCP, or USP are used, the
actual threshold value is appended to the FCST_THRESH and 0BS_THRESH
output columns. For example, if the 90-th percentile of the current set
of forecast values is 3.5, then the requested threshold "<=SFP90" is
written to the output as "<=SFP90(3.5)".

- When parsing FCST_THRESH and OBS_THRESH columns, the Stat-Analysis tool
ignores the actual percentile values listed in parentheses.

- Piecewise-Linear Function (currently used only by MODE):

- A list of (x, y) points enclosed in parenthesis ().

- The (x, y) points are *NOT* separated by commas.

- User-defined function of a single variable:

- Left side is a function name followed by variable name in parenthesis.

- Right side is an equation which includes basic math functions (+,-,*,/),
built-in functions (listed below), or other user-defined functions.

- Built-in functions include:
sin, cos, tan, sind, cosd, tand, asin, acos, atan, asind, acosd, atand,
atan2, atan2d, arg, argd, log, exp, loglO, expl0, sqrt, abs, min, max,

mod, floor, ceil, step, nint, sign

The context of a configuration entry matters. If an entry cannot be found in

CHAPTER 3. MET DATA I/0

the expected dictionary, the MET tools recursively search for that entry in the
parent dictionaries, all the way up to the top-level configuration file
dictionary. If you’d like to apply the same setting across all cases, you can
simply specify it once at the top-level. Alternatively, you can specify a
setting at the appropriate dictionary level to have finer control over the

behavior.

In order to make the configuration files more readable, several descriptive
integer types have been defined in the ConfigConstants file. These integer

names may be used on the right-hand side for many configuration file entries.

Each of the configurable MET tools expects a certain set of configuration
entries. Examples of the MET configuration files can be found in data/config

and scripts/config.

When you pass a configuration file to a MET tool, the tool actually parses up
to four different configuration files in the following order:
(1) Reads share/met/config/ConfigConstants to define constants.
(2) If the tool produces PostScript output, it reads
share/met/config/ConfigMapData to define the map data to be plotted.
(3) Reads the default configuration file for the tool from share/met/config.

(4) Reads the user-specified configuration file from the command line.

Many of the entries from step (3) are overwritten by the user-specified entries
from step (4). Therefore, the configuration file you pass in on the command

line really only needs to contain entries that differ from the defaults.

Any of the configuration entries may be overwritten by the user-specified
configuration file. For example, the map data to be plotted may be included in
the user-specified configuration file and override the default settings defined

in the share/met/config/ConfigMapData file.

The configuration file language supports the use of environment variables. They
are specified as ${ENV_VAR}, where ENV_VAR is the name of the environment
variable. When scripting up many calls to the MET tools, you may find it
convenient to use them. For example, when applying the same configuration to
the output from multiple models, consider defining the model name as an
environment variable which the controlling script sets prior to verifying the
output of each model. Setting MODEL to that environment variable enables you

to use one configuration file rather than maintianing many very similar ones.

An error in the syntax of a configuration file will result in an error from the

MET tool stating the location of the parsing error.

48

CHAPTER 3. MET DATA I/0

The MET_BASE variable is defined in the code at compilation time as the path

to the MET shared data. These are things like the default configuration files,
common polygons and color scales. MET_BASE may be used in the MET configuration
files when specifying paths and the appropriate path will be substituted in.

If MET_BASE is defined as an environment variable, its value will be used

instead of the one defined at compilation time.

The MET_0BS_ERROR_TABLE environment variable can be set to specify the location
of an ASCII file defining observation error information. The default table can
be found in the installed share/met/table_files/obs_error_table.txt. This

observation error logic is applied in Ensemble-Stat to perturb ensemble member

values and/or define observation bias corrections.

When processing point and gridded observations, Ensemble-Stat searches the table
to find the entry defining the observation error information. The table

consists of 15 columns and includes a header row defining each column. The
special string "ALL" is interpreted as a wildcard in these files. The first 6
columns (OBS_VAR, MESSAGE_TYPE, PB_REPORT_TYPE, IN_REPORT_TYPE, INSTRUMENT_TYPE,
and STATION_ID) may be set to a comma-separated list of strings to be matched.
In addition, the strings in the OBS_VAR column are interpreted as regular
expressions when searching for a match. For example, setting the OBS_VAR column
to ’APCP_[0-9]+’ would match observations for both APCP_03 and APCP_24. The
HGT_RANGE, VAL_RANGE, and PRS_RANGE columns should either be set to "ALL" or
"BEG,END" where BEG and END specify the range of values to be used. The
INST_BIAS_SCALE and INST_BIAS_OFFSET columns define instrument bias adjustments
which are applied to the observation values. The DIST_TYPE and DIST_PARM
columns define the distribution from which random perturbations should be drawn
and applied to the ensemble member values. See the obs_error description below
for details on the supported error distributions. The last two columns, MIN and
MAX, define the bounds for the valid range of the bias-corrected observation
values and randomly perturbed ensemble member values. Values less than MIN are
reset to the mimumum value and values greater than MAX are reset to the maximum

value. A value of NA indicates that the variable is unbounded.

The MET_GRIB_TABLES environment variable can be set to specify the location of
custom GRIB tables. It can either be set to a specific file name or to a
directory containing custom GRIB tables files. These file names must begin with
a "gribl" or "grib2" prefix and end with a ".txt" suffix. Their format must
match the format used by the default MET GRIB table files, described below.

The custom GRIB tables are read prior to the default tables and their settings

take precedence.

49

CHAPTER 3. MET DATA I/0 50

At runtime, the MET tools read default GRIB tables from the installed

share/met/table_files directory, and their file formats are described below:

GRIB1 table files begin with "gribl" prefix and end with a ".txt" suffix.
The first line of the file must contain "GRIB1".
The following lines consist of 4 integers followed by 3 strings:

Column 1: GRIB code (e.g. 11 for temperature)

Column 2: parameter table version number

Column 3: center id (e.g. 07 for US Weather Service- National Met. Center)
Column 4: subcenter id

Column 5: variable name

Column 6: variable description

Column 7: units

References:

http://www.nco.ncep.noaa.gov/pmb/docs/on388
http://www.wmo.int/pages/prog/www/WM0Codes/Guides/GRIB/GRIB1-Contents.html

GRIB2 table files begin with "grib2" prefix and end with a ".txt" suffix.
The first line of the file must contain "GRIB2".
The following lines consist of 8 integers followed by 3 strings.

column 1: Section O Discipline

column 2: Section 1 Master Tables Version Number

column 3: Section 1 Master Tables Version Number, low range of tables
column 4: Section 1 Master Table Version Number, high range of tables
column 5: Section 1 originating center

column 6: Local Tables Version Number

column 7: Section 4 Template 4.0 Parameter category

column 8: Section 4 Template 4.0 Parameter number

column 9: variable name

column 10: variable description

column 11: units

References:

http://www.nco.ncep.noaa.gov/pmb/docs/grib2/grib2_doc

LI11177077
//

// Configuration settings used by the MET tools.

//
LI111777

LI1177

CHAPTER 3. MET DATA I/0 51

//

// Settings common to multiple tools

!/
LI111777

//

// The "exit_on_warning" entry in ConfigConstants may be set to true or false.
// If set to true and a MET tool encounters a warning, it will immediately exit
// with bad status after writing the warning message.

//

exit_on_warning = FALSE;

/7

// The "nc_compression" entry in ConfigConstants defines the compression level
// for the NetCDF variables. Setting this option in the config file of one of
// the tools overrides the default value set in ConfigConstants. The

// environment variable MET_NC_COMPRESS overrides the compression level

// from configuration file. The command line argument "-compress n" for some
// tools overrides it.

// The range is 0 to 9.

// - 0 is to disable the compression.

// -1 to 9: Lower number is faster, higher number for smaller files.

// WARNING: Selecting a high compression level may slow down the reading and
// writing of NetCDF files within MET significantly.

/7

nc_compression = 0;

//

// The "output_precision" entry in ConfigConstants defines the precision

// (number of significant decimal places) to be written to the ASCII output
// files. Setting this option in the config file of one of the tools will
// override the default value set in ConfigConstants.

//

output_precision = 5;

// The "tmp_dir" entry in ConfigConstants defines the directory for the

// temporary files. The directory must exist and be writable. The environment
// variable MET_TMP_DIR overrides the default value at the configuration file.
// Some tools override the temporary directory by the command line argument
// "-tmp_dir <diretory_name>".

tmp_dir = "/tmp";

//

CHAPTER 3. MET DATA I/0 52

// The "message_type_group_map" entry is an array of dictionaries, each

// containing a "key" string and "val" string. This defines a mapping of

// message type group names to a comma-separated list of values. This map is

// defined in the config files for PB2NC, Point-Stat, or Ensemble-Stat. Modify
// this map to define sets of message types that should be processed together as
// a group. The "SURFACE" entry must be present to define message types for

// which surface verification logic should be applied.

//

mesage_type_group_map = [

{ key = "SURFACE"; val = "ADPSFC,SFCSHP,MSONET"; 3,
{ key = "ANYAIR"; wval = "ATIRCAR,AIRCFT"; },
{ key = "ANYSFC"; wval = "ADPSFC,SFCSHP,ADPUPA,PROFLR,MSONET"; },
{ key = "ONLYSF"; wval = "ADPSFC,SFCSHP"; }
1
//

// The "message_type_map" entry is an array of dictionaries, each containing

// a "key" string and "val" string. This defines a mapping of input strings

// to output message types. This mapping is applied in ASCII2NC when

// converting input little_r report types to output message types. This mapping
// is also supported in PBN2NC as a way of renaming input PREPBUFR message

// types.

/7

message_type_map = [

{ key = "FM-12 SYNOP"; wval = "ADPSFC"; },
{ key = "FM-13 SHIP"; val = "SFCSHP"; },
{ key = "FM-15 METAR"; wval = "ADPSFC"; },
{ key = "FM-18 BUOY"; val = "SFCSHP"; },
{ key = "FM-281 QSCAT"; val = "ASCATW"; },
{ key = "FM-32 PILOT"; wval = "ADPUPA"; },
{ key = "FM-35 TEMP"; val = "ADPUPA"; },
{ key = "FM-88 SATOB"; val = "SATWND"; },
{ key = "FM-97 ACARS"; val = "AIRCFT"; }

13

//

// The "model" entry specifies a name for the model being verified. This name
// is written to the MODEL column of the ASCII output generated. If you’re

// verifying multiple models, you should choose descriptive model names (no
// whitespace) to distinguish between their output.

// e.g. model = "GFS";

/7

CHAPTER 3. MET DATA I/0 53

model = "WRF";

//

// The "desc" entry specifies a user-specified description for each verification
// task. This string is written to the DESC column of the ASCII output

// generated. It may be set separately in each "obs.field" verification task
// entry or simply once at the top level of the configuration file. If you’re
// verifying the same field multiple times with different quality control

// flags, you should choose description strings (no whitespace) to distinguish
// between their output.

// e.g. desc = "QC_9";

//

desc = "NA";

//

// The "obtype" entry specifies a name to describe the type of verifying gridded
// observation used. This name is written to the OBTYPE column in the ASCII

// output generated. If you’re using multiple types of verifying observations,
// you should choose a descriptive name (no whitespace) to distinguish between
// their output. When verifying against point observations the point

// observation message type value is written to the OBTYPE column. Otherwise,

// the configuration file obtype value is written.

//

obtype = "ANALYS";

//
// The "regrid" entry is a dictionary containing information about how to handle
// input gridded data files. The "regrid" entry specifies regridding logic

// using the following entries:

//

// - The "to_grid" entry may be set to NONE, FCST, 0BS, a named grid, the path
// to a gridded data file defining the grid, or an explicit grid specification
// string.

// - to_grid = NONE; To disable regridding.

// - to_grid = FCST; To regrid observations to the forecast grid.

// - to_grid = 0BS; To regrid forecasts to the observation grid.

// - to_grid = "G218"; To regrid both to a named grid.

// - to_grid = "path"; To regrid both to a grid defined by a file.

// - to_grid = "spec"; To define a grid specified as follows:

// - lambert Nx Ny lat_11 lon_11 lon_orient D_km R_km standard_parallel_1
// [standard_parallel_2] N|S

// - stereo Nx Ny lat_11 lon_11 lon_orient D_km R_km lat_scale N|S

// - latlon Nx Ny lat_11 lon_11 delta_lat delta_lon

CHAPTER 3. MET DATA I/0

// - mercator Nx Ny lat_11 lon_11 lat_ur lon_ur

// - gaussian lon_zero Nx Ny

//

// - The "vld_thresh" entry specifies a proportion between O and 1 to define
// the required ratio of valid data points. When regridding, compute
// a ratio of the number of valid data points to the total number of
// points in the neighborhood. If that ratio is less than this threshold,
// write bad data for the current point.

//

// - The "method" entry defines the regridding method to be used.

// - Valid regridding methods:

// - MIN for the minimum value

// - MAX for the maximum value

// - MEDIAN for the median value

// - UW_MEAN for the unweighted average value

// - DW_MEAN for the distance-weighted average value (weight =
// distance~-2)

// - AW_MEAN for an area-weighted mean when regridding from

// high to low resolution grids (width = 1)

// - LS_FIT for a least-squares fit

// - BILIN for bilinear interpolation (width = 2)

// - NEAREST for the nearest grid point (width = 1)

// - BUDGET for the mass-conserving budget interpolation

// - FORCE to compare gridded data directly with no interpolation
// as long as the grid x and y dimensions match.

// - UPPER_LEFT for the upper left grid point (width = 1)

// - UPPER_RIGHT for the upper right grid point (width = 1)

// - LOWER_RIGHT for the lower right grid point (width = 1)

// - LOWER_LEFT for the lower left grid point (width = 1)

// - MAXGAUSS to compute the maximum value in the neighborhood
// and apply a Gaussian smoother to the result

//

// The BEST and GEOG_MATCH interpolation options are not valid for
// regridding.

//

// - The "width" entry specifies a regridding width, when applicable.

// - width = 4; To regrid using a 4x4 box or circle with diameter 4.
!/

// - The "shape" entry defines the shape of the neighborhood.

// Valid values are "SQUARE" or "CIRCLE"

//

// - The "gaussian_dx" entry specifies a delta distance for Gaussian

// smoothing. The default is 81.271. Ignored if not Gaussian method.

CHAPTER 3. MET DATA I/0

/7
// - The "gaussian_radius" entry defines the radius of influence for Gaussian
// smoothing. The default is 120. Ignored if not Gaussian method.
//
// - The "gaussian_dx" and "gaussian_radius" settings must be in the same units,
// such as kilometers or degress. Their ratio (sigma = gaussian_radius /
// gaussian_dx) determines the Guassian weighting function.
//
regrid = {
to_grid = NONE;
method = NEAREST;
width =1;
vld_thresh = 0.5;
shape = SQUARE;
gaussian_dx = 81.271;
gaussian_radius = 120;
}
//
// The "fcst" entry is a dictionary containing information about the field(s)
// to be verified. This dictionary may include the following entries:
//
// - The "field" entry is an array of dictionaries, each specifying a
// verification task. Each of these dictionaries may include:
/7
// - The "name" entry specifies a name for the field.
//
// - The "level" entry specifies level information for the field.
//
// - Setting "name" and "level" is file-format specific. See below.
/7
// - The "prob" entry in the forecast dictionary defines probability
// information. It may either be set as a boolean (i.e. TRUE or FALSE)
// or as a dictionary defining probabilistic field information.
/7
// When set as a boolean to TRUE, it indicates that the "fcst.field" data
// should be treated as probabilities. For example, when verifying the
// probabilistic NetCDF output of Ensemble-Stat, one could configure the
// Grid-Stat or Point-Stat tools as follows:
/7
// fest = {
// field = [{ name = "APCP_24_A24_ENS_FREQ_gt0.0";
// level = "(*,%x)";

55

CHAPTER 3. MET DATA I/0

!/
//
//
//
//
//
//
/7
//
//
//
//
//
//
//
//
//
//
/7
//
//
//
/7
//
//
//
//
//
//
//
//
//
//
/7
//
//
//
!/
!/
//
//
//
//

prob = TRUE; } 1;

Setting "prob = TRUE" indicates that the "APCP_24_A24_ENS_FREQ_gt0.0"

data should be processed as probabilities.

When set as a dictionary, it defines the probabilistic field to be
used. For example, when verifying GRIB files containing probabilistic
data, one could configure the Grid-Stat or Point-Stat tools as

follows:

fest = {
field = [{ name = "PROB"; level = "A24";
prob = { name = "APCP"; thresh_lo = 2.54; } 1},
{ name = "PROB"; level = "P850";
prob = { name = "TMP"; thresh_hi = 273; } } 1;

The example above selects two probabilistic fields. In both, '"name"

is set to "PROB", the GRIB abbreviation for probabilities. The "level"
entry defines the level information (i.e. "A24" for a 24-hour
accumulation and "P850" for 850mb). The "prob" dictionary defines the
event for which the probability is defined. The "thresh_lo"

(i.e. APCP > 2.54) and/or "thresh_hi" (i.e. TMP < 273) entries are
used to define the event threshold(s).

Probability fields should contain values in the range
[0, 1] or [0, 100]. However, when MET encounters a probability field
with a range [0, 100], it will automatically rescale it to be [0, 1]

before applying the probabilistic verification methods.

Set '"prob_as_scalar = TRUE" to override the processing of probability
data. When the "prob" entry is set as a dictionary to define the
field of interest, setting "prob_as_scalar = TRUE" indicates that this
data should be processed as regular scalars rather than probabilities.
For example, this option can be used to compute traditional 2x2
contingency tables and neighborhood verification statistics for
probability data. It can also be used to compare two probability
fields directly. When this flag is set, probability values are
automatically rescaled from the range [0, 100] to [0, 1].

The "convert" entry is a user-defined function of a single variable

for processing input data values. Any input values that are not bad

CHAPTER 3. MET DATA I/0

!/
//
//
//
//
//
//
/7
//
//
//
//
//
//
//
//
//
//
/7
//
//
//
/7
//
//
//
//
//
//
//
//
//
//
/7
//
//
//
!/
!/
//
//
//
//

data are replaced by the value of this function. The convert function
is applied prior to regridding or thresholding. This function may
include any of the built-in math functions (e.g. sqrt, loglO)
described above.
Several standard unit conversion functions are already defined in
data/config/ConfigConstants.
Examples of user-defined conversion functions include:

convert(x) = 2%x;

convert(x) = x"2;
logl0(a);
convert(a) = a~10;
max (1, sqrt(abs(t)));
K_to_C(x); where K_to_C(x) is defined in

convert(a)

convert (t)

convert (x)

ConfigConstants

The "censor_thresh" entry is an array of thresholds to be applied

to the input data. The "censor_val" entry is an array of numbers

and must be the same length as '"censor_thresh'". These arguments must
appear together in the correct format (threshold and number). For each
censor threshold, any input values meeting the threshold criteria will
be reset to the corresponding censor value. An empty list indicates
that no censoring should be performed. The censoring logic is applied
prior to any regridding but after the convert function. All statistics
are computed on the censored data. These entries may be used to apply
quality control logic by resetting data outside of an expected range
to the bad data value of -9999. These entries are not indicated in the
metadata of any output files, but the user can set the '"desc" entry

accordingly.

Examples of user-defined conversion functions include:

censor_thresh = [>12000];
[12000 T1;

censor_val

- The "cat_thresh" entry is an array of thresholds to be used when

computing categorical statistics.

The "cnt_thresh" entry is an array of thresholds for filtering

data prior to computing continuous statistics and partial sums.

The "cnt_logic" entry may be set to UNION, INTERSECTION, or SYMDIFF
and controls the logic for how the forecast and observed cnt_thresh
settings are combined when filtering matched pairs of forecast and

observed values.

CHAPTER 3. MET DATA I/0

!/
//
//
//
//
//
//
/7
//
//
//
//
//
//
//
//
//
//
/7
//
//
//
/7
//
//
//
//
//
//
//
//
//
//
/7
//
//
//
!/
!/
//
//
//
//

- The "file_type" entry specifies the input gridded data file type rather

than letting the code determine it. MET determines the file type by
checking for known suffixes and examining the file contents. Use this
option to override the code’s choice. The valid file_type values are
listed the "data/config/ConfigConstants" file and are described below.

This entry should be defined within the "fcst" and/or "obs" dictionaries.

e.g.
fecst = {

file_type = GRIB1; // GRIB version 1

file_type = GRIB2; // GRIB version 2

file_type = NETCDF_MET; // NetCDF created by another MET tool

file_type = NETCDF_PINT; // NetCDF created by running the p_interp
// or wrf_interp utility on WRF output.
// May be used to read unstaggered raw WRF
// NetCDF output at the surface or a
// single model level.

file_type = NETCDF_NCCF; // NetCDF following the Climate Forecast
// (CF) convention.

file_type = PYTHON_NUMPY; // Run a Python script to load data into
// a NumPy array.

file_type = PYTHON_XARRAY; // Run a Python script to load data into

// an xarray object.

- The "wind_thresh" entry is an array of thresholds used to filter wind

speed values when computing VL1L2 vector partial sums. Only those U/V
pairs that meet this wind speed criteria will be included in the sums.

Setting this threshold to NA will result in all U/V pairs being used.

The "wind_logic" entry may be set to UNION, INTERSECTION, or SYMDIFF
and controls the logic for how the forecast and observed wind_thresh
settings are combined when filtering matched pairs of forecast and

observed wind speeds.

The "eclv_points" entry specifies the economic cost/loss ratio points

to be evaluated. For each cost/loss ratio specified, the relative value
will be computed and written to the ECLV output line. This entry may
either be specified as an array of numbers between O and 1 or as a single
number. For an array, each array entry will be evaluated. For a single
number, all evenly spaced points between 0 and 1 will be evaluated, where
eclv_points defines the spacing. Cost/loss values are omitted for

ratios of 0.0 and 1.0 since they are undefined.

CHAPTER 3. MET DATA I/0

!/
//
//
//
//
//
//
/7
//
//
//
//
//
//
//
//
//
//
/7
//
//
//
/7
//
//
//
//
//
//
//
//
//
//
/7
//
//
//
!/
!/
//
//
//
//

- The "init_time" entry specifies the initialization time in
YYYYMMDD [_HH[MMSS]]
format. This entry can be included in the "fcst" entry as shown below or
included in the "field" entry if the user would like to use different
initialization times for different fields.
The "valid_time" entry specifies the valid time in YYYYMMDD[_HH[MMSS]]
format. This entry can be included in the "fcst" entry as shown below or
included in the "field" entry if the user would like to use different
valid times for different fields.
The "lead_time" entry specifies the lead time in HH[MMSS]
format. This entry can be included in the "fcst" entry as shown below or
included in the "field" entry if the user would like to use different
lead times for different fields.
It is only necessary to use the "init_time", "valid_time", and/or "lead_time"
settings when verifying a file containing data for multiple output times.

For example, to verify a GRIB file containing data for many lead times, you

could use "lead_time" to specify the record to be verified.

File-format specific settings for the "field" entry:

- GRIB1 and GRIB2:
- For custom GRIB tables, see note about MET_GRIB_TABLES.
- The "name" entry specifies a GRIB code number or abbreviation.
- GRIB1 Product Definition Section:
http://www.nco.ncep.noaa.gov/pmb/docs/on388/table2.html
- GRIB2 Product Definition Section:
http://www.nco.ncep.noaa.gov/pmb/docs/grib2/grib2_doc
- The "level" entry specifies a level type and value:
- ANNN for accumulation interval NNN
- ZNNN for vertical level NNN
- ZNNN-NNN for a range of vertical levels
- PNNN for pressure level NNN in hPa
- PNNN-NNN for a range of pressure levels in hPa
- LNNN for a generic level type
- RNNN for a specific GRIB record number
- The "GRIB_lvl_typ" entry is an integer specifying the level type.
- The "GRIB_lvl_vall" and "GRIB_lvl_val2" entries are floats specifying
the first and second level values.

- The "GRIB_ens" entry is a string specifying NCEP’s usage of the

CHAPTER 3. MET DATA I/0 60

!/
//
//
//
//
//
//
/7
//
//
//
//
//
//
//
//
//
//
/7
//
//
//
/7
//
//
//
//
//
//
//
//
//
//
/7
//
//
//
!/
!/
//
//
//
//

extended PDS for ensembles. Set to "hi_res_ctl", "low_res_ctl",
"+n", or "-n", for the n-th ensemble member.
The "GRIB1_ptv" entry is an integer specifying the GRIB1 parameter
table version number.
The "GRIB1_code" entry is an integer specifying the GRIB1 code (wgrib
kpdsb5 value).
The "GRIB1_center" is an integer specifying the originating center.
The "GRIB1_subcenter" is an integer specifying the originating
subcenter.
The "GRIB1_tri" is an integer specifying the time range indicator.
The "GRIB2_mtab" is an integer specifying the master table number.
The "GRIB2_ltab" is an integer specifying the local table number.
The "GRIB2_disc" is an integer specifying the GRIB2 discipline code.
The "GRIB2_parm_cat" is an integer specifying the parameter category
code.
The "GRIB2_parm" is an integer specifying the parameter code.
The "GRIB2_pdt" is an integer specifying the product definition
template (Table 4.0).
The "GRIB2_process" is an integer specifying the generating process
(Table 4.3).
The "GRIB2_cntr" is an integer specifying the originating center.
The "GRIB2_ens_type" is an integer specifying the ensemble type
(Table 4.6).
The "GRIB2_der_type" is an integer specifying the derived product
type (Table 4.7).
The "GRIB2_stat_type" is an integer specifying the statistical
processing type (Table 4.10).
The "GRIB2_ipdtmpl_index" and "GRIB2_ipdtmpl_val" entries are arrays
of integers which specify the product description template values to
be used. The indices are O-based. For example, use the following to
request a GRIB2 record whose 9-th and 27-th product description
template values are 1 and 2, respectively:

GRIB2_ipdtmpl_index=[8, 26]; GRIB2_ipdtmpl_val=[1, 2];

- NetCDF (from MET tools, CF-compliant, p_interp, and wrf_interp):
- The "name" entry specifies the NetCDF variable name.

- The "level" entry specifies the dimensions to be used:

- (i,...,j,*,%) for a single field, where i,...,j specifies fixed
dimension values and *,* specifies the two dimensions for the
gridded field.

e.g.

field = [
{

CHAPTER 3. MET DATA I/0

// name = "QVAPOR";

// level = "(0,5,*%,%x)";

// 3,

// {

// name = "TMP_P850_ENS_MEAN";

// level = ["Ce,x)" 15

// X

//

// 1;

/7

// - Python (using PYTHON_NUMPY or PYTHON_XARRAY):

// - The Python interface for MET is described in Appendix F of the MET
// User’s Guide.

// - Two methods for specifying the Python command and input file name

// are supported. For tools which read a single gridded forecast and/or
// observation file, both options work. However, only the second option
// is supported for tools which read multiple gridded data files, such
// as Ensemble-Stat, Series-Analysis, and MTD.

//

// Option 1:

// - On the command line, replace the path to the input gridded data
// file with the constant string PYTHON_NUMPY or PYTHON_XARRAY.

// - Specify the configuration "name" entry as the Python command to be
// executed to read the data.

// - The "level" entry is not required for Python.

// e.g.

// field = [

// { name = "read_ascii_numpy.py data/python/fcst.txt FCST"; }

// 1;

//

// Option 2:

// - On the command line, leave the path to the input gridded data

// as is.

// - Set the configuration "file_type" entry to the constant

// PYTHON_NUMPY or PYTHON_XARRAY.

// - Specify the configuration "name" entry as the Python command to be
// executed to read the data, but replace the input gridded data file
// with the constant MET_PYTHON_INPUT_ARG.

// - The "level" entry is not required for Python.

// e.g.

// file_type = PYTHON_NUMPY;

// field = [

// { name = "read_ascii_numpy.py MET_PYTHON_INPUT_ARG FCST"; }

CHAPTER 3. MET DATA I/0

!/
//

fcst = {

//
//
//
//
//
//
//
//
//
/7
//
//
//
!/
!/
//
//
//
//

censor_thresh

censor_val
cnt_thresh
cnt_logic
wind_thresh
wind_logic
eclv_points
message_type
init_time
valid_time

lead_time

field = [
{
name = "APCP";
level = ["A03"]1;
cat_thresh = [»0.0, >=5.0];
}
1

1;

The "obs" entry

the observation

as shown in the

[1;

[1;

[NA 1;

UNION;

[NA]

UNION;

0.05;

["ADPSFC"];
"20120619_12";
"20120620_00";
"1om,

specifies the same type of information

as "fcst", but for

data. It will often be set to the same things as "fcst",

example below. However, when comparing forecast and

observation files of different format types, this entry will need to be set

in a non-trivial way. The length of the "obs.field" array must match the

length of the "fcst.field" array.

e.g.

obs = fcst;

or

fcst

{

censor_thresh = [];

censor_val = [1;
cnt_thresh = [NA];
cnt_logic = UNION;
wind_thresh = [NA];
wind_logic = UNION;

62

CHAPTER 3. MET DATA I/0

!/
//
//
//
//
//
//
/7
//
//
//
//
//
//
//
//
//
//
/7
//
//
//
/7
//
//
//
//
//
//
//
//
//
//
/7
//
//
//
!/
!/
//
//
//
//

field = [
{
name = "PWAT";
level = ["LO"];
cat_thresh = [>2.5];
}
1;
}
obs = {
censor_thresh = [];
censor_val = [1;
cnt_thresh = [NAT;
cnt_logic = UNION;
wind_thresh = [NA];
wind_logic = UNION;
field = [
{
name = "IWV";
level = ["LO"];
cat_thresh = [>25.0 1;
}
1;

- The "message_type" entry is an array of point observation message types

to be used. This only applies to the tools that verify against point

observations. This may be specified once at the top-level "obs
dictionary or separately for each "field" array element. In the example
shown above, this is specified in the "fcst" dictionary and copied to

|Iobs|l .

Simplified vertical level matching logic is applied for surface message
types. Observations for the following message types are assumed to be at
the surface, as defined by the default message_type_group_map:

ADPSFC, SFCSHP, MSONET

The "message_type" would be placed in the "field" array element if more

than one "message_type" entry is desired within the config file.

CHAPTER 3. MET DATA I/0

!/
//
//
//
//
//
//
/7
//
//
//
//
//
//
//
//
//
//
/7
//
//
//
/7
//
//
//
//
//
//
//
//
//
//
/7
//
//
//
!/
!/
//
//
//
//

e.g.

fcst = {
censor_thresh = [];
censor_val = [1;
cnt_thresh = [NA];
cnt_logic = UNION;
wind_thresh = [NA];
wind_logic = UNION;

field = [

{
message_type = ["ADPUPA"];
sid_inc = [1;
sid_exc = [1;
name = "TMP";
level = ["p250", "P500", "P700", "P850", "P1000" 1;
cat_thresh = [<=273.0];

},

{
message_type = ["ADPSFC" 1;
sid_inc = [1;
sid_exc = ["KDEN", "KDET"];
name = "TMP";
level = ["zZ2" 1;
cat_thresh = [<=273.0];

The "sid_inc" entry is an array of station ID groups indicating which
station ID’s should be included in the verification task. If specified,
only those station ID’s appearing in the list will be included. Note

that filtering by station ID may also be accomplished using the "mask.sid"
option. However, when using the '"sid_inc" option, statistics are reported
separately for each masking region.

The "sid_exc" entry is an array of station ID groups indicating which
station ID’s should be excluded from the verification task.

Each element in the "sid_inc" and "sid_exc" arrays is either the name of

a single station ID or the full path to a station ID group file name.

A station ID group file consists of a name for the group followed by a
list of station ID’s. All of the station ID’s indicated will be concatenated
into one long list of station ID’s to be included or excluded.

As with "message_type" above, the "sid_inc" and "sid_exc" settings can be

64

CHAPTER 3. MET DATA I/0 65

// placed in the in the "field" array element to control which station ID’s
// are included or excluded for each verification task.

//

obs = fcst;

/7

// The "climo_mean" dictionary specifies climatology mean data to be read by the
// Grid-Stat, Point-Stat, Ensemble-Stat, and Series-Analysis tools. It consists
// of several entires defining the climatology file names and fields to be used.
/7

// - The "file_names" entry specifies one or more file names containing

// the gridded climatology data to be used.

/7

// The "field" entry is an array of dictionaries, specified the same

// way as those in the "fcst" and "obs" dictionaries. If the array has

// length zero, not climatology data will be read and all climatology

// statistics will be written as missing data. Otherwise, the array

// length must match the length of "field" in the "fcst" and "obs"

// dictionaries.

//

// The "regrid" dictionary defines how the climatology data should be

// regridded to the verification domain.

//

// The "time_interp_method" entry specifies how the climatology data should
// be interpolated in time to the forecast valid time:

// - NEAREST for data closest in time

// - UW_MEAN for average of data before and after

// - DW_MEAN for linear interpolation in time of data before and after

//

// The "day_interval" entry is an integer specifying the spacing in days of
// the climatology data. Use 31 for monthly data or 1 for daily data.

// Use "NA" if the timing of the climatology data should not be checked.

//

// The "hour_interval" entry is an integer specifying the spacing in hours of
// the climatology data for each day. This should be set between O and 24,
// with 6 and 12 being common choices. Use "NA" if the timing of the

// climatology data should not be checked.

//

// The "day_interval" and "hour_interval" entries replace the deprecated

// entries "match_month", "match_day", and "time_step".

//

climo_mean = {

CHAPTER 3. MET DATA I/0 66

//
//
//
//
/7
//
//
//
/7
//
//
//
//
//
//
/7
//
//

file_name = ["/path/to/climatological/mean/files"];

field = [1;
regrid = {
method = NEAREST;
width =1;
vld_thresh = 0.5;
}
time_interp_method = DW_MEAN;
day_interval = 31;
hour_interal = 6;

The "climo_stdev" dictionary specifies climatology standard deviation data to

be read by the Grid-Stat, Point-Stat, Ensemble-Stat, and Series-Analysis

tools. The "climo_mean" and "climo_stdev" data define the climatological
distribution for each grid point, assuming normality. These climatological
distributions are used in two ways:

(1) To define climatological distribution percentile (CDP) thresholds which
can be used as categorical (cat_thresh), continuous (cnt_thresh), or wind
speed (wind_thresh) thresholds.

(2) To subset matched pairs into climatological bins based on where the
observation value falls within the climatological distribution. See the

"climo_cdf" dictionary.

This dictionary is identical to the "climo_mean" dictionary described above
but points to files containing climatological standard deviation values
rather than means. In the example below, this dictionary is set by copying

over the "climo_mean" setting and then updating the "file_name" entry.

climo_stdev = climo_mean;

climo_stdev = {

/7
//
/7
//
//
/7

file_name = ["/path/to/climatological/standard/deviation/files" 1];

The "climo_cdf" dictionary specifies how the the climatological mean
("climo_mean") and standard deviation ("climo_stdev") data are used to
evaluate model performance relative to where the observation value falls
within the climatological distribution. This dictionary consists of 3

entries:

CHAPTER 3. MET DATA I/0

!/
//
//
//
//
//
//
/7
//
//
//
//
//
//
//
//
//
//
/7
//
//
//
/7
//
//
//
//
//
//
//
//
//
//
/7
//
//

(1) The "cdf_bins" entry defines the climatological bins either as an integer
or an array of floats between O and 1.

(2) The "center_bins" entry may be set to TRUE or FALSE.

(3) The "write_bins" entry may be set to TRUE or FALSE.

MET uses the climatological mean and standard deviation to construct a normal
PDF at each observation location. The total area under the PDF is 1, and the
climatological CDF value is computed as the area of the PDF to the left of
the observation value. Since the CDF is a value between O and 1, the CDF

bins must span that same range.

When "cdf_bins" is set to an array of floats, they explicitly define the
climatological bins. The array must begin with 0.0 and end with 1.0.
For example:

cdf_bins = [0.0, 0.10, 0.25, 0.75, 0.90, 1.0 1;

When "cdf_bins" is set to an integer, it defines the number of bins to be
used. The "center_bins" flag indicates whether or not the bins should be
centered on 0.5. An odd number of bins can be centered or uncentered while
an even number of bins can only be uncentered. For example:

FALSE;) yields:

1]

4 uncentered bins (cdf_bins = 4; center_bins
0.0, 0.25, 0.50, 0.75, 1.0

5 uncentered bins (cdf_bins = 5; center_bins = FALSE;) yields:
0.0, 0.2, 0.4, 0.6, 0.8, 0.9, 1.0

5 centered bins (cdf_bins = 5; center_bins
0.0, 0.125, 0.375, 0.625, 0.875, 1.0

TRUE;) yields:

When multiple climatological bins are used, statistics are computed
separately for each bin, and the average of the statistics across those bins
is written to the output. When "write_bins" is true, the statistics for each
bin are also written to the output. The bin number is appended to the

contents of the VX_MASK output column.

Setting the number of bins to 1 effectively disables this logic by grouping

all pairs into a single climatological bin.

climo_cdf = {

//

cdf_bins
center_bins = TRUE; // or FALSE
FALSE; // or TRUE

11; // or an array of floats

write_bins

67

CHAPTER 3. MET DATA I/0

!/
//
//
//
//
//
//
/7
//
//
//
//
//
//

//
//
//
/7
//
//
//

When specifying climatology data for probability forecasts, either supply a
probabilistic "climo_mean" field or non-probabilistic "climo_mean" and
"climo_stdev" fields from which a normal approximation of the climatological

probabilities should be derived.

When "climo_mean" is set to a probability field with a range of [0, 1] and
"climo_stdev" is unset, the MET tools use the "climo_mean" probability values

directly to compute Brier Skill Score (BSS).

When "climo_mean" and "climo_stdev" are both set to non-probability fields,
the MET tools use the mean, standard deviation, and observation event
threshold to derive a normal approximation of the climatological

probabilities. Those derived probability values are used to compute BSS.

The "mask_missing_flag" entry specifies how missing data should be handled
in the Wavelet-Stat and MODE tools:

- "NONE" to perform no masking of missing data

- "FCST" to mask the forecast field with missing observation data

- "OBS" to mask the observation field with missing forecast data

- "BOTH" to mask both fields with missing data from the other

mask_missing_flag = BOTH;

//
//
//
//
//
//
//
//

The "obs_window" entry is a dictionary specifying a beginning ("beg"

entry) and ending ("end" entry) time offset values in seconds. It defines
the time window over which observations are retained for scoring. These time
offsets are defined relative to a reference time t, as [t+beg, t+end].

In PB2NC, the reference time is the PREPBUFR files center time. In

Point-Stat and Ensemble-Stat, the reference time is the forecast valid time.

obs_window = {

!/
!/
/7
//
//
//

beg = -5400;
end = 5400;

The "mask" entry is a dictionary that specifies the verification masking
regions to be used when computing statistics. Each mask defines a
geographic extent, and any matched pairs falling inside that area will be
used in the computation of statistics. Masking regions may be specified

in the following ways:

CHAPTER 3. MET DATA I/0

!/
//
//
//
//
//
//
/7
//
//
//
//
//
//
//
//
//
//
/7
//
//
//
/7
//
//
//
//
//
//
//
//
//
//
/7
//
//
//
!/
!/
//
//
//
//

- The "grid" entry is an array of named grids. It contains a
comma-separated list of pre-defined NCEP grids over which to perform
verification. An empty list indicates that no masking grids should be
used. The standard NCEP grids are named "GNNN" where NNN indicates the
three digit grid number. Supplying a value of "FULL" indicates that the
verification should be performed over the entire grid on which the data
resides.
http://www.nco.ncep.noaa.gov/pmb/docs/on388/tableb.html
The "grid" entry can be the gridded data file defining grid.

- The "poly" entry contains a comma-separated list of files that define
verification masking regions. These masking regions may be specified in
two ways: as a lat/lon polygon or using a gridded data file such as the

NetCDF output of the Gen-Vx-Mask tool.

- An ASCII file containing a lat/lon polygon.
Latitude in degrees north and longitude in degrees east.
The first and last polygon points are connected.
e.g. "MET_BASE/poly/EAST.poly" which consists of n points:
"poly_name latl lonl lat2 lon2... latn lonn"

Several masking polygons used by NCEP are predefined in the

installed share/met/poly directory. Creating a new polygon is as
simple as creating a text file with a name for the polygon followed
by the lat/lon points which define its boundary. Adding a new masking
polygon requires no code changes and no recompiling. Internally, the
lat/lon polygon points are converted into x/y values in the grid. The
lat/lon values for the observation points are also converted into x/y
grid coordinates. The computations performed to check whether the
observation point falls within the polygon defined is done in x/y

grid space.

- The NetCDF output of the gen_vx_mask tool.

- Any gridded data file that MET can read may be used to define a
verification masking region. Users must specify a description of the
field to be used from the input file and, optionally, may specify a
threshold to be applied to that field. Once this threshold is
applied, any grid point where the resulting field is 0, the mask is
turned off. Any grid point where it is non-zero, the mask is turned
on.

e.g. "sample.grib {name = \"TMP\"; level = \"Z2\";} >273"

CHAPTER 3. MET DATA I/0 70

!/
//
//
//
//
//
//
/7
//
//
//
//
//
//
//
//
//
//
/7
//
//
//
/7
//
//
//
//
//
//
//
//
//
//
/7
//

- The "sid" entry is an array of strings which define groups of
observation station ID’s over which to compute statistics. Each entry
in the array is either a filename of a comma-separated list.

- For a filename, the strings are whitespace-separated. The first
string is the mask "name" and the remaining strings are the station
ID’s to be used.

- For a comma-separated list, optionally use a colon to specify a name.
For "MY_LIST:SID1,SID2", name = MY_LIST and values = SID1 and SID2.

- For a comma-separated list of length one with no name specified, the
mask "name" and value are both set to the single station ID string.
For "SID1", name = SID1 and value = SID1.

- For a comma-separated list of length greater than one with no name
specified, the name is set to MASK_SID and the values are the station
ID’s to be used.

For "SID1,SID2", name = MASK_SID and values = SID1 and SID2.

- The "name" of the station ID mask is written to the VX_MASK column
of the MET output files.

- The "llpnt" entry is either a single dictionary or an array of
dictionaries. Each dictionary contains three entries, the '"name" for
the masking region, "lat_thresh", and "lon_thresh". The latitude and
longitude thresholds are applied directly to the point observation
latitude and longitude values. Only observations whose latitude and
longitude values meet this threshold criteria are used. A threshold set

to "NA" always evaluates to true.

The masking logic for processing point observations in Point-Stat and
Ensemble-Stat fall into two cateogries. The "sid" and "llpnt" options apply
directly to the point observations. Only those observations for the specified
station id’s are included in the "sid" masks. Only those observations meeting
the latitude and longitude threshold criteria are included in the "llpnt"

masks.

The "grid" and "poly" mask options are applied to the grid points of the

verification domain. Each grid point is determined to be inside or outside

// the masking region. When processing point observations, their latitude and
// longitude values are rounded to the nearest grid point of the verification
// domain. If the nearest grid point is inside the mask, that point observation
// is included in the mask.
/7
mask = {

grid = ["FULL" 1;

poly = ["MET_BASE/poly/LMV.poly",

CHAPTER 3. MET DATA I/0

"MET_BASE/out/gen_vx_mask/CONUS_poly.nc",
"MET_BASE/sample_fcst/2005080700/wrfprs_rucl13_12.tm00_G212 \
{name = \"TMP\"; level = \"Z2\";} >273"

1
sid = ["CONUS.stations"];
1llpnt = [{ name = "LAT30T040";
lat_thresh = >=30&&<=40;
lon_thresh = NA; 7},
{ name = "BOX";

lat_thresh = >=20&&<=40;
lon_thresh = >=-110&&<=-90; } 1;

//

// The "ci_alpha" entry is an array of floats specifying the values for alpha
// to be used when computing confidence intervals. Values of alpha must be

// between O and 1. The confidence interval computed is 1 minus the alpha

// value. Therefore, an alpha value of 0.05 corresponds to a 95J confidence
// interval.

/7

ci_alpha = [0.05, 0.10];

//
// The "boot" entry defines the parameters to be used in calculation of
// bootstrap confidence intervals. The interval variable indicates what method

// should be used for computing bootstrap confidence intervals:

//

// - The "interval" entry specifies the confidence interval method:

// - "BCA" for the BCa (bias-corrected percentile) interval method is

// highly accurate but computationally intensive.

// - "PCTILE" uses the percentile method which is somewhat less accurate
// but more efficient.

//

// - The "rep_prop" entry specifies a proportion between O and 1 to define
// the replicate sample size to be used when computing percentile

// intervals. The replicate sample size is set to boot_rep_prop * n,

// where n is the number of raw data points.

//

// When computing bootstrap confidence intervals over n sets of matched
// pairs, the size of the subsample, m, may be chosen less than or equal to
// the size of the sample, n. This variable defines the size of m as a

// proportion relative to the size of n. A value of 1 indicates that the

// size of the subsample, m, should be equal to the size of the sample, n.

71

CHAPTER 3. MET DATA I/0

/7

// - The "n_rep" entry defines the number of subsamples that should be taken
// when computing bootstrap confidence intervals. This variable should be
// set large enough so that when confidence intervals are computed multiple
// times for the same set of data, the intervals do not change much.

// Setting this variable to zero disables the computation of bootstrap

// confidence intervals, which may be necessary to run MET in realtime or
// near-realtime over large domains since bootstrapping is computationally
// expensive. Setting this variable to 1000 indicates that bootstrap

// confidence interval should be computed over 1000 subsamples of the

// matched pairs.

//

// - The "rng" entry defines the random number generator to be used in the

// computation of bootstrap confidence intervals. Subsamples are chosen at
// random from the full set of matched pairs. The randomness is determined
// by the random number generator specified. Users should refer to detailed
// documentation of the GNU Scientific Library for a listing of the random
// number generators available for use.

// http://www.gnu.org/software/gsl/manual/html_node/

// Random-Number-Generator-Performance.html

/7

// - The "seed" entry may be set to a specific value to make the computation
// of bootstrap confidence intervals fully repeatable. When left empty

// the random number generator seed is chosen automatically which will lead
// to slightly different bootstrap confidence intervals being computed each
// time the data is run. Specifying a value here ensures that the bootstrap
// confidence intervals will be reproducable over multiple runs on the same
// computing platform.

//

boot = {

!/
!/
/7
//
//
//

interval = PCTILE;
rep_prop = 1.0;

n_rep = 0;

rng = "mt19937";

seed = """y

The "interp" entry is a dictionary that specifies what interpolation or
smoothing (for the Grid-Stat tool) methods should be applied.

This dictionary may include the following entries:

- The "field" entry specifies to which field(s) the interpolation method

72

CHAPTER 3. MET DATA I/0 73

!/
//
//
//
//
//
//
/7
//
//
//
//
//
//
//
//
//
//
/7
//
//
//
/7
//
//
//
//
//
//
//
//
//
//
/7
//
//
//
!/
!/
//
//
//
//

should be applied. This does not apply when doing point verification
with the Point-Stat or Ensemble-Stat tools:

- "FCST" to interpolate/smooth the forecast field.

- "0BS" to interpolate/smooth the observation field.

- "BOTH" to interpolate/smooth both the forecast and the observation.

The "vld_thresh" entry specifies a number between O and 1. When
performing interpolation over some neighborhood of points the ratio of
the number of valid data points to the total number of points in the
neighborhood is computed. If that ratio is less than this threshold,

the matched pair is discarded. Setting this threshold to 1, which is the
default, requires that the entire neighborhood must contain valid data.
This variable will typically come into play only along the boundaries of

the verification region chosen.

The "shape" entry may be set to SQUARE or CIRCLE to specify the shape

of the smoothing area.

The "type" entry is an array of dictionaries, each specifying an
interpolation method. Interpolation is performed over a N by N box
centered on each point, where N is the width specified. Each of these

dictionaries must include:

- The "width" entry is an integer which specifies the size of the
interpolation area. The area is either a square or circle containing
the observation point. The width value specifies the width of the
square or diameter of the circle. A width value of 1 is interpreted
as the nearest neighbor model grid point to the observation point.
For squares, a width of 2 defines a 2 x 2 box of grid points around
the observation point (the 4 closest model grid points), while a width
of 3 defines a 3 x 3 box of grid points around the observation point,
and so on. For odd widths in grid-to-point comparisons
(i.e. Point-Stat), the interpolation area is centered on the model
grid point closest to the observation point. For grid-to-grid

comparisons (i.e. Grid-Stat), the width must be odd.

- The "method" entry specifies the interpolation procedure to be

applied to the points in the box:

- MIN for the minimum value

- MAX for the maximum value

- MEDIAN for the median value

- UW_MEAN for the unweighted average value

- DW_MEAN for the distance-weighted average value

CHAPTER 3. MET DATA I/0

where weight = distance™-2

a least-squares fit

bilinear interpolation (width = 2)
the nearest grid point (width = 1)
the value closest to the observation

the
the
the
the
the
the
the

upper left grid point (width = 1)

upper right grid point (width = 1)

lower right grid point (width = 1)

lower left grid point (width = 1)

Gaussian kernel

maximum value followed by a Gaussian smoother

nearest grid point where the land/sea mask

and geography criteria are satisfied.

The BUDGET, FORCE, GAUSSIAN, and MAXGAUSS methods are not valid for

interpolating to point locations. For grid-to-grid comparisons, the

only valid smoothing methods are MIN, MAX, MEDIAN, UW_MEAN, and

//
// - LS_FIT for
// - BILIN for
// - NEAREST for
// - BEST for
// - UPPER_LEFT for
// - UPPER_RIGHT for
// - LOWER_RIGHT for
// - LOWER_LEFT for
// - GAUSSIAN for
// - MAXGAUSS for
// - GEOG_MATCH for
//
//
//
//
//
// GAUSSIAN, and MAXGAUSS.
//
interp = {

field = BOTH;

vld_thresh = 1.0;

shape = SQUARE;

type = [

{
method = UW_MEAN;
width = 1;
}

1;
}
//
//

//
//
//
!/
!/
//
//
//
//

The "nbrhd" entry is a dictionary that is very similar to the "interp"

entry. It specifies information for computing neighborhood statistics in

Grid-Stat. This dictionary may include the following entries:

- The "field" entry specifies to which field(s) the computation of

fractional coverage should be applied. Grid-Stat processes each

combination of categorical threshold and neighborhood width to

derive the fractional coverage fields from which neighborhood

statistics are calculated. Users who have computed fractional

coverage fields outside of MET can use this option to disable

74

CHAPTER 3. MET DATA I/0

!/
//
//
//
//
//
//
/7
//
//
//
//
//
//
//
//
//
//
/7

nbrhd

//
//
//
//
//
//
/7
//
//
//
!/
!/
//
//
//
//

these computations. Instead, the raw input values will be
used directly to compute neighborhood statistics:
- "BOTH" to compute fractional coverage for both the forecast
and the observation fields (default).
- "FCST" to only process the forecast field.
- "OBS" to only process the observation field.

- "NONE" to process neither field.

- The "vld_thresh" entry is described above.

- The "shape" entry defines the shape of the neighborhood.
Valid values are "SQUARE" or "CIRCLE"

- The "width" entry is as described above, and must be odd.
- The "cov_thresh" entry is an array of thresholds to be used when

computing categorical statistics for the neighborhood fractional

coverage field.

{

field BOTH;
vld_thresh 1.0;

shape = SQUARE;
width [1];

[>=0.5 1;

1]

cov_thresh

The "fourier" entry is a dictionary which specifies the application of the
Fourier decomposition method. It consists of two arrays of the same length
which define the beginning and ending wave numbers to be included. If the
arrays have length zero, no Fourier decomposition is applied. For each array
entry, the requested Fourier decomposition is applied to the forecast and
observation fields. The beginning and ending wave numbers are indicated in
the MET ASCII output files by the INTERP_MTHD column (e.g. WV1_0-3 for waves
0 to 3 or WV1_10 for only wave 10). This 1-dimensional Fourier decomposition
is computed along the Y-dimension only (i.e. the columns of data). It is only
defined when each grid point contains valid data. If either input field

contains missing data, no Fourier decomposition is computed.

The available wave numbers start at O (the mean across each row of data)
and end at (Nx+1)/2 (the finest level of detail), where Nx is the X-dimension

of the verification grid:

75

CHAPTER 3. MET DATA I/0

/7
// - The "wave_ld_beg" entry is an array of integers specifying the first
// wave number to be included.
//
// - The "wave_ld_end" entry is an array of integers specifying the last
// wave number to be included.
//
fourier = {

wave_1d_beg = [0, 4, 10 1;

wave_1d_end = [3, 9, 20 1;
3
/7
// The "gradient" entry is a dictionary which specifies the number and size of
// gradients to be computed. The "dx" and "dy" entries specify the size of the
// gradients in grid units in the X and Y dimensions, respectively. dx and dy
// are arrays of integers (positive or negative) which must have the same
// length, and the GRAD output line type will be computed separately for each
// entry. When computing gradients, the value at the (x, y) grid point is
// replaced by the value at the (x+dx, y+dy) grid point minus the value at
/7 (x, y).
//
// This configuration option may be set separately in each "obs.field" entry.
/7
gradient = {

dx = [1 1;

day = [113
3
//
// The "distance_map" entry is a dictionary containing options related to the
// distance map statistics in the DMAP output line type. The "baddeley_p" entry
// is an integer specifying the exponent used in the Lp-norm when computing the
// Baddeley Delta metric. The "baddeley_max_dist" entry is a floating point
// number specifying the maximum allowable distance for each distance map. Any
// distances larger than this number will be reset to this constant. A value of
// NA indicates that no maximum distance value should be used. The "fom_alpha"
// entry is a floating point number specifying the scaling constant to be used
// when computing Pratt’s Figure of Merit. The "zhu_weight" specifies a value
// between O and 1 to define the importance of the RMSE of the binary fields
// (i.e. amount of overlap) versus the mean-error distance (MED). The default
// value of 0.5 gives equal weighting.

//

CHAPTER 3. MET DATA I/0 7

// This configuration option may be set separately in each "obs.field" entry.
/7

distance_map = {

baddeley_p = 2;
baddeley_max_dist = NA;
fom_alpha =0.1;
zhu_weight = 0.5;
}
/7

// The "land_mask" dictionary defines the land/sea mask field which is used
// when verifying at the surface. For point observations whose message type
// appears in the "LANDSF" entry of the "message_type_group_map" setting,

// only use forecast grid points where land = TRUE. For point observations

// whose message type appears in the "WATERSF" entry of the

// "message_type_group_map" setting, only use forecast grid points where

// land = FALSE. The "flag" entry enables/disables this logic. If the

// "file_name" entry is left empty, then the land/sea is assumed to exist in
// the input forecast file. Otherwise, the specified file(s) are searched for
// the data specified in the "field" entry. The "regrid" settings specify how
// this field should be regridded to the verification domain. Lastly, the

// "thresh" entry is the threshold which defines land (threshold is true) and
// water (threshold is false).

// land_mask.flag may be set separately in each "obs.field" entry.

//

land_mask = {
flag = FALSE;
file_name = [];
field = { name = "LAND"; level = "LO"; }
regrid = { method = NEAREST; width = 1; }
thresh = eql;

¥

//

// The "topo_mask" dictionary defines the model topography field which is used
// when verifying at the surface. This logic is applied to point observations
// whose message type appears in the "SURFACE" entry of the

// "message_type_group_map" setting. Only use point observations where the

// topo - station elevation difference meets the "use_obs_thresh" threshold

// entry. For the observations kept, when interpolating forecast data to the

// observation location, only use forecast grid points where the topo - station
// difference meets the "interp_fcst_thresh" threshold entry. The flag entry

// enables/disables this logic. If the "file_name" is left empty, then the

CHAPTER 3. MET DATA I/0 78

!/
//
//
//
//
//

topography data is assumed to exist in the input forecast file. Otherwise,
the specified file(s) are searched for the data specified in the "field"
entry. The "regrid" settings specify how this field should be regridded to
the verification domain.

topo_mask.flag may be set separately in each "obs.field" entry.

topo_mask = {

//
//
//
/7
//
//
//
/7
//
//
//
//
//
//
//
//
//
//
/7
//
//
//
!/
!/
//
//
//
//

FALSE;

0;

{ name = "TOP0"; level = "LO"; }
{ method = BILIN; width = 2; }
ge-100&&1e100;

ge-50&&1e50;

flag

file_name
field

regrid

use_obs_thresh

interp_fcst_thresh

The "hira" entry is a dictionary that is very similar to the "interp" and
"nbrhd" entries. It specifies information for applying the High Resolution
Assessment (HiRA) verification logic in Point-Stat. HiRA is analogous to
neighborhood verification but for point observations. The HiRA logic
interprets the forecast values surrounding each point observation as an
ensemble forecast. These ensemble values are processed in two ways. First,
the ensemble continuous statistics (ECNT) and ranked probability score (RPS)
line types are computed directly from the ensemble values. Second, for each
categorical threshold specified, a fractional coverage value is computed as
the ratio of the nearby forecast values that meet the threshold criteria.
Point-Stat evaluates those fractional coverage values as if they were a
probability forecast. When applying HiRA, users should enable the matched
pair (MPR), probabilistic (PCT, PSTD, PJC, or PRC), or ensemble statistics
(ECNT or PRS) line types in the output_flag dictionary. The number of
probabilistic HiRA output lines is determined by the number of categorical
forecast thresholds and HiRA neighborhood widths chosen.

This dictionary may include the following entries:

- The "flag" entry is a boolean which toggles "hira"
on (TRUE) and off (FALSE).

- The "width" entry specifies the neighborhood size. Since HiRA applies

to point observations, the width may be even or odd.

- The "vld_thresh" entry is as described above.

- The "cov_thresh" entry is an array of probabilistic thresholds used to

CHAPTER 3. MET DATA I/0

// populate the Nx2 probabilistic contingency table written to the PCT
// output line and used for computing probabilistic statistics.
//
// - The "shape" entry defines the shape of the neighborhood.
// Valid values are "SQUARE" or "CIRCLE"
/7
// - The "prob_cat_thresh" entry defines the thresholds which define ensemble
// probabilities from which to compute the ranked probability score output.
// If left empty but climatology data is provided, the climo_cdf thresholds
// will be used instead.
//
hira = {
flag = FALSE;
width =[2 3,4,51;
vld_thresh =1.0;
cov_thresh = [==0.25 1;
shape = SQUARE;
prob_cat_thresh = [];
}
/7

// The "output_flag" entry is a dictionary that specifies what verification
// methods should be applied to the input data. Options exist for each
// output line type from the MET tools. Each line type may be set to one of:

// - "NONE" to skip the corresponding verification method
// - "STAT" to write the verification output only to the ".stat" output file
// - "BOTH" to write to the ".stat" output file as well the optional
// "_type.txt" file, a more readable ASCII file sorted by line type.
//
output_flag = {
fho = NONE; // Forecast, Hit, Observation Rates
ctc = NONE; // Contingency Table Counts
cts = NONE; // Contingency Table Statistics
mctc = NONE; // Multi-category Contingency Table Counts
mcts = NONE; // Multi-category Contingency Table Statistics
cnt = NONE; // Continuous Statistics
s1112 = NONE; // Scalar L1L2 Partial Sums
sall1l2 = NONE; // Scalar Anomaly L1L2 Partial Sums when climatological data
// is supplied
v1112 = NONE; // Vector L1L2 Partial Sums
valll2 = NONE; // Vector Anomaly L1L2 Partial Sums when climatological data

// is supplied
pct = NONE; // Contingency Table Counts for Probabilistic Forecasts

CHAPTER 3. MET DATA I/0

//
//
//
//
//
//
//
//
//
//
//
//
//

pstd =

pjc =

prc =

eclv =
mpr =
nbrctc =
nbrcts =
nbrcnt =
isc =
ecnt =
rps =
rhist =
phist =
orank =
ssvar =

grad =

NONE;

NONE;

NONE;

NONE;
NONE;
NONE;
NONE;
NONE;
NONE;
NONE;
NONE;
NONE;
NONE;
NONE;
NONE;
NONE;

//
//
//
/7
//
//
//
/7
//
//
//
/7
//
//
/7
!/
//
//
//

Contingency Table Statistics for Probabilistic Forecasts

with Dichotomous outcomes

Joint and Conditional Factorization for Probabilistic
Forecasts

Receiver Operating Characteristic for Probabilistic
Forecasts

Economic Cost/Loss Value derived from CTC and PCT lines
Matched Pair Data

Neighborhood Contingency Table Counts

Neighborhood Contingency Table Statistics
Neighborhood Continuous Statistics

Intensity-Scale

Ensemble Continuous Statistics

Ranked Probability Score Statistics

Rank Histogram

Probability Integral Transform Histogram

Observation Rank

Spread Skill Variance

Gradient statistics (S1 score)

The "nc_pairs_flag" can be set either to a boolean value or a dictionary

in either Grid-Stat, Wavelet-Stat or MODE. The dictionary (with slightly

different entries for the various tools ... see the default config files)

has individual boolean settings turning on or off the writing out of the

various fields in the netcdf output file for the tool. Setting all

dictionary entries to false means the netcdf file will not be generated.

"nc_pairs_flag" can also be set to a boolean value. In this case, a value

of true means to just accept the default settings (which will turn on

the output of all the different fields). A value of false means no

netcdf output will be generated.

nc_pairs_flag = {

latlon
raw

diff
climo
climo_cdp
weight
nbrhd

fourier

TRUE;
TRUE;
TRUE;
TRUE;
FALSE;
FALSE;
FALSE;
FALSE;

80

CHAPTER 3. MET DATA I/0

gradient = FALSE;
distance_map = FLASE;
apply_mask = TRUE;
}
/7

// The "nc_pairs_var_name" entry specifies a string for each verification task
// in Grid-Stat. This string is parsed from each "obs.field" dictionary entry
// and is used to construct variable names for the NetCDF matched pairs output
// file. The default value of an empty string indicates that the "name" and

// "level" strings of the input data should be used. If the input data "level"
// string changes for each run of Grid-Stat, using this option to define a

// constant string may make downstream processing more convenient.

//

// e.g. nc_pairs_var_name = "TMP";

/7

nc_pairs_var_name = "";

//

// The "nc_pairs_var_suffix" entry is similar to the "nc_pairs_var_name" entry

// described above. It is also parsed from each "obs.field" dictionary entry.

// However, it defines a suffix to be appended to the output variable name.

// This enables the output variable names to be made unique. For example, when
// verifying height for multiple level types but all with the same level value,
// use this option to customize the output variable names.

//

// e.g. nc_pairs_var_suffix = "TROP0"; (for the tropopause height)

// nc_pairs_var_suffix = "FREEZING"; (for the freezing level height)
//

// NOTE: This option was previously named '"nc_pairs_var_str", which is
// now deprecated.

//

nc_pairs_var_suffix = "";

/7

// The "ps_plot_flag" entry is a boolean value for Wavelet-Stat and MODE
// indicating whether a PostScript plot should be generated summarizing
// the verification.

/7

ps_plot_flag = TRUE;

//
// The "grid_weight_flag" specifies how grid weighting should be applied

81

CHAPTER 3. MET DATA I/0 82

// during the computation of continuous statistics and partial sums. It is

// meant to account for grid box area distortion and is often applied to global
// Lat/Lon grids. It is only applied for grid-to-grid verification in Grid-Stat
// and Ensemble-Stat and is not applied for grid-to-point verification.

// Three grid weighting options are currently supported:

/7

// - "NONE" to disable grid weighting using a constant weight (default).

// - "COS_LAT" to define the weight as the cosine of the grid point latitude.
// This an approximation for grid box area used by NCEP and WMO.

// - "AREA" to define the weight as the true area of the grid box (km~2).

//

// The weights are ultimately computed as the weight at each grid point divided
// by the sum of the weights for the current masking region.

//

grid_weight_flag = NONE;

/7

// The "rank_corr_flag" entry is a boolean to indicate whether Kendall’s Tau
// and Spearman’s Rank Correlation Coefficients (in the CNT line type) should
// be computed. Computing them over large datasets is computationally

// intensive and slows down the runtime significantly.

//

rank_corr_flag = FALSE;

/7
// The "duplicate_flag" entry specifies how to handle duplicate point

// observations in Point-Stat and Ensemble-Stat:

/7

// - "NONE" to use all point observations (legacy behavior)

// - "UNIQUE" only use a single observation if two or more observations

// match. Matching observations are determined if they contain identical
// latitude, longitude, level, elevation, and time information.

// They may contain different observation values or station IDs

//

// The reporting mechanism for this feature can be activated by specifying
// a verbosity level of three or higher. The report will show information
// about where duplicates were detected and which observations were used
// in those cases.

//

duplicate_flag = NONE;

//

// The "obs_summary" entry specifies how to compute statistics on

CHAPTER 3. MET DATA I/0 83

// observations that appear at a single location (lat,lon,level,elev)
// in Point-Stat and Ensemble-Stat. Eight techniques are
// currently supported:

//

// - "NONE" to use all point observations (legacy behavior)

// - "NEAREST" use only the observation that has the valid

// time closest to the forecast valid time

// - "MIN" use only the observation that has the lowest value

// - "MAX" use only the observation that has the highest value
// - "UW_MEAN" compute an unweighted mean of the observations

// - "DW_MEAN" compute a weighted mean of the observations based
// on the time of the observation

// - "MEDIAN" use the median observation

// - "PERC" use the Nth percentile observation where N = obs_perc_value
//

// The reporting mechanism for this feature can be activated by specifying
// a verbosity level of three or higher. The report will show information
// about where duplicates were detected and which observations were used
// in those cases.

/7

obs_summary = NONE;

//
// Percentile value to use when obs_summary = PERC
//

obs_perc_value = 50;

/7

// The "obs_quality" entry specifies the quality flag values that are to be
// retained and used for verification. An empty list signifies that all

// point observations should be used, regardless of their quality flag value.
// The quality flag values will vary depending on the original source of the
// observations. The quality flag values to retain should be specified as

// an array of strings, even if the values themselves are numeric.

/7

obs_quality = ["1", "2", "3", "9"];

//

// The "met_data_dir" entry specifies the location of the internal MET data
// sub-directory which contains data files used when generating plots. It
// should be set to the installed share/met directory so the MET tools can

// locate the static data files they need at run time.

//

CHAPTER 3. MET DATA I/0 84

met_data_dir = "MET_BASE";

//
// The "fcst_raw_plot" entry is a dictionary used by Wavelet-Stat and MODE
// containing colortable plotting information for the plotting of the raw

// forecast field:

//

// - The "color_table" entry specifies the location and name of the

// colortable file to be used.

/7

// - The "plot_min" and "plot_max" entries specify the range of data values.
// If they are both set to 0, the MET tools will automatically rescale

// the colortable to the range of values present in the data. If they

// are not both set to 0, the MET tools will rescale the colortable using
// their values.

/7

fcst_raw_plot = {
color_table = "MET_BASE/colortables/met_default.ctable";
plot_min = 0.0;
plot_max = 0.0;

//
// The "obs_raw_plot", "wvlt_plot", and "object_plot" entries are dictionaries
// similar to the "fcst_raw_plot" described above.

//

/7

// The "tmp_dir" entry is a string specifying the location where temporary
// files should be written.

/7

tmp_dir = "/tmp";

//

// The "output_prefix" entry specifies a string to be included in the output
// file name. The MET statistics tools construct output file names that

// include the tool name and timing information. You can use this setting

// to modify the output file name and avoid naming conflicts for multiple runs
// of the same tool.

/7

output_prefix = "";

//

CHAPTER 3. MET DATA I/0 85

// The "version" entry specifies the version number of the configuration file.
// The configuration file version number should match the version number of
// the MET code being run. This value should generally not be modified.

//

version = "V6.0";

//

// This feature was implemented to allow additional processing of observations
// with high temporal resolution. The "flag" entry toggles the "time_summary"
// on (TRUE) and off (FALSE). Obs may be summarized across the user specified
// time period defined by the "beg" and "end" entries. The "step" entry defines
// the time between intervals in seconds. The "width" entry specifies the

// summary interval in seconds. It may either be set as an integer number of

// seconds for a centered time interval or a dictionary with beginning and

// ending time offsets in seconds.

//

// e.g. beg = "00";

// end = "235959";

// step = 300;

// width = 600;

// width = { beg = -300; end = 300; }
//

// This example does a 10-minute time summary every 5 minutes throughout the

// day. The first interval will be from 23:55:00 the previous day through

// 00:04:59 of the current day. The second interval will be from 0:00:00

// through 00:09:59. And so on.

//

// The two "width" settings listed above are equivalent. Both define a centered
// 10-minute time interval. Use the "beg" and "end" entries to define

// uncentered time intervals. The following example requests observations for
// one hour prior:

// width = { beg = -3600; end = 0; }

//

// The summaries will only be calculated for the specified GRIB codes.

// The supported summaries are "min" (minimum), "max" (maximum), "range",

// "mean", "stdev" (standard deviation), "median" and "p##" (percentile, with
// the desired percentile value specified in place of ##).

//

// The "vld_freq" and "vld_thresh" options may be used to require that a certain
// ratio of observations must be present and contain valid data within the time
// window in order for a summary value to be computed. The '"vld_freq" entry

// defines the expected observation frequency in seconds. For example, when

// summarizing 1-minute data (vld_freq = 60) over a 30 minute time window,

CHAPTER 3. MET DATA I/0 86

// setting "vld_thresh = 0.5" requires that at least 15 of the 30 expected
// observations be present and valid for a summary value to be written. The
// default "vld_thresh = 0.0" setting will skip over this logic.
//
// The variable names are saved to NetCDF file if they are given instead of
// grib_codes which are not available for non GRIB input. The "obs_var" option
// was added and works like "grib_code" option (string value VS. int value).
// They are inclusive (union). All variables are included if both options
// are empty. Note: grib_code 11 is equivalent to obs_var "TMP".
/7
time_summary = {

flag = FALSE;

beg = "000000";

end = "235959";

step = 300;

width = 600;

// width = { beg = -300; end = 300; }

grib_code = [11, 204, 211];

obs_var = [];

type = "min", "max", "range", "mean", "stdev", "median", "p80" 1];
vld_freq = 0;

vld_thresh = 0.0;

LI1177
//

// Settings specific to individual tools

//
LI1177

LIT11777
//

// EnsembleStatConfig_default

/7
LIT177

//

// The "ens" entry is a dictionary that specifies the fields for which ensemble

// products should be generated. This is very similar to the "fcst" and "obs

// entries. This dictionary may include the following entries:
//

// - The "censor_thresh" and "censor_val" entries are described above.

//

CHAPTER 3. MET DATA I/0

!/
//
//
//
//
//
//
/7
//
//
//
//
//
//
//
//
//

ens

//
//
//
//
//
//
//
//
//
//
//

- The "ens_thresh" entry specifies a proportion between O and 1 to define

the required ratio of valid input ensemble member files. If the ratio
of valid input ensemble files to expected ones is too low, the tool

will error out.

The "vld_thresh" entry specifies a proportion between O and 1 to
define the required ratio of valid data points. When computing
ensemble products, if the ratio of valid data values is too low, the

ensemble product will be set to bad data for that point.

The "field" entry is as described above. However, in this case, the
cat_thresh entry is used for calculating probabilities of exceeding
the given threshold. In the default shown below, the probability of
accumulated precipitation > 0.0 mm and > 5.0 mm will be calculated
from the member accumulated precipitation fields and stored as an

ensemble field.

censor_thresh = [];

censor_val = [1;

ens_thresh
vld_thresh

1.0;
1.0;

field = [

name "APCP";
IIA03l| ;

[0.0, >=5.0 1;

level

cat_thresh

The nbrhd_prob dictionary defines the neighborhoods used to compute NEP
and NMEP output. The neighborhood shape is a SQUARE or CIRCLE centered on

the current point, and the width array specifies the width of the square or

diameter of the circle as an odd integer. The vld_thresh entry is a number

between 0 and 1 specifying the required ratio of valid data in the

neighborhood for an output value to be computed.

If ensemble_flag.nep is set to TRUE, NEP output is created for each

combination of the categorical threshold (cat_thresh) and neighborhood width

specified.

87

CHAPTER 3. MET DATA I/0 88

!/

nbrhd_prob = {

/7
//
//
//
!/
//
//
//
//
//

width =[51;
shape = CIRCLE;
vld_thresh = 0.0;

Similar to the interp dictionary, the nmep_smooth dictionary includes a type
array of dictionaries to define one or more methods for smoothing the NMEP
data. Setting the interpolation method to nearest neighbor (NEAREST)
effectively disables this smoothing step.

If ensemble_flag.nmep is set to TRUE, NMEP output is created for each
combination of the categorical threshold (cat_thresh), neighborhood width
(nbrhd_prob.width), and smoothing method (nmep_smooth.type) specified.

nmep_smooth = {

//
//
//
//
//
//
//
!/
//
//
//
//
//

vld_thresh = 0.0;
shape = CIRCLE;
gaussian_dx = 81.27;

gaussian_radius = 120;

type = [
{
method = GAUSSIAN;
width = 1;
}
1

The fcst and obs entries define the fields for which Ensemble-Stat should
compute rank histograms, probability integral transform histograms,
spread-skill variance, relative position histograms, economic value, and

other statistics.

The "ens_ssvar_bin_size" entry sets the width of the variance bins. Smaller
bin sizes provide the user with more flexibility in how data are binned
during analysis. The actual variance of the ensemble data will determine the

number of bins written to the SSVAR output lines.

The "ens_phist_bin_size" is set to a value between O and 1. The number of

bins for the probability integral transform histogram in the PHIST line type

CHAPTER 3. MET DATA I/0 89

// is defined as the ceiling of 1.0 / ens_phist_bin_size. For example, a bin

// size of 0.05 results in 20 PHIST bins.

//

// The "prob_cat_thresh" entry is an array of thresholds to be applied in the
// computation of the ranked probability score. If left empty, but climatology
// data is provided, the climo_cdf thresholds will be used instead.

//
fcst = {
message_type = ["ADPUPA" 1;
ens_ssvar_bin_size = 1;
ens_phist_bin_size = 0.05;
prob_cat_thresh = [1;
field = [
{
name = "APCP";
level = ["AO3" 1;
}
1;
}
//

// The "nc_var_str" entry specifies a string for each ensemble field and

// verification task in Ensemble-Stat. This string is parsed from each

// "ens.field" and "obs.field" dictionary entry and is used to customize

// the variable names written to the NetCDF output file. The default is an

// empty string, meaning that no customization is applied to the output variable
// names. When the Ensemble-Stat config file contains two fields with the same
// name and level value, this entry is used to make the resulting variable names
// unique.

// e.g. nc_var_str = "MIN";

/7

nc_var_str = "";

/7

// The "obs_thresh" entry is an array of thresholds for filtering observation
// values prior to applying ensemble verification logic. The default setting

// of NA means that no observations should be filtered out. Verification output
// will be computed separately for each threshold specified. This option may be
// set separately for each obs.field entry.

//

obs_thresh = [NA 1;

CHAPTER 3. MET DATA I/0

/7

// Setting "skip_const" to true tells Ensemble-Stat to exclude pairs where all
// the ensemble members and the observation have a constant value. For example,
// exclude points with zero precipitation amounts from all output line types.
// This option may be set separately for each obs.field entry. When set to

// false, constant points are included and the observation rank is chosen at
// random.

//

skip_const = FALSE;

//

// Observation error options

// Set dist_type to NONE to use the observation error table instead.

// May be set separately in each "obs.field" entry.

// The obs_error dictionary controls how observation error information should be
// handled. Observation error information can either be specified directly in
// the configuration file or by parsing information from an external table file.
// By default, the MET_BASE/data/table_files/obs_error_table.txt file is read
// but this may be overridden by setting the $MET_0BS_ERROR_TABLE environment
// variable at runtime.

/7

// The flag entry toggles the observation error logic on (TRUE) and off (FALSE).
// When flag is TRUE, random observation error perturbations are applied to the
// ensemble member values. No perturbation is applied to the observation values
// but the bias scale and offset values, if specified, are applied.

//

// The dist_type entry may be set to NONE, NORMAL, EXPONENTIAL, CHISQUARED,

// GAMMA, UNIFORM, or BETA. The default value of NONE indicates that the

// observation error table file should be used rather than the configuration

// file settings.

/7

// The dist_parm entry is an array of length 1 or 2 specifying the parameters
// for the distribution selected in dist_type. The NORMAL, EXPONENTIAL, and

// CHISQUARED distributions are defined by a single parameter. The GAMMA,

// UNIFORM, and BETA distributions are defined by two parameters. See the GNU
// Scientific Library Reference Manual for more information on these

// distributions:

// https://www.gnu.org/software/gsl/manual

/7

// The inst_bias_scale and inst_bias_offset entries specify bias scale and

// offset values that should be applied to observation values prior to

// perturbing them. These entries enable bias-correction on the fly.

//

CHAPTER 3. MET DATA I/0 91

!/
//
//
//
//
//
//
/7
//
//

Defining the observation error information in the configuration file is
convenient but limited. If defined this way, the random perturbations for all
points in the current verification task are drawn from the same distribution.
Specifying an observation error table file instead (by setting dist_type =
NONE;) provides much finer control, enabling the user to define observation
error distribution information and bias-correction logic separately for each
observation variable name, message type, PREPBUFR report type, input report
type, instrument type, station ID, range of heights, range of pressure

levels, and range of values.

obs_error = {

//
//
/7
//
//
//
//
//
//
//
//
//
//
/7
//
//
//
!/
!/

flag = FALSE; // TRUE or FALSE

dist_type = NONE; // Distribution type

dist_parm = [1; // Distribution parameters
inst_bias_scale = 1.0; // Instrument bias scale adjustment
inst_bias_offset = 0.0; // Instrument bias offset adjustment
min = NA; // Valid range of data

max = NA;

The "ensemble_flag" entry is a dictionary of boolean value indicating
which ensemble products should be generated:

- "mean" for the simple ensemble mean

- "stdev" for the ensemble standard deviation

- "minus" for the mean minus one standard deviation

- "plus" for the mean plus one standard deviation

- "min" for the ensemble minimum

- "max"

for the ensemble maximum

- "range" for the range of ensemble values

- "vld_count" for the number of valid ensemble members

- "frequency" for the ensemble relative frequency meeting a threshold

- "nep" for the neighborhood ensemble probability

- "nmep" for the neighborhood maximum ensemble probability

- "rank" to write the rank for the gridded observation field to separate
NetCDF output file.

- "weight" to write the grid weights specified in grid_weight_flag to the
rank NetCDF output file.

ensemble_flag = {

mean = TRUE;
stdev = TRUE;
minus = TRUE;

CHAPTER 3. MET DATA I/0

plus = TRUE;
min = TRUE;
max = TRUE;
range = TRUE;

vld_count = TRUE;
frequency = TRUE;

nep = FALSE;
nmep = FALSE;
rank = TRUE;
weight = FALSE;
}
//
// Random number generator used for random assignment of ranks when they
// are tied.
// http://www.gnu.org/software/gsl/manual/html_node/
// Random-Number-Generator-Performance.html
//
rng = {
type = "mt19937";
seed = "";
3

LI1177

//
//
//

MODEAnalysisConfig_default

LI1177

//
//
//
//
//
//
//
//
//

/7
//
//
!/

MODE line options are used to create filters that determine which MODE output
lines are read in and processed. The MODE line options are numerous. They
fall into seven categories: toggles, multiple set string options, multiple
set integer options, integer max/min options, date/time max/min options,
floating-point max/min options, and miscellaneous options. In order to be
applied, the options must be uncommented (i.e. remove the "//" marks) before

running. These options are described in subsequent sections.

Toggles: The MODE line options described in this section are shown in pairs.
These toggles represent parameters that can have only one (or none) of two

values. Any of these toggles may be left unspecified. However, if neither

92

CHAPTER 3. MET DATA I/0 93

// option for toggle is indicated, the analysis will produce results that

// combine data from both toggles. This may produce unintended results.

//

/7
// This toggle indicates whether forecast or observed lines should be used for

// analysis.

//
fcst = FALSE;
obs = FALSE;
//

// This toggle indicates whether single object or object pair lines should be
// used.

//
single = FALSE;
pair = FALSE;
//

// This toggle indicates whether simple object or object cluster object lines
// should be used.

//
simple = FALSE;
cluster = FALSE;
//

// This toggle indicates whether matched or unmatched object lines should be
// used.

//

matched = FALSE;

unmatched = FALSE;

/!

// Multiple-set string options: The following options set various string

// attributes. They can be set multiple times on the command line but must be
// separated by spaces. Each of these options must be indicated as a string.
// String values that include spaces may be used by enclosing the string in

// quotation marks.

//

//

// This options specifies which model to use

//

CHAPTER 3. MET DATA I/0 94

//model = [1;

//
// These two options specify thresholds for forecast and observations objects to

// be used in the analysis, respectively.

//
//fcst_thr = [];
//obs_thr = [];
//

// These options indicate the names of variables to be used in the analysis for
// forecast and observed fields.

//

//fcst_var = [1;

//obs_var = [];

/7

// These options indicate vertical levels for forecast and observed fields to be
// used in the analysis.

/7

//fcst_lev = [1;

//obs_lev = [];

/7

// Multiple-set integer options: The following options set various integer
// attributes. Each of the following options may only be indicated as an
// integer.

/7

//
// These options are integers of the form HH[MMSS] specifying the lead_time.
//

//fcst_lead = [1;
//obs_lead = [1;
//

// These options are integers of the form HH[MMSS] specifying the valid hour.

//
//fcst_valid_hour = [];
//obs_valid_hour = [];

//
// These options are integers of the form HH[MMSS] specifying the model

CHAPTER 3. MET DATA I/0 95

// initialization hour.

//
//fcst_init_hour = [];
//obs_init_hour = [];
//

// These options are integers of the form HHMMSS specifying the accumulation

// time.

//
//fcst_accum = [1;
//obs_accum = [1;
//

// These options indicate the convolution radius used for forecast of observed

// objects, respectively.

//
//fcst_rad = [1;
//obs_rad = [1;
//

// Integer max/min options: These options set limits on various integer
// attributes. Leaving a maximum value unset means no upper limit is imposed on
// the value of the attribute. The option works similarly for minimum values.

//

//
// These options are used to indicate minimum/maximum values for the area

// attribute to be used in the analysis.

//
//area_min = 0;
//area_max = 0;
//

// These options are used to indicate minimum/maximum values accepted for the
// area thresh. The area thresh is the area of the raw field inside the object

// that meets the threshold criteria.

//
//area_thresh_min = 0;
//area_thresh_max = 0;
//

// These options refer to the minimum/maximum values accepted for the

// intersection area attribute.

CHAPTER 3. MET DATA I/0

!/

//intersection_area_min = 0;

//intersection_area_max = 0;

//

// These options
// analysis.

//
//union_area_min

//union_area_max

//
// These options

refer to the minimum/maximum union area values accepted for

refer to the minimum/maximum values for symmetric difference

// for objects to be used in the analysis.

//
//symmetric_diff_min = 0;
//symmetric_diff_max = 0;
//

// Date/time max/min options: These options set limits on various date/time

// attributes. The values can be specified in one of three ways: First, the

// options may be indicated by a string of the form YYYMMDD_HHMMSS. This

// specifies a complete calendar date and time. Second, they may be indicated

// by a string of the form YYYYMMMDD_HH. Here, the minutes and seconds are

// assumed to be
// string of the

// be zero.

//

//
// These options

//
//fcst_valid_min
//fcst_valid_max

//
// These options
//
//obs_valid_min

//obs_valid_max

//
// These options

zero. The third way of indicating date/time attributes is by a

form YYYMMDD. Here, hours, minutes, and seconds are assumed to

indicate minimum/maximum values for the forecast valid time.

= nn.,
b

indicate minimum/maximum values for the observation valid time.

— nn,
’

— nn,
s

indicate minimum/maximum values for the forecast initialization

CHAPTER 3. MET DATA I/0 97

// time.
//
//fcst_init_min = "";

//fcst_init_max = "";

//

// These options indicate minimum/maximum values for the observation
// initialization time.

//

//obs_init_min = "";

//obs_init_max = nn,

//

// Floating-point max/min options: Setting limits on various floating-point

// attributes. One may specify these as integers (i.e., without a decimal

// point), if desired. The following pairs of options indicate minimum and

// maximum values for each MODE attribute that can be described as a floating-
// point number. Please refer to "The MODE Tool" section on attributes in the

// VMET User’s Guide for a description of these attributes.

//

//centroid_x_min = 0.0;
//centroid_x_max = 0.0;
//centroid_y_min = 0.0;
//centroid_y_max = 0.0;
//centroid_lat_min = 0.0;
//centroid_lat_max = 0.0;
//centroid_lon_min = 0.0;
//centroid_lon_max = 0.0;
//axis_ang_min = 0.0;
//axis_ang_max = 0.0;
//length_min = 0.0;
//length_max = 0.0;
//width_min = 0.0;
//width_max = 0.0;

//aspect_ratio_min = 0.0;

CHAPTER 3. MET DATA I/0

//aspect_ratio_max

//curvature_min

//curvature_max

//curvature_x_min

//curvature_x_max

//curvature_y_min

//curvature_y_max

//complexity_min

//complexity_max

//intensity_10_min
//intensity_10_max

//intensity_25_min
//intensity_25_max

//intensity_50_min
//intensity_50_max

//intensity_75_min
//intensity_75_max

//intensity_90_min
//intensity_90_max

//intensity_user_min

//intensity_user_max

//intensity_sum_min

//intensity_sum_max

//centroid_dist_min

//centroid_dist_max

//boundary_dist_min
//boundary_dist_max

//convex_hull_dist_min

//convex_hull_dist_max

CHAPTER 3. MET DATA I/0

//angle_diff_min = 0.0;
//angle_diff_max = 0.0;
//area_ratio_min = 0.0;
//area_ratio_max = 0.0;
//intersection_over_area_min = 0.0;
//intersection_over_area_max = 0.0;
//complexity_ratio_min = 0.0;
//complexity_ratio_max = 0.0;

//percentile_intensity_ratio_min = 0.0;

//percentile_intensity_ratio_max = 0.0;

//interest_min = 0.0;
0.0;

//interest_max

LIT177
//

// MODEConfig_default

!/
LI1177

//

// The "quilt" entry is a boolean to indicate whether all permutations of

// convolution radii and thresholds should be run. If set to false, the number
// of forecast and observation convolution radii and thresholds must all match.
// One configuration of MODE will be run for each group of settings in those
// lists. If set to true, the number of forecast and observation convolution
// radii must match and the number of forecast and observation convolution

// thresholds must match. For N radii and M thresholds, NxM configurations of
// MODE will be run.

//

quilt = false;

//

// The object definition settings for MODE are contained within the "fcst" and
// "obs" entries:

//

// - The "censor_thresh" and "censor_val" entries are described above.

// The entries replace the previously supported "raw_thresh" entry.

CHAPTER 3. MET DATA I/0 100

/7
// - The "conv_radius" entry specifies the convolution radius in grid
// squares. The larger the convolution radius, the smoother the objects.
q g J
// Multiple convolution radii may be specified as an array:
// conv_radius = [5, 10, 15 1;
/7
// - The "conv_thresh" entry specifies the convolution threshold used to
y sp
// define MODE objects. The lower the threshold, the larger the objects.
J g J
// Multiple convolution thresholds may be specified as an array:
// conv_thresh = [>=5.0, >=10.0, >=15.0];
//
// - The "vld_thresh" entry is described above.
y
/7
// - The "filter_attr_name" and "filter_attr_thresh" entries are arrays of
// the same length which specify object filtering criteria. By default, no
// object filtering criteria is defined.
/7
// The "filter_attr_name" entry is an array of strings specifying the MODE
output header column names for the object attributes of interest, suc
// put head 1 £ he obj ib £ i h
// as "AREA", "LENGTH", "WIDTH", and "INTENSITY_50". In addition,
// "ASPECT_RATIO" specifies the aspect ratio (width/length),
// "INTENSITY_101" specifies the mean intensity value, and "INTENSITY_102"
// specifies the sum of the intensity values.
/7
// The "filter_attr_thresh" entry is an array of thresholds for the
// object attributes. Any simple objects not meeting all of these
iltering criteria are discarded.
// £i1 ing . . 4 ded
/7
// Note that the "area_thresh" and "inten_perc_thresh" entries form
// earlier versions of MODE are replaced by these options and are now
// deprecated.
/7
// - The "merge_thresh" entry specifies a lower convolution threshold used
// when the double-threshold merging method is applied. The number of
// merge thresholds must match the number of convolution thresholds.
// Multiple merge thresholds may be specified as an array:
// merge_thresh = [>=1.0, >=2.0, >=3.0];
//
// - The "merge_flag" entry specifies the merging methods to be applied:
// - "NONE" for no merging
// - "THRESH" for the double-threshold merging method. Merge objects
// that would be part of the same object at the lower threshold.

// - "ENGINE" for the fuzzy logic approach comparing the field to itself

CHAPTER 3. MET DATA I/0 101

// - "BOTH" for both the double-threshold and engine merging methods
//
fest = {
field = {
name = "APCP";
level = "AO3";
}
censor_thresh = [1;
censor_val = [;
conv_radius = 60.0/grid_res; // in grid squares
conv_thresh = >=5.0;
vld_thresh = 0.5;
filter_attr_name = []1;
filter_attr_thresh = [];
merge_thresh = >=1.25;
merge_flag = THRESH;
}
//

// The "grid_res" entry is the nominal spacing for each grid square in

// kilometers. The variable is not used directly in the code, but subsequent
// variables in the configuration files are defined in terms of it. Therefore,
// setting the appropriately will help ensure that appropriate default values
// are used for these variables.

//

grid_res = 4;

//

// The "match_flag" entry specifies the matching method to be applied:

// - "NONE" for no matching between forecast and observation objects

// - "MERGE_BOTH" for matching allowing additional merging in both fields.
// If two objects in one field match the same object in the other field,
// those two objects are merged.

// - "MERGE_FCST" for matching allowing only additional forecast merging
// - "NO_MERGE" for matching with no additional merging in either field
//

match_flag = MERGE_BOTH;

/7
// The "max_centroid_dist" entry specifies the maximum allowable distance in
// grid squares between the centroids of objects for them to be compared.

// Setting this to a reasonable value speeds up the runtime enabling MODE to

CHAPTER 3. MET DATA I/0 102

// skip unreasonable object comparisons.

//

max_centroid_dist = 800.0/grid_res;

/7

// The weight variables control how much weight is assigned to each pairwise

// attribute when computing a total interest value for object pairs. The weights
// need not sum to any particular value but must be non-negative. When the

// total interest value is computed, the weighted sum is normalized by the

// sum of the weights listed.

//

weight = {

SO O NN P Kk O b N
O O O O O O O o

centroid_dist

we

boundary_dist =

we

convex_hull_dist =

we

“e

angle_diff =
area_ratio =

int_area_ratio =

we

complexity_ratio =

we

inten_perc_ratio =

“e

(o)l
o

inten_perc_value =

/7

// The set of interest function variables listed define which values are of

// interest for each pairwise attribute measured. The interest functions may be
// defined as a piecewise linear function or as an algebraic expression. A

// piecewise linear function is defined by specifying the corner points of its
// graph. An algebraic function may be defined in terms of several built-in

// mathematical functions.

/7

interest_function = {

centroid_dist = (
(0.0, 1.0)
(60.0/grid_res, 1.0)
(600.0/grid_res, 0.0)
)3

boundary_dist = (
(0.0, 1.0)
(400.0/grid_res, 0.0)
)

CHAPTER 3. MET DATA I/0

convex_hull_dist = (
(0.0, 1.0)
(400.0/grid_res, 0.0)
)

angle_diff = (

(0.0, 1.0)
(30.0, 1.0)
(90.0, 0.0)
);
corner = 0.8;

ratio_if = (
(0.0, 0.0)
(corner, 1.0)
(1.0, 1.0)
)3

area_ratio = ratio_if;

int_area_ratio = (
(0.00, 0.00)
(0.10, 0.50)
(0.25, 1.00)
(1.00, 1.00)
)3

complexity_ratio = ratio_if;

inten_perc_ratio = ratio_if;

//

// The total_interest_thresh variable should be set between O and 1. This

// threshold is applied to the total interest values computed for each pair of
// objects and is used in determining matches.

//

total_interest_thresh = 0.7;

//
// The print_interest_thresh variable determines which pairs of object

// attributes will be written to the output object attribute ASCII file. The

103

CHAPTER 3. MET DATA I/0 104

// user may choose to set the print_interest_thresh to the same value as the

// total_interest_thresh, meaning that only object pairs that actually match are
// written to the output file. When set to zero, all object pair attributes will
// be written as long as the distance between the object centroids is less than
// the max_centroid_dist variable.

/7

print_interest_thresh = 0.0;

/7

// When applied, the plot_valid_flag variable indicates that only the region
// containing valid data after masking is applied should be plotted. TRUE

// indicates the entire domain should be plotted; FALSE indicates only the
// region containing valid data after masking should be plotted.

//

plot_valid_flag = FALSE;

/7

// When applied, the plot_gcarc_flag variable indicates that the edges of

// polylines should be plotted using great circle arcs as opposed to straight
// lines in the grid.

/7

plot_gcarc_flag = FALSE;

/7

// The ct_stats_flag can be set to TRUE or FALSE to produce additional output,
// in the form of contingency table counts and statistics.

//

ct_stats_flag = TRUE;

//

// When MODE is run on global grids, this parameter specifies how many grid

// squares to shift the grid to the right. MODE does not currently connect

// objects from one side of a global grid to the other, potentially causing

// objects straddling that longitude to be cut in half. Shifting the grid by

// some amount enables the user to control where that longitude cut line occurs.
// This option provides a very specialized case of automated regridding. The

// much more flexible "regrid" option may be used instead.

//

shift_right = 0;

LI111777
//
// PB2NCConfig_default

CHAPTER 3. MET DATA I/0 105

!/
LI7177

//

// The PB2NC tool filters out observations from PREPBUFR or BUFR files using the
// following criteria:

// (1) by message type: supply a list of PREPBUFR message types to retain
// (2) by station id: supply a list of observation stations to retain

// (3) by valid time: supply the beginning and ending time offset values
// in the obs_window entry described above.

// (4) by location: use the "mask" entry described below to supply either
// an NCEP masking grid, a masking lat/lon polygon or a file to a

// mask lat/lon polygon

// (B) by elevation: supply min/max elevation values

// (8) by report type: supply a list of report types to retain using

// pb_report_type and in_report_type entries described below

// (7) by instrument type: supply a list of instrument type to

// retain

// (8) by vertical level: supply beg/end vertical levels using the

// level_range entry described below

// (9) by variable type: supply a list of observation variable types to
// retain using the obs_bufr_var entry described below

// (11) by quality mark: supply a quality mark threshold

// (12) Flag to retain values for all quality marks, or just the first

// quality mark (highest): use the event_stack_flag described below
// (13) by data level category: supply a list of category types to

// retain.

//

// 0 - Surface level (mass reports only)

// 1 - Mandatory level (upper-air profile reports)

// 2 - Significant temperature level (upper-air profile reports)

// 2 - Significant temperature and winds-by-pressure level

// (future combined mass and wind upper-air reports)

// 3 - Winds-by-pressure level (upper-air profile reports)

// 4 - Winds-by-height level (upper-air profile reports)

// 5 - Tropopause level (upper-air profile reports)

// 6 - Reports on a single level

// (e.g., aircraft, satellite-wind, surface wind,

// precipitable water retrievals, etc.)

// 7 - Auxiliary levels generated via interpolation from spanning levels
// (upper-air profile reports)

//

CHAPTER 3. MET DATA I/0 106

!/

// In the PB2NC tool, the "message_type" entry is an array of message types
// to be retained. An empty list indicates that all should be retained.

//

// List of valid message types:

// ADPUPA AIRCAR AIRCFT ADPSFC ERS1DA GOESND GPSIPW

// MSONET PROFLR QKSWND RASSDA SATEMP SATWND SFCBOG

// SFCSHP SPSSMI SYNDAT VADWND

//

// e.g. message_typel[] = ["ADPUPA", "AIRCAR" 1;

//

// http://www.emc.ncep.noaa.gov/mmb/data_processing/prepbufr.doc/table_1.htm
//

message_type = [1;

//

// Mapping of message type group name to comma-separated list of values.
// The default setting defines ANYAIR, ANYSFC, and ONLYSF as groups.

// Derive PRMSL only for SURFACE message types.

//

message_type_group_map = [
{ key = "SURFACE"; val = "ADPSFC,SFCSHP,MSONET"; 3,
{ key = "ANYAIR"; wval = "AIRCAR,AIRCFT"; },
{ key = "ANYSFC"; wval = "ADPSFC,SFCSHP,ADPUPA,PROFLR,MSONET"; },
{ key = "ONLYSF"; wval = "ADPSFC,SFCSHP"; }

1

//

// The "station_id" entry is an array of station ids to be retained or
// the filename which contains station ids. An array of station ids

// contains a comma-separated list. An empty list indicates that all
// stations should be retained.

//

// e.g. station_id = ["KDEN"];

/7

station_id = [];

//

// The "elevation_range" entry is a dictionary which contains "beg" and "end"
// entries specifying the range of observing locations elevations to be

// retained.

//

elevation_range = {

CHAPTER 3. MET DATA I/0

beg -1000;

100000

end

/7

// The "pb_report_type" entry is an array of PREPBUFR report types to be

// retained. The numeric "pb_report_type" entry allows for further

// stratification within message types. An empty list indicates that all should
// be retained.

/7

// http://www.emc.ncep.noaa.gov/mmb/data_processing/prepbufr.doc/table_4.htm
//

// e.g.

// Report Type 120 is for message type ADPUPA but is only RAWINSONDE

// Report Type 132 is for message type ADPUPA but is only FLIGHT-LEVEL RECON
// and PROFILE DROPSONDE

/7

pb_report_type = [];

//

// The "in_report_type" entry is an array of input report type values to be
// retained. The numeric "in_report_type" entry provides additional

// stratification of observations. An empty list indicates that all should
// be retained.

/7

// http://www.emc.ncep.noaa.gov/mmb/data_processing/prepbufr.doc/table_6.htm
//

// e.g.

// Input Report Type 11 Fixed land RAOB and PIBAL by block and station number
// Input Report Type 12 Fixed land RAOB and PIBAL by call letters

in_report_type = [1;

//

// The "instrument_type" entry is an array of instrument types to be retained.
// An empty list indicates that all should be retained.
//

instrument_type = [];

//
// The "level_range" entry is a dictionary which contains '"beg" and "end"
// entries specifying the range of vertical levels (1 to 255) to be retained.

//

107

CHAPTER 3. MET DATA I/0 108

level_range = {

//

beg = 1;
end = 2b55;

// The "level_category" entry is an array of integers specifying which level

// categories should be retained:

//
//
//
!/
//
//
//
//
//
//
/7
//
//
//
/7
//
//

0 = Surface
1
2 =
2
(future
3
4 =
5
6 = Reports

level (mass reports only)

= Mandatory level (upper-air profile reports)
Significant temperature level (upper-air profile reports)

= Significant temperature and winds-by-pressure level

combined mass and wind upper-air reports)

= Winds-by-pressure level (upper-air profile reports)
Winds-by-height level (upper-air profile reports)

= Tropopause level (upper-air profile reports)

on a single level

(e.g., aircraft, satellite-wind, surface wind,

precipitable water retrievals, etc.)

7 = Auxiliary levels generated via interpolation from spanning levels

(upper-air profile reports)

An empty list indicates that all should be retained.

http://www.emc.

ncep.noaa.gov/mmb/data_processing/prepbufr.doc/table_1.htm

level_category = [1;

//
//
//
//
//
//
//
//
//
//
!/
//
//
//

The "obs_bufr_var" entry is an array of strings containing BUFR variable

names to be retained or derived. This replaces the "obs_grib_code" setting

from earlier versions of MET. Run PB2NC on your data with the "-index"

command line option to see the list of available observation variables.

Observation variables that can be derived begin with "D_":

D_DPT for
D_WDIR for
D_WIND for
D_RH for
D_MIXR for
D_PRMSL for

Dew point Temperature in K
Wind Direction

Wind Speed in m/s

Relative Humidity in %
Humidity Mixing Ratio in kg/kg

Pressure Reduced to Mean Sea Level in Pa

obs_bufr_var = ["QOB", "TOB", "ZOB", "UOB", "VOB" 1];

CHAPTER 3. MET DATA I/0 109

!/
//
//
//
//
//

Mapping of input BUFR variable names to output variables names.
The default PREPBUFR map, obs_prepbufr_map, is appended to this map.
Users may choose to rename BUFR variables to match the naming convention

of the forecast the observation is used to verify.

obs_bufr_map = [];

//
//
//
!/
//
//
//

Default mapping for PREPBUFR. Replace input BUFR variable names with GRIB
abbreviations in the output. This default map is appended to obs_bufr_map.
This should not typically be overridden. This default mapping provides
backward-compatibility for earlier versions of MET which wrote GRIB

abbreviations to the output.

obs_prefbufr_map = [

1;

!/
/7
//
//
//
/7
//
!/

key = "POB"; val = "PRES"; s
key = "QOB"; val = "SPFH"; s
key = "TOB"; val = "TMP"; s
key = "Z0OB"; val = "HGT"; ,
key = "UOB"; val = "UGRD"; s
key = "VOB"; val = "VGRD"; s
key = "D_DPT"; val = "DPT"; ,

b

key = "D_WDIR"; wval = "WDIR";
key = "D_WIND"; wval = "WIND";
key = "D_RH"; val = "RH";

key = "D_MIXR"; wval = "MIXR";
key = "D_PRMSL"; val = "PRMSL";

3

B

B

S o U U U S

}
}
}
}
}
}
}
}
}
}
}
}

The "quality_mark_thresh" entry specifies the maximum quality mark value
to be retained. Observations with a quality mark LESS THAN OR EQUAL TO
this threshold will be retained, while observations with a quality mark
GREATER THAN this threshold will be discarded.

http://www.emc.ncep.noaa.gov/mmb/data_processing/prepbufr.doc/table_7.htm

quality_mark_thresh = 2;

//
//
//

The "event_stack_flag" entry is set to "TOP" or "BOTTOM" to

specify whether observations should be drawn from the top of the event

CHAPTER 3. MET DATA I/0

// stack (most quality controlled) or the bottom of the event stack (most raw).
//
event_stack_flag = TOP;

LIT177
//

// SeriesAnalysisConfig_default

/7
LI1177

//

// Computation may be memory intensive, especially for large grids.

// The "block_size" entry sets the number of grid points to be processed
// concurrently (i.e. in one pass through a time series). Smaller values
// require less memory but increase the number of passes through the data.
/7

block_size = 1024;

//

// Ratio of valid matched pairs to total length of series for a grid

// point. If valid threshold is exceeded at that grid point the statistics
// are computed and stored. If not, a bad data flag is stored. The default
// setting requires all data in the series to be valid.

/7

/7

vld_thresh = 1.0;

/7

// Statistical output types need to be specified explicitly. Refer to User’s

// Guide for available output types. To keep output file size reasonable,

// it is recommended to process a few output types at a time, especially if the

// grid is large.

//
output_stats = {
fho = [1;
ctc = [];
cts = [1;
mctc = [];
mcts = [];
cnt = ["RMSE", "FBAR", "OBAR"];
sl112 = []1;
pct = [1;

pstd = [I;

110

CHAPTER 3. MET DATA I/0 111

pic = [1;
prc = [];

LIT177
//

// STATAnalysisConfig_default

/7
LI1177

//
// The "jobs" entry is an array of STAT-Analysis jobs to be performed.
// Each element in the array contains the specifications for a single analysis

// job to be performed. The format for an analysis job is as follows:

//

// -job job_name

// OPTIONAL ARGS

//

// Where "job_name" is set to one of the following:

/7

// "filter"

// To filter out the STAT or TCMPR lines matching the job filtering
// criteria specified below and using the optional arguments below.
// The output STAT lines are written to the file specified using the
// "-dump_row" argument.

// Required Args: -dump_row

//

// "summary"

// To compute summary information for a set of statistics.

// The summary output includes the mean, standard deviation,

// percentiles (Oth, 10th, 25th, 50th, 75th, 90th, and 100th), range,
// and inter-quartile range. Also included are columns summarizing the
// computation of WMO mean values. Both unweighted and weighted mean
// values are reported, and they are computed using three types of
// logic:

// - simple arithmetic mean (default)

// - square root of the mean of the statistic squared

// (applied to columns listed in '"wmo_sqrt_stats")

// - apply fisher transform

// (applied to columns listed in "wmo_fisher_stats")

// The columns of data to be summarized are specified in one of two
// ways:

// - Specify the -line_type option once and specify one or more

CHAPTER 3. MET DATA I/0 112

!/
//
//
//
//
//
//
/7
//
//
//
//
//
//
//
//
//
//
/7
//
//
//
/7
//
//
//
//
//
//
//
//
//
//
/7
//
//
//
!/
!/
//
//
//
//

-column names.
- Format the -column option as LINE_TYPE:COLUMN.

Use the -derive job command option to automatically derive
statistics on the fly from input contingency tables and partial

sums.

Use the -column_union TRUE/FALSE job command option to compute
summary statistics across the union of input columns rather than

processing them separately.

For TCStat, the "-column" argument may be set to:
"TRACK" for track, along-track, and cross-track errors.
"WIND" for all wind radius errors.
"TI" for track and maximum wind intensity errors.
"AC" for along-track and cross-track errors.
"XY" for x-track and y-track errors.
"col" for a specific column name.
"coll-col2" for a difference of two columns.

"ABS(col or coll-col2)" for the absolute value.

Required Args: -line_type, -column

Optional Args: -by column_name to specify case information
-out_alpha to override default alpha value of 0.05
-derive to derive statistics on the fly

-column_union to summarize multiple columns

"aggregate"

To aggregate the STAT data for the STAT line type specified using
the "-line_type" argument. The output of the job will be in the
same format as the input line type specified. The following line
types may be aggregated:
-line_type FHO, CTC, MCTC,

SLi1L2, SAL1L2, VLiL2, VAL1L2,

PCT, NBRCNT, NBRCTC, GRAD,

ISC, ECNT, RPS, RHIST, PHIST, RELP, SSVAR
Required Args: -line_type

"aggregate_stat"

To aggregate the STAT data for the STAT line type specified using
the "-line_type" argument. The output of the job will be the line
type specified using the "-out_line_type" argument. The valid

combinations of "-line_type" and "-out_line_type" are listed below.

CHAPTER 3. MET DATA I/0

-out_line_type
-out_line_type
-out_line_type
-out_line_type
-out_line_type
-out_line_type
-out_line_type
-out_line_type

-out_line_type

113

CTS, ECLV

MCTS

CNT

VCNT

WDIR (wind direction)
PSTD, PJC, PRC, ECLV
NBRCTS

ECNT, RPS, RHIST, PHIST,
RELP, SSVAR

FHO, CTC, CTS,

MCTC, MCTS, CNT,

SL1L2, SAL1L2,

VL1L2, VCNT,

PCT, PSTD, PJC, PRC, ECLV,
WDIR (wind direction)

PCT, PSTD, PJC, PRC

The skill score index job can be configured to compute a weighted
average of skill scores derived from a configurable set of
variables, levels, lead times, and statistics. The skill score
index is computed using two models, a forecast model and a

reference model. For each statistic in the index, a skill score

// -line_type FHO, CIC,

// -line_type MCTC

// -line_type SL1L2, SAL1L2,

// -line_type VL1L2

// -line_type VL1L2, VAL1L2,

// -line_type PCT,

// -line_type NBRCTC,

// -line_type ORANK,

//

// -line_type MPR,

//

//

//

//

//

// Required Args:

// -line_type, -out_line_type

// Additional Required Args for -line_type MPR:

// -out_thresh or -out_fcst_thresh and -out_obs_thresh
// When -out_line_type FHO, CTC, CTS, MCTC, MCTS,
//

// Additional Optional Args for -line_type MPR:

// -mask_grid, -mask_poly, -mask_sid

// -out_thresh or -out_fcst_thresh and -out_obs_thresh
// -out_cnt_logic

// -out_wind_thresh or -out_fcst_wind_thresh and
// -out_obs_wind_thresh

// -out_wind_logic

// When -out_line_type WDIR

// Additional Optional Arg for:

// -line_type ORANK -out_line_type PHIST, SSVAR ...
// -out_bin_size

// Additional Optional Args for:

// -out_line_type ECLV ...

// -out_eclv_points

//

// "ss_index"

//

//

//

//

//

// is computed as:

CHAPTER 3. MET DATA I/0 114

!/
//
//
//
//
//
//
/7
//
//
//
//
//
//
//
//
//
//
/7
//
//
//
/7
//
//
//
//
//
//
//
//
//
//
/7
//
//
//
!/
!/
//
//
//
//

SS 1 - (S[model]l*S[modell)/(S[reference]*S[reference])
Where S is the statistic.
a

Next,

weighted average is computed over all the skill scores.
Lastly, an index value is computed as:
Index = sqrt(1/(1-SS[avgl))
Where SS[avg] is the weighted average of skill scores.
Required Args:
Exactly 2 entries for -model, the forecast model and reference
For each term of the index:
-fcst_var, -fcst_lev, -fcst_lead, -line_type, -column, -weight
Where -line_type is CNT or CTS and -column is the statistic.
Optionally, specify other filters for each term, -fcst_thresh.

"go_index"

The GO Index is a special case of the skill score index consisting
of a predefined set of variables, levels, lead times, statistics,
and weights.

For lead times of 12, 24, 36, and 48 hours, it contains RMSE for:

- Wind Speed at the surface(b), 850(a), 400(a), 250(a) mb

- Dew point Temperature at the surface(b), 850(b), 700(b), 400(b) mB
- Temperature at the surface(b), 400(a) mB

- Height at 400(a) mB

- Sea Level Pressure(b)

Where (a) means weights of 4, 3, 2, 1 for the lead times, and

(b) means weights of 8, 6, 4, 2 for the lead times.

Required Args: None

IUrampll

The ramp job operates on a time-series of forecast and observed
values and is analogous to the RIRW (Rapid Intensification and
Weakening) job supported by the tc_stat tool. The amount of change
from one time to the next is computed for forecast and observed
values. Those changes are thresholded to define events which are

used to populate a 2x2 contingency table.

Required Args:
-ramp_thresh (-ramp_thresh_fcst or -ramp_thresh_obs)
For DYDT, threshold for the amount of change required to
define an event.
For SWING, threshold the slope.
-swing_width val

Required for the swinging door algorithm width.

CHAPTER 3. MET DATA I/0 115

!/
//
//
//
//
//
//
/7
//
//
//
//
//
//
//
//
//
//
/7
//
//
//
/7
//
//
//
//
//
//
//
//
//
//
/7
//
//
//
!/
!/
//
//
//
//

Optional Args:

-ramp_type str
Overrides the default ramp definition algorithm to be used.
May be set to DYDT (default) or SWING for the swinging door
algorithm.

-line_type str
Overrides the default input line type, MPR.

-out_line_type str
Overrides the default output line types of CTC and CTS.

Set to CTC,CTS,MPR for all possible output types.

-column fcst_column,obs_column
Overrides the default forecast and observation columns
to be used, FCST and O0OBS.

-ramp_time HH[MMSS] (-ramp_time_fcst or -ramp_time_obs)
Overrides the default ramp time interval, 1 hour.

-ramp_exact true/false (-ramp_exact_fcst or -ramp_exact_obs)
Defines ramps using an exact change (true, default) or maximum
change in the time window (false).

-ramp_window width in HH[MMSS] format

-ramp_window beg end in HH[MMSS] format
Defines a search time window when attempting to convert misses
to hits and false alarms to correct negatives. Use 1 argument
to define a symmetric time window or 2 for an asymmetric

window. Default window is O O, requiring an exact match.

Job command FILTERING options to further refine the STAT data:
Each optional argument may be used in the job specification multiple
times unless otherwise indicated. When multiple optional arguments of

the same type are indicated, the analysis will be performed over their

union:

"-model name"
"_fcst_lead HHMMSS"
"-obs_lead HHMMSS"

"-fcst_valid_beg YYYYMMDD[_HH[MMSS]]" (use once)
"_fcst_valid_end YYYYMMDD[_HH[MMSS]]" (use once)
"-obs_valid_beg YYYYMMDD [_HH[MMSS]]" (use once)
"-obs_valid_end YYYYMMDD[_HH[MMSS]]" (use once)
"-fcst_init_beg YYYYMMDD [_HH[MMSS]11" (use once)
"-fcst_init_end YYYYMMDD [_HH[MMSS]]" (use once)
"-obs_init_beg YYYYMMDD[_HH[MMSS]]" (use once)
"_obs_init_end YYYYMMDD[_HH[MMSS]]" (use once)

CHAPTER 3. MET DATA I/0

!/
//
//
//
//
//
//
/7
//
//
//
//
//
//
//
//
//
//
/7
//
//
//
/7
//
//
//
//
//
//
//
//
//
//
/7
//
//
//
!/
!/
//
//
//
//

"-fcst_init_hour
"-obs_init_hour
"-fcst_valid_hour"

"_obs_valid_hour"

HH [MMSS]"
HH [MMSS]"
HH [MMSS]
HH [MMSS]

"-fcst_var
"-obs_var
"-fcst_lev
"-obs_lev
"-obtype
"-vx_mask
"-interp_mthd
"-interp_pnts
"-fcst_thresh
"-obs_thresh
"-cov_thresh

"-thresh_logic

"-alpha
"-line_type
"-column

"-weight

name"
name"
name"
name"
name"
name"
name"
nll
tll
tll
tll

UNION, or, ||
INTERSECTION, and, &&
SYMDIFF, symdiff, *

all

type "
name"

value"

Job command FILTERING options that may be used only when -line_type

has been listed once. These options take two arguments: the name of the

data column to be used and the min, max, or exact value for that column.

If multiple column eq/min/max/str options are listed, the job will be

performed on their intersection:

"-column_min
"-column_max

"-column_eq

"-column_thresh

"_column_str

col_name
col_name
col_name
col_name

col_name

value" e.g. -column_min BASER 0.02
value"

value"

threshold" e.g. -column_thresh FCST ’>273?

string" separate multiple filtering strings

with commas

Job command options to DEFINE the analysis job. Unless otherwise noted,

these options may only be used ONCE per analysis job:

"-dump_row

"-mask_grid

"-mask_poly

path"

name"

file"

116

CHAPTER 3. MET DATA I/0 117

// "-mask_sid file|list" see description of "sid" entry above

//

// "-out_line_type name"

// "-out_thresh value" sets both -out_fcst_thresh and -out_obs_thresh
// "-out_fcst_thresh value" multiple for multi-category contingency tables
// and probabilistic forecasts

// "-out_obs_thresh value" multiple for multi-category contingency tables
// "-out_cnt_logic value"

//

// "-out_wind_thresh value"

// "-out_fcst_wind_thresh value"

// "-out_obs_wind_thresh value"

// "-out_wind_logic value"

//

// "-out_bin_size value"

//

// "-out_eclv_points value" see description of "eclv_points" config file
// entry

//

// "-out_alpha value"

//

// "-boot_interval value"

// "-boot_rep_prop value"

// "-n_boot_rep value"

// "-boot_rng value"

// "-boot_seed value"

//

// "-rank_corr_flag value"

// "-vif_flag value"

//

// For aggregate and aggregate_stat job types:

//

// "_out_stat path" to write a .stat output file for the job

// including the .stat header columns. Multiple
// values for each header column are written as
// a comma-separated list.

// "-set_hdr col_name value" may be used multiple times to explicity

// specify what should be written to the header
// columns of the output .stat file.

//

// When using the "-by" job command option, you may reference those columns

// in the "-set_hdr" job command options. For example, when computing statistics
// separately for each station, write the station ID string to the VX_MASK column

CHAPTER 3. MET DATA I/0

// of the output .stat output file:

// -job aggregate_stat -line_type MPR -out_line_type CNT \

// -by OBS_SID -set_hdr VX_MASK 0BS_SID -stat_out out.stat

// When using mulitple "-by" options, use "CASE" to reference the full string:
// -by FCST_VAR,0BS_SID -set_hdr DESC CASE -stat_out out.stat

//

jobs = [

"-job filter -line_type SL1L2 -vx_mask DTC165 \

-dump_row job_filter_SL1L2.stat",

"-job summary -line_type CNT -alpha 0.050 -fcst_var TMP \
-dump_row job_summary_ME.stat -column ME",

"-job aggregate -line_type SL1L2 -vx_mask DTC165 -vx_mask DTC166 \
-fcst_var TMP -dump_row job_aggregate SL1L2_dump.stat \

-out_stat job_aggregate_SL1L2_out.stat \

-set_hdr VX_MASK CONUS",

"-job aggregate_stat -line_type SL1L2 -out_line_type CNT -vx_mask DTC165 \
-vx_mask DTC166 -fcst_var TMP \

-dump_row job_aggregate_stat_SL1L2_CNT_in.stat",

"-job aggregate_stat -line_type MPR -out_line_type CNT -vx_mask DTC165 \
-vx_mask DTC166 -fcat_var TMP -dump_row job_aggregate_stat_MPR_CNT_in.stat",
"-job aggregate -line_type CTC -fcst_thresh <300.000 -vx_mask DTC165 \
-vx_mask DTC166 -fcst_var TMP -dump_row job_aggregate CTC_in.stat",

"-job aggregate_stat -line_type CTC -out_line_type CTS \

-fcst_thresh <300.000 -vx_mask DTC165 -vx_mask DTC166 -fcst_var TMP \
-dump_row job_aggregate_stat_CTC_CTS_in.stat",

"-job aggregate -line_type MCTC -column_eq N_CAT 4 -vx_mask DTC165 \
-vx_mask DTC166 -fcst_var APCP_24 -dump_row job_aggregate MCTC_in.stat",
"-job aggregate_stat -line_type MCTC -out_line_type MCTS \

-column_eq N_CAT 4 -vx_mask DTC165 -vx_mask DTC166 -fcst_var APCP_24 \
-dump_row job_aggregate_stat_MCTC_MCTS_in.stat",

"-job aggregate -line_type PCT -vx_mask DTC165 -vx_mask DTC166 \
-dump_row job_aggregate PCT_in.stat",

"-job aggregate_stat -line_type PCT -out_line_type PSTD -vx_mask DTC165 \
-vx_mask DTC166 -dump_row job_aggregate_stat_PCT_PSTD_in.stat",

"-job aggregate -line_type ISC -fcst_thresh >0.000 -vx_mask TILE_TOT \
-fcst_var APCP_12 -dump_row job_aggregate_ISC_in.stat",

"-job aggregate -line_type RHIST -obtype MC_PCP -vx_mask HUC4_1605 \
-vx_mask HUC4_1803 -dump_row job_aggregate RHIST in.stat",

"-job aggregate -line_type SSVAR -obtype MC_PCP -vx_mask HUC4_1605 \
-vx_mask HUC4_1803 -dump_row job_aggregate_SSVAR_in.stat",

"-job aggregate_stat -line_type ORANK -out_line_type RHIST -obtype ADPSFC \
-vx_mask HUC4_1605 -vx_mask HUC4_1803 \

-dump_row job_aggregate_stat_ORANK_RHIST_in.stat"

118

CHAPTER 3. MET DATA I/0 119
1;

//

// List of statistics by the logic that should be applied when computing their
// WMO mean value in the summary job. Each entry is a line type followed by the
// statistic name. Statistics using the default arithemtic mean method do not
// need to be listed.

//
wmo_sqrt_stats [1;
15

wmo_fisher_stats

//

// The "vif_flag" entry is a boolean to indicate whether a variance inflation
// factor should be computed when aggregating a time series of contingency

// table counts or partial sums. The VIF is used to adjust the normal

// confidence intervals computed for the aggregated statistics.

/7

vif_flag = FALSE;

LIT177
//

// WaveletStatConfig_default

/7
LI1177

//
// The "grid_decomp_flag" entry specifies how the grid should be decomposed in

// Wavelet-Stat into dyadic (2°n x 2°n) tiles:

// - "AUTO" to tile the input data using tiles of dimension n by n where n
// is the largest integer power of 2 less than the smallest dimension of
// the input data. Center as many tiles as possible with no overlap.

// - "TILE" to use the tile definition specified below.

// - "PAD" to pad the input data out to the nearest integer power of 2.

//

grid_decomp_flag = AUTO;

//
// The "tile" entry is a dictionary that specifies how tiles should be defined
// in Wavelet-Stat when the "grid_decomp_flag" is set to "TILE":

//
// - The "width" entry specifies the dimension for all tiles and must be
y sp
// an integer power of 2.
g 1Y

//

CHAPTER 3. MET DATA I/0 120

// - The "location" entry is an array of dictionaries where each element
// consists of an "x_11" and "y_l11" entry specifying the lower-left (x,y)
// coordinates of the tile.
//
tile = {
width = 0;
location = [
{
x_11 = 0;
y_11 = 0;
}
1;
}
//

// The "wavelet" entry is a dictionary in Wavelet-Stat that specifies how the

// wavelet decomposition should be performed:

//
// - The "type" entry specifies which wavelet should be used.
//
// - The "member" entry specifies the wavelet shape.
// http://www.gnu.org/software/gsl/manual/html_node/DWT-Initialization.html
//
// - Valid combinations of the two are listed below:
// - "HAAR" for Haar wavelet (member = 2)
// - "HAAR_CNTR" for Centered-Haar wavelet (member = 2)
// - "DAUB" for Daubechies wavelet (member = 4, 6, 8, 10, 12, 14, 16,
// 18, 20)
// - "DAUB_CNTR" for Centered-Daubechies wavelet (member = 4, 6, 8, 10,
// 12, 14, 16, 18, 20)
// - "BSPLINE" for Bspline wavelet (member = 103, 105, 202, 204, 206,
// 208, 301, 303, 305, 307, 309)
// - "BSPLINE_CNTR" for Centered-Bspline wavelet (member = 103, 105, 202,
// 204, 206, 208, 301, 303, 305, 307, 309)
//
wavelet = {
type = HAAR;
member = 2;
}
//
// The "obs_raw_plot", "wvlt_plot", and "object_plot" entries are dictionaries

// similar to the "fcst_raw_plot" described in the "Settings common to multiple

CHAPTER 3. MET DATA I/0 121

// tools" section.

//

LI1177
//

// WWMCARegridConfig_default

//
II11177077

/7
// Specify the grid to which the data should be interpolated in one of the
// following ways:

//

// - Name ("GNNN" where NNN indicates the three digit NCEP grid number)
//

// - lambert Nx Ny lat_11 lon_11 lon_orient D_km R_km standard_parallel_1
// [standard_parallel_2] N|S

//

// - stereo Nx Ny lat_11 lon_11 lon_orient D_km R_km lat_scale N|S

//

// - latlon Nx Ny lat_11 lon_11 delta_lat delta_lon

//

// - mercator Nx Ny lat_11 lon_11 lat_ur lon_ur

//

// - gaussian lon_zero Nx Ny

//

to_grid = "lambert 614 428 12.190 -133.459 -95.0 12.19058 6367.47 25.0 N";

//

// Supply the NetCDF output information

//

// e.g. variable_name = "Cloud_Pct";

// units = '"percent";

// long_name = "cloud cover percent";
// level = "SFC";

//

variable_name e

units = ",

long_name = "

level = "y

//

// Maximum pixel age in minutes

CHAPTER 3. MET DATA I/0 122

!/

max_minutes = 120;

//

// The WWMCA pixel age data is stored in binary data files in 4-byte blocks.
// The swap_endian option indicates whether the endian-ness of the data should
// be swapped after reading.

//

swap_endian = TRUE;

//

// By default, wwmca_regrid writes the cloud percent data specified on the
// command line to the output file. This option writes the pixel age data,
// in minutes, to the output file instead.

//

write_pixel_age = FALSE;

3.5.2 MET-TC Configuration File Options

The information listed below may also be found in the data/config/README_TC file.

LIT11777
//

// Configuration file overview.

/7
LIT177

See README for configuration file overview.

[ITT1777777777777777777777177777777777777777777777777777177777777777771777777777
//

// Configuration settings common to multiple tools

//
[IT117777777777777777777771777777777777777777777777777771777777777777717777717777

//

// Specify a comma-separated list of storm id’s to be used:
// 2-letter basin, 2-digit cyclone number, 4-digit year
// An empty list indicates that all should be used.

/7

// e.g. storm_id = ["AL092011"];

//

CHAPTER 3. MET DATA I/0

// This may also be set using basin, cyclone, and timing information below.
/7

storm_id = [];

//

// Specify a comma-separated list of basins to be used.
// Expected format is 2-letter basin identifier.

// An empty list indicates that all should be used.

// Valid basins: WP, IO, SH, CP, EP, AL, SL

//

// e.g. basin = ["AL", "EP"];

!/

basin = [];

//

// Specify a comma-separated list of cyclone numbers (01-99) to be used.
// An empty list indicates that all should be used.

//

// e.g. cyclone = ["O1", "02", "03" 1;
//

cyclone = [];

//

// Specify a comma-separated list of storm names to be used.
// An empty list indicates that all should be used.

//

// e.g. storm_name = ["KATRINA"];

//

storm_name = [];

//

// Specify a model initialization time window in YYYYMMDD[_HH[MMSS]] format
// or provide a list of specific initialization times to include (inc)

// or exclude (exc). Tracks whose initial time meets the specified

// criteria will be used. An empty string indicates that all times

// should be used.

//

// e.g. init_beg = "20100101";

// init_end = "20101231";

// init_inc = ["20101231_06"];
// init_exc = ["20101231_00" 1;

//

123

CHAPTER 3. MET DATA I/0 124

init_beg = "";
init_end = "";
init_inc = [];
init_exc = [];
//

// Specify a model valid time window in YYYYMMDD[_HH[MMSS]] format.
// Tracks for which all valid times fall within the time window will be used.

// An empty string indicates that all times should be used.

//

// e.g. valid_beg = "20100101";
// valid_end = "20101231";
//

valid_beg = "";

valid_end = "";

/7

// Specify a comma-separated list of model initialization hours to be used
// in HH[MMSS] format. An empty list indicates that all hours should be used.
//

// e.g. init_hour = ["OO", "O6", "12", "18"];

//

init_hour = [];

//

// Specify the required lead time in HH[MMSS] format.

// Tracks that contain all of these required times will be
// used. If a track has additional lead times, it will be
// retained. An empty list indicates that no lead times
// are required to determine which tracks are to be used;
// all lead times will be used.

//

lead_req = [];

//

// Specify lat/lon polylines defining masking regions to be applied.
// Tracks whose initial location falls within init_mask will be used.
// Tracks for which all locations fall within valid_mask will be used.
//

// e.g. init_mask = "MET_BASE/poly/EAST.poly";

//

init_mask = "";

valid_mask = "";

CHAPTER 3. MET DATA I/0 125

//

// Indicate the version number for the contents of this configuration file.
// The value should generally not be modified.

//

version = "V6.0";

II11177077
//

// Settings specific to individual tools

//
II111777

LI11771777
//

// TCPairsConfig_default

//
LIT11777

//

// The "model" entry specifies an array of model names to be verified. If
// verifying multiple models, choose descriptive model names (no whitespace)
// to distinguish between their output.

// e.g. model = ["AHW4", "AHWI" 1;

//

model = [];

/7

// Specify whether the code should check for duplicate ATCF lines when

// building tracks. Setting this to FALSE makes the parsing of tracks quicker.
/7

// e.g. check_dup = FALSE;

/!

check_dup = FALSE;

/7
// Specify whether special processing should be performed for interpolated model
// names ending in ’I’ (e.g. AHWI). Search for corresponding tracks whose model

// name ends in ’2’ (e.g. AHW2) and apply the following logic:

// - "NONE" to do nothing.
// - "FILL" to create a copy of ’2’ track and rename it as ’I’ only when the
// ’I’ track does not already exist.

// - "REPLACE" to create a copy of the ’2’ track and rename it as ’I’ in all

CHAPTER 3. MET DATA I/0 126

// cases, replacing any ’I’ tracks that may already exist.

/7
interpl2 = REPLACE;

/7

// Specify how consensus forecasts should be defined:
// name = consensus model name

// members = array of consensus member model names
// required = array of TRUE/FALSE for each member
// if empty, default is FALSE

// min_req = minimum number of members required for the consensus
//

// e.g.

// consensus = [

// {

// name

"CON1";

["MOD1", "MOD2", "MOD3" 1;
[TRUE, FALSE, FALSE];

// min_req = 2;

// }

// 1;

//

consensus = [];

// members

// required

//

// Specify a comma-separated list of forecast lag times to be used in HH[MMSS]
// format. For each ADECK track identified, a lagged track will be derived
// for each entry listed.

//

// e.g. lag_time = ["06", "12"];

//

lag_time = [];

//

// Specify comma-separated lists of CLIPER/SHIFOR baseline forecasts to be
// derived from the BEST and operational tracks, as defined by the

// best_technique and oper_technique settings.

!/

// Derived from BEST tracks: BCLP, BCS5, BCD5, BCLA

// Derived from OPER tracks: OCLP, 0CS5, 0OCD5, OCDT

//

// e.g. best_technique = ["BEST"];

// base_baseline = ["BCLP", "BCS5", "BCD5", "BCLA" 1];

CHAPTER 3. MET DATA I/0 127

// oper_technique = ["CARQ" J;

// oper_baseline = ["OCLP", "OCS5", "OCD5", "OCDT" 1;
//

best_technique = ["BEST"];

best_baseline = [];

oper_technique = ["CARQ"];
[1;

oper_baseline

/7

// Analysis tracks consist of multiple track points with a lead time of zero
// for the same storm. An analysis track may be generated by running model

// analysis fields through a tracking algorithm. Specify which datasets should
// be searched for analysis track data by setting this to NONE, ADECK, BDECK,
// or BOTH. Use BOTH to create pairs using two different analysis tracks.

//

// e.g. anly_track = BDECK;

/7

anly_track = BDECK;

//

// Specify whether only those track points common to both the ADECK and BDECK
// tracks should be written out.

//

// e.g. match_points = FALSE;

//

match_points = FALSE;

//

// Specify the NetCDF output of the gen_dland tool containing a gridded
// representation of the minimum distance to land.

//

dland_file = "MET_BASE/tc_data/dland_nw_hem_tenth_degree.nc";

//

// Specify watch/warning information. Specify an ASCII file containing

// watch/warning information to be used. At each track point, the most severe
// watch/warning status in effect, if any, will be written to the output.

// Also specify a time offset in seconds to be added to each watch/warning

// time processed. NHC applies watch/warning information to all track points
// occurring 4 hours (-14400 second) prior to the watch/warning time.

//

watch_warn = {

file_name = "MET_BASE/tc_data/wwpts_us.txt";

CHAPTER 3. MET DATA I/0 128

time_offset = -14400;

LI111777
//

// TCStatConfig_default

//
II111777

//

// Stratify by the AMODEL or BMODEL columns.

// Specify comma-separated lists of model names to be used for all analyses
// performed. May add to this list using the "-amodel" and "-bmodel"

// job command options.

// e.g. amodel = ["AHW4"];

// bmodel = ["BEST"]1;
//

amodel = [];

bmodel = [];

//

// Stratify by the VALID times.
// Define beginning and ending time windows in YYYYMMDD[_HH[MMSS]]

// or provide a list of specific valid times to include or exclude.

// May modify using the "-valid_beg", "-valid_end", "-valid_inc",
// and "-valid_exc" job command options.

//

// e.g. valid_beg = "20100101";

// valid_end = "20101231_12";

// valid_inc = ["20101231_06"];

// valid_exc = ["20101231_00" 1;

/7

valid_beg = "";

valid_end = "";
valid_inc = [];

(1;

valid_exc

!/

// Stratify by the initialization and valid hours and lead time.
// Specify a comma-separated list of initialization hours,

// valid hours, and lead times in HH[MMSS] format.

// May add using the "-init_hour", "-valid_hour", "-lead",

// and "-lead_req" job command options.

CHAPTER 3. MET DATA I/0

//

// e.g. init_hour = ["00"];

// valid_hour = ["12"];

// lead = ["24", "36" 1;

// lead_req = ["72", "84", "96", "108" 1;
//

init_hour = [];

valid_hour = [];

lead = [1;

lead_req = [];

//

// Stratify by the LINE_TYPE column. May add using the "-line_type"
// job command option.

//

// e.g. line_type = ["TCMPR" 1;

//

line_type = [1;

//
//
//
/7
//
//
//
//
//
//
//

Stratify by checking the watch/warning status for each track point
common to both the ADECK and BDECK tracks. If the watch/warning status
of any of the track points appears in the list, retain the entire track.
Individual watch/warning status by point may be specified using the
-column_str options below, but this option filters by the track maximum.
May add using the "-track_watch_warn" job command option.

The value "ALL" matches HUWARN, TSWARN, HUWATCH, and TSWATCH.

e.g. track_watch_warn = ["HUWATCH", "HUWARN"];

track_watch_warn = [];

//
//
//
//
//
//
//
//
//

column_thresh_name

Stratify by applying thresholds to numeric data columns.
Specify a comma-separated list of columns names and thresholds

to be applied. May add using the "-column_thresh name thresh" job command

options.

e.g. column_thresh name = ["ADLAND", "BDLAND"];
[>200, >200 1;

column_thresh_val

[1;

column_thresh_val = [];

129

CHAPTER 3. MET DATA I/0 130

//

// Stratify by performing string matching on non-numeric data columns.

// Specify a comma-separated list of columns names and values

// to be checked. May add using the "-column_str name string" job command

// options.

//

// e.g. column_str_name = ["LEVEL", "LEVEL"];
// column_str_val = ["HU", "TS" 1;
//

column_str_name = [];

column_str_val = [];

//

// Just like the column_thresh options above, but apply the threshold only

// when lead = 0.

If lead = 0 value does not meet the threshold, discard

// the entire track. May add using the "-init_thresh name thresh" job command

// options.

//

// e.g. init_thresh_name = ["ADLAND"];
// init_thresh_val = [>200 1;
//

init_thresh_name = [];

init_thresh_val

//

// Just like the
// when lead = 0.
// May add using

[1;

column_str options above, but apply the string matching only
If lead = 0 string does not match, discard the entire track.

the "-init_str name thresh" job command optioms.

//

// e.g. init_str_name = ["LEVEL" 1;
// init_str_val = ["HU" 1;
//

init_str_name = [];

init_str_val = [];

//

// Stratify by the ADECK and BDECK distances to land. 0Once either the ADECK or

// BDECK track encounters land, discard the remainder of the track.

//

// e.g. water_only = FALSE;

//

water_only = FALSE;

CHAPTER 3. MET DATA I/0 131

//

// Specify whether only those track points for which rapid intensification
// or weakening of the maximum wind speed occurred in the previous time

// step should be retained.

//

// The NHC considers a 24-hour change >=30 kts to constitute rapid

// intensification or weakening.

//

// May modify using the following job command options:

// "_rirw_track"
// "-rirw_time" for both or "-rirw_time_adeck" and "-rirw_time_bdeck"
// "-rirw_exact" for both or "-rirw_exact_adeck" and "-rirw_exact_bdeck"
// "-rirw_thresh" for both or "-rirw_thresh_adeck" and "-rirw_thresh_bdeck"
//
rirw = {
track = NONE; // Specify which track types to search (NONE, ADECK,
// BDECK, or BOTH)
adeck = {
time = "24"; // Rapid intensification/weakening time period in HHMMSS
// format.
exact = TRUE; // Use the exact or maximum intensity difference over the
// time period.
thresh = >=30.0; // Threshold for the intensity change.
}
bdeck = adeck; // Copy settings to the BDECK or specify different logic.
}
//

// Specify whether only those track points occurring near landfall should be

// retained, and define the landfall retention window as a timestring in HH[MMSS]
// format (or as an integer number of seconds) offset from the landfall time.

// Landfall is defined as the last BDECK track point before the distance to land
// switches from positive to 0 or negative.

//

// May modify using the "-landfall_window" job command option, which

// automatically sets -landfall to TRUE.

//

// The "-landfall_window" job command option takes 1 or 2 arguments in HH[MMSS]
// format. Use 1 argument to define a symmetric time window. For example,

// "-landfall_window 06" defines the time window +/- 6 hours around the landfall

// time. Use 2 arguments to define an asymmetric time window. For example,

CHAPTER 3. MET DATA I/0

// "-landfall_window 00 12" defines the time window from the landfall event to 12
// hours after.

//

// e.g. landfall = FALSE;

// landfall_beg = "-24"; (24 hours prior to landfall)
// landfall_end = "00";

//

landfall = FALSE;

landfall_beg = "-24";

landfall_end = "00";

//

// Specify whether only those cases common to all models in the dataset should
// be retained. May modify using the "
//

// e.g. event_equal = FALSE;

/7

event_equal = FALSE;

-event_equal" job command option.

//

// Specify lead times that must be present for a track to be included in the
// event equalization logic.

//

event_equal_lead = ["12", "24", "36"];

//

// Apply polyline masking logic to the location of the ADECK track at the

// initialization time. If it falls outside the mask, discard the entire track.
// May modify using the "
//

// e.g. out_init_mask = "";

//

out_init_mask = "";

-out_init_mask" job command option.

/7

// Apply polyline masking logic to the location of the ADECK track at the

// valid time. If it falls outside the mask, discard only the current track
// point. May modify using the "-out_valid_mask" job command option.

/7

// e.g. out_valid_mask = "";

//

out_valid_mask = "";

132

CHAPTER 3. MET DATA I/0 133

!/
//
//
//
//
//
//
/7
//
//
//
//
//
//
//
//
//
//
/7
//
//
//
/7
//
//
//
//
//
//
//
//
//
//
/7
//
//
//
!/
!/
//
//
//
//

The "jobs" entry is an array of TCStat jobs to be performed.
Each element in the array contains the specifications for a single analysis

job to be performed. The format for an analysis job is as follows:

-job job_name
OPTIONAL ARGS

Where "job_name" is set to one of the following:

"filter"
To filter out the TCST lines matching the job filtering criteria
specified above and using the optional arguments below. The
output TCST lines are written to the file specified using the
"-dump_row" argument.

Required Args: -dump_row

To further refine the TCST data: Each optional argument may be used
in the job specification multiple times unless otherwise indicated.
When multiple optional arguments of the same type are indicated, the

analysis will be performed over their union

"_amodel name"
"-bmodel name"
"-lead HHMMSS"

"-valid_beg YYYYMMDD[_HH[MMSS]]" (use once)
"-valid_end YYYYMMDD[_HH[MMSS]]" (use once)
"-valid_inc YYYYMMDD[_HH[MMSS]]" (use once)
"-valid_exc YYYYMMDD[_HH[MMSS]]" (use once)
"-init_beg YYYYMMDD[_HH[MMSS]]" (use once)
"-init_end YYYYMMDD[_HH[MMSS]]" (use once)
"-init_inc YYYYMMDD[_HH[MMSS]]" (use once)
"-init_exc YYYYMMDD [_HH[MMSS]]" (use once)
"_init_hour HH[MMSS]"

"-valid_hour HH[MMSS]

"-init_mask name"
"-valid_mask name"
"-line_type name"

"-track_watch
"-column_thre
"-column_str

"-init_thresh

"-init_str

_warn name"

sh name thresh"
name string"
name thresh"

name string"

CHAPTER 3. MET DATA I/0 134

!/
//
//
//
//
//
//
/7
//
//
//
//
//
//
//
//
//
//
/7
//
//
//
/7
//
//
//
//
//
//
//
//
//
//
/7
//
//
//
!/
!/
//
//
//
//

Additional filtering options that may be used only when -line_type
has been listed only once. These options take two arguments: the name
of the data column to be used and the min, max, or exact value for
that column. If multiple column eq/min/max/str options are listed,

the job will be performed on their intersection:

"-column_min col_name value" e.g. -column_min TK_ERR 100.00
"-column_max col_name value"

"-column_eq col_name value"

"-column_str col_name string" separate multiple filtering strings

with commas

Required Args: -dump_row

"summary"

To compute the mean, standard deviation, and percentiles
(0th, 10th, 25th, 50th, 75th, 90th, and 100th) for the statistic
specified using the "-line_type" and "-column" arguments.

For TCStat, the "-column" argument may be set to:

"TRACK" for track, along-track, and cross-track errors.
"WIND" for all wind radius errors.

"TI" for track and maximum wind intensity errors.

"AC" for along-track and cross-track errors.

"XY" for x-track and y-track errors.

"col" for a specific column name.

"coll-col2" for a difference of two columns.

"ABS(col or coll-col2)" for the absolute value.

Use the -column_union TRUE/FALSE job command option to compute
summary statistics across the union of input columns rather than

processing them separately.

Required Args: -line_type, -column
Optional Args: -by column_name to specify case information
-out_alpha to override default alpha value

-column_union to summarize multiple columns

l|rirwll

To define rapid intensification/weakening contingency table using
the ADECK and BDECK RI/RW settings and the matching time window

and output contingency table counts and statistics.

CHAPTER 3. MET DATA I/0 135

//

// Optional Args:

// -rirw_window width in HH[MMSS] format to define a symmetric time
// window

// -rirw_window beg end in HH[MMSS] format to define an asymmetric
// time window

// Default search time window is O 0, requiring exact match

// -rirw_time or -rirw_time_adeck and -rirw_time_bdeck to override
// defaults

// -rirw_exact or -rirw_exact_adeck and -rirw_exact_bdeck to override
// defaults

// -rirw_thresh or -rirw_thresh_adeck and -rirw_thresh_bdeck to

// override defaults

// -by column_name to specify case information

// -out_alpha to override default alpha value

// -out_line_type to specify output line types (CTC, CTS, and MPR)
//

// Note that the "-dump_row path" option results in 4 files being

// created:

// path_FY_0Y.tcst, path_FY_ON.tcst, path_FN_0Y.tcst, and

// path_FN_ON.tcst, containing the TCST lines that were hits, false
// alarms, misses, and correct negatives, respectively. These files
// may be used as input for additional TC-Stat analysis.

//

// "probrirw"

// To define an Nx2 probabilistic contingency table by reading the

// PROBRIRW line type, binning the forecast probabilities, and writing
// output probabilistic counts and statistics.

//

// Required Args:

// -probrirw_thresh to define the forecast probabilities to be

// evaluated (e.g. -probrirw_thresh 30)

//

// Optional Args:

// -probrirw_exact TRUE/FALSE to verify against the exact (e.g.

// BDELTA column) or maximum (e.g. BDELTA_MAX column) intensity
// change in the BEST track

// -probrirw_bdelta_thresh to define BEST track change event

// threshold (e.g. -probrirw_bdelta_thresh >=30)

// -probrirw_prob_thresh to define output probability thresholds

// (e.g. -probrirw_prob_thresh ==0.1)

// -by column_name to specify case information

// -out_alpha to override default alpha value

CHAPTER 3. MET DATA I/0 136

// -out_line_type to specify output line types (PCT, PSTD, PRC, and
// PJC)

//

// For the PROBRIRW line type, PROBRIRW_PROB is a derived column name.

// For example, the following options select 30 kt probabilities and match
// probability values greater than O:

// -probrirw_thresh 30 -column_thresh PROBRIRW_PROB >0

/7

// e.g.

// jobs = [

// "-job filter -amodel AHW4 -dumprow ./tc_filter_job.tcst",

// "-job filter -column_min TK_ERR 100.000 \

// -dumprow ./tc_filter_job.tcst",

// "-job summary -line_type TCMPR -column AC \

// -dumprow ./tc_summary_job.tcst",

// "-job rirw -amodel AHW4 -dump_row ./tc_rirw_job"]

//

jobs = [];

LIT177
//

// TCGenConfig_default

/7
LIT177

//

// Model initialization frequency in hours, starting at O.
/7

init_freq = 6;

/7
// Lead times in hours to be searched for genesis events.
//
lead_window = {
beg = 24;
end = 120;
3
//
// Minimum track duration for genesis event in hours.
//

min_duration = 12;

CHAPTER 3. MET DATA I/0 137

/7

// Forecast genesis event criteria. Defined as tracks reaching the specified

// intensity category, maximum wind speed threshold, and minimum sea-level

// pressure threshold. The forecast genesis time is the valid time of the first
// track point where all of these criteria are met.

/7

fcst_genesis = {

NA;
NA;

vmax_thresh

mslp_thresh

//

// BEST track genesis event criteria. Defined as tracks reaching the specified
// intensity category, maximum wind speed threshold, and minimum sea-level

// pressure threshold. The BEST track genesis time is the valid time of the

// first track point where all of these criteria are met.

//

best_genesis = {
technique = "BEST";
category = ["TD", "TS" 1;
vmax_thresh = NA;
mslp_thresh = NA;

}

//

// Operational track genesis event criteria. Defined as tracks reaching the
// specified intensity category, maximum wind speed threshold, and minimum
// sea-level pressure threshold. The operational track genesis time is valid
// time of the first track point where all of these criteria are met.
//
oper_genesis = {

technique = "CARQ";

category = ["DB", "LO", "WV"];

vmax_thresh = NA;

mslp_thresh = NA;

[I717777777777777777777777177777777777777777777777777777177777777777777777777777
/7

// Track filtering options which may be specified separately in each filter

// array entry.

//

LI 77717777

CHAPTER 3. MET DATA I/0 138

/7

// Filter is an array of dictionaries containing the track filtering options
// listed below. If empty, a single filter is defined using the top-level
// settings.

//
filter = [];

//
// Description written to output DESC column

//
desc = "NA";

//

// Forecast ATCF ID’s

// If empty, all ATCF ID’s found will be processed.

// Statistics will be generated separately for each ATCF ID.

//

model = [];

//

// BEST and operational track storm identifiers
//

storm_id = [];

//

// BEST and operational track storm names
//

storm_name = [];

//

// Forecast and operational initialization time window
//

init_beg = "";

init_end = "";

//

// Forecast, BEST, and operational valid time window
//

valid_beg = "";

valid_end = "";

//

CHAPTER 3. MET DATA I/0 139

// Forecast and operational initialization hours
/7

init_hour = [];

/7

// Forecast and operational lead times in hours
//

lead = [];

/7

// Spatial masking region (path to gridded data file or polyline file)
//

vx_mask = "";

//

// Distance to land threshold
//

dland_thresh = NA;

/7
// Genesis matching time window, in hours relative to the forecast genesis time
//

genesis_window = {

beg = -24;
end = 24;
}
//
// Genesis matching search radius in km.
//

genesis_radius = 300;

LI111777
//

// Global settings.

//
LI11177077

//
// Confidence interval alpha value

//
ci_alpha = 0.05;

CHAPTER 3. MET DATA I/0

//
// Statistical output types

//
output_flag = {

fho = NONE;
ctc = BOTH;
cts = BOTH;

140

Chapter 4

Re-Formatting of Point Observations

There are several formats of point observations that may preprocessed using the suite of reformatting tools
in MET. These include PrepBUFR data from NCEP, SURFRAD data from NOAA, AERONET data from
NASA, MADIS data from NOAA, little r from WRF simulations, and user-defined data in a generic ASCII
format. These steps are represented by the first columns in the MET flowchart depicted in Figure The
software tools used to reformat point data are described in this chapter.

4.1 PB2NC tool

This section describes how to configure and run the PB2NC tool. The PB2NC tool is used to stratify the
contents of an input PrepBUFR point observation file and reformat it into NetCDF format for use by other
MET tools. The PB2NC tool must be run on the input PrepBUFR point observation file prior to performing
verification with the MET statistics tools.

4.1.1 pb2nc usage

The usage statement for the PB2NC tool is shown below:

Usage: pb2nc
prepbufr_file
netcdf_file
config file
[-pbfile PrepBUFR_file]
[-valid_beg time]
[-valid_end timel

[-nmsg n]

141

CHAPTER 4. RE-FORMATTING OF POINT OBSERVATIONS 142

[-dump path]
[-index]
[-log file]
[-v levell]

[-compress levell

pb2nc has both required and optional arguments.

Required arguments for pb2nc

1.

2.

3.

The prepbufr _file argument is the input PrepBUFR file to be processed.
The netcdf file argument is the output NetCDF file to be written.

The config_file argument is the configuration file to be used. The contents of the configuration file are

discussed below.

Optional arguments for pb2nc

—

The -pbfile prepbufr file option is used to pass additional input PrepBUFR files.

The -valid _beg time option in YYYYMMDD|_HH[MMSS]|| format sets the beginning of the retention

time window.

The -valid__end time option in YYYYMMDD|_ HH[MMSS]|| format sets the end of the retention time

window.

. The -nmsg num_messages option may be used for testing purposes. This argument indicates that

only the first “num messages” PrepBUFR messages should be processed rather than the whole file.
This option is provided to speed up testing because running the PB2NC tool can take a few minutes
for each file. Most users will not need this option.

The -dump path option may be used to dump the entire contents of the PrepBUFR file to several ASCII
files written to the directory specified by “path”. The user may use this option to view a human-readable
version of the input PrepBUFR file, although writing the contents to ASCII files can be slow.

The -index option shows the available variables with valid data from the BUFR input. It collects the
available variable list from BUFR input and checks the existence of valid data and directs the variable

names with valid data to the screen. The NetCDF output won’t be generated.

The -log file option directs output and errors to the specified log file. All messages will be written to that
file as well as standard out and error. Thus, users can save the messages without having to redirect

the output on the command line. The default behavior is no log file.

The -v level option indicates the desired level of verbosity. The value of “level” will override the default
setting of 2. Setting the verbosity to 0 will make the tool run with no log messages, while increasing

the verbosity above 1 will increase the amount of logging.

CHAPTER 4. RE-FORMATTING OF POINT OBSERVATIONS 143

9. The -compress level option indicates the desired level of compression (deflate level) for NetCDF vari-
ables. The valid level is between 0 and 9. The value of “level” will override the default setting of 0 from
the configuration file or the environment variable MET NC COMPRESS. Setting the compression
level to 0 will make no compression for the NetCDF output. Lower number is for fast compression and

higher number is for better compression.

An example of the pb2nc calling sequence is shown below:

pb2nc sample_pb.blk \
sample_pb.nc \
PB2NCConfig

In this example, the PB2NC tool will process the input sample pb.blk file applying the configuration
specified in the PB2NCConfig file and write the output to a file named sample pb.nc.

4.1.2 pb2nc configuration file

The default configuration file for the PB2NC tool named PB2NCConfig default can be found in the
installed share/met/config directory. The version used for the example run in Section is available in
scripts/config. It is recommended that users make a copy of configuration files prior to modifying their

contents.

When editing configuration files, environment variables may be used for setting the configurable parameters if
convenient. The configuration file parser expands any environment variables to their full value before proceed-
ing. Within the configuration file, environment variables must be specified in the form: ${VAR NAME}.

For example, using an environment variable to set the message type (see below) parameter to use AD-
PUPA and ADPSFC message types might consist of the following:

* In a C-Shell: setenv MSG_TYP ’ “ADPUPA”, “ADPSFC” ’

* In the configuration file: message type[] = [${MSG_TYP} |;

The contents of the default pb2nc configuration file are described below.

obs_window = { beg = -5400; end = 5400; }
mask = { grid = ""; poly = ""; }
tmp_dir = "/tmp";
version = "VN.N";

CHAPTER 4. RE-FORMATTING OF POINT OBSERVATIONS 144

The configuration options listed above are common to many MET tools and are described in Section [3.5.1

message_type = [];

Each PrepBUFR message is tagged with one of eighteen message types as listed in the share/met/con-
fig/README file. The 'message type’ refers to the type of observation from which the observation value
(or ’report’) was derived. The user may specify a comma-separated list of message types to be retained.

Providing an empty list indicates that all message types should be retained.

message_type_map = [{ key = ‘AIRCAR”; val = ‘“‘AIRCAR_PROFILES”; } 1;

The message type map entry is an array of dictionaries, each containing a key string and val string.
This defines a mapping of input PrepBUFR message types to output message types. This provides a method
for renaming input PrepBUFR message types.

message_type_group_map = [

{ key = "SURFACE"; val = "ADPSFC,SFCSHP,MSONET"; 3,
{ key = "ANYAIR"; wval = "AIRCAR,AIRCFT"; 3,
{ key = "ANYSFC"; val = "ADPSFC,SFCSHP,ADPUPA,PROFLR,MSONET"; },
{ key = "ONLYSF"; val = "ADPSFC,SFCSHP"; }

1;

The message type group map entry is an array of dictionaries, each containing a key string and val
string. This defines a mapping of message type group names to a comma-separated list of values. This map
is defined in the config files for PB2NC, Point-Stat, or Ensemble-Stat. Modify this map to define sets of
message types that should be processed together as a group. The SURFACE entry must be present to

define message types for which surface verification logic should be applied.

station_id = [];

Each PrepBUFR message has a station identification string associated with it. The user may specify a
comma-separated list of station IDs to be retained. Providing an empty list indicates that messages from all
station IDs will be retained. It can be a file name containing a list of stations.

CHAPTER 4. RE-FORMATTING OF POINT OBSERVATIONS 145

elevation_range = { beg = -1000; end = 100000; }

The beg and end variables are used to stratify the elevation (in meters) of the observations to be retained.

The range shown above is set to -1000 to 100000 meters, which essentially retains every observation.

pb_report_type = [1;
in_report_type = [];
instrument_type = [];

The pb_report type, in_report type, and instrument type variables are used to specify comma-
separated lists of PrepBUFR report types, input report types, and instrument types to be retained, respec-
tively. If left empty, all PrepBUFR report types, input report types, and instrument types will be retained.
See the following for more details:

http://www.emc.ncep.noaa.gov/mmb/data_processing/PrepBUFR.doc/table_4.htm

http://www.emc.ncep.noaa.gov/mmb/data_processing/PrepBUFR.doc/table_6.htm

level _range { beg = 1; end = 255; }

0;

level_category

The beg and end variables are used to stratify the model level of observations to be retained. The range

shown above is 1 to 255.

The level category variable is used to specify a comma-separated list of PrepBUFR data level categories
to retain. An empty string indicates that all level categories should be retained. Accepted values and their

meanings are described in Table See the following for more details:

http://www.emc.ncep.noaa.gov/mmb/data_processing/PrepBUFR.doc/table_1.htm

Table 4.1: Values for the level category option.

Level category value Description

0 Surface level
Mandatory level
Significant temperature level
Winds-by-pressure level
Winds-by-height level
Tropopause level
Reports on a single level
Auxiliary levels generated via interpolation from spanning levels

| O O x| W[N =

http://www.emc.ncep.noaa.gov/mmb/data_processing/PrepBUFR.doc/table_4.htm
http://www.emc.ncep.noaa.gov/mmb/data_processing/PrepBUFR.doc/table_6.htm
http://www.emc.ncep.noaa.gov/mmb/data_processing/PrepBUFR.doc/table_1.htm

CHAPTER 4. RE-FORMATTING OF POINT OBSERVATIONS 146

obs_bufr_var = [’Q0B’, °TOB’, ’Z0B’, °U0OB’, ’VOB’];

Each PrepBUFR message will likely contain multiple observation variables. The obs bufr var vari-
able is used to specify which observation variables should be retained or derived. The variable name
comes from BUFR file which includes BUFR table. The following BUFR names may be retained: QOB,
TOB, ZOB, UOB, and VOB for specific humidity, temperature, height, and the u and v components of
winds. The following BUFR names may be derived: D DPT, D WIND, D RH, D MIXR, D PRMSL,
D PBL, and D _CAPE for dew point, wind speed, relative humidity, mixing ratio, pressure reduced to
MSL, planetary boundary layer height, and convective available potential energy. This configuration re-

places obs _grib _code. If the list is empty, all BUFR variables are retained.

obs_bufr_map = [

{ key = ’POB’; val = PRES’; },
{ key = ’QO0B’; val = SPFH’; },
{ key = ’TOB’; val = >TMP’; 1},
{ key = ’Z0B’; val = ’HGT’; },
{ key = ’U0OB’; val = UGRD’; 1},
{ key = ’VOB’; val = °VGRD’; 1},
{ key = ’D_DPT’; val = ’DPT’; 1},
{ key = ’D_WDIR’; val = WDIR’; },
{ key = ’D_WIND’; val = ’WIND’; 1},
{ key = ’D_RH’; val = ’RH?; },
{ key = ’D_MIXR’; val = MIXR’; },
{ key = *D_PRMSL’; val = ’PRMSL’; },
{ key = ’D_PBL’; val = ’PBL’; 1},
{ key = "D_CAPE’; wval = CAPE’; }
1;

The BUFR variable names are not shared with other forecast data. This map is used to convert the BUFR
name to the common name, like GRIB2. It allows to share the configuration for forecast data with PB2NC

observation data. If there is no mapping, the BUFR variable name will be saved to output NetCDF file.

quality_mark_thresh = 2;

CHAPTER 4. RE-FORMATTING OF POINT OBSERVATIONS 147

Each observation has a quality mark value associated with it. The quality mark thresh is used to
stratify out which quality marks will be retained. The value shown above indicates that only observations

with quality marks less than or equal to 2 will be retained.

event_stack_flag = TOP;

A PrepBUFR message may contain duplicate observations with different quality mark values. The

event stack flag indicates whether to use the observations at the top of the event stack (observation
values have had more quality control processing applied) or the bottom of the event stack (observation
values have had no quality control processing applied). The flag value of TOP listed above indicates the
observations with the most amount of quality control processing should be used, the BOTTOM option uses
the data closest to raw values.

time_summary = {

flag = FALSE;

raw_data = FALSE;

beg = "000000";

end = "235959";

step = 300;

width = 600;

// width = { beg = -300; end = 300; }
grib_code = [];

obs_var = ["TMP", "WDIR", "RH" 1;
type = "min", "max", "range", "mean", "stdev", "median", "p80"];
vld_freq = 0;

vld_thresh = 0.0;

The time summary dictionary enables additional processing for observations with high temporal resolu-
tion. The flag entry toggles the time summary on (TRUE) and off (FALSE). If the raw _data flag
is set to TRUE, then both the individual observation values and the derived time summary value will be
written to the output. If FALSE, only the summary values are written. Observations may be summarized
across the user specified time period defined by the beg and end entries in HHMMSS format. The step
entry defines the time between intervals in seconds. The width entry specifies the summary interval in
seconds. It may either be set as an integer number of seconds for a centered time interval or a dictionary

with beginning and ending time offsets in seconds.

This example listed above does a 10-minute time summary (width = 600;) every 5 minutes (step = 300;)
throughout the day (beg = “000000”; end = 235959”;). The first interval will be from 23:55:00 the previous

CHAPTER 4. RE-FORMATTING OF POINT OBSERVATIONS 148

day through 00:04:59 of the current day. The second interval will be from 0:00:00 through 00:09:59. And so

on.

The two width settings listed above are equivalent. Both define a centered 10-minute time interval. Use
the beg and end entries to define uncentered time intervals. The following example requests observations

for one hour prior:

width = { beg = -3600; end = 0; }

The summaries will only be calculated for the observations specified in the grib code or obs var entries.
The grib_code entry is an array of integers while the obs _ var entries is an array of strings. The supported
summaries are min (minimum), max (maximum), range, mean, stdev (standard deviation), median and
p## (percentile, with the desired percentile value specified in place of ##). If multiple summaries are
selected in a single run, a string indicating the summary method applied will be appended to the output
message type.

The vld_freq and vld _thresh entries specify the required ratio of valid data for an output time summary
value to be computed. This option is only applied when these entries are set to non-zero values. The
vld freq entry specifies the expected frequency of observations in seconds. The width of the time window
is divided by this frequency to compute the expected number of observations for the time window. The
actual number of valid observations is divided by the expected number to compute the ratio of valid data.
An output time summary value will only be written if that ratio is greater than or equal to the vld thresh
entry. Detailed information about which observations are excluded is provided at debug level 4.

4.1.3 pb2nc output

Each NetCDF file generated by the PB2NC tool contains the dimensions and variables shown in Tables [£.2]
and [£3]

Table 4.2: NetCDF file dimensions for pb2nc output.
pb2nc NetCDF DIMENSIONS

NetCDF Dimension Description

mxstr, mxstr2, mxstr3 Maximum string lengths (16, 40, and 80)

nobs Number of PrepBUFR observations in the file (UNLIMITED)
nhdr, npbhdr Number of PrepBUFR, messages in the file (variable)

nhdr typ, nhdr_sid, Number of unique header message type, station ID, and valid time
nhdr vld strings (variable)

nobs__qty Number of unique quality control strings (variable)

obs _var num Number of unique observation variable types (variable)

CHAPTER 4. RE-FORMATTING OF POINT OBSERVATIONS

Table 4.3: NetCDF variables in pb2nc output.

pb2nc NetCDF VARIABLES

NetCDF Dimension Description
Variable
obs_qty nobs Integer value of the n_obs__qty dimension for the
observation quality control string.
obs_hid nobs Integer value of the nhdr dimension for the header arrays
with which this observation is associated.
obs_vid nobs Integer value of the obs _var num dimension for the
observation variable name, units, and description.
obs_1vl nobs Floating point pressure level in hPa or accumulation
interval.
obs_hgt nobs Floating point height in meters above sea level.
obs_val nobs Floating point observation value.
hdr typ nhdr Integer value of the nhdr _typ dimension for the message
type string.
hdr sid nhdr Integer value of the nhdr sid dimension for the station ID
string.
hdr_vld nhdr Integer value of the nhdr_vld dimension for the valid time
string.
hdr lat, nhdr Floating point latitude in degrees north and longitude in
hdr lon degrees east.
hdr elv nhdr Floating point elevation of observing station in meters
above sea level.
hdr prpt_typ npbhdr Integer PrepBUFR, report type value.
hdr _irpt_typ npbhdr Integer input report type value.
hdr_inst_typ npbhdr Integer instrument type value.
hdr typ table | nhdr_ typ, Lookup table containing unique message type strings.
mxstr2
hdr sid table nhdr_sid, Lookup table containing unique station ID strings.
mxstr2
hdr vld table | nhdr_ vld, Lookup table containing unique valid time strings in
mxstr YYYYMMDD HHMMSS UTC format.
obs_qty_table nobs__qty, Lookup table containing unique quality control strings.
mxstr
obs_ var obs_var num, Lookup table containing unique observation variable
mxstr names.
obs__unit obs_var num, Lookup table containing a units string for the unique
mxstr2 observation variable names in obs_ var.
obs_desc obs_var num, Lookup table containing a description string for the
mxstr3 unique observation variable names in obs_var.

149

4.2 ASCII2NC tool

This section describes how to run the ASCII2NC tool. The ASCII2NC tool is used to reformat ASCII point
observations into the NetCDF format expected by the Point-Stat tool. For those users wishing to verify
against point observations that are not available in PrepBUFR format, the ASCII2NC tool provides a way
of incorporating those observations into MET. If the ASCII2NC tool is used to perform a reformatting step,

CHAPTER 4. RE-FORMATTING OF POINT OBSERVATIONS 150

no configuration file is needed. However, for more complex processing, such as summarizing time series
observations, a configuration file may be specified. For details on the configuration file options, see the
share/met /config/README file and example configuration files distributed with the MET code.

Initial versions of the ASCII2NC tool supported only a simple 11 column ASCII point observation for-
mat. It currently supports point observation data in the following formats: the default 11 column for-
mat, little_r format, SURFace RADiation (SURFRAD) and Integrated Surface Irradiance Study (ISIS)
formats (found at http://www.esrl.noaa.gov/gmd/grad/surfrad/)), the Western Wind and Solar Inte-
gration Study (WWSIS) format, and the AErosol RObotic NEtwork (AERONET) versions 2 and 3 format
(found at http://aeronet.gsfc.nasa.gov/). WWSIS data are available by request from National Renew-
able Energy Laboratory (NREL) in Boulder, CO.

MET version 9.0 adds support for the passing observations to ascii2nc using a Python script with the “-format

python” option. An example of running ASCII2NC with Python embedding is included below.

The default ASCII point observation format consists of one row of data per observation value. Each row of

data consists of 11 columns as shown in Table [£.4]

Table 4.4: Input MET ascii2nc point observation format

’ ascii2nc ASCII Point Observation Format

Column | Name Description
1 Message Type Text string containing the observation message type as described
in the previous section on the PB2NC tool.
2 Station ID Text string containing the station id.
Valid Time Text string containing the observation valid time in
YYYYMMDD HHMMSS format.
4 Lat Latitude in degrees north of the observing location.
5 Lon Longitude in degrees east of the observation location.
6 Elevation Elevation in msl of the observing location.
7 GRIB_Code or Integer GRIB code value or variable name corresponding to this
Variable Name observation type.
8 Level Pressure level in hPa or accumulation interval in hours for the
observation value.
9 Height Height in msl or agl of the observation value.
10 QC _String Quality control value.
11 Observation Value Observation value in units consistent with the GRIB code
definition.

4.2.1 ascii2nc usage

Once the ASCII point observations have been formatted as expected, the ASCII file is ready to be processed
by the ASCII2NC tool. The usage statement for ASCII2NC tool is shown below:

Usage: asciiZnc

http://www.esrl.noaa.gov/gmd/grad/surfrad/
http://aeronet.gsfc.nasa.gov/

CHAPTER 4. RE-FORMATTING OF POINT OBSERVATIONS 151

ascii_filel [ascii_file2 ... ascii_filenl]
netcdf_file

[-format ASCII_format]

[-config file]

[-mask_grid string]

[-mask_poly filel

[-mask_sid file|list]

[-log file]

[-v levell]

[-compress levell]

ascii2nc has two required arguments and can take several optional ones.

Required arguments for ascii2nc

1. The ascii_file argument is the ASCII point observation file(s) to be processed. If using Python embedding
with “format python” provide a quoted string containing the Python script to be run followed by any
command line arguments that script takes.

2. The netcdf file argument is the NetCDF output file to be written.

Optional arguments for ascii2nc

3. The -format ASCII format option may be set to “met_ point”, “little_r”, “surfrad”, “wwsis”, “aeronet”,

“aeronetv2”; “aeronetv3”, or “python”. If passing in ISIS data, use the “surfrad” format flag.
4. The -config file option is the configuration file for generating time summaries.

5. The -mask grid string option is a named grid or a gridded data file to filter the point observations

spatially.
6. The -mask poly file option is a polyline masking file to filter the point observations spatially.

7. The -mask _sid file|list option is a station ID masking file or a comma-separated list of station ID’s to

filter the point observations spatially. See the description of the “sid” entry in [3.5.1

8. The -log file option directs output and errors to the specified log file. All messages will be written to that
file as well as standard out and error. Thus, users can save the messages without having to redirect

the output on the command line. The default behavior is no log file.

9. The -v level option indicates the desired level of verbosity. The value of “level” will override the default
setting of 2. Setting the verbosity to 0 will make the tool run with no log messages, while increasing

the verbosity above 1 will increase the amount of logging.

CHAPTER 4. RE-FORMATTING OF POINT OBSERVATIONS 152

10. The -compress level option indicates the desired level of compression (deflate level) for NetCDF vari-
ables. The valid level is between 0 and 9. The value of “level” will override the default setting of 0 from
the configuration file or the environment variable MET NC COMPRESS. Setting the compression
level to 0 will make no compression for the NetCDF output. Lower number is for fast compression and

higher number is for better compression.

An example of the ascii2nc calling sequence is shown below:

ascii2nc sample_ascii_obs.txt \

sample_ascii_obs.nc

In this example, the ASCII2NC tool will reformat the input sample ascii obs.txt file into NetCDF

format and write the output to a file named sample ascii obs.nc.

4.2.1.1 Python Embedding for Point Observations

Here is an example of processing the same set of observations but using Python embedding instead:

ascii2nc -format python \
““MET_BASE/python/read_ascii_point.py sample_ascii_obs.txt" \

sample_ascii_obs_python.nc

Please refer to Appendix [F] for more details about Python embedding in MET.

4.2.2 ascii2nc configuration file

The default configuration file for the ASCII2NC tool named Ascii2NcConfig default can be found in the
installed share/met/config directory. It is recommended that users make a copy of this file prior to modifying
its contents.

The ASCII2NC configuration file is optional and only necessary when defining time summaries or message

type mapping for little r data. The contents of the default ASCII2NC configuration file are described below.

version = "VN.N";

The configuration options listed above are common to many MET tools and are described in Section [3.5.1

CHAPTER 4. RE-FORMATTING OF POINT OBSERVATIONS 153

time_summary = { ... }

The time summary feature was implemented to allow additional processing of observations with high
temporal resolution, such as SURFRAD data every 5 minutes. This option is described in Section

message_type_map = [
{ key = "FM-12 SYNOP"; val = "ADPSFC"; }

key = "FM-13 SHIP"; val = "SFCSHP"; }
key = "FM-15 METAR"; val = "ADPSFC"; }
key = "FM-18 BUOY"; val = "SFCSHP"; }

key = "FM-281 QSCAT"; val = "ASCATW"; }
key = "FM-32 PILOT"; val = "ADPUPA"; }
key = "FM-35 TEMP"; val = "ADPUPA"; 1}
key = "FM-88 SATOB"; val = "SATWND"; }
key = "FM-97 ACARS"; val = "AIRCFT"; }

>
2
s
>
>
2
s
>

P e S S Sy

1;

This entry is an array of dictionaries, each containing a key string and val string which define a mapping
of input strings to output message types. This mapping is currently only applied when converting input

little r report types to output message types.

4.2.3 ascii2nc output

The NetCDF output of the ASCII2NC tool is structured in the same way as the output of the PB2NC tool
described in Section 1.3l

4.3 MADIS2NC tool

This section describes how to run the MADIS2NC tool. The MADIS2NC tool is used to reformat Me-
teorological Assimilation Data Ingest System (MADIS) point observations into the NetCDF format ex-
pected by the MET statistics tools. More information about MADIS data and formatting is available at
http://madis.noaa.gov. Since the MADIS2NC tool simply performs a reformatting step, no configuration
file is needed. The MADIS2NC tool supports many of the MADIS data types, as listed in the usage statement
below. Support for additional MADIS data types may be added in the future based on user feedback.

http://madis.noaa.gov

CHAPTER 4. RE-FORMATTING OF POINT OBSERVATIONS 154

4.3.1 madis2nc usage

The usage statement for MADIS2NC tool is shown below:

Usage: madis2nc
madis_file [madis_file2 ... madis_filen]
out_file
-type str
[-config file]
[-qc_dd 1list]
[-1vl_dim list]
[-rec_beg n]
[-rec_end n]
[-mask_grid string]
[-mask_poly filel
[-mask_sid file|list]
[-log file]
[-v level]

[-compress levell

madis2nc has required arguments and can also take optional ones.

Required arguments for madis2nc

1. The madis_ file argument is one or more input MADIS point observation files to be processed.
2. The netcdf file argument is the NetCDF output file to be written.
3. The argument -type str is type of MADIS observations (metar, raob, profiler, maritime, mesonet or

acarsProfiles).

Optional arguments for madis2nc

4. The -config file option specifies the configuration file to generate summaries of the fields in the ASCIIT
files.

5. The -qc_ dd list option specifies a comma-separated list of QC flag values to be accepted
(Z7C7S7V7X7Q7K7G7B)'

6. The -lvl dim list option specifies a comma-separated list of vertical level dimensions to be processed.

7. To specify the exact records to be processed, the -rec_ beg n specifies the index of the first MADIS
record to process and -rec__end n specifies the index of the last MADIS record to process. Both are

zero-based.

CHAPTER 4. RE-FORMATTING OF POINT OBSERVATIONS 155

8. The -mask grid string option specifies a named grid or a gridded data file for filtering the point

observations spatially.
9. The -mask poly file option defines a polyline masking file for filtering the point observations spatially.

10. The -mask _sid file|list option is a station ID masking file or a comma-separated list of station ID’s

for filtering the point observations spatially. See the description of the “sid” entry in (3.5.1

11. The -log file option directs output and errors to the specified log file. All messages will be written
to that file as well as standard out and error. Thus, users can save the messages without having to

redirect the output on the command line. The default behavior is no log file.

12. The -v level option indicates the desired level of verbosity. The value of “level” will override the default
setting of 2. Setting the verbosity to 0 will make the tool run with no log messages, while increasing

the verbosity will increase the amount of logging.

13. The -compress level option specifies the desired level of compression (deflate level) for NetCDF vari-
ables. The valid level is between 0 and 9. Setting the compression level to 0 will make no compression
for the NetCDF output. Lower number is for fast compression and higher number is for better com-

pression.

An example of the madis2nc calling sequence is shown below:

madis2nc sample_madis_obs.nc \

sample_madis_obs_met.nc -log madis.log -v 3

In this example, the MADIS2NC tool will reformat the input sample madis_obs.nc file into Net CDF format
and write the output to a file named sample madis obs met.nc. Warnings and error messages will be

written to the madis.log file, and the verbosity level of logging is three.

4.3.2 madis2nc configuration file

The default configuration file for the MADIS2NC tool named Madis2NcConfig default can be found
in the installed share/met/config directory. It is recommended that users make a copy of this file prior to

modifying its contents.

The MADIS2NC configuration file is optional and only necessary when defining time summaries. The
contents of the default MADIS2NC configuration file are described below.

version = "VN.N";

CHAPTER 4. RE-FORMATTING OF POINT OBSERVATIONS 156

The configuration options listed above are common to many MET tools and are described in Section [3.5.1

time_summary = { ... }

The time_ summary dictionary is described in Section 1.2}

4.3.3 madis2nc output

The NetCDF output of the MADIS2NC tool is structured in the same way as the output of the PB2NC tool
described in Section EI3l

4.4 LIDAR2NC tool

The LIDAR2NC tool creates a NetCDF point observation file from a CALIPSO HDF data file. Not all of
the data present in the CALIPSO file is reproduced in the output, however. Instead, the output focuses

mostly on information about clouds (as opposed to aerosols) as seen by the satellite along its ground track.

4.4.1 lidar2nc usage

The usage statement for LIDAR2NC tool is shown below:

Usage: lidar2nc
lidar_file
-out out_file
[-log file]
[-v level]

[-compress levell]

Unlike most of the MET tools, lidar2nc does not use a config file. Currently, the options needed to run

lidar2nc are not complex enough to require one.

Required arguments for lidar2nc

1. The lidar _file argument is the input HDF lidar data file to be processed. Currently, CALIPSO files are
supported but support for additional file types will be added in future releases.

2. The out_ file argument is the NetCDF output file to be written.

CHAPTER 4. RE-FORMATTING OF POINT OBSERVATIONS 157

Optional arguments for lidar2nc

3. The -log file option directs output and errors to the specified log file. All messages will be written to that
file as well as standard out and error. Thus, users can save the messages without having to redirect

the output on the command line. The default behavior is no log file.

4. The -v level option indicates the desired level of verbosity. The value of “level” will override the default
setting of 2. Setting the verbosity to 0 will make the tool run with no log messages, while increasing
the verbosity above 1 will increase the amount of logging.

5. The -compress level option indicates the desired level of compression (deflate level) for NetCDF vari-
ables. The valid level is between 0 and 9. The value of “level” will override the default setting of 0 from
the configuration file or the environment variable MET NC COMPRESS. Setting the compression
level to 0 will make no compression for the NetCDF output. Lower number is for fast compression and

higher number is for better compression.

4.4.2 lidar2nc output

Each observation type in the lidar2nc output is assigned a GRIB code. These are outlined in Table
GRIB codes were assigned to these fields arbitrarily, with GRIB codes in the 600s denoting individual bit
fields taken from the feature classification flag field in the CALIPSO file.

We will not give a detailed description of each CALIPSO data product that lidar2nc reads. Users should
refer to existing CALIPSO documentation for this information. We will, however, give some explanation of

how the cloud layer base and top information is encoded in the lidar2nc NetCDF output file.

Layer Base gives the elevation in meters above ground level of the cloud base for each cloud level at each
observation location. Similarly, Layer Top gives the elevation of the top of each cloud layer. Note that if
there are multiple cloud layers at a particular location, then there will be more than one base (or top) given
for that location. For convenience, Min Base and Max Top give, respectively, the base elevation for the
bottom cloud layer, and the top elevation for the top cloud layer. For these data types, there will be only

one value per observation location regardless of how many cloud layers there are at that location.

Table 4.5: lidar2nc GRIB codes and their meaning, units, and abbreviations

] GRIB Code \ Meaning \ Units \ Abbreviation
500 Number of Cloud Layers NA NLayers
501 Cloud Layer Base AGL m Layer Base
502 Cloud Layer Top AGL m Layer Top
503 Cloud Opacity % Opacity
504 CAD Score NA CAD_ Score
505 Minimum Cloud Base AGL m Min_Base
506 Maximum Cloud Top AGL m Max_Top
600 Feature Type NA Feature Type
601 Ice/Water Phase NA Ice. Water Phase
602 Feature Sub-Type NA Feature Sub_Type
603 Cloud/Aerosol /PSC Type QA NA Cloud _Aerosol PSC_Type QA
604 Horizontal Averaging NA Horizontal _Averaging

CHAPTER 4. RE-FORMATTING OF POINT OBSERVATIONS 158

4.5 Point2Grid tool

The Point2Grid tool takes point observations from a NetCDF output file from one of the four previously
mentioned MET tools (ascii2nc, madis2nc, pb2nc, lidar2nc) and creates a gridded NetCDF file. The other
point observations are GOES-16/17 input files in NetCDF format (especially, Aerosol Optical Depth. Future
development will include support for reading input files not produced from MET tools.

4.5.1 point2grid usage

The usage statement for the Point2Grid tool is shown below:

Usage: point2grid
input_filename
to_grid
output_filename
-field string
[-config filel
[-qc flags]

[-adp adp_file_namel
[-method typel
[-gaussian_dx n]
[-gaussian_radius n]
[-prob_cat_thresh n]
[-vld_thresh n]
[-name list]

[-log file]

[-v levell

[-compress levell]

Required arguments for point2grid

1. The input_filename argument indicates the name of the input NetCDF file to be processed. Currently,
only NetCDF files produced from the ascii2nc, madis2nc, pb2nc, and lidar2nc are supported. And
AOD dataset from GOES16/17 are supported, too. Support for additional file types will be added in
future releases.

2. The to_grid argument defines the output grid as: (1) a named grid, (2) the path to a gridded data file,
or (3) an explicit grid specification string.

3. The output_filename argument is the name of the output NetCDF file to be written.

CHAPTER 4. RE-FORMATTING OF POINT OBSERVATIONS 159

4.

The -field string argument is a string that defines the data to be regridded. It may be used multiple
times. If -adp option is given (for AOD data from GOES16/17), the name consists with the variable
name from the input data file and the variable name from ADP data file (for example, “AOD _ Smoke”
or “AOD_Dust”: getting AOD variable from the input data and applying smoke or dust variable from
ADP data file).

Optional arguments for point2grid

10

11.

12.

13.

14.

15.

16.

The -config file option is the configuration file to be used.

. The -qc flags option specifies a comma-separated list of quality control (QC) flags, for example “0,1”.

This should only be applied if grid _mapping is set to “goes _imager projection” and the QC variable

exists.

. The -adp adp _file name option provides an additional Aerosol Detection Product (ADP) information

on aerosols, dust, and smoke. This option is ignored if the requested variable is not AOD (“AOD _Dust”
or “AOD _Smoke”) from GOES16/17. The gridded data is filtered by the presence of dust/smoke. If
-qc options is given, it’s applied to QC of dust/smoke, too (First filtering with AOD QC values and
the second filtering with dust/smoke QC values).

. The -method type option specifies the regridding method. The default method is UW _MEAN.

. The -gaussian__dx n option defines the distance interval for Gaussian smoothing. The default is 81.271

km. Ignored if the method is not GAUSSIAN.

. The -gaussian _radius n option defines the radius of influence for Gaussian interpolation. The default

is 120. Ignored if the method is not GAUSSIAN.

The -prob_cat thresh n option sets the threshold to compute the probability of occurrence. The
default is set to disabled. This option is relevant when calculating practically perfect forecasts.

The -vld _thresh n option sets the required ratio of valid data for regridding. The default is 0.5.
The -name list option specifies a comma-separated list of output variable names for each field specified.

The -log file option directs output and errors to the specified log file. All messages will be written
to that file as well as standard out and error. Thus, users can save the messages without having to
redirect the output on the command line. The default behavior is no log file.

The -v level option indicates the desired level of verbosity. The value of “level” will override the default
setting of 2. Setting the verbosity to 0 will make the tool run with no log messages, while increasing
the verbosity above 1 will increase the amount of logging.

The -compress level option indicates the desired level of compression (deflate level) for NetCDF vari-
ables. The valid level is between 0 and 9. The value of “level” will override the default setting of 0 from
the configuration file or the environment variable MET NC COMPRESS. Setting the compression
level to 0 will make no compression for the NetCDF output. Lower number is for fast compression and

higher number is for better compression.

CHAPTER 4. RE-FORMATTING OF POINT OBSERVATIONS 160

For the GOES-16 and GOES-17 data, the computing lat/long is time consuming. So the computed co-
ordinate (lat/long) is saved into the NetCDF file to the environment variable MET _TMP_DIR or /tmp
it MET TMP _DIR is not defined. The computing lat/long step can be skipped if the coordinate file is
given through the environment variable MET GEOSTATIONARY DATA. An example of call point2grid
to process GOES-16 AOD data is shown below:

point2grid \
OR_ABI-L2-A0DC-M3_G16_s20181341702215_e20181341704588_c20181341711418.nc \
G212 \

regrid_data_plane_GOES-16_A0D_T0_G212.nc \

-field ’name="A0OD"; level="(x,*)";’> \

-qc 0,1,2

-method MAX -v 1

When processing GOES-16 data, the -qc option may also be used to specify the acceptable quality control
flag values. The example above regrids the GOES-16 AOD values to NCEP Grid number 212 (which QC
flags are high, medium, and low), writing to the output the maximum AOD value falling inside each grid

box.

4.5.2 point2grid output

The point2grid tool will output a gridded NetCDF file containing the following:

1. Latitude

2. Longitude

3. The variable specified in the -field string regridded to the grid defined in the to grid argument.

4. The count field which represents the number of point observations that were included calculating the

value of the variable at that grid cell.

5. The mask field which is a binary field representing the presence or lack thereof of point observations at
that grid cell. A value of “1” indicates that there was at least one point observation within the bounds of

that grid cell and a value of “0” indicates the lack of point observations at that grid cell.

6. The probability field which is the probability of the event defined by the line option -prob_cat_thresh n
occurring. Ranges from 0 to 1.

7. The probability mask field which is a binary field that represents whether or not there is probability data
at that grid point. Can be either “0” or “1” with “0” meaning the probability value does not exist and a value

of “1” meaning that the probability value does exist.

Chapter 5

Re-Formatting of Gridded Fields

Several MET tools exist for the purpose of reformatting gridded fields, and they are described in this chapter.
These tools are represented by the reformatting column of MET flowchart depicted in Figure

5.1 Pcp-Combine tool

This section describes the Pcp-Combine tool which summarizes data across multiple input gridded data files
and writes the results to a single NetCDF output file. It is often used to modify precipitation accumulation
intervals in the forecast and/or observation datasets to make them comparable. However it can also be used

to derive summary fields, such as daily min/max temperature or average precipitation rate.

The Pcp-Combine tool supports four types of commands (“sum”, “add”, “subtract”, and “derive”) which may

be run on any gridded data files supported by MET.

1. The “sum” command is the default command and therefore specifying “-sum” on the command line
is optional. Using the sum arguments described below, Pcp-Combine searches the input directories
(“-pcpdir” option) for data that matches the requested time stamps and accumulation intervals. Pcp-
Combine only considers files from the input data directory which match the specified regular expression
(“-pcprx’
explicit set of input files specified.

)

option). While “sum” searches for matching data, all the other commands are run on the

2. The “add” command reads the requested data from the input data files and adds them together.

3. The “subtract” command reads the requested data from exactly two input files and computes their

difference.

4. The “derive” command reads the requested data from the input data files and computes the requested

summary fields.

161

CHAPTER 5. RE-FORMATTING OF GRIDDED FIELDS 162

By default, the Pcp-Combine tool processes data for APCP, the GRIB string for accumulated precipitation.
When requesting data using time strings (i.e. [HH]MMSS), Pcp-Combine searches for accumulated precipita-
tion for that accumulation interval. Alternatively, use the “-field” option to process fields other than APCP
or for non-GRIB files. The “field” option may be used multiple times to process multiple fields in a single
run. Since the Pcp-Combine tool does not support automated regridding, all input data must be on the same
grid. In general the input files should have the same initialization time unless the user has indicated that it
should ignore the initialization time for the “sum” command. The “subtract” command produces a warning

when the input initialization times differ or the subtraction results in a negative accumulation interval.

5.1.1 pcp_combine usage

The usage statement for the Pcp-Combine tool is shown below:

Usage: pcp_combine
[-sum] sum_args |
-add input_files |
-subtract input_files |
-derive stat_list input_files
out_file
[-field string]
[-name list]
[-vld_thresh n]
[-log file]
[-v level]

[-compress levell

The arguments to pcp__combine vary depending on the run command. Listed below are the arguments for

the sum command:

SUM_ARGS:
init_time
in_accum
valid_time
out_accum
out_file
[-pcpdir pathl
[-pcprx reg_exp]

The add, subtract, and derive commands all require that the input files be explicitly listed:

CHAPTER 5. RE-FORMATTING OF GRIDDED FIELDS 163

INPUT_FILES:
file_ 1 config str_1 ... file_n config str_n
file_1 ... file_n |
input_file_list

Required arguments for the pcp combine

1. The Pcp-Combine tool must be run with exactly one run command (-sum, -add, -subtract, or -derive)

with the corresponding additional arguments.

2. The out file argument indicates the name for the NetCDF file to be written.

Optional arguments for pcp combine

3. The -field string option defines the data to be extracted from the input files. Use this option when
processing fields other than APCP or non-GRIB files. This option may be used multiple times and

output will be created for each.

4. The -name list option is a comma-separated list of output variable names which override the default
choices. If specified, the number of names must match the number of variables to written to the output
file.

5. The -vld thresh n option overrides the default required ratio of valid data for at each grid point for

an output value to be written. The default is 1.0.

6. The -log file option directs output and errors to the specified log file. All messages will be written to that
file as well as standard out and error. Thus, users can save the messages without having to redirect

the output on the command line. The default behavior is no log file.

7. The -v level option indicates the desired level of verbosity. The contents of “level” will override the
default setting of 2. Setting the verbosity to 0 will make the tool run with no log messages, while

increasing the verbosity above 1 will increase the amount of logging.

8. The -compress level option indicates the desired level of compression (deflate level) for NetCDF vari-
ables. The valid level is between 0 and 9. The value of “level” will override the default setting of 0 from
the configuration file or the environment variable MET NC COMPRESS. Setting the compression
level to 0 will make no compression for the NetCDF output. Lower number is for fast compression and

higher number is for better compression.

Required arguments for the pcp combine sum command

1. The init _time argument, provided in YYYYMMDD[_HH[MMSS]|| format, indicates the initialization
time for model data to be summed. Only files found with this initialization time will be processed.
If combining observation files, Stage II or Stage IV data for example, the initialization time is not
applicable. Providing a string of all zeros (00000000 000000) indicates that all files, regardless of

initialization time should be processed.

CHAPTER 5. RE-FORMATTING OF GRIDDED FIELDS 164

2. The in_accum argument, provided in HH[MMSS] format, indicates the accumulation interval of the
model or observation gridded files to be processed. This value must be specified, since a model output
file may contain multiple accumulation periods for precipitation in a single file. The argument indicates
which accumulation period to extract.

3. The valid _time argument, in YYYYMMDD|_HH[MMSS]| format, indicates the desired valid time to

which the accumulated precipitation is to be summed.

4. The out _accum argument, in HH[MMSS] format, indicates the desired total accumulation period to be

summed.

Optional arguments for pcp combine sum command

5. The -pcpdir path option indicates the directories in which the input files reside. The contents of
“path” will override the default setting. This option may be used multiple times and can accept
multiple arguments, supporting the use of wildcards.

6. The -pcprx reg_exp option indicates the regular expression to be used in matching files in the search
directories specified. The contents of “reg exp” will override the default setting that matches all file
names. If the search directories contain a large number of files, the user may specify that only a subset

of those files be processed using a regular expression which will speed up the run time.

Required arguments for the pcp combine derive command

1. The “derive” run command must be followed by stat list which is a comma-separated list of summary
fields to be computed. The stat list may be set to sum, min, max, range, mean, stdev, and vld_ count
for the sum, minimum, maximum, range (max-min), average, standard deviation, and valid data count

fields, respectively.

Input files for pcp combine add, subtract, and derive commands

The input files for the add, subtract, and derive command can be specified in one of 3 ways:

1. Use file 1 config str 1 ... file n config str n to specify the full path to each input file followed
by a description of the data to be read from it. The config str i argument describing the data can
be a set to a time string in HH[MMSS] format for accumulated precipitation or a full configuration

string. For example, use 'name="TMP"; level="P500";’ to process temperature at 500mb.

2. Use file_1 ... file n to specify the list of input files to be processed on the command line. Rather
then specifying a separate configuration string for each input file, the “-field” command line option is

required to specify the data to be processed.

3. Use input_file list to specify the name of an ASCII file which contains the paths for the gridded data
files to be processed. As in the previous option, the “-field” command line option is required to specify

the data to be processed.

CHAPTER 5. RE-FORMATTING OF GRIDDED FIELDS 165

An example of the pcp__combine calling sequence is presented below:

Example 1:

pcp_combine -sum \

20050807_000000 3 \

20050808_000000 24 \

sample_fcst.nc \

-pcpdir ../data/sample_fcst/2005080700

In Example 1, the Pcp-Combine tool will sum the values in model files initialized at 2005/08/07 00Z and
containing 3-hourly accumulation intervals of precipitation. The requested valid time is 2005/08/08 00Z
with a requested total accumulation interval of 24 hours. The output file is to be named sample fest.nc,
and the Pcp-Combine tool is to search the directory indicated for the input files.

The Pcp-Combine tool will search for 8 files containing 3-hourly accumulation intervals which meet the

criteria specified. It will write out a single NetCDF file containing that 24 hours of accumulation.
A second example of the pcp _combine calling sequence is presented below:

Example 2:

pcp_combine -sum \
00000000_000000 1 \
20050808_000000 24 \
sample_obs.nc \

-pcpdir ../data/sample_obs/ST2ml

Example 2 shows an example of using the Pcp-Combine tool to sum observation data. The “init_time”
has been set to all zeros to indicate that when searching through the files in precipitation directory, the
initialization time should be ignored. The “in _accum” has been changed from 3 to 1 to indicate that the
input observation files contain 1-hourly accumulations of precipitation. Lastly, -pcpdir provides a different

directory to be searched for the input files.

The Pcp-Combine tool will search for 24 files containing 1-hourly accumulation intervals which meet the
criteria specified. It will write out a single NetCDF file containing that 24 hours of accumulation.

Example 3:

pcp_combine -add input_pinterp.nc ’name="TT"; level="(0,*,*)";’ tt_10.nc

This command would grab the first level of the TT variable from a pinterp NetCDF file and write it to the
output tt_ 10.nc file.

CHAPTER 5. RE-FORMATTING OF GRIDDED FIELDS 166

5.1.2 pcp_combine output

The output NetCDF files contain the requested accumulation intervals as well as information about the grid
on which the data lie. That grid projection information will be parsed out and used by the MET statistics
tools in subsequent steps. One may use NetCDF utilities such as ncdump or ncview to view the contents
of the output file. Alternatively, the MET Plot-Data-Plane tool described in Section may be run to

create a PostScript image of the data.

Each NetCDF file generated by the Pcp-Combine tool contains the dimensions and variables shown in the

following two tables.

Table 5.1: NetCDF file dimensions for pcp combine output.
’ Pcp combine NetCDF dimensions ‘

NetCDF dimension Description

lat Dimension of the latitude (i.e. Number of grid points in the North-South
direction)

lon Dimension of the longitude (i.e. Number of grid points in the East-West
direction)

Table 5.2: NetCDF variables for pcp combine output.

’ Pcp combine NetCDF variables

NetCDF variable | Dimension Description

lat lat, lon Latitude value for each point in the grid

lon lat, lon Longitude value for each point in the grid

Name and level of lat, lon Data value (i.e. accumulated precipitation) for each point
the requested data in the grid. The name of the variable describes the name
or value of the and level and any derivation logic that was applied.
-name option.

5.2 Regrid data plane tool

This section contains a description of running the regrid data plane tool. This tool may be run to read
data from any gridded file MET supports, interpolate to a user-specified grid, and write the field(s) out in
NetCDF format. The user may specify the method of interpolation used for regridding as well as which
fields to regrid. This tool is particularly useful when dealing with GRIB2 and NetCDF input files that need
to be regridded. For GRIBI1 files, it has also been tested for compatibility with the copygb regridding utility
mentioned in Section

CHAPTER 5. RE-FORMATTING OF GRIDDED FIELDS 167

5.2.1 regrid data plane usage

The usage statement for the regrid data_plane utility is shown below:

Usage: regrid_data_plane
input_filename
to_grid
output_filename
-field string
[-method typel
[-width n]
[-gaussian_dx n]
[-gaussian_radius n]
[-shape typel
[-vld_thresh nl
[-name list]
[-log file]

[-v levell

[-compress levell

Required arguments for regrid data plane

1. The input_filename is the gridded data file to be read.

2. The to grid defines the output grid as a named grid, the path to a gridded data file, or an explicit grid
specification string.

3. The output _filename is the output NetCDF file to be written.

4. The -field string may be used multiple times to define the field(s) to be regridded.

Optional arguments for regrid data plane

5. The -method type option overrides the default regridding method. Default is NEAREST.

6. The -width n option overrides the default regridding width. Default is 1. In case of MAXGAUSS
method, the width should be the ratio between from grid and to_ grid (for example, 27 if from grid
is 3km and to_ grid is 81.271km).

7. The -gaussian _dx option overrides the default delta distance for Gaussian smoothing. Default is 81.271.
Ignored if not the MAXGAUSS method.

8. The -gaussian radius option overrides the default radius of influence for Gaussian interpolation. De-
fault is 120. Ignored if not the MAXGAUSS method.

CHAPTER 5. RE-FORMATTING OF GRIDDED FIELDS 168

9. The -shape option overrides the default interpolation shape. Default is SQUARE.

10. The -vld thresh n option overrides the default required ratio of valid data for regridding. Default is
0.5.

11. The -name list specifies a comma-separated list of output variable names for each field specified.

12. The -log file option directs output and errors to the specified log file. All messages will be written
to that file as well as standard out and error. Thus, users can save the messages without having to
redirect the output on the command line. The default behavior is no log file.

13. The -v level option indicates the desired level of verbosity. The contents of “level” will override the
default setting of 2. Setting the verbosity to 0 will make the tool run with no log messages, while

increasing the verbosity above 1 will increase the amount of logging.

14. The -compress level option specifies the desired level of compression (deflate level) for NetCDF vari-
ables. The valid level is between 0 and 9. Setting the compression level to 0 will make no compression
for the NetCDF output. Lower number is for fast compression and higher number is for better com-

pression.

For more details on setting the to grid, -method, -width, and -vld thresh options, see the regrid
entry in Section An example of the regrid data_plane calling sequence is shown below:

regrid_data_plane \

input.grb \

togrid.grb \

regridded.nc \

-field ’name="APCP"; level="A6";’
-field ’name="TMP"; 1level="Z2";> \
-field ’name="UGRD"; level="Z10";’ \
-field ’name="VGRD"; level="Z10";’ \
-field ’name="HGT"; level="P500";’ \
-method BILIN -width 2 -v 1

In this example, the regrid data_plane tool will regrid data from the input.grb file to the grid on which
the first record of the togrid.grb file resides using Bilinear Interpolation with a width of 2 and write the
output in NetCDF format to a file named regridded.nc. The variables in regridded.nc will include 6-
hour accumulated precipitation, 2m temperature, 10m U and V components of the wind, and the 500mb

geopotential height.

5.2.2 Automated regridding within tools

While the regrid data_plane tool is useful as a stand-alone tool, the capability is also included to automat-
ically regrid one or both fields in most of the MET tools that handle gridded data. See the regrid entry in
Section for a description of the configuration file entries that control automated regridding.

CHAPTER 5. RE-FORMATTING OF GRIDDED FIELDS 169

5.3 Shift data plane tool

The Shift-Data-Plane tool performs a rigid shift of the entire grid based on user-defined specifications and
write the field(s) out in NetCDF format. This tool was originally designed to account for track error when
comparing fields associated with tropical cyclones. The user specifies the latitude and longitude of the source
and destination points to define the shift. Both points must fall within the domain and are used to define
the X and Y direction grid unit shift. The shift is then applied to all grid points. The user may specify the
method of interpolation and the field to be shifted. The effects of topography and land/water masks are
ignored.

5.3.1 shift data plane usage

The usage statement for the shift data_plane utility is shown below:

Usage: shift_data_plane
input_filename
output_filename
field_string
-from lat lon
-to lat lon
[-method typel
[-width n]

[-log file]
[-v levell

[-compress levell

shift data_plane has five required arguments and can also take optional ones.

Required arguments for shift data plane

1. The input_filename is the gridded data file to be read.
2. The output filename is the output NetCDF file to be written.
3. The field string defines the data to be shifted from the input file.

4. The -from lat lon specifies the starting location within the domain to define the shift. Latitude and

longitude are defined in degrees North and East, respectively.

5. The -to lat lon specifies the ending location within the domain to define the shift. Lat is deg N, Lon is
deg E.

Optional arguments for shift data plane

CHAPTER 5. RE-FORMATTING OF GRIDDED FIELDS 170

6. The -method type overrides the default regridding method. Default is NEAREST.
7. The -width n overrides the default regridding width. Default is 1.

8. The -log file option directs output and errors to the specified log file. All messages will be written to that
file as well as standard out and error. Thus, users can save the messages without having to redirect

the output on the command line. The default behavior is no log file.

9. The -v level option indicates the desired level of verbosity. The contents of “level” will override the
default setting of 2. Setting the verbosity to 0 will make the tool run with no log messages, while

increasing the verbosity above 1 will increase the amount of logging.

10. The -compress level option indicates the desired level of compression (deflate level) for NetCDF vari-
ables. The valid level is between 0 and 9. The value of “level” will override the default setting of 0 from
the configuration file or the environment variable MET NC COMPRESS. Setting the compression
level to 0 will make no compression for the NetCDF output. Lower number is for fast compression and

higher number is for better compression.

For more details on setting the -method and -width options, see the regrid entry in Section 351 An
example of the shift data plane calling sequence is shown below:

shift_data_plane \

nam.grib \

nam_shift_APCP_12.nc \

‘name = "APCP"; level = "A12";’ \
-from 38.6272 -90.1978 \

-to 40.1717 -105.1092 \

-v 2

In this example, the shift _data_plane tool reads 12-hour accumulated precipitation from the nam.grb file,
applies a rigid shift defined by (38.6272, -90.1978) to (40.1717, -105.1092) and writes the output in NetCDF
format to a file named nam_shift APCP 12.nc. These -from and -to locations result in a grid shift

of -108.30 units in the x-direction and 16.67 units in the y-direction.

5.4 MODIS regrid tool

This section contains a description of running the MODIS regrid tool. This tool may be run to create a
NetCDF file for use in other MET tools from MODIS level 2 cloud product from NASA. The data browser

for these files is: http://ladsweb.nascom.nasa.gov/.

http://ladsweb.nascom.nasa.gov/

CHAPTER 5. RE-FORMATTING OF GRIDDED FIELDS 171

5.4.1 modis regrid usage

The usage statement for the modis_regrid utility is shown below:

Usage: modis_regrid
-data_file path
-field name
-out path
-scale value
-offset value
-fill value
[-units text]
[-compress levell

modis_file

modis_regrid has some required arguments and can also take optional ones.

Required arguments for modis regrid

1. The -data_file path argument specifies the data files used to get the grid information.

2. The -field name argument specifies the name of the field to use in the MODIS data file.

3. The -out path argument specifies the name of the output NetCDF file.

4. The -scale value argument specifies the scale factor to be used on the raw MODIS values.
5. The -offset value argument specifies the offset value to be used on the raw MODIS values.
6. The -fill value argument specifies the bad data value in the MODIS data.

7. The modis_file argument is the name of the MODIS input file.

Optional arguments for modis regrid

8. The -units text option specifies the units string in the global attributes section of the output file.

9. The -compress level option indicates the desired level of compression (deflate level) for NetCDF vari-
ables. The valid level is between 0 and 9. The value of “level” will override the default setting of 0 from
the configuration file or the environment variable MET NC COMPRESS. Setting the compression
level to 0 will make no compression for the NetCDF output. Lower number is for fast compression and

higher number is for better compression.

An example of the modis_regrid calling sequence is shown below:

CHAPTER 5. RE-FORMATTING OF GRIDDED FIELDS 172

modis_regrid -field Cloud_Fraction \
-data_file grid_file \

-out t2.nc \

-units percent \

-scale 0.01 \

-offset 0 \

-fill 127 \

modisfile

In this example, the modis_regrid tool will process the Cloud Fraction field from modisfile and write it out
to the output NetCDF file t2.nc on the grid specified in grid file using the appropriate scale, offset and fill

values.

MYDO06_L2.A2013032.0630.051.2013032185634.hdf

206,720

280,737

264.753

278770

272787

266803

260,820

254.837

248,853

t1.nc

Figure 5.1: Example plot showing surface temperature from a MODIS file.

CHAPTER 5. RE-FORMATTING OF GRIDDED FIELDS 173

5.5 WWMCA Tool Documentation

There are two WWMCA tools available. The WWMCA-Plot tool makes a PostScript plot of one or more
WWDMCA cloud percent files and the WWMCA-Regrid tool regrids binary WWMCA data files and reformats
them into NetCDF files that the other MET tools can read. The WWMCA-Regrid tool has been generalized
to more broadly support any data stored in the WWMCA binary format.

The WWMCA tools attempt to parse timing and hemisphere information from the file names. They tokenize
the filename using underscores () and dots (.) and examine each element which need be in no particular
order. A string of 10 or more numbers is interpreted as the valid time in YYYYMMDDHH[MMSS] for-
mat. The string NH indicates the northern hemisphere while SH indicates the southern hemisphere. While
WWMCA data is an analysis and has no forecast lead time, other datasets following this format may. There-
fore, a string of 1 to 4 numbers is interpreted as the forecast lead time in hours. While parsing the filename
provides default values for this timing information, they can be overridden by explicitly setting their values
in the WWMCA-Regrid configuration file.

5.5.1 wwmeca_plot usage

The usage statement for the WWMCA-Plot tool is shown below:

Usage: wwmca_plot
[-outdir pathl
[-max max_minutes]
[-log file]
[-v levell

wwmca_cloud_pct_file_list

wmmeca_ plot has some required arguments and can also take optional ones.

Required arguments for wwmca plot

1. The wwmca cloud pct file list argument represents one or more WWMCA cloud percent files
given on the command line. As with any command given to a UNIX shell, the user can use meta-
characters as a shorthand way to specify many filenames. For each input file specified, one output
PostScript plot will be created.

Optional arguments for wwmca plot

2. The -outdir path option specifies the directory where the output PostScript plots will be placed. If not
specified, then the plots will be put in the current (working) directory.

CHAPTER 5. RE-FORMATTING OF GRIDDED FIELDS

174

3. The -max minutes option specifies the maximum pixel age in minutes to be plotted.
4. The -log file option directs output and errors to the specified log file. All messages will be written to that

file as well as standard out and error. Thus, users can save the messages without having to redirect
the output on the command line. The default behavior is no log file.

the verbosity will increase the amount of logging.

5. The -v level option indicates the desired level of verbosity. The value of “level” will override the default
setting of 2. Setting the verbosity to 0 will make the tool run with no log messages, while increasing

M ogp

-
[}
o
=

80 W

WWMCA_TOTAL_CLOUD_PCT_NH_2009083022
Figure 5.2: Example output of wwmca_plot tool.

5.5.2 wwmeca_regrid usage

The usage statement for the WWMCA-Regrid tool is shown below:

Usage: wwmca_regrid

-out filename

CHAPTER 5. RE-FORMATTING OF GRIDDED FIELDS 175

-config filename

-nh filename [pt_filename]
-sh filename [pt_filename]
[-log file]

[-v levell

[-compress levell]

wmmeca_regrid has some required arguments and can also take optional ones.

Required arguments for wwmca regrid

1. The -out filename argument specifies the name of the output netCDF file.

2. The -config filename argument indicates the name of the configuration file to be used. The contents of

the configuration file are discussed below.

3. The -nh filename [pt_filename]| argument specifies the northern hemisphere WWMCA binary file
and, optionally, may be followed by a binary pixel age file. This switch is required if the output grid
includes any portion of the northern hemisphere.

4. The -sh filename [pt_filename] argument specifies the southern hemisphere WWMCA binary file and,
optionally, may be followed by a binary pixel age file. This switch is required if the output grid includes
any portion of the southern hemisphere.

Optional arguments for wwmca regrid

5. The -log file option directs output and errors to the specified log file. All messages will be written to that
file as well as standard out and error. Thus, users can save the messages without having to redirect

the output on the command line. The default behavior is no log file.

6. The -v level option indicates the desired level of verbosity. The value of “level” will override the default
setting of 2. Setting the verbosity to 0 will make the tool run with no log messages, while increasing

the verbosity will increase the amount of logging.

7. The -compress level option indicates the desired level of compression (deflate level) for NetCDF vari-
ables. The valid level is between 0 and 9. The value of “level” will override the default setting of 0 from
the configuration file or the environment variable MET NC COMPRESS. Setting the compression
level to 0 will make no compression for the NetCDF output. Lower number is for fast compression and

higher number is for better compression.

In any regridding problem, there are two grids involved: the “From” grid, which is the grid the input data
are on, and the “To” grid, which is the grid the data are to be moved onto. In WWMOCA-Regrid the
“From” grid is pre-defined by the hemisphere of the WWMCA binary files being processed. The “To” grid
and corresponding regridding logic are specified using the regrid section of the configuration file. If the “To”
grid is entirely confined to one hemisphere, then only the WWMCA data file for that hemisphere need be
given. If the “To” grid or the interpolation box used straddles the equator the data files for both hemispheres
need be given. Once the “To” grid is specified in the config file, the WWMCA-Regrid tool will know which

input data files it needs and will complain if it is not given the right ones.

CHAPTER 5. RE-FORMATTING OF GRIDDED FIELDS 176

5.5.3 wwmeca_regrid configuration file

The default configuration file for the WWMCA-Regrid tool named WWMCARegridConfig default can
be found in the installed share/met /config directory. We encourage users to make a copy of this file prior

to modifying its contents. The contents of the configuration file are described in the subsections below.

Note that environment variables may be used when editing configuration files, as described in Section
for the PB2NC tool.

regrid = { ... }

See the regrid entry in Section for a description of the configuration file entries that control regridding.

variable_name = "Cloud_Pct";

units = "percent";

long_name = "cloud cover percent";
level = "SFC";

The settings listed above are strings which control the output netCDF variable name and specify attributes

for that variable.

init_time = "";
valid_time = "";
accum_time = "01";

The settings listed above are strings which specify the timing information for the data being processed.
The accumulation time is specified in HH[MMSS] format and, by default, is set to a value of 1 hour. The
initialization and valid time strings are specified in YYYYMMDD[_HH[MMSS]] format. However, by default
they are set to empty strings. If empty, the timing information parsed from the filename will be used. If not

empty, these values override the times parsed from the filename.

max_minutes = 120;
swap_endian = TRUE;
write_pixel_age = FALSE;

CHAPTER 5. RE-FORMATTING OF GRIDDED FIELDS 177

The settings listed above are control the processing of the WWMCA pixel age data. This data is stored
in binary data files in 4-byte blocks. The swap endian option indicates whether the endian-ness of the
data should be swapped after reading. The max minutes option specifies a maximum allowed age for
the cloud data in minutes. Any data values older than this value are set to bad data in the output. The

write pixel age option writes the pixel age data, in minutes, to the output file instead of the cloud data.

Chapter 6

Regional Verification using Spatial

Masking

Verification over a particular region or area of interest may be performed using “masking”. Defining a masking
region is simply selecting the desired set of grid points to be used. The Gen-Vx-Mask tool automates this
process and replaces the Gen-Poly-Mask and Gen-Circle-Mask tools from previous releases. It may be run
to create a bitmap verification masking region to be used by many of the statistical tools. This tool enables
the user to generate a masking region once for a domain and apply it to many cases. It has been enhanced
to support additional types of masking region definition (e.g. tropical-cyclone track over water only). An
iterative approach may be used to define complex areas by combining multiple masking regions together.

6.1 Gen-Vx-Mask tool

The Gen-Vx-Mask tool may be run to create a bitmap verification masking region to be used by the the MET
statistics tools. This tool enables the user to generate a masking region once for a domain and apply it to
many cases. While the MET statistics tools can define some masking regions on the fly use polylines, doing
so can be slow, especially for complex polylines containing hundreds of vertices. Using the Gen-Vx-Mask tool
to create a bitmap masking region before running the other MET tools will make them run more efficiently.

6.1.1 gen vx mask usage

The usage statement for the Gen-Vx-Mask tool is shown below:

Usage: gen_vx_mask

input_file

178

CHAPTER 6. REGIONAL VERIFICATION USING SPATIAL MASKING 179

mask_file

out_file

[-type strl
[-input_field string]
[-mask_field string]
[-complement]

[-union | -intersection | -symdiff]
[-thresh string]
[-height n]

[-width nl

[-shapeno n]

[-value n]

[-name string]

[-log file]

[-v levell

[-compress levell

gen vx _mask has three required arguments and can take optional ones.

Required arguments for gen vx mask

1. The input_ file argument is a gridded data file which specifies the grid definition for the domain over
which the masking bitmap is to be defined. If output from gen vx mask, automatically read mask
data as the input field.

2. The mask _file argument defines the masking information, see below.

Y14

e For “poly”, “box”, “circle”, and “track” masking, specify an ASCII Lat/Lon file.
e For “grid” and “data” masking, specify a gridded data file.

e For “solar alt” and “solar__azi” masking, specify a gridded data file or a time string in YYYYM-
MDD[_HH[MMSS]] format.

e For “lat” and “lon” masking, no “mask _file” needed, simply repeat the path for “input_ file”.

e For “shape” masking, specify an ESRI shapefile (.shp).

3. The out file argument is the output NetCDF mask file to be written.

Optional arguments for gen vx mask

4. The -type string option can be used to override the default masking type (poly). See description of
supported types below.

5. The -input_field string option can be used to read existing mask data from “input_ file”.

6. The -mask field string option can be used to define the field from “mask_file” to be used for “data”
masking.

CHAPTER 6. REGIONAL VERIFICATION USING SPATIAL MASKING 180

7. The -complement option can be used to to compute the complement of the area defined by “mask _file”.

8. The -union | -intersection | -symdiff option can be used to specify how to combine the masks from

“input_ file” and “mask _file”.

9. The -thresh string option can be used to define the threshold to be applied.

10.

11.

12.

13.

14.

15.

16.

e For “circle” and “track” masking, threshold the distance (km).
o For “data” masking, threshold the values of “mask field”.
o For “solar alt” and “solar azi” masking, threshold the computed solar values.

e For “lat” and “lon” masking, threshold the latitude and longitude values.

The -height n and -width n options set the size in grid units for “box”masking.

The -shapeno n option is only used for shapefile masking. (See description of shapefile masking below).
The -value n option can be used to override the default output mask data value (1).

The -name string option can be used to specify the output variable name for the mask.

The -log file option directs output and errors to the specified log file. All messages will be written
to that file as well as standard out and error. Thus, users can save the messages without having to
redirect the output on the command line. The default behavior is no log file.

The -v level option indicates the desired level of verbosity. The value of "level" will override the default
setting of 2. Setting the verbosity to 0 will make the tool run with no log messages, while increasing

the verbosity will increase the amount of logging.

The -compress level option indicates the desired level of compression (deflate level) for NetCDF vari-
ables. The valid level is between 0 and 9. The value of “level” will override the default setting of 0 from
the configuration file or the environment variable MET NC COMPRESS. Setting the compression
level to 0 will make no compression for the NetCDF output. Lower number is for fast compression and

higher number is for better compression.

The Gen-Vx-Mask tool supports the following types of masking region definition selected using the -type

command line option:

1. Polyline (poly) masking reads an input ASCII file containing Lat/Lon locations, connects the first and

last points, and selects grid points falling inside that polyline. This option is useful when defining

geographic sub-regions of a domain.

2. Box (box) masking reads an input ASCII file containing Lat/Lon locations and draws a box around each

point. The height and width of the box is specified by the -height and -width command line options
in grid units. For a square, only one of -height or -width needs to be used.

CHAPTER 6. REGIONAL VERIFICATION USING SPATIAL MASKING 181

3. Circle (circle) masking reads an input ASCII file containing Lat/Lon locations and for each grid point,

>

[}

[«

~

computes the minimum great-circle arc distance in kilometers to those points. If the -thresh command
line option is not used, the minimum distance value for each grid point will be written to the output. If
it is used, only those grid points whose minimum distance meets the threshold criteria will be selected.

This option is useful when defining areas within a certain radius of radar locations.

. Track (track) masking reads an input ASCII file containing Lat/Lon locations and for each grid point,

computes the minimum great-circle arc distance in kilometers to the track defined by those points.
The first and last track points are not connected. As with circle masking the output for each grid
points depends on the use of the -thresh command line option. This option is useful when defining

the area within a certain distance of a hurricane track.

. Grid (grid) masking reads an input gridded data file, extracts the field specified using the its grid

definition, and selects grid points falling inside that grid. This option is useful when using a model

nest to define the corresponding area of the parent domain.

. Data (data) masking reads an input gridded data file, extracts the field specified using the -mask field

command line option, thresholds the data using the -thresh command line option, and selects grid
points which meet that threshold criteria. The option is useful when thresholding topography to define
a mask based on elevation or when threshold land use to extract a particular category.

. Solar altitude (solar alt) and solar azimuth (solar azi) masking computes the solar altitude and

azimuth values at each grid point for the time defined by the mask file setting. mask file may
either to set to an explicit time string in YYYYMMDD[_ HH[MMSS]|| format or to a gridded data file.
If set to a gridded data file, the -mask field command line option specifies the field of data whose
valid time should be used. If the -thresh command line option is not used, the raw solar altitude or
azimuth value for each grid point will be written to the output. If it is used, the resulting binary mask
field will be written. This option is useful when defining a day/night mask.

8. Latitude (lat) and longitude (lon) masking computes the latitude and longitude value at each grid

point. This logic only requires the definition of the grid, specified by the input file. Technically,
the mask file is not needed, but a value must be specified for the command line to parse correctly.
Users are advised to simple repeat the input_file setting twice. If the -thresh command line option
is not used, the raw latitude or longitude values for each grid point will be written to the output. This
option is useful when defining latitude or longitude bands over which to compute statistics.

9. Shapefile (shape) masking uses a closed polygon taken from an ESRI shapefile to define the masking

region. Gen-Vx-Mask reads the shapefile with the ".shp" suffix and extracts the latitude and longitudes
of the vertices. The other types of shapefiles (index file, suffix “.shx”, and dBASE file, suffix “.dbf”)
are not currently used. The shapefile must consist of closed polygons rather than polylines, points, or
any of the other data types that shapefiles support. Shapefiles usually contain more than one polygon,
and the -shape n command line option enables the user to select one polygon from the shapefile. The
integer n tells which shape number to use from the shapefile. Note that this value is zero-based, so that
the first polygon in the shapefile is polygon number 0, the second polygon in the shapefile is polygon
number 1, etc. For the user’s convenience, some utilities that perform human-readable screen dumps

of shapefile contents are provided. The gis dump shp, gis dump shx and gis dump dbf

CHAPTER 6. REGIONAL VERIFICATION USING SPATIAL MASKING 182

tools enable the user to examine the contents of her shapefiles. As an example, if the user knows the
name of the particular polygon he wishes to use but not the number of the polygon in the shapefile,
he can use the gis _dump dbf utility to examine the names of the polygons in the shapefile, and the

information written to the screen will tell him what the corresponding polygon number is.

The polyline, box, circle, and track masking methods all read an ASCII file containing Lat/Lon locations.
Those files must contain a string, which defines the name of the masking region, followed by a series of

whitespace-separated latitude (degrees north) and longitude (degree east) values.

The Gen-Vx-Mask tool performs three main steps, described below.

1. Determine the input field and grid definition.

e Read the input _file to determine the grid over which the mask should be defined.
e By default, initialize the input _field at each grid point to a value of zero.

e If the -input_field option was specified, initialize the input _field at each grid point to the
value of that field.

e If the input_file is the output from a previous run of Gen-Vx-Mask, automatically initialize

each grid point with the input _field value.
2. Determine the mask field.

e Read the mask file, process it based on the -type setting (as described above), and define the
mask field value for each grid point to specify whether or not it is included in the mask.

e By default, store the mask value as 1 unless the -value option was specified to override that
default value.

e If the -complement option was specified, the opposite of the masking area is selected.
3. Apply logic to combine the input field and mask field and write the out file.

e By default, the output value at each grid point is set to the value of mask field if included in
the mask, or the value of input _field if not included.

e If the -union, -intersection, or -symdiff option was specified, apply that logic to the in-
put field and mask field values at each grid point to determine the output value.

e Write the output value for each grid point to the out file.

This three step process enables the Gen-Vx-Mask tool to be run iteratively on its own output to generate
complex masking areas. Additionally, the -union, -intersection, and -symdiff options control the logic
for combining the input data value and current mask value at each grid point. For example, one could
define a complex masking region by selecting grid points with an elevation greater than 1000 meters within

a specified geographic region by doing the following;:

e Run the Gen-Vx-Mask tool to apply data masking by thresholding a field of topography greater than
1000 meters.

CHAPTER 6. REGIONAL VERIFICATION USING SPATIAL MASKING 183

e Rerun the Gen-Vx-Mask tool passing in the output of the first call and applying polyline masking to

define the geographic area of interest.

— Use the -intersection option to only select grid points whose value is non-zero in both the input

field and the current mask.

An example of the gen vx_mask calling sequence is shown below:

gen_vx_mask sample_fcst.grb \
CONUS.poly CONUS_poly.nc

In this example, the Gen-Vx-Mask tool will read the ASCII Lat/Lon file named CONUS.poly and apply
the default polyline masking method to the domain on which the data in the file sample fcst.grib resides.
It will create a NetCDF file containing a bitmap for the domain with a value of 1 for all grid points inside
the CONUS polyline and a value of 0 for all grid points outside. It will write an output NetCDF file named
CONUS_ poly.nc.

6.2 Feature-Relative Methods

This section contains a description of several methods that may be used to perform feature-relative (or
event -based) evaluation. The methodology pertains to examining the environment surrounding a particular
feature or event such as a tropical, extra-tropical cyclone, convective cell, snow-band, etc. Several approaches
are available for these types of investigations including applying masking described above (e.g. circle or box)
or using the “FORCE” interpolation method in the regrid configuration option (see . These methods
generally require additional scripting, including potentially storm-track identification, outside of MET to be
paired with the features of the MET tools.

Chapter 7

Point-Stat Tool

7.1 Introduction

The Point-Stat tool provides verification statistics for forecasts at observation points (as opposed to over
gridded analyses). The Point-Stat tool matches gridded forecasts to point observation locations and supports
several different interpolation options. The tool then computes continuous, categorical, spatial, and proba-
bilistic verification statistics. The categorical and probabilistic statistics generally are derived by applying a
threshold to the forecast and observation values. Confidence intervals - representing the uncertainty in the

verification measures - are computed for the verification statistics.

Scientific and statistical aspects of the Point-Stat tool are discussed in the following section. Practical aspects
of the Point-Stat tool are described in Section[Z.3l

7.2 Scientific and statistical aspects

The statistical methods and measures computed by the Point-Stat tool are described briefly in this section.
In addition, Section discusses the various interpolation options available for matching the forecast
grid point values to the observation points. The statistical measures computed by the Point-Stat tool are
described briefly in Section and in more detail in Appendix [C] Section describes the methods for
computing confidence intervals that are applied to some of the measures computed by the Point-Stat tool;

more detail on confidence intervals is provided in Appendix

7.2.1 Interpolation/matching methods

This section provides information about the various methods available in MET to match gridded model
output to point observations. Matching in the vertical and horizontal are completed separately using different
methods.

184

CHAPTER 7. POINT-STAT TOOL 185

In the vertical, if forecasts and observations are at the same vertical level, then they are paired as-is. If
any discrepancy exists between the vertical levels, then the forecasts are interpolated to the level of the
observation. The vertical interpolation is done in natural log of pressure coordinates, except for specific hu-
midity, which is interpolated using the natural log of specific humidity in natural log of pressure coordinates.
Vertical interpolation for heights above ground are done linear in height coordinates. When forecasts are for
the surface, no interpolation is done. They are matched to observations with message types that are mapped
to SURFACE in the message type group map configuration option. By default, the surface message
types include ADPSFC, SFCSHP, and MSONET.

To match forecasts and observations in the horizontal plane, the user can select from a number of methods
described below. Many of these methods require the user to define the width of the forecast grid W, around
each observation point P, that should be considered. In addition, the user can select the interpolation shape,
either a SQUARE or a CIRCLE. For example, a square of width 2 defines the 2 x 2 set of grid points
enclosing P, or simply the 4 grid points closest to P. A square of width of 3 defines a 3 x 3 square consisting
of 9 grid points centered on the grid point closest to P. Figure[7.1] provides illustration. The point P denotes
the observation location where the interpolated value is calculated. The interpolation width W, shown is
five.

This section describes the options for interpolation in the horizontal.

L]

L

Figure 7.1: Diagram illustrating matching and interpolation methods used in MET. See text for explanation.

CHAPTER 7. POINT-STAT TOOL 186

Interpolation Examples

% Nearest Neighbor

Distance Weighted Mean Least Squares

Figure 7.2: Illustration of some matching and interpolation methods used in MET. See text for explanation.

Nearest Neighbor

The forecast value at P is assigned the value at the nearest grid point. No interpolation is performed. Here,
"nearest" means spatially closest in horizontal grid coordinates. This method is used by default when the

interpolation width, W, is set to 1.

Geography Match

The forecast value at P is assigned the value at the nearest grid point in the interpolation area where the

land/sea mask and topography criteria are satisfied.

Gaussian

The forecast value at P is a weighted sum of the values in the interpolation area. The weight given to each
forecast point follows the Gaussian distribution with nearby points contributing more the far away points.

The shape of the distribution is configured using sigma.

When used for regridding, with the regrid configuration option, or smoothing, with the interp configuration
option in grid-to-grid comparisons, the Gaussian method is named MAXGAUSS and is implemented as
a 2-step process. First, the data is regridded or smoothed using the maximum value interpolation method
described below, where the width and shape define the interpolation area. Second, the Gaussian smoother,

defined by the gaussian dx and gaussian radius configuration options, is applied.

CHAPTER 7. POINT-STAT TOOL 187
Minimum value

The forecast value at P is the minimum of the values in the interpolation area.

Maximum value

The forecast value at P is the maximum of the values in the interpolation area.

Distance-weighted mean

The forecast value at P is a weighted sum of the values in the interpolation area. The weight given to each
forecast point is the reciprocal of the square of the distance (in grid coordinates) from P. The weighted sum

of forecast values is normalized by dividing by the sum of the weights.

Unweighted mean

This method is similar to the distance-weighted mean, except all the weights are equal to 1. The distance

of any point from P is not considered.

Median

The forecast value at P is the median of the forecast values in the interpolation area.

Least-Squares Fit

To perform least squares interpolation of a gridded field at a location P, MET uses an WxW subgrid centered
(as closely as possible) at P. Figure shows the case where N = 5.

If we denote the horizontal coordinate in this subgrid by x, and vertical coordinate by y, then we can assign
coordinates to the point P relative to this subgrid. These coordinates are chosen so that the center of the
grid is. For example, in Figure P has coordinates (-0.4, 0.2). Since the grid is centered near P, the
coordinates of P should always be at most 0.5 in absolute value. At each of the vertices of the grid (indicated
by black dots in the figure), we have data values. We would like to use these values to interpolate a value at
P. We do this using least squares. If we denote the interpolated value by z, then we fit an expression of the
form z = a(z) + B(y) + v over the subgrid. The values of «, 3,~ are calculated from the data values at the
vertices. Finally, the coordinates (x,y) of P are substituted into this expression to give z, our least squares

interpolated data value at P.

CHAPTER 7. POINT-STAT TOOL 188

Bilinear Interpolation

This method is performed using the four closest grid squares. The forecast values are interpolated linearly

first in one dimension and then the other to the location of the observation.

Upper Left, Upper Right, Lower Left, Lower Right Interpolation

This method is performed using the four closest grid squares. The forecast values are interpolated to the
specified grid point.

Best Interpolation

The forecast, value at P is the chosen as the grid point inside the interpolation area whose value most closely

matches the observation value.

7.2.2 HiRA framework

The Point-Stat tool has been enhanced to include the High Resolution Assessment (HiRA) verification
logic (Mittermaier, 2014). HiRA is analogous to neighborhood verification but for point observations. The
HiRA logic interprets the forecast values surrounding each point observation as an ensemble forecast. These
ensemble values are processed in two ways. First, the ensemble continuous statistics (ECNT) and the
ranked probability score (RPS) line types are computed directly from the ensemble values. Second, for each
categorical threshold specified, a fractional coverage value is computed as the ratio of the nearby forecast
values that meet the threshold criteria. Point-Stat evaluates those fractional coverage values as if they were
a probability forecast. When applying HiRA, users should enable the matched pair (MPR), probabilistic
(PCT, PSTD, PJC, or PRC), continuous ensemble statistics (ECNT), or ranked probability score (RPS)
line types in the output_flag dictionary. The number of probabilistic HIRA output lines is determined by
the number of categorical forecast thresholds and HiRA neighborhood widths chosen.

The HiRA framework provides a unique method for evaluating models in the neighborhood of point ob-
servations, allowing for some spatial and temporal uncertainty in the forecast and/or the observations.
Additionally, the HiRA framework can be used to compare deterministic forecasts to ensemble forecasts. In
MET, the neighborhood is a circle or square centered on the grid point closest to the observation location.
An event is defined, then the proportion of points with events in the neighborhood is calculated. This

proportion is treated as an ensemble probability, though it is likely to be uncalibrated.

Figurel.3 shows a couple of examples of how the HiRA proportion is derived at a single model level using
square neighborhoods. Events (in our case, model accretion values > 0) are separated from non-events

(model accretion value = 0). Then, in each neighborhood, the total proportion of events is calculated. In the

CHAPTER 7. POINT-STAT TOOL 189
leftmost panel, four events exist in the 25 point neighborhood, making the HiRA proportion is 4/25 = 0.16.
For the neighborhood of size 9 centered in that same panel, the HiRA proportion is 1/9. In the right panel,
the size 25 neighborhood has HiRA proportion of 6/25, with the centered 9-point neighborhood having a

HiRA value of 2/9. To extend this method into 3-dimensions, all layers within the user-defined layer are also

included in the calculation of the proportion in the same manner.

Figure 7.3: Example showing how HiRA proportions are calculated.

Often, the neighborhood size is chosen so that multiple models to be compared have approximately the same
horizontal resolution. Then, standard metrics for probabilistic forecasts, such as Brier Score, can be used to
compare those forecasts. HiRA was developed using surface observation stations so the neighborhood lies
completely within the horizontal plane. With any type of upper air observation, the vertical neighborhood

must also be defined.

7.2.3 Statistical measures

The Point-Stat tool computes a wide variety of verification statistics. Broadly speaking, these statistics can
be subdivided into statistics for categorical variables and statistics for continuous variables. The categories
of measures are briefly described here; specific descriptions of the measures are provided in Appendix [C]
Additional information can be found in Wilks (2011) and Jolliffe and Stephenson (2003), and on the world-

wide web at
http://www.bom.gov.au/bmrc/wefor/staff/eee/verif/verif_web_page.html.

In addition to these verification measures, the Point-Stat tool also computes partial sums and other FHO

statistics that are produced by the NCEP verification system. These statistics are also described in Appendix
(¢}

Measures for categorical variables

Categorical verification statistics are used to evaluate forecasts that are in the form of a discrete set of
categories rather than on a continuous scale. If the original forecast is continuous, the user may specify one
or more threhsolds in the configuration file to divide the continuous measure into categories. Currently, Point-

Stat computes categorical statistics for variables in two or more categories. The special case of dichotomous

http://www.bom.gov.au/bmrc/wefor/staff/eee/verif/verif_web_page.html

CHAPTER 7. POINT-STAT TOOL 190

(i.e., 2-category) variables has several types of statistics calculated from the resulting contingency table and
are available in the CTS output line type. For multi-category variables, fewer statistics can be calculated so
these are available separately, in line type MCTS. Categorical variables can be intrinsic (e.g., rain/no-rain)
or they may be formed by applying one or more thresholds to a continuous variable (e.g., temperature <
273.15 K or cloud coverage percentages in 10% bins). See Appendix [C|for more information.

Measures for continuous variables

For continuous variables, many verification measures are based on the forecast error (i.e., f - 0). However,
it also is of interest to investigate characteristics of the forecasts, and the observations, as well as their
relationship. These concepts are consistent with the general framework for verification outlined by Murphy
and Winkler (1987). The statistics produced by MET for continuous forecasts represent this philosophy of
verification, which focuses on a variety of aspects of performance rather than a single measure. See Appendix

[C] for specific information.

A user may wish to eliminate certain values of the forecasts from the calculation of statistics, a process referred
to here as*’conditional verification”. For example, a user may eliminate all temperatures above freezing and
then calculate the error statistics only for those forecasts of below freezing temperatures. Another common
example involves verification of wind forecasts. Since wind direction is indeterminate at very low wind
speeds, the user may wish to set a minimum wind speed threshold prior to calculating error statistics for
wind direction. The user may specify these threhsolds in the configuration file to specify the conditional
verification. Thresholds can be specified using the usual Fortran conventions (<, <=, ==, |-, >=, or >)
followed by a numeric value. The threshold type may also be specified using two letter abbreviations (lt,
le, eq, ne, ge, gt). Further, more complex thresholds can be achieved by defining multiple thresholds and
using && or || to string together event definition logic. The forecast and observation threshold can be
used together according to user preference by specifying one of: UNION, INTERSECTION, or SYMDIFF

(symmetric difference).

Measures for probabilistic forecasts and dichotomous outcomes

For probabilistic forecasts, many verification measures are based on reliability, accuracy and bias. However,
it also is of interest to investigate joint and conditional distributions of the forecasts and the observations,
as in Wilks (2011). See Appendix |C| for specific information.

Probabilistic forecast values are assumed to have a range of either 0 to 1 or 0 to 100. If the max data value
is > 1, we assume the data range is 0 to 100, and divide all the values by 100. If the max data value is
<=1, then we use the values as is. Further, thresholds are applied to the probabilities with equality on the
lower end. For example, with a forecast probability p, and thresholds t1 and t2, the range is defined as: t1
<= p < t2. The exception is for the highest set of thresholds, when the range includes 1: t1 <= p <= 1.
To make configuration easier, in METv6.0, these probabilities may be specified in the configuration file as a
list (>0.00,>0.25,>0.50,>0.75,>1.00) or using shorthand notation (==0.25) for bins of equal width.

CHAPTER 7. POINT-STAT TOOL 191

When the "prob" entry is set as a dictionary to define the field of interest, setting "prob _as_scalar = TRUE"
indicates that this data should be processed as regular scalars rather than probabilities. For example, this
option can be used to compute traditional 2x2 contingency tables and neighborhood verification statistics
for probability data. It can also be used to compare two probability fields directly.

Measures for comparison against climatology

For each of the types of statistics mentioned above (categorical, continuous, and probabilistic), it is possible
to calculate measures of skill relative to climatology. MET will accept a climatology file provided by the user,
and will evaluate it as a reference forecast. Further, anomalies, i.e. departures from average conditions, can
be calculated. As with all other statistics, the available measures will depend on the nature of the forecast.
Common statistics that use a climatological reference include: the mean squared error skill score (MSESS),
the Anomaly Correlation (ANOM _CORR), scalar and vector anomalies (SAL1L2 and VAL1L2), continuous
ranked probability skill score (CRPSS), Brier Skill Score (BSS) (Wilks, 2011; Mason, 2004).

Often, the sample climatology is used as a reference by a skill score. The sample climatology is the average
over all included observations and may be transparent to the user. This is the case in most categorical
skill scores. The sample climatology will probably prove more difficult to improve upon than a long term
climatology, since it will be from the same locations and time periods as the forecasts. This may mask
legitimate forecast skill. However, a more general climatology, perhaps covering many years, is often easier
to improve upon and is less likely to mask real forecast skill.

7.2.4 Statistical confidence intervals

A single summary score gives an indication of the forecast performance, but it is a single realization from
a random process that neglects uncertainty in the score’s estimate. That is, it is possible to obtain a good
score, but it may be that the "good" score was achieved by chance and does not reflect the "true" score.
Therefore, when interpreting results from a verification analysis, it is imperative to analyze the uncertainty
in the realized scores. One good way to do this is to utilize confidence intervals. A confidence interval
indicates that if the process were repeated many times, say 100, then the true score would fall within the
interval 100(1 — a))% of the time. Typical values of « are 0.01, 0.05, and 0.10. The Point-Stat tool allows

the user to select one or more specific a-values to use.

For continuous fields (e.g., temperature), it is possible to estimate confidence intervals for some measures
of forecast performance based on the assumption that the data, or their errors, are normally distributed.
The Point-Stat tool computes confidence intervals for the following summary measures: forecast mean and
standard deviation, observation mean and standard deviation, correlation, mean error, and the standard
deviation of the error. In the case of the respective means, the central limit theorem suggests that the
means are normally distributed, and this assumption leads to the usual 100(1 — «)% confidence intervals for
the mean. For the standard deviations of each field, one must be careful to check that the field of interest
is normally distributed, as this assumption is necessary for the interpretation of the resulting confidence

intervals.

CHAPTER 7. POINT-STAT TOOL 192

For the measures relating the two fields (i.e., mean error, correlation and standard deviation of the errors),
confidence intervals are based on either the joint distributions of the two fields (e.g., with correlation) or
on a function of the two fields. For the correlation, the underlying assumption is that the two fields follow
a bivariate normal distribution. In the case of the mean error and the standard deviation of the mean
error, the assumption is that the errors are normally distributed, which for continuous variables, is usually

a reasonable assumption, even for the standard deviation of the errors.

Bootstrap confidence intervals for any verification statistic are available in MET. Bootstrapping is a non-
parametric statistical method for estimating parameters and uncertainty information. The idea is to obtain a
sample of the verification statistic(s) of interest (e.g., bias, ETS, etc.) so that inferences can be made from this
sample. The assumption is that the original sample of matched forecast-observation pairs is representative of
the population. Several replicated samples are taken with replacement from this set of forecast-observation
pairs of variables (e.g., precipitation, temperature, etc.), and the statistic(s) are calculated for each replicate.
That is, given a set of n forecast-observation pairs, we draw values at random from these pairs, allowing the
same pair to be drawn more than once, and the statistic(s) is (are) calculated for each replicated sample.
This yields a sample of the statistic(s) based solely on the data without making any assumptions about the
underlying distribution of the sample. It should be noted, however, that if the observed sample of matched
pairs is dependent, then this dependence should be taken into account somehow. Currently, in the confidence
interval methods in MET do not take into account dependence, but future releases will support a robust
method allowing for dependence in the original sample. More detailed information about the bootstrap

algorithm is found in the appendix.

Confidence intervals can be calculated from the sample of verification statistics obtained through the boot-
strap algorithm. The most intuitive method is to simply take the appropriate quantiles of the sample of
statistic(s). For example, if one wants a 95% CI, then one would take the 2.5 and 97.5 percentiles of the
resulting sample. This method is called the percentile method, and has some nice properties. However, if
the original sample is biased and/or has non-constant variance, then it is well known that this interval is too
optimistic. The most robust, accurate, and well-behaved way to obtain accurate CIs from bootstrapping is
to use the bias corrected and adjusted percentile method (or BCa). If there is no bias, and the variance is
constant, then this method will yield the usual percentile interval. The only drawback to the approach is
that it is computationally intensive. Therefore, both the percentile and BCa methods are available in MET,

with the considerably more efficient percentile method being the default.

The only other option associated with bootstrapping currently available in MET is to obtain replicated
samples smaller than the original sample (i.e., to sample m < n points at each replicate). Ordinarily, one
should use m = n, and this is the default. However, there are cases where it is more appropriate to use a
smaller value of m (e.g., when making inference about high percentiles of the original sample). See Gilleland
(2008) for more information and references about this topic.

MET provides parametric confidence intervals based on assumptions of normality for the following categorical

statistics:

o Base Rate

e Forecast Mean

CHAPTER 7. POINT-STAT TOOL

Accuracy

Probability of Detection

Probability of Detection of the non-event
Probability of False Detection

False Alarm Ratio

Critical Success Index
Hanssen-Kuipers Discriminant

Odds Ratio

Log Odds Ratio

Odds Ratio Skill Score

Extreme Dependency Score
Symmetric Extreme Dependency Score
Extreme Dependency Index

Symmetric Extremal Dependency Index

193

MET provides parametric confidence intervals based on assumptions of normality for the following continuous

statistics:

Forecast and Observation Means

Forecast, Observation, and Error Standard Deviations

Pearson Correlation Coefficient

Mean Error

MET provides parametric confidence intervals based on assumptions of normality for the following proba-

bilistic statistics:

Brier Score

Base Rate

MET provides non-parametric bootstrap confidence intervals for many categorical and continuous statistics.

Kendall’s Tau and Spearman’s Rank correlation coefficients are the only exceptions. Computing bootstrap

confidence intervals for these statistics would be computationally unrealistic.

For more information on confidence intervals pertaining to verification measures, see Wilks (2011), Jolliffe
and Stephenson (2003), and Bradley (2008).

CHAPTER 7. POINT-STAT TOOL 194

7.3 Practical information

The Point-Stat tool is used to perform verification of a gridded model field using point observations. The
gridded model field to be verified must be in one of the supported file formats. The point observations must
be formatted as the NetCDF output of the point reformatting tools described in Chapter @] The Point-Stat
tool provides the capability of interpolating the gridded forecast data to the observation points using a variety
of methods as described in Section [7.2.1] The Point-Stat tool computes a number of continuous statistics on

the matched pair data as well as discrete statistics once the matched pair data have been thresholded.

7.3.1 point_stat usage

The usage statement for the Point-Stat tool is shown below:

Usage: point_stat
fcst_file
obs_file
config file
[-point_obs filel
[-obs_valid_beg time]
[-obs_valid_end time]
[-outdir pathl
[-log file]
[-v levell

point_stat has three required arguments and can take many optional ones.

Required arguments for point stat

1. The fcst file argument names the gridded file in either GRIB or NetCDF containing the model data to
be verified.

2. The obs_ file argument indicates the NetCDF file (output of PB2NC or ASCII2NC) containing the point
observations to be used for verifying the model.

3. The config file argument indicates the name of the configuration file to be used. The contents of the

configuration file are discussed below.

Optional arguments for point stat

4. The -point _obs file may be used to pass additional NetCDF point observation files to be used in the

verification.

CHAPTER 7. POINT-STAT TOOL 195

5. The -obs_valid beg time option in YYYYMMDD|_ HH|MMSS|| format sets the beginning of the

observation matching time window, overriding the configuration file setting.

6. The-obs valid end time option in YYYYMMDD]|_HH[MMSS]]| format sets the end of the observation

matching time window, overriding the configuration file setting.
7. The -outdir path indicates the directory where output files should be written.

8. The -log file option directs output and errors to the specified log file. All messages will be written to that
file as well as standard out and error. Thus, users can save the messages without having to redirect

the output on the command line. The default behavior is no log file.

9. The -v level option indicates the desired level of verbosity. The value of "level" will override the default
setting of 2. Setting the verbosity to 0 will make the tool run with no log messages, while increasing

the verbosity will increase the amount of logging.

An example of the point _stat calling sequence is shown below:

point_stat sample_fcst.grb \
sample_pb.nc \
PointStatConfig

In this example, the Point-Stat tool evaluates the model data in the sample fcst.grb GRIB file using the
observations in the NetCDF output of PB2NC, sample pb.nc, applying the configuration options specified
in the PointStatConfig file.

7.3.2 point_stat configuration file

The default configuration file for the Point-Stat tool named PointStatConfig default can be found in
the installed share/met/config directory. Another version is located in scripts/config. We encourage
users to make a copy of these files prior to modifying their contents. The contents of the configuration file

are described in the subsections below.

Note that environment variables may be used when editing configuration files, as described in Section £.1.2]
for the PB2NC tool.

model = "WRF";
desc = "NA";

regrid ={ ...}
climo_mean ={ ...}

]
-~
-}

climo_stdev

CHAPTER 7. POINT-STAT TOOL 196

climo_cdf ={ ...}

obs_window = { beg = -5400; end = 5400; }

mask = { grid = ["FULL"]; poly = []; sid = []; }

ci_alpha =[0.05 1;

boot = { interval = PCTILE; rep_prop = 1.0; n_rep = 1000;
rng = "mt19937"; seed = ""; }

interp = { vld_thresh = 1.0; shape = SQUARE;
type = [{ method = NEAREST; width = 1; } 1; }

censor_thresh = [];

censor_val = [];

eclv_points = 0.05;

rank_corr_flag = TRUE;

sid_inc = [1;

sid_exc = [1;

duplicate_flag = NONE;
obs_quality = [1;
obs_summary = NONE;
obs_perc_value = 50;

message_type_group_map = [...];

tmp_dir = "/tmp";
output_prefix = "";
version = "VYN.N";

The configuration options listed above are common to many MET tools and are described in Section [3.5.1}

Setting up the fest and obs dictionaries of the configuration file is described in Section 3.5.1] The following

are some special consideration for the Point-Stat tool.

The obs dictionary looks very similar to the fcst dictionary. When the forecast and observation variables
follow the same naming convention, one can easily copy over the forecast settings to the observation dictionary
using obs = fest;. However when verifying forecast data in NetCDF format or verifying against not-standard
observation variables, users will need to specify the fcst and obs dictionaries separately. The number of
fields specified in the fcst and obs dictionaries must match.

The message type entry, defined in the obs dictionary, contains a comma-separated list of the message
types to use for verification. At least one entry must be provided. The Point-Stat tool performs verifica-
tion using observations for one message type at a time. See http://www.emc.ncep.noaa.gov/mmb/data_
processing/PrepBUFR.doc/table_1.htm for a list of the possible types. If using obs = fest;, it can be

defined in the forecast dictionary and the copied into the observation dictionary.

http://www.emc.ncep.noaa.gov/mmb/data_processing/PrepBUFR.doc/table_1.htm
http://www.emc.ncep.noaa.gov/mmb/data_processing/PrepBUFR.doc/table_1.htm

CHAPTER 7. POINT-STAT TOOL 197

land_mask = {

flag = FALSE;

file_name = [];

field = { name = "LAND"; level = "LO"; }
regrid = { method = NEAREST; width = 1; }

thresh = eql;

The land _mask dictionary defines the land/sea mask field which is used when verifying at the surface. For
point observations whose message type appears in the LANDSF entry of the message type group map
setting, only use forecast grid points where land = TRUE. For point observations whose message type ap-
pears in the WATERSF entry of the message type group map setting, only use forecast grid points
where land = FALSE. The flag entry enables/disables this logic. If the file name is left empty, then
the land/sea is assumed to exist in the input forecast file. Otherwise, the specified file(s) are searched for
the data specified in the field entry. The regrid settings specify how this field should be regridded to the
verification domain. Lastly, the thresh entry is the threshold which defines land (threshold is true) and
water (threshold is false).

topo_mask = {

flag = FALSE;
file_name = [1;
field = { name = "TOPO"; level = "LO"; }

{ method = BILIN; width = 2; }
ge-100&&1e100;
ge-50&&1e50;

regrid

1]

use_obs_thresh

interp_fcst_thresh

The topo__mask dictionary defines the model topography field which is used when verifying at the surface.
This logic is applied to point observations whose message type appears in the SURFACE entry of the
message type group map setting. Only use point observations where the topo - station elevation dif-
ference meets the use _obs_thresh threshold entry. For the observations kept, when interpolating forecast
data to the observation location, only use forecast grid points where the topo - station difference meets the
interp fcst thresh threshold entry. The flag entry enables/disables this logic. If the file name is left
empty, then the topography data is assumed to exist in the input forecast file. Otherwise, the specified file(s)
are searched for the data specified in the field entry. The regrid settings specify how this field should be

regridded to the verification domain.

hira = {

CHAPTER 7. POINT-STAT TOOL 198

flag = FALSE;

width =[2, 3, 4, 51
vld_thresh =1.0;
cov_thresh = [==0.25];
shape = SQUARE;

prob_cat_thresh = [];

The hira dictionary that is very similar to the interp and nbrhd entries. It specifies information for
applying the High Resolution Assessment (HiRA) verification logic described in section The flag
entry is a boolean which toggles HIRA on (TRUE) and off (FALSE). The width and shape entries define
the neighborhood size and shape, respectively. Since HIRA applies to point observations, the width may be
even or odd. The vld _thresh entry is the required ratio of valid data within the neighborhood to compute
an output value. The cov_thresh entry is an array of probabilistic thresholds used to populate the Nx2
probabilistic contingency table written to the PCT output line and used for computing probabilistic statistics.
The prob_cat thresh entry defines the thresholds to be used in computing the ranked probability score
in the RPS output line type. If left empty but climatology data is provided, the climo _cdf thresholds will
be used instead of prob cat thresh.

output_flag = {

fho = BOTH;
ctc = BOTH;
cts = BOTH;
mctc = BOTH;
mcts = BOTH;
cnt = BOTH;

s1112 = BOTH;
salll2 = BOTH;
v1112 = BOTH;

vent = BOTH;
valll2 = BOTH;
pct = BOTH;
pstd = BOTH;
pjc = BOTH;
prc = BOTH;
ecnt = BOTH; // Only for HiRA
Tps = BOTH; // Only for HiRA
eclv = BOTH;
mpr = BOTH;

CHAPTER 7. POINT-STAT TOOL 199

The output _flag array controls the type of output that the Point-Stat tool generates. Each flag corresponds
to an output line type in the STAT file. Setting the flag to NONE indicates that the line type should not
be generated. Setting the flag to STAT indicates that the line type should be written to the STAT file only.
Setting the flag to BOTH indicates that the line type should be written to the STAT file as well as a separate
ASCII file where the data is grouped by line type. The output flags correspond to the following output line

types:

1. FHO for Forecast, Hit, Observation Rates

2. CTC for Contingency Table Counts

3. CTS for Contingency Table Statistics

4. MCTC for Multi-category Contingency Table Counts

5. MCTS for Multi-category Contingency Table Statistics

6. CNT for Continuous Statistics

7. SL1L2 for Scalar L1L2 Partial Sums

8. SAL1L2 for Scalar Anomaly L1L2 Partial Sums when climatological data is supplied
9. VL1L2 for Vector L1L2 Partial Sums

10. VCNT for Vector Continuous Statistics (Note that bootstrap confidence intervals are not currently

calculated for this line type.)
11. VAL1L2 for Vector Anomaly L1L2 Partial Sums when climatological data is supplied
12. PCT for Contingency Table counts for Probabilistic forecasts
13. PSTD for contingency table Statistics for Probabilistic forecasts with Dichotomous outcomes
14. PJC for Joint and Conditional factorization for Probabilistic forecasts
15. PRC for Receiver Operating Characteristic for Probabilistic forecasts
16. ECNT for Ensemble Continuous Statistics is only computed for the HiIRA methodology
17. RPS for Ranked Probability Score is only computed for the HiRA methodology
18. ECLV for Economic Cost/Loss Relative Value

19. MPR for Matched Pair data

Note that the first two line types are easily derived from each other. Users are free to choose which measures
are most desired. The output line types are described in more detail in Section

Note that writing out matched pair data (MPR lines) for a large number of cases is generally not recom-
mended. The MPR lines create very large output files and are only intended for use on a small set of

cases.

CHAPTER 7. POINT-STAT TOOL 200

If all line types corresponding to a particular verification method are set to NONE, the computation of those
statistics will be skipped in the code and thus make the Point-Stat tool run more efficiently. For example,
if FHO, CTC, and CTS are all set to NONE, the Point-Stat tool will skip the categorical verification step.

7.3.3 point_stat output

point _stat produces output in STAT and, optionally, ASCII format. The ASCII output duplicates the
STAT output but has the data organized by line type. The output files will be written to the default output

directory or the directory specified using the "-outdir" command line option.
The output STAT file will be named using the following naming convention:

point stat PREFIX HHMMSSL YYYYMMDD HHMMSSYV . stat where PREFIX indicates the user-defined
output prefix, HHMMSSL indicates the forecast lead time and YYYYMMDD HHMMSS indicates the fore-

cast valid time.
The output ASCII files are named similarly:

point stat PREFIX HHMMSSL YYYYMMDD HHMMSSV TYPE.txt where TYPE is one of mpr,
tho, ctc, cts, cnt, mctc, mcts, pct, pstd, pjc, prc, ecnt, rps, eclv, sl112, salll2, vI112, vent or valll2 to
indicate the line type it contains.

The first set of header columns are common to all of the output files generated by the Point-Stat tool. Tables
describing the contents of the header columns and the contents of the additional columns for each line type
are listed in the following tables. The ECNT line type is described in Section 0.2 The RPS line type is
described in Section [0.3]

CHAPTER 7. POINT-STAT TOOL

201

Table 7.1: Header information for each file point-stat outputs.

] HEADER

Column Header Column Name | Description

Number

1 VERSION Version number

2 MODEL User provided text string designating model name

3 DESC User provided text string describing the verification task

4 FCST LEAD Forecast lead time in HHMMSS format

5 FCST_VALID BEG Forecast valid start time in YYYYMMDD HHMMSS
format

6 FCST VALID END Forecast valid end time in YYYYMMDD HHMMSS
format

7 OBS_LEAD Observation lead time in HHMMSS format

8 OBS VALID BEG Observation valid start time in YYYYMMDD HHMMSS
format

9 OBS_ VALID END Observation valid end time in YYYYMMDD HHMMSS
format

10 FCST VAR Model variable

11 FCST UNITS Units for model variable

12 FCST LEV Selected Vertical level for forecast

13 OBS_ VAR Observation variable

14 OBS_UNITS Units for observation variable

15 OBS LEV Selected Vertical level for observations

16 OBTYPE Observation message type selected

17 VX MASK Verifying masking region indicating the masking grid or
polyline region applied

18 INTERP MTHD Interpolation method applied to forecasts

19 INTERP PNTS Number of points used in interpolation method

20 FCST THRESH The threshold applied to the forecast

21 OBS_THRESH The threshold applied to the observations

22 COV_THRESH NA in Point-Stat

23 ALPHA Error percent value used in confidence intervals

24 LINE TYPE Output line types are listed in tables through |7.21L

Table 7.2: Format information for FHO (Forecast, Hit rate, Observation rate) output line type.
FHO OUTPUT FORMAT

|

Column FHO Column Name | Description

Number

24 FHO Forecast, Hit, Observation line type
25 TOTAL Total number of matched pairs

26 F_RATE Forecast rate

27 H RATE Hit rate

28 O_RATE Observation rate

CHAPTER 7. POINT-STAT TOOL 202

Table 7.3: Format information for CTC (Contingency Table Counts) output line type.
] CTC OUTPUT FORMAT

Column CTC Column Name | Description

Number

24 CTC Contingency Table Counts line type

25 TOTAL Total number of matched pairs

26 \ FY OY Number of forecast yes and observation yes
27 FY ON Number of forecast yes and observation no
28 FN_ OY Number of forecast no and observation yes
29 FN_ ON Number of forecast no and observation no

CHAPTER 7. POINT-STAT TOOL

Table 7.4: Format information for CTS (Contingency Table Statistics) output line type.

CTS OUTPUT FORMAT

Column CTS Column Description

Number Name

24 CTS Contingency Table Statistics line type

25 TOTAL Total number of matched pairs

26-30 BASER, Base rate including normal and bootstrap upper and lower
BASER NCL, confidence limits
BASER NCU,
BASER_BCL,
BASER_BCU

31-35 FMEAN, Forecast mean including normal and bootstrap upper and
FMEAN NCL, lower confidence limits
FMEAN NCU,
FMEAN BCL,
FMEAN BCU

36-40 ACC, Accuracy including normal and bootstrap upper and lower
ACC_NCL, confidence limits
ACC_NCU,
ACC_BCL,
ACC_BCU

41-43 FBIAS, Frequency Bias including bootstrap upper and lower
FBIAS BCL, confidence limits
FBIAS BCU

44-48 PODY, Probability of detecting yes including normal and
PODY NCL, bootstrap upper and lower confidence limits
PODY NCU,
PODY BCL,
PODY_BCU

49-53 PODN, Probability of detecting no including normal and
PODN _NCL, bootstrap upper and lower confidence limits
PODN _NCU,
PODN_BCL,
PODN_BCU

54-58 POFD, Probability of false detection including normal and
POFD _NCL, bootstrap upper and lower confidence limits
POFD_NCU,
POFD _BCL,
POFD_BCU

59-63 FAR, False alarm ratio including normal and bootstrap upper
FAR NCL, and lower confidence limits
FAR_NCU,
FAR_BCL,
FAR BCU

64-68 CSI, Critical Success Index including normal and bootstrap
CSI_NCL, upper and lower confidence limits
CSI_NCU,
CSI_BCL,
CSI_BCU

69-71 GSS, Gilbert Skill Score including bootstrap upper and lower
GSS_BCL, confidence limits
GSS_BCU

203

CHAPTER 7. POINT-STAT TOOL

204

Table 7.5: Format information for CTS (Contingency Table Statistics) output line type, continued from

above
CTS OUTPUT FORMAT \
Column CTS Column Description
Number Name
72-76 HK, Hanssen-Kuipers Discriminant including normal and
HK NCL, bootstrap upper and lower confidence limits
HK NCU,
HK BCL,
HK BCU
77-79 HSS, Heidke Skill Score including bootstrap upper and lower
HSS BCL, confidence limits
HSS BCU
80-84 ODDS, Odds Ratio including normal and bootstrap upper and
ODDS NCL, lower confidence limits
ODDS_NCU,
ODDS_BCL,
ODDS_ BCU
85-89 LODDS, Logarithm of the Odds Ratio including normal and
LODDS_NCL, bootstrap upper and lower confidence limits
LODDS NCU,
LODDS_BCL,
LODDS_BCU
90-94 ORSS, Odds Ratio Skill Score including normal and bootstrap
ORSS NCL, upper and lower confidence limits
ORSS NCU,
ORSS BCL,
ORSS BCU
95-99 EDS, Extreme Dependency Score including normal and
EDS NCL, bootstrap upper and lower confidence limits
EDS NCU,
EDS BCL,
EDS BCU
100-104 SEDS, Symmetric Extreme Dependency Score including normal
SEDS NCL, and bootstrap upper and lower confidence limits
SEDS NCU,
SEDS BCL,
SEDS BCU
105-109 EDI, Extreme Dependency Index including normal and
EDI NCL, bootstrap upper and lower confidence limits
EDI NCU,
EDI _BCL,
EDI BCU
111-113 SEDI, Symmetric Extremal Depenency Index including normal
SEDI _NCL, and bootstrap upper and lower confidence limits
SEDI _NCU,
SEDI _BCL,
SEDI BCU
115-117 BAGSS, Bias Adjusted Gilbert Skill Score including bootstrap
BAGSS_BCL, upper and lower confidence limits
BAGSS_BCU

CHAPTER 7. POINT-STAT TOOL

Table 7.6: Format information for CNT(Continuous Statistics) output line type.

205

CNT OUTPUT FORMAT

Column CNT Column Description
Number Name
24 CNT Continuous statistics line type
25 TOTAL Total number of matched pairs
26-30 FBAR, Forecast mean including normal and bootstrap upper and
FBAR NCL, lower confidence limits
FBAR NCU,
FBAR BCL,
FBAR BCU
31-35 FSTDEV, Standard deviation of the forecasts including normal and
FSTDEV _NCL, bootstrap upper and lower confidence limits
FSTDEV NCU,
FSTDEV BCL,
FSTDEV_BCU
36-40 OBAR, Observation mean including normal and bootstrap upper
OBAR NCL, and lower confidence limits
OBAR_NCU,
OBAR_BCL,
OBAR_ BCU
41-45 OSTDEV, Standard deviation of the observations including normal
OSTDEV _NCL, and bootstrap upper and lower confidence limits
OSTDEV _NCU,
OSTDEV BCL,
OSTDEV BCU
46-50 PR_CORR, Pearson correlation coefficient including normal and
PR_CORR_NCL, bootstrap upper and lower confidence limits
PR_CORR_NCU,
PR _CORR_BCL,
PR CORR_ BCU
51 SP CORR Spearman’s rank correlation coefficient
52 KT CORR Kendall’s tau statistic
53 RANKS Number of ranks used in computing Kendall’s tau statistic
54 FRANK TIES Number of tied forecast ranks used in computing
Kendall’s tau statistic
35 ORANK TIES Number of tied observation ranks used in computing
Kendall’s tau statistic
56-60 ME, Mean error (F-O) including normal and bootstrap upper
ME NCL, and lower confidence limits
ME NCU,
ME_BCL,
ME BCU
61-65 ESTDEV, Standard deviation of the error including normal and
ESTDEV NCL, bootstrap upper and lower confidence limits
ESTDEV_NCU,
ESTDEV_BCL,
ESTDEV_BCU

CHAPTER 7. POINT-STAT TOOL

206

Table 7.7: Format information for CNT(Continuous Statistics) output line type continued from above table

|

CNT OUTPUT FORMAT

Column CNT Column Description

Number Name

66-68 MBIAS, Multiplicative bias including bootstrap upper and lower
MBIAS BCL, confidence limits
MBIAS BCU

69-71 MAE, Mean absolute error including bootstrap upper and lower
MAE BCL, confidence limits
MAE BCU

72-74 MSE, Mean squared error including bootstrap upper and lower
MSE BCL, confidence limits
MSE_BCU

75-77 BCMSE, Bias-corrected mean squared error including bootstrap
BCMSE_BCL, upper and lower confidence limits
BCMSE_BCU

78-80 RMSE, Root mean squared error including bootstrap upper and
RMSE BCL, lower confidence limits
RMSE_ BCU

81-94 E10, 10th, 25th, 50th, 75th, and 90th percentiles of the error
E10_BCL, including bootstrap upper and lower confidence limits
E10 BCU,
E25,
E25 BCL,
E25 BCU,
E50,
E50 BCL,
E50 BCU,
E75,
E75 BCL,
E75 BCU,
E90,
E90 BCL,
E90 BCU

96-98 IQR, The Interquartile Range including bootstrap upper and
IQR _BCL, lower confidence limits
IQR _BCU

99-101 MAD, The Median Absolute Deviation including bootstrap
MAD BCL, upper and lower confidence limits
MAD_ BCU

102-106 ANOM _CORR, The Anomaly Correlation including normal and bootstrap
ANOM _CORR__NCL, upper and lower confidence limits
ANOM_ CORR_NCU,
ANOM _CORR_ BCIL,
ANOM _CORR_BCU

107-109 ME2, The square of the mean error (bias) including bootstrap
ME2 BCL, upper and lower confidence limits
ME2 BCU

110-112 MSESS, The mean squared error skill score including bootstrap
MSESS BCL, upper and lower confidence limits
MSESS BCU

113-115 RMSFA, Root mean squared forecast anomaly (f-c) including
RMSFA BCL, bootstrap upper and lower confidence limits
RMSFA BCU

116-118 RMSOA, Root mean squared observation anomaly (o-c) including
RMSOA BCL, bootstrap upper and lower confidence limits

RMSOA_BCU

CHAPTER 7. POINT-STAT TOOL

Table 7.8: Format information for MCTC (Multi-category Contingency Table Count) output line type.

|

MCTC OUTPUT FORMAT

Column MCTC Column Description

Number Name

24 MCTC Multi-category Contingency Table Counts line type

25 TOTAL Total number of matched pairs

26 N CAT Dimension of the contingency table

27 Fi Oj Count of events in forecast category i and observation
category j, with the observations incrementing first
(repeated)

Table 7.9: Format information for MCTS (Multi- category Contingency Table Statistics) output line type.

|

MCTS OUTPUT FORMAT

Column MCTS Column Description
Number Name
24 MCTS Multi-category Contingency Table Statistics line type
25 TOTAL Total number of matched pairs
26 N_ CAT The total number of categories in each of dimension of the
contingency table. So the total number of cells is
N _ CAT*N_CAT.
27-31 ACC, Accuracy, normal confidence limits and bootstrap
ACC_NCL, confidence limits
ACC_NC(CU,
ACC_BCL,
ACC_BCU
32-34 HK, Hanssen and Kuipers Discriminant and bootstrap
HK BCL, confidence limits
HK BCU
35-37 HSS, Heidke Skill Score and bootstrap confidence limits
HSS BCL,
HSS BCU
38-40 GER, Gerrity Score and bootstrap confidence limits
GER_BCL,
GER_BCU

CHAPTER 7. POINT-STAT TOOL

208

Table 7.10: Format information for PCT (Contingency Table Counts for Probabilistic forecasts) output line

type.
y PCT OUTPUT FORMAT \

Column PCT Column Description

Number Name

24 PCT Probability contingency table count line type

25 TOTAL Total number of matched pairs

26 N_ THRESH Number of probability thresholds

27 THRESH i The ith probability threshold value (repeated)

28 oY i Number of observation yes when forecast is between the
ith and i+1th probability thresholds (repeated)

29 ON i Number of observation no when forecast is between the
ith and i+1th probability thresholds (repeated)

* THRESH n Last probability threshold value

Table 7.11: Format information for PSTD (Contingency Table Statistics for Probabilistic forecasts) output

line type.
] PSTD OUTPUT FORMAT ‘

Column PSTD Column Description

Number Name

24 PSTD Probabilistic statistics for dichotomous outcome line type

25 TOTAL Total number of matched pairs

26 N THRESH Number of probability thresholds

27-29 BASER, The Base Rate, including normal upper and lower
BASER NCL, confidence limits
BASER NCU

30 RELIABILITY Reliability

31 RESOLUTION Resolution

32 UNCERTAINTY Uncertainty

33 ROC_AUC Area under the receiver operating characteristic curve

34-36 BRIER, Brier Score including normal upper and lower confidence
BRIER NCL, limits
BRIER NCU

37-39 BRIERCL, Climatological Brier Score including upper and lower
BRIERCL NCL, normal confidence limits
BRIERCL NCU

40 BSS Brier Skill Score relative to external climatology

41 BSS SMPL Brier Skill Score relative to sample climatology

42 THRESH i The ith probability threshold value (repeated)

CHAPTER 7. POINT-STAT TOOL

209

Table 7.12: Format information for PJC (Joint and Conditional factorization for Probabilistic forecasts)

output line type.

|

PJC OUTPUT FORMAT

|

Column PJC Column Name | Description

Number

24 PJC Probabilistic Joint /Continuous line type

25 TOTAL Total number of matched pairs

26 N_ THRESH Number of probability thresholds

27 THRESH i The ith probability threshold value (repeated)

28 Oy TP i Number of observation yes when forecast is between the
ith and i+1th probability thresholds as a proportion of
the total OY (repeated)

29 ON TP i Number of observation no when forecast is between the
ith and i+1th probability thresholds as a proportion of
the total ON (repeated)

30 CALIBRATION i Calibration when forecast is between the ith and i+1th
probability thresholds (repeated)

31 REFINEMENT i Refinement when forecast is between the ith and i+1th
probability thresholds (repeated)

32 LIKELIHOOD i Likelihood when forecast is between the ith and i+1th
probability thresholds (repeated

33 BASER i Base rate when forecast is between the ith and i+1th
probability thresholds (repeated)

* THRESH n Last probability threshold value

Table 7.13: Format information for PRC (PRC for Receiver Operating Characteristic for Probabilistic fore-
casts) output line type.

|

PRC OUTPUT FORMAT

|

Column PRC Column Description

Number Name

24 PRC Probability ROC points line type

25 TOTAL Total number of matched pairs

26 N THRESH Number of probability thresholds

27 THRESH i The ith probability threshold value (repeated)

28 PODY i Probability of detecting yes when forecast is greater than
the ith probability thresholds (repeated)

29 POFD i Probability of false detection when forecast is greater than
the ith probability thresholds (repeated)

* THRESH n Last probability threshold value

CHAPTER 7. POINT-STAT TOOL

Table 7.14: Format information for ECLV (ECLV for Economic Cost/Loss Relative Value) output line type.

|

ECLV OUTPUT FORMAT

Column PRC Column Description

Number Name

24 ECLV Economic Cost/Loss Relative Value line type
25 TOTAL Total number of matched pairs

26 BASER Base rate

27 VALUE BASER Economic value of the base rate

28 N _PNT Number of Cost/Loss ratios

29 CL_i ith Cost/Loss ratio evaluated

30 VALUE i Relative value for the ith Cost/Loss ratio

Table 7.15: Format information for SL1L2 (Scalar Partial Sums) output line type.

SL1L2 OUTPUT FORMAT

Column SL1L2 Column Description

Number Name

24 SL1L2 Scalar L1L2 line type

25 TOTAL Total number of matched pairs of forecast (f) and
observation (o)

26 FBAR Mean(f)

27 OBAR Mean (o)

28 FOBAR Mean(f*o)

29 FFBAR Mean (f?)

30 OOBAR Mean(0?)

31 MAE Mean Absolute Error

Table 7.16: Format information for SAL1L2 (Scalar Anomaly Partial Sums) output line type.

|

SAL1L2 OUTPUT FORMAT

Column SAL1L2 Column | Description

Number Name

24 SAL1L2 Scalar Anomaly L1L2 line type

25 TOTAL Total number of matched triplets of forecast (f),
observation (0), and climatological value (c)

26 FABAR Mean(f-c)

27 OABAR Mean(o-c)

28 FOABAR Mean((f-c)*(o-c))

29 FFABAR Mean((f-c)?)

30 OOABAR Mean((o-c)?)

31 MAE Mean Absolute Error

CHAPTER 7. POINT-STAT TOOL

Table 7.17: Format information for VL1L2 (Vector Partial Sums) output line type.

| VL1L2 OUTPUT FORMAT

Column VL1L2 Column Description

Number Name

24 VL1L2 Vector L1L2 line type

25 TOTAL Total number of matched pairs of forecast winds (uf, vf)
and observation winds (uo, vo)

26 UFBAR Mean (uf)

27 VFBAR Mean(vf)

28 UOBAR Mean (uo)

29 VOBAR Mean(vo)

30 UVFOBAR Mean (uf*uo+vf*vo)

31 UVFFBAR Mean (uf® +vf?)

32 UVOOBAR Mean(uo®+vo?)

33 F SPEED BAR Mean forecast wind speed

34 O _SPEED BAR Mean observed wind speed

Table 7.18: Format information for VAL1L2 (Vector Anomaly Partial Sums) output line type.

y VAL1L2 OUTPUT FORMAT

Column VAL1L2 Column | Description

Number Name

24 VALI1L2 Vector Anomaly L1L2 line type

25 TOTAL Total number of matched triplets of forecast winds (uf,
vf), observation winds (uo, vo), and climatological winds
(uc, ve)

26 UFABAR Mean (uf-uc)

27 VFABAR Mean(vf-vc)

28 UOABAR Mean (uo-uc)

29 VOABAR Mean(vo-vc)

30 UVFOABAR Mean ((uf-uc)*(uo-uc)+(vf-vc)*(vo-vc))

31 UVFFABAR Mean ((uf-uc)?+(vf-vc)?)

32 UVOOABAR Mean ((uo-uc)?+(vo-vc)?)

211

CHAPTER 7. POINT-STAT TOOL 212

Table 7.19: Format information for VAL1L2 (Vector Anomaly Partial Sums) output line type. Note that
each statistic (except TOTAL) is followed by two columns giving bootstrap confidence intervals. These
confidence intervals are not currently calculated for this release of MET, but will be in future releases.

|

VCNT OUTPUT FORMAT

Column VCNT Column Description

Numbers Name

24 VCNT Vector Continuous Statistics line type

25 TOTAL Total number of data points

2628 FBAR Mean value of forecast wind speed

29-31 OBAR Mean value of observed wind speed

32-34 FS_RMS Root mean square forecast wind speed

35-37 OS_RMS Root mean square observed wind speed

38-40 MSVE Mean squared length of the vector difference between the
forecast and observed winds

41-43 RMSVE Square root of MSVE

45-46 FSTDEV Standard deviation of the forecast wind speed

47-49 OSTDEV Standard deviation of the observed wind field

50-52 FDIR Direction of the average forecast wind vector

53-55 ODIR Direction of the average observed wind vector

56-58 FBAR SPEED Length (speed) of the average forecast wind vector

59-61 OBAR_SPEED Length (speed) of the average observed wind vector

62-64 VDIFF _SPEED Length (speed) of the vector difference between the
average forecast and average observed wind vectors

65—67 VDIFF_ DIR Direction of the vector difference between the average
forecast and average wind vectors

68-70 SPEED ERR Difference between the length of the average forecast wind
vector and the average observed wind vector (in the sense
F-0)

71-73 SPEED ABSERR | Absolute value of SPEED ERR

74-76 DIR ERR Signed angle between the directions of the average forecast
and observed wing vectors. Positive if the forecast wind
vector is counterclockwise from the observed wind vector

7779 DIR_ABSERR Absolute value of DIR_ABSERR

CHAPTER 7. POINT-STAT TOOL 213

Table 7.21: Format information for MPR (Matched Pair) output line type.
] MPR OUTPUT FORMAT

Column MPR Column Description

Number Name

24 MPR Matched Pair line type

25 TOTAL Total number of matched pairs

26 INDEX Index for the current matched pair

27 OBS_SID Station Identifier of observation

28 OBS_LAT Latitude of the observation in degrees north

29 OBS_LON Longitude of the observation in degrees east

30 OBS_LVL Pressure level of the observation in hPa or accumulation
interval in hours

31 OBS_ELV Elevation of the observation in meters above sea level

32 FCST Forecast value interpolated to the observation location

33 OBS Observation value

34 OBS_QC Quality control flag for observation

35 CLIMO_MEAN Climatological mean value

36 CLIMO_STDEV Climatological standard deviation value

37 CLIMO _CDF Climatological cumulative distribution function value

The STAT output files described for point _stat may be used as inputs to the Stat-Analysis tool. For more
information on using the Stat-Analysis tool to create stratifications and aggregations of the STAT files
produced by point_stat, please see Chapter

Chapter 8

Grid-Stat Tool

8.1 Introduction

The Grid-Stat tool provides verification statistics for a matched forecast and observation grid. All of the
forecast grid points in the region of interest are matched to observation grid points on the same grid. All
the matched grid points are used to compute the verification statistics. The Grid-Stat tool functions in
much the same way as the Point-Stat tool, except that no interpolation is required because the forecasts
and observations are on the same grid. However, the interpolation parameters may be used to perform a
smoothing operation on the forecast and observation fields prior to verification. In addition to traditional
verification approaches, the Grid-Stat tool includes Fourier decompositions, gradient statistics, distance

metrics, and neighborhood methods, designed to examine forecast performance as a function of spatial scale.

Scientific and statistical aspects of the Grid-Stat tool are briefly described in this chapter, followed by

practical details regarding usage and output from the tool.

8.2 Scientific and statistical aspects

8.2.1 Statistical measures

The Grid-Stat tool computes a wide variety of verification statistics. Broadly speaking, these statistics
can be subdivided into three types of statistics: measures for categorical variables, measures for continuous
variables, and measures for probabilistic forecasts. Further, when a climatology file is included, reference
statistics for the forecasts compared to the climatology can be calculated. These categories of measures
are briefly described here; specific descriptions of all measures are provided in Appendix [C] Additional
information can be found in Wilks (2011) and Jolliffe and Stephenson (2012), and on the world-wide web at

http://www.cawcr.gov.au/projects/verification/verif_web_page.html.

214

http://www.cawcr.gov.au/projects/verification/verif_web_page.html

CHAPTER 8. GRID-STAT TOOL 215
In addition to these verification measures, the Grid-Stat tool also computes partial sums and other FHO

statistics that are produced by the NCEP verification system. These statistics are also described in Appendix
(¢}

Measures for categorical variables

Categorical verification statistics are used to evaluate forecasts that are in the form of a discrete set of
categories rather than on a continuous scale. Grid-Stat computes both 2x2 and multi-category contingency

tables and their associated statistics, similar to Point-Stat. See Appendix [C]for more information.

Measures for continuous variables

For continuous variables, many verification measures are based on the forecast error (i.e., f - 0). However,
it also is of interest to investigate characteristics of the forecasts, and the observations, as well as their
relationship. These concepts are consistent with the general framework for verification outlined by Murphy
and Winkler (1987). The statistics produced by MET for continuous forecasts represent this philosophy of
verification, which focuses on a variety of aspects of performance rather than a single measure. See Appendix

[C] for specific information.

A user may wish to eliminate certain values of the forecasts from the calculation of statistics, a process referred
to here as “conditional verification”. For example, a user may eliminate all temperatures above freezing and
then calculate the error statistics only for those forecasts of below freezing temperatures. Another common
example involves verification of wind forecasts. Since wind direction is indeterminate at very low wind
speeds, the user may wish to set a minimum wind speed threshold prior to calculating error statistics for
wind direction. The user may specify these threhsolds in the configuration file to specify the conditional
verification. Thresholds can be specified using the usual Fortran conventions (<, <=, ==, |-, >=, or >)
followed by a numeric value. The threshold type may also be specified using two letter abbreviations (lt,
le, eq, ne, ge, gt). Further, more complex thresholds can be achieved by defining multiple thresholds and
using && or || to string together event definition logic. The forecast and observation threshold can be
used together according to user preference by specifying one of: UNION, INTERSECTION, or SYMDIFF

(symmetric difference).

Measures for probabilistic forecasts and dichotomous outcomes

For probabilistic forecasts, many verification measures are based on reliability, accuracy and bias. However,
it also is of interest to investigate joint and conditional distributions of the forecasts and the observations,
as in Wilks (2011). See Appendix |C| for specific information.

Probabilistic forecast values are assumed to have a range of either 0 to 1 or 0 to 100. If the max data value
is > 1, we assume the data range is 0 to 100, and divide all the values by 100. If the max data value is

<=1, then we use the values as is. Further, thresholds are applied to the probabilities with equality on the

CHAPTER 8. GRID-STAT TOOL 216

lower end. For example, with a forecast probability p, and thresholds t1 and t2, the range is defined as: t1
<= p < t2. The exception is for the highest set of thresholds, when the range includes 1: t1 <= p <= 1.To
make configuration easier, in METv6.0, these probabilities may be specified in the configuration file as a list
(>0.00,>0.25,>0.50,>0.75,>1.00) or using shorthand notation (==0.25) for bins of equal width.

In METv6.0, when the "prob" entry is set as a dictionary to define the field of interest, setting "prob _as_scalar
= TRUE" indicates that this data should be processed as regular scalars rather than probabilities.For ex-
ample, this option can be used to compute traditional 2x2 contingency tables and neighborhood verification
statistics for probability data. It can also be used to compare two probability fields directly.

Use of a climatology field for comparative verification

The Grid-Stat tool allows evaluation of model forecasts compared with a user-supplied climatology. Prior
to calculation of statistics, the climatology must be put on the same grid as the forecasts and observations.
In particular, the anomaly correlation and mean squared error skill score provide a measure of the forecast
skill versus the climatology. For more details about climatological comparisons and reference forecasts, see
the relevant section in the Point-Stat Chapter, Section [7.2.3]

Use of analysis fields for verification

The Grid-Stat tool allows evaluation of model forecasts using model analysis fields. However, users are
cautioned that an analysis field is not independent of its parent model; for this reason verification of model
output using an analysis field from the same model is generally not recommended and is not likely to yield

meaningful information about model performance.

8.2.2 Statistical confidence intervals

The confidence intervals for the Grid-Stat tool are the same as those provided for the Point-Stat tool except
that the scores are based on pairing grid points with grid points so that there are likely more values for each
field making any assumptions based on the central limit theorem more likely to be valid. However, it should
be noted that spatial (and temporal) correlations are not presently taken into account in the confidence
interval calculations. Therefore, confidence intervals reported may be somewhat too narrow (e.g., Efron
2007). See Appendix |§| for details regarding confidence intervals provided by MET.

8.2.3 Grid weighting

When computing continuous statistics on a regular large scale or global latitude-longitude grid, weighting
may be applied in order to compensate for the meridian convergence toward higher latitudes. Grid square
area weighting or weighting based on the cosine of the latitude are two configuration options in both point-
stat and grid-stat. See [3.5.1for more information.

CHAPTER 8. GRID-STAT TOOL 217

8.2.4 Neighborhood methods

MET also incorporates several neighborhood methods to give credit to forecasts that are close to the obser-
vations, but not necessarily exactly matched up in space. Also referred to as “fuzzy” verification methods,
these methods do not just compare a single forecast at each grid point to a single observation at each grid
point; they compare the forecasts and observations in a neighborhood surrounding the point of interest.
With the neighborhood method, the user chooses a distance within which the forecast event can fall from
the observed event and still be considered a hit. In MET this is implemented by defining a square search
window around each grid point. Within the search window, the number of observed events is compared to
the number of forecast events. In this way, credit is given to forecasts that are close to the observations
without requiring a strict match between forecasted events and observed events at any particular grid point.
The neighborhood methods allow the user to see how forecast skill varies with neighborhood size and can

help determine the smallest neighborhood size that can be used to give sufficiently accurate forecasts.

There are several ways to present the results of the neighborhood approaches, such as the Fractions Skill Score
(FSS) or the Fractions Brier Score (FBS). These scores are presented in Appendix [C| One can also simply
up-scale the information on the forecast verification grid by smoothing or resampling within a specified
neighborhood around each grid point and recalculate the traditional verification metrics on the coarser
grid. The MET output includes traditional contingency table statistics for each threshold and neighborhood

window size.

The user must specify several parameters in the grid stat configuration file to utilize the neighborhood
approach, such as the interpolation method, size of the smoothing window, and required fraction of valid
data points within the smoothing window. For FSS-specific results, the user must specify the size of the
neighborhood window, the required fraction of valid data points within the window, and the fractional
coverage threshold from which the contingency tables are defined. These parameters are described further

in the practical information section below.

8.2.5 Fourier Decomposition

The MET software will compute the full one-dimensional Fourier transform, then do a partial inverse trans-
form based on the two user-defined wave numbers. These two wave numbers define a band pass filter in the
Fourier domain. This process is conceptually similar to the operation of projecting onto subspace in linear
algebra. If one were to sum up all possible wave numbers the result would be to simply reproduce the raw
data.

Decomposition via Fourier transform allows the user to evaluate the model separately at each spatial fre-
quency. As an example, the Fourier analysis allows users to examine the "dieoff", or reduction, in anomaly
correlation of geopotential height at various levels for bands of waves. A band of low wave numbers, say
0 - 3, represent larger frequency components, while a band of higher wave numbers, for example 70 - 72,
represent smaller frequency components. Generally, anomaly correlation should be higher for frequencies

with low wave numbers than for frequencies with high wave numbers, hence the "dieoff".

CHAPTER 8. GRID-STAT TOOL 218

Wavelets, and in particular the MET wavelet tool, can also be used to define a band pass filter (Casati et
al, 2004; Weniger et al 2016). Both the Fourier and wavelet methods can be used to look at different spatial
scales.

8.2.6 Gradient Statistics

The S1 score has been in historical use for verification of forecasts, particularly for variables such as pressure
and geopotential height. This score compares differences between adjacent grid points in the forecast and
observed fields. When the adjacent points in both forecast and observed fields exhibit the same differences,

the S1 score will be the perfect value of 0. Larger differences will result in a larger score.

Differences are computed in both of the horizontal grid directions and is not a true mathematical gradient.
Because the S1 score focuses on differences only, any bias in the forecast will not be measured. Further, the
score depends on the domain and spacing of the grid, so can only be compared on forecasts with identical

grids.

8.2.7 Distance Maps

The following methods can all be computed efficiently by utilizing fast algorithms developed for calculating
distance maps. A distance map results from calculating the shortest distance from every grid point, s = (z, y),
in the domain, D, to the nearest one-valued grid point. In each of the following, it is understood that they
are calculated between event areas A, from one field and observation event areas B from another. If the
measure is applied to a feature within a field, then the distance map is still calculated over the entire original
domain. Some of the distance map statistics are computed over the entire distance map, while others use

only parts of it.

Because these methods rely on the distance map, it is helpful to understand precisely what such maps do.
Figure demonstrates the path of the shortest distance to the nearest event point in the event area A
marked by the gray rectangle in the diagram. Note that the arrows all point to a grid point on the boundary
of the event area A as it would be a longer distance to any point in its interior. Figure demonstrates the
shortest distances from every grid point inside a second event area marked by the gray circle labeled B to
the same event area A as in Figure Note that all of the distances are to points on a small subsection
(indicated by the yellow stretch) of the subset A.

CHAPTER 8. GRID-STAT TOOL 219

Figure 8.1: The above diagram depicts how a distance map is formed. From every grid point in the domain
(depicted by the larger rectangle), the shortest distance from that grid to the nearest non-zero grid point
(event; depicted by the gray rectangle labeled as A) is calculated (a sample of grid points with arrows indicate
the path of the shortest distance with the length of the arrow equal to this distance. In a distance map, the
value at each grid point is this distance. For example, grid points within the rectangle A will all have value
zero in the distance map.

Figure 8.2: Diagram depicting the shortest distances from one event area to another. The yellow bar indicates
the part of the event area A to where all of the shortest distances from B are calculated. That is, the shortest
distances from every point inside the set B to the set A all point to a point along the yellow bar.

While Figure [8.1 and Figure [8.2] are helpful in illustrating the idea of a distance map, Figure [8.3] shows an
actual distance map calculated for binary fields consisting of circular event areas, where one field has two
circular event areas labeled A, and the second has one circular event area labeled B. Notice that the values of
the distance map inside the event areas are all zero (dark blue) and the distances grow larger in the pattern
of concentric circles around these event areas as grid cells move further away. Finally, Figure B.4] depicts
special situations from which the distance map measures to be discussed are calculated. In particular, the
top left panel shows the absolute difference between the two distance maps presented in the bottom row of
Figure [8.3] The top right panel shows the portion of the distance map for A that falls within the event area
of B, and the bottom left depicts the portion of the distance map for B that falls within the event area A.
That is, the first shows the shortest distances from every grid point in the set B to the nearest grid point in
the event area A, and the latter shows the shortest distance from every grid point in A to the nearest grid

point in B.

CHAPTER 8. GRID-STAT TOOL 220

00 02 04 06 08 10
o
o

00 02 04 06 08 10
o
o

00 02 04 06 08 10
B @ o
88838

00 02 04 06 08 10

N oA B o= o
8838838

00 02 04 06 08 10 00 02 04 06 08 10

Figure 8.3: Binary fields (top) with event areas A (consisting of two circular event areas) and a second field
with event area B (single circular area) with their respective distance maps (bottom).

70
60
60
50
- 40 50

00 02 04 06 08 10

O

00 02 04 06 08 10

Figure 8.4: The absolute difference between the distance maps in the bottom row of Figure (top left),
the shortest distances from every grid point in B to the nearest grid point in A (top right), and the shortest
distances from every grid point in A to the nearest grid points in B (bottom left). The latter two do not
have axes in order to emphasize that the distances are now only considered from within the respective event
sets. The top right graphic is the distance map of A conditioned on the presence of an event from B, and
that in the bottom left is the distance map of B conditioned on the presence of an event from A.

The statistics derived from these distance maps are described in Appendix For each combination of
input field and categorical threshold requested in the configuration file, Grid-Stat applies that threshold
to define events in the forecast and observation fields and computes distance maps for those binary fields.
Statistics for all requested masking regions are derived from those distance maps. Note that the distance
maps are computed only once over the full verification domain, not separately for each masking region.
Events occurring outside of a masking region can affect the distance map values inside that masking region

and, therefore, can also affect the distance maps statistics for that region.

CHAPTER 8. GRID-STAT TOOL 221

8.3 Practical information

This section contains information about configuring and running the Grid-Stat tool. The Grid-Stat tool
verifies gridded model data using gridded observations. The input gridded model and observation datasets
must be in one of the MET supported file formats. The requirement of having all gridded fields using the
same grid specification was removed in METv5.1. There is a regrid option in the configuration file that
allows the user to define the grid upon which the scores will be computed. The gridded observation data
may be a gridded analysis based on observations such as Stage I or Stage IV data for verifying accumulated

precipitation, or a model analysis field may be used.

The Grid-Stat tool provides the capability of verifying one or more model variables/levels using multiple
thresholds for each model variable/level. The Grid-Stat tool performs no interpolation when the input
model, observation, and climatology datasets must be on a common grid. MET will interpolate these files
to a common grid if one is specified. The interpolation parameters may be used to perform a smoothing
operation on the forecast field prior to verifying it to investigate how the scale of the forecast affects the
verification statistics. The Grid-Stat tool computes a number of continuous statistics for the forecast minus
observation differences, discrete statistics once the data have been thresholded, or statistics for probabilistic

forecasts. All types of statistics can incorporate a climatological reference.

8.3.1 grid stat usage

The usage statement for the Grid-Stat tool is listed below:

Usage: grid_stat
fcst_file
obs_file
config file
[-outdir pathl
[-log file]
[-v levell

[-compress levell]

grid _stat has three required arguments and accepts several optional ones.

Required arguments for grid stat

1. The fest _file argument indicates the gridded file containing the model data to be verified.

2. The obs_file argument indicates the gridded file containing the gridded observations to be used for the
verification of the model.

3. The config file argument indicates the name of the configuration file to be used. The contents of the

configuration file are discussed below.

CHAPTER 8. GRID-STAT TOOL 222

Optional arguments for grid stat

4. The -outdir path indicates the directory where output files should be written.

5. The -log file option directs output and errors to the specified log file. All messages will be written to that
file as well as standard out and error. Thus, users can save the messages without having to redirect

the output on the command line. The default behavior is no log file.

6. The -v level option indicates the desired level of verbosity. The contents of “level” will override the
default setting of 2. Setting the verbosity to 0 will make the tool run with no log messages, while

increasing the verbosity above 1 will increase the amount of logging.

7. The -compress level option indicates the desired level of compression (deflate level) for NetCDF vari-
ables. The valid level is between 0 and 9. The value of “level” will override the default setting of 0 from
the configuration file or the environment variable MET NC COMPRESS. Setting the compression
level to 0 will make no compression for the NetCDF output. Lower number is for fast compression and

higher number is for better compression.

An example of the grid _stat calling sequence is listed below:

Example 1:

grid_stat sample_fcst.grb \
sample_obs.grb \
GridStatConfig

In Example 1, the Grid-Stat tool will verify the model data in the sample fest.grb GRIB file using the obser-
vations in the sample obs.grb GRIB file applying the configuration options specified in the GridStatConfig
file.

A second example of the grid stat calling sequence is listed below:

Example 2:

grid_stat sample_fcst.nc
sample_obs.nc

GridStatConfig

In the second example, the Grid-Stat tool will verify the model data in the sample fcst.nc NetCDF output
of pcp combine, using the observations in the sample_obs.nc NetCDF output of pcp combine, and
applying the configuration options specified in the GridStatConfig file. Because the model and observation
files contain only a single field of accumulated precipitation, the GridStatConfig file should be configured to

specify that only accumulated precipitation be verified.

CHAPTER 8. GRID-STAT TOOL 223

8.3.2 grid stat configuration file

The default configuration file for the Grid-Stat tool, named GridStatConfig default, can be found in the
installed share/met /config directory. Other versions of the configuration file are included in scripts/con-
fig. We recommend that users make a copy of the default (or other) configuration file prior to modifying it.

The contents are described in more detail below.

Note that environment variables may be used when editing configuration files, as described in Section
for the PB2NC tool.

model = "WRF";

desc = "NA";

obtype = "ANALYS";

fcst ={ ...}

obs ={ ...}

regrid ={ ...}

climo_mean ={ ...}

climo_stdev ={ ...}

climo_cdf ={ ...}

mask = { grid = ["FULL"]; poly = []; }

ci_alpha =[0.05 1;

boot = { interval = PCTILE; rep_prop = 1.0; n_rep = 1000;
rng = "mt19937"; seed = ""; }

interp = { field = BOTH; vld_thresh = 1.0; shape = SQUARE;
type = [{ method = NEAREST; width = 1; } 1; }

censor_thresh = [];

censor_val = [1;

eclv_points = 0.05;

rank_corr_flag = TRUE;

tmp_dir = "/tmp";

output_prefix = "";

version = "VN.N";

The configuration options listed above are common to many MET tools and are described in Section [3.5.1}

nbrhd = {
field = BOTH;
vld_thresh = 1.0;
shape = SQUARE;

CHAPTER 8. GRID-STAT TOOL 224

width [11;
cov_thresh = [>=0.5];

The nbrhd dictionary contains a list of values to be used in defining the neighborhood to be used when
computing neighborhood verification statistics. The neighborhood shape is a SQUARE or CIRCLE
centered on the current point, and the width value specifies the width of the square or diameter of the circle

as an odd integer.

The field entry is set to BOTH, FCST, OBS, or NONE to indicate the fields to which the fractional
coverage derivation logic should be applied. This should always to be set to BOTH unless you have already

computed the fractional coverage field(s) with numbers between 0 and 1 outside of MET.

The vld _thresh entry contains a number between 0 and 1. When performing neighborhood verification
over some neighborhood of points the ratio of the number of valid data points to the total number of points
in the neighborhood is computed. If that ratio is greater than this threshold, that value is included in
the neighborhood verification. Setting this threshold to 1, which is the default, requires that the entire
neighborhood must contain valid data. This variable will typically come into play only along the boundaries

of the verification region chosen.

The cov_thresh entry contains a comma separated list of thresholds to be applied to the neighborhood
coverage field. The coverage is the proportion of forecast points in the neighborhood that exceed the forecast
threshold. For example, if 10 of the 25 forecast grid points contain values larger than a threshold of 2, then
the coverage is 10/25 = 0.4. If the coverage threshold is set to 0.5, then this neighborhood is considered to

be a “No” forecast.

fourier = {

wave_1d_beg [0, 4, 10 1;
wave_1d_end = [3, 9, 20];

The fourier entry is a dictionary which specifies the application of the Fourier decomposition method.
It consists of two arrays of the same length which define the beginning and ending wave numbers to be
included. If the arrays have length zero, no Fourier decomposition is applied. For each array entry, the
requested Fourier decomposition is applied to the forecast and observation fields. The beginning and ending
wave numbers are indicated in the MET ASCII output files by the INTERP _MTHD column (e.g. WV1_0-3
for waves 0 to 3 or WV1_ 10 for only wave 10). This 1-dimensional Fourier decomposition is computed along
the Y-dimension only (i.e. the columns of data). It is applied to the forecast and observation fields as well
as the climatological mean field, if specified. It is only defined when each grid point contains valid data. If
any input field contains missing data, no Fourier decomposition is computed. The available wave numbers
start at 0 (the mean across each row of data) and end at (Nx+1)/2 (the finest level of detail), where Nx is

the X-dimension of the verification grid.

CHAPTER 8. GRID-STAT TOOL 225

The wave 1d_beg entry is an array of integers specifying the first wave number to be included. The

wave 1d _end entry is an array of integers specifying the last wave number to be included.

grad = {
dx = [1 1;
dy = [1 1;
}

The gradient entry is a dictionary which specifies the number and size of gradients to be computed. The
dx and dy entries specify the size of the gradients in grid units in the X and Y dimensions, respectively.
dx and dy are arrays of integers (positive or negative) which must have the same length, and the GRAD
output line type will be computed separately for each entry. When computing gradients, the value at the
(x, y) grid point is replaced by the value at the (x+dx, y+dy) grid point minus the value at (x, y). This

configuration option may be set separately in each obs.field entry.

distance_map = {

baddeley_p = 2;

baddeley_max_dist = NA;
fom_alpha =0.1;
zhu_weight = 0.5;

The distance map entry is a dictionary containing options related to the distance map statistics in the
DMAP output line type. The baddeley p entry is an integer specifying the exponent used in the Lp-
norm when computing the Baddeley A metric. The baddeley max _dist entry is a floating point number
specifying the maximum allowable distance for each distance map. Any distances larger than this number
will be reset to this constant. A value of NA indicates that no maximum distance value should be used.
The fom alpha entry is a floating point number specifying the scaling constant to be used when computing
Pratt’s Figure of Merit. The zhu weight specifies a value between 0 and 1 to define the importance of
the RMSE of the binary fields (i.e. amount of overlap) versus the mean-error distance (MED). The default

value of 0.5 gives equal weighting. This configuration option may be set separately in each obs.field entry.

output_flag = {

fho = BOTH;
ctc = BOTH;
cts = BOTH;

CHAPTER 8. GRID-STAT TOOL 226

mctc = BOTH;
mcts = BOTH;
cnt = BOTH;

sl112 = BOTH;
salll2 = NONE;
v1112 = BOTH;
valll2 = NONE;

vent = BOTH;
pct = BOTH;
pstd = BOTH;
pjc = BOTH;
prc = BOTH;
eclv = BOTH;

nbrctc = BOTH;
nbrcts = BOTH;
nbrcnt = BOTH;
grad = BOTH;
dmap = BOTH;

The output flag array controls the type of output that the Grid-Stat tool generates. Each flag corresponds
to an output line type in the STAT file. Setting the flag to NONE indicates that the line type should not
be generated. Setting the flag to STAT indicates that the line type should be written to the STAT file only.
Setting the flag to BOTH indicates that the line type should be written to the STAT file as well as a separate
ASCII file where the data are grouped by line type. These output flags correspond to the following types of
output line types:

1. FHO for Forecast, Hit, Observation Rates
2. CTC for Contingency Table Counts
3. CTS for Contingency Table Statistics
4. MCTC for Multi-Category Contingency Table Counts
5. MCTS for Multi-Category Contingency Table Statistics
6. CNT for Continuous Statistics
7. SL1L2 for Scalar L1L2 Partial Sums
8. SAL1L2 for Scalar Anomaly L1L2 Partial Sums when climatological data is supplied
9. VL1L2 for Vector L1L2 Partial Sums
10. VAL1L2 for Vector Anomaly L1L2 Partial Sums when climatological data is supplied

11. VCNT for Vector Contingency Table Statistics

CHAPTER 8. GRID-STAT TOOL 227

12. PCT for Contingency Table Counts for Probabilistic forecasts

13. PSTD for Contingency Table Statistics for Probabilistic forecasts

14. PJC for Joint and Conditional factorization for Probabilistic forecasts
15. PRC for Receiver Operating Characteristic for Probabilistic forecasts
16. ECLV for Cost/Loss Ratio Relative Value

17. NBRCTC for Neighborhood Contingency Table Counts

18. NBRCTS for Neighborhood Contingency Table Statistics

19. NBRCNT for Neighborhood Continuous Statistics

20. GRAD for Gradient Statistics

21. DMAP for Distance Map Statistics

Note that the first two line types are easily derived from one another. The user is free to choose which

measure is most desired. The output line types are described in more detail in Section [8.3.3]

nc_pairs_flag = {

latlon = TRUE;
raw = TRUE;
diff = TRUE;
climo = TRUE;
climo_cdp = TRUE;
weight = FALSE;
nbrhd = FALSE;
gradient = FALSE;

distance_map = FALSE;
apply_mask = TRUE;

The nc_pairs_flag entry may either be set to a boolean value or a dictionary specifying which fields
should be written. Setting it to TRUE indicates the output NetCDF matched pairs file should be created
with all available output fields, while setting all to FALSE disables its creation. This is done regardless of
if output_flag dictionary indicates any statistics should be computed. The latlon, raw, and diff entries
control the creation of output variables for the latitude and longitude, the raw forecast and observed fields,
and the forecast minus observation difference fields. The climo, weight, and nbrhd entries control the
creation of output variables for the climatological mean and standard deviation fields, the grid area weights
applied, and the fractional coverage fields computed for neighborhood verification methods. Setting these
entries to TRUE indicates that they should be written, while setting them to FALSE disables their creation.

CHAPTER 8. GRID-STAT TOOL 228

Setting the climo cdp entry to TRUE enables the creation of an output variable for each climatological
distribution percentile (CDP) threshold requested in the configuration file. Note that enabling nbrhd output
may lead to very large output files. The gradient entry controls the creation of output variables for the
FCST and OBS gradients in the grid-x and grid-y directions. The distance map entry controls the creation
of output variables for the FCST and OBS distance maps for each categorical threshold. The apply mask
entry controls whether to create the FCST, OBS, and DIFF output variables for all defined masking regions.
Setting this to TRUE will create the FCST, OBS, and DIFF output variables for all defined masking regions.
Setting this to FALSE will create the FCST, OBS, and DIFF output variables for only the FULL verification

domain.

nc_pairs_var_name = "";

The nc__pairs _var name entry specifies a string for each verification task. This string is parsed from
each obs.field dictionary entry and is used to construct variable names for the NetCDF matched pairs
output file. The default value of an empty string indicates that the name and level strings of the input
data should be used. If the input data level string changes for each run of Grid-Stat, using this option to

define a constant string may make downstream processing more convenient.

nc_pairs_var_suffix = "";

The nc_pairs var suffix entry is similar to the nc_pairs var name entry. It is also parsed from
each obs.field dictionary entry. However, it defines a suffix to be appended to the output variable name.
This enables the output variable names to be made unique. For example, when verifying height for multiple
level types but all with the same level value, use this option to customize the output variable names. This

option was previously named nc_ pairs var str which is now deprecated.

8.3.3 grid stat output

grid _stat produces output in STAT and, optional