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Real-time results at end of talk: 

courtesy Ryan Torn (SUNY Albany) and Steven Cavallo (NCAR)



Initial conditions for TC prediction

Difficult and still only partially solved

Need accurate estimate/analysis of both environment and TC itself



Initial conditions for TC prediction (cont.)

Observations relevant for environment

– “Conventional” observations, esp. aircraft

– Satellite radiances

– Cloud-track winds

– Special dropsondes

Observations relevant for vortex

– Sat images & recon flights distilled to advisory position, intensity, RMW

– Other: cloud-track winds, scatterometer, special dropsondes, Doppler radar

Observations are limited and intermittent

– Certainly do not resolve all aspects of vortex structure or evolution



Initial conditions for TC prediction (cont.)

Ad hoc techniques are frequently used and often effective

Bogussing

– Based on assumed vortex structure

– Direct insertion of bogus vortex or assimilation of simulated/bogus obs

Vortex removal and relocation

– Extract vortex from model forecast through spatial filtering or vorticity 

inversion

– Insert vortex in correct position



Initial conditions for TC prediction (cont.)

E.g., GFDL technique: 
1. Remove vortex from GFS analysis

2. Spin up axisymmetric vortex from axisymmetric version of GFDL model 

forced by radial profile of low-level tangential wind 

3. Estimate vortex asymmetry by spatial filtering of previous 12-h forecast

4. Insert vortex + asymmetry into GFS analysis.



Initial conditions for hurricane prediction (cont.)

Data assimilation (DA)

– Assimilate observations relevant to TCs like any other observation

– Rely on assimilation scheme to produce vortex in correct location and with 

realistic structure

Not a trivial or solved problem

– Good results to date (e.g. ECMWF, WRF/DART) and strong potential for 

continued improvements

– Can avoid separate prediction system for TCs; reduces costs of 

development and maintenance



(Brief) Background on DA

Wish to estimate atmospheric state, using information from obs 

and from a previous forecast.

DA provides estimate as function of obs and forecast.

– State estimate = analysis = ICs for next forecast

Optimal DA gives estimate with smaller expected error than either 

obs or forecast



Background on DA (cont.)

Thus, DA requires knowledge of or assumptions about:

– Observation-error statistics

– Error statistics for forecast used in assimilation

Optimal DA for linear, Gaussian system:

xa = xf + K ( y - yf ),

where:

xa = estimate of state

xf = forecast of state

y = observation

yf = forecast of observation

K = “gain” = cov(xf, yf ) ( var(yf ) + r )-1



Background on DA (cont.)

Thus, DA requires knowledge of or assumptions about:

– Observation-error statistics

– Error statistics for forecast used in assimilation

Optimal DA for linear, Gaussian system:

xa = xf + K ( y - yf ),

where:

xa = estimate of state

xf = forecast of state

y = observation

yf = forecast of observation

K = “gain” = cov(xf, yf ) ( var(yf ) + r )-1

Determines spatial structure of analysis increment



Background on DA (cont.)

Simplest DA schemes make strong assumptions about cov(x,y)

– No time dependence

– Spatially isotropic and homogeneous; i.e. depends only on distance 

between x and y

– No dependence on atmospheric state; e.g. independent of presence or 

absence of hurricane

More sophisticated schemes relax these assumptions and 

explicitly incorporate information from model dynamics

– Four-dimensional variational DA (4DVar)

– Ensemble Kalman filter (EnKF)



How the EnKF Works

Suppose we wish to assimilate an observation, y

Consider how assimilation affects a model variable, x.

EnKF estimates required covariance from ensemble of forecasts

Begin with:
– ensemble of short-range forecasts for x

– Observed value of y



How the EnKF Works (cont.)

1. Compute y for each ensemble member



How the EnKF Works (cont.)

1. Compute y for each ensemble member
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How the EnKF Works (cont.)

1. Compute y for each ensemble member
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How the EnKF Works (cont.)

1. Compute y for each ensemble member
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How the EnKF Works (cont.)

2. Compute best-fit line that relates y and x
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How the EnKF Works (cont.)

3. Analysis moves toward observed y and along best-fit line
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How the EnKF Works (cont.)

3. Analysis moves toward observed value of y and along best-fit 
line … have gained information about unobserved variable, x
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How the EnKF Works (cont.)

4. Update deviation of each ensemble member about the mean as 
well, consistent with covariance update of Kalman filter

Yields initial conditions for ensemble forecast to time of next 
observation.  “Ensemble of analyses”



How the EnKF Works (cont.)

Forecast step:
– Ensemble forecast, using full nonlinear forecast model, to next obs time

– Need to account for uncertainty in lateral and surface BCs and in model

Analysis step (one version):
– Compute “simulated observation” yf = H(x) + for each member

– Compute analysis for each member according to Kalman-filter equations 
based on sample covariances



Behavior with Incomplete Observations

Differences between DA schemes esp. apparent when 

observations are incomplete

– Contrast 3DVar and EnKF



Behavior with Incomplete Observations (cont.)

1D example: 

– Vorticity is function of single spatial coordinate, = (x) 

– “Vortex” = isolated maximum in 



Behavior with Incomplete Observations (cont.)

Suppose that:

1. Forecast captures structure/amplitude of vortex but position is incorrect



Behavior with Incomplete Observations (cont.)

Suppose that:

1. Forecast captures structure/amplitude of vortex but position is incorrect

2. We are given a single observation of at x = -1



Behavior with Incomplete Observations (cont.)

Recall cov(state, obs) determines spatial structure of increment.



Behavior with Incomplete Observations (cont.)

3DVar

– cov(state, obs) is homogeneous and independent of vortex location

– Assimilation of single observation adds “bump” to forecast vortex

– Is this helpful? Fits observation but degrades vortex structure



Behavior with Incomplete Observations (cont.)

EnKF

– cov(state, obs) inhomogeneous; depends on forecast location of vortex

– Assimilation of single observation shifts forecast vortex coherently



Real-Time Analyses for Tropical Cyclones

Analyses from WRF/DART EnKF provided ICs for NCAR’s high-

res TC forecasts during 2009, 2010 seasons

Produced 36-km analyses every 6 h 

– Assimilate conventional obs + satellite winds + vortex position, intensity

– No radiances

– NO bogussing, assimilation of synthetic obs, relocation, etc

– No obs assimilated near vortex core (except position, intensity)

Other details

– 96 members

– GFS 6-h forecasts + spatially correlated noise for lateral boundary 

conditions



WRF/DART

“Hurricane” version of WRF/ARW is forecast model

Data Assimilation Research Testbed (DART)

– Provides EnKF algorithm(s)

– General framework, used for several other models

– See http://www.image.ucar.edu/DAReS/DART/

Suite of observation operators

– Includes Doppler radar and various GPS; no radiances 

Capable of assimilation on multiple, nested domains 

simultaneously



Real-Time Analyses for Tropical Cyclones (cont.)

– Observations at 00Z 10 Nov 2009 and domain



Real-Time Analyses for Tropical Cyclones (cont.)

TS Lisa
TS Matthew

www.atmos.albany.edu/facstaff/torn/atlenkf/



Real-Time Analyses for Tropical Cyclones (cont.)

System cycled continuously for ~ 4 months in 2009, 2010.

Analyses captured all 2009, 2010 storms, from TD through TC
– No intervention in position or structure of storms, except from EnKF

– No spurious storms, despite not assimilating radiances



Real-Time Analyses for Tropical Cyclones (cont.)

RMS fits of analysis and 6-h forecast to best-track estimates, 2009



Real-Time Analyses for Tropical Cyclones (cont.)

MAE for track and SLP relative to best-track estimates, 2010



Tropical Storm Erika

Analyses indicate tilted vortex, consistent with sheared env. 

Zonal cross section of v

00Z 2 Sep 2009



Tropical Storm Erika (cont.)

To test importance of storm structure, forecasts from HWRF IC

Satellite IR

HWRF zonal cross section

(uses bogus/simulated observations)

EnKF zonal cross section



Tropical Storm Erika (cont.)

Tilt appears to be crucial to intensity forecast.  (Track still poor.)

Courtesy S. Cavallo & W. Wang



Importance of Forecast Covariances

Analysis increment from position observation
– Reflects cov( wind speed, vortex position ), which in turn reflects vortex structure

– Shifts vortex coherently and consistently in all model fields

Hurricane Bill, 00Z 19 Aug 2009

Wind speed @ 1st level

contours: ens.-mean, 6-h forecast

colors: increment given obs of 

vortex position (analysis - forecast)



Key Points

Credible TC analyses and forecasts possible purely through DA

– Conventional obs + EnKF from WRF/DART here

– Full suite of obs (including radiances) + 4DVar at ECMWF produces even 

better results

In TCs, crucial for DA to include “flow dependent” covariances via 

model dynamics

Observations of environment provide significant control of vortex 

characteristics







EnKF Algorithm (cont.)

EnKF pseudo-code:

Forecasts:

for each member

xf = M(xa ) 

end

At each analysis time:

for each (scalar) observation y in y

for each member

yf = H(x) + 

end

for each element x of x

for each member

xa = xf + k ( y - yf ),   with  k = cov( x, yf ) / var(yf ) 

end

end

end

Return to forecasts



Real-Time Analyses for Tropical Cyclones (cont.)

EnKF details
– 96 members

– 2000-km covariance localization; reduced where obs are dense

– Adaptive inflation (Anderson 2006)

– Ensemble of lateral BCs = GFS + N(0, B) perturbations, with B from WRF variational 
system



2010 Modifications for Real-Time System

Include 12-km nests in both forecasts, analyses

– Nest initialized whenever tropical depression is declared

– Analysis performed simultaneously on coarse grid and nest

D1

D2

obs.

.
obs



2010 Mods (cont.)

Improved operator for vortex position, improved obs errors

– Vortex position based on circulation at 850 hPa (vs. SLP previously)

– Obs errors estimated from advisory-best track diffs; vary from TD to TC

Courtesy R. Torn

Histogram, rms differences 

for position



Real-Time Analyses for Tropical Cyclones (cont.)

TS Lisa
TS Matthew

www.atmos.albany.edu/facstaff/torn/atlenkf/

TD Richard



Tropical Storm Erika (cont.)

Deep convection E of center in both obs and analysis

Courtesy S. Cavallo

Satellite IR Cloud-top T, surface v



Hurricane Bill

Poor analyses, forecasts of intensity at mature stage

Courtesy S. Cavallo, W. Wang



Hurricane Bill (cont.)

Vortex-intensity observations rejected.

Courtesy S. Cavallo



Hurricane Bill (cont.)

Removing QC, so intensity obs assimilated, improves analysis

Courtesy S. Cavallo



Hurricane Bill (cont.)

… but has only short-term effect on the forecast.

Courtesy S. Cavallo



Assimilation of Hurricane Position

• Even moderate position errors problematic for assimilation

• Geostationary obs of position almost continuous in time

• Wish to avoid vortex “bogussing” and “relocation” by direct 

assimilation of position observations
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Real-Time Analyses for Tropical Cyclones (cont.)



Tropical Storm Erika

Courtesy S. Cavallo


