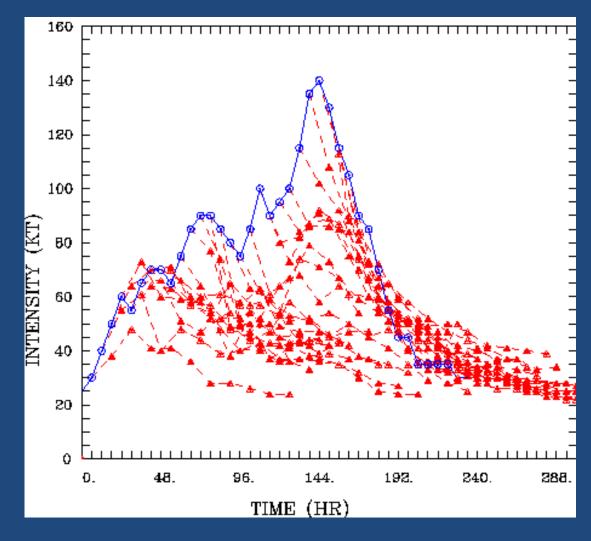

Hurricane Model Diagnostics: Synoptic to Cloud Scale

Mark DeMaria NOAA/NESDIS, Fort Collins, CO

With Input From: Mrinal Biswas, DTC Mike Fiorino, ESRL Wallace Hogsett, NHC Kate Maclay, CIRA/CSU Brian McNoldy, CIRA/CSU Kate Musgrave, CIRA/CSU Rob Rogers, HRD Ryan Torn, SUNYA

HWRF Tutorial Workshop April 2011


Outline

- Purposes of Model Diagnostics
- Examples
 - 1. Climate models
 - 2. TC genesis forecasts
 - 3. Vortex structure analysis
 - 4. Vortex asymmetries
 - 5. Statistical diagnostics of inner core
 - 6. Forward radiative transfer model diagnostics
- Diagnostic software packages

Why are Model Diagnostics Needed?

- Lorenz (Tellus, 1960), Maximum Simplification of the Dynamic Equations
 - Numerical model forecasts, even if they were someday perfect, don't lead to physical insight.
- Implication: If models are a good representation of the chaotic atmosphereocean-land system, they will be almost as hard to understand as nature
 - Bad forecast models will be hard to fix

HWRF Intensity Forecasts for Hurricane Celia (2010)

Diagnostic Studies

- Evaluate variables derived from a model in the context of a conceptual or theoretical framework for improved understanding
 - Expected response to storm translation
 - Gradient balance
 - Energy and angular momentum budgets
- Model to model inter-comparisons
- Comparison with observations
 - Case studies and statistical comparisons
- Use model output as "data" to understand physical processes
 - Ocean feedback
 - Impact of vertical shear on vortex tilt

Example 1: Model Inter-comparisons

- Program for Climate Model Diagnosis and Inter-comparison (PCMDI)
- Develops improved methods and tools for the diagnosis and intercomparisons of GCMs
- Comparisons must be systematic between models

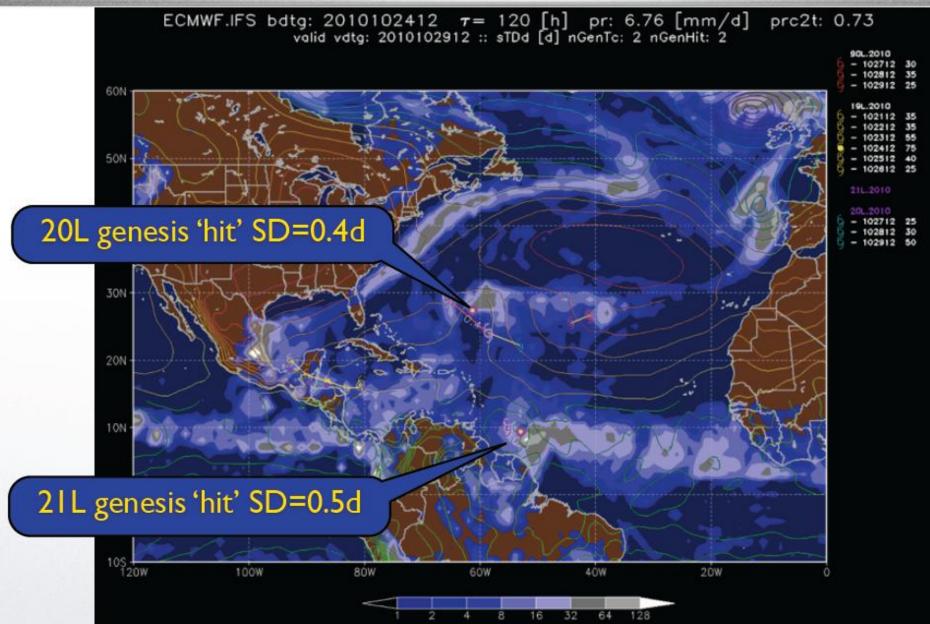
Shared tools and standardized climate runs

 Being applied to Intergovernmental Panel on Climate Change (IPCC) models

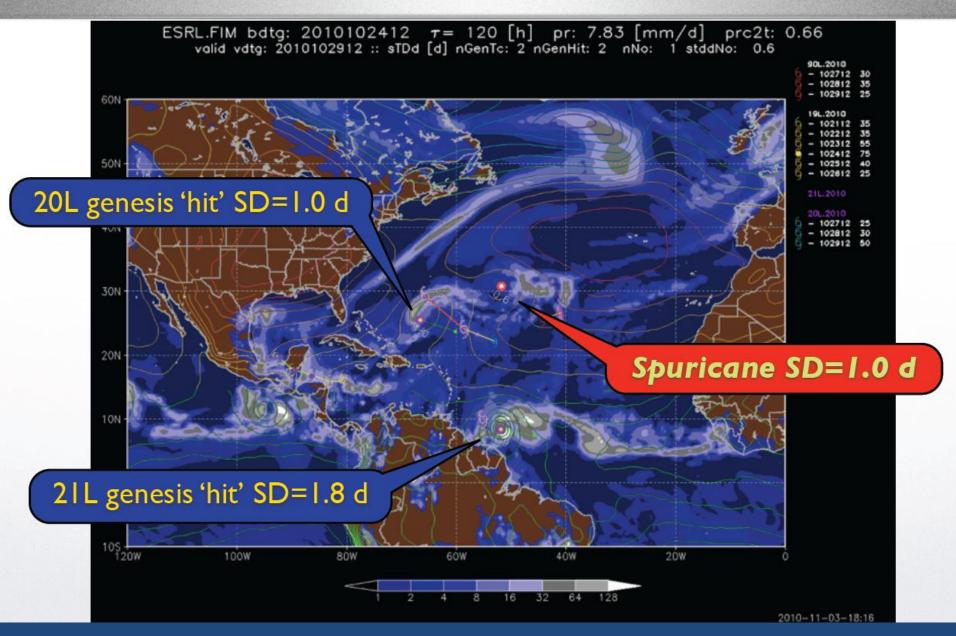
http://www.clivar.org/organization/wgcm/references/Taylor_CIMIP5.pdf

From: A Summary of the CMIP5 Experiment Design Lead authors: Karl E. Taylor, Ronald J. Stouffer, and Gerald A. Meehl, 22 January 2011*

T	Table 6. Diagnostic experiments for understanding the long-term simulations.					
	#	Experiment	Notes	# of years		
	6.1	Idealized 1%/yr run to 4x pre- industrial CO ₂ .	This run is initialized from the pre-industrial control (expt. 3.1) and CO ₂ concentration is prescribed to increase at 1%/yr.	140		
CORE	6.2a	Baseline for prescribed SST experiments (6.2b, 6.4a,b).	An atmosphere-only run driven by prescribed SST and sea ice consistent with the climatology of the pre-industrial control run (expt. 3.1)			
8	6.2Ъ	Perturbed run for Hansen-style diagnosis of "fast" climate system responses to 4xCO ₂ .	As in expt. 6.2a above, but with atmospheric CO ₂ concentration quadrupled, relative to pre- industrial level.	≥30		
	6.3	Gregory-style diagnosis of "slow" climate system responses.	Impose an instantaneous quadrupling of atmospheric CO ₂ concentration (relative to pre- industrial) and then hold it fixed.	150		
	6.3- E	Ensemble of runs to improve the estimate of the "fast" climate response diagnosed with the Gregory method.	Generate an ensemble of runs initialized in different months of the year and terminated after year 5, but otherwise as in expt. 6.3. [Counting the initial segment of expt. 6.3, the ensemble size will be 12.]			
	6.4a & 6.4b	Hansen-style diagnosis of "fast" climate system responses to all anthropogenic aerosols (6.4a) and to sulfate aerosols (6.4b) alone for the year 2000.	As in expt. 6.2a above, but with aerosols consistent with conditions in year 2000 of the historical run (expt. 3.2)			
1	6.5	Cloud response to imposed 4xCO ₂ (Hansen-style diagnosis of "fast" climate system responses).	Consistent with CFMIP requirements, the AMIP conditions are imposed (expt. 3.3, which is the control for this run), but the radiation code (only) sees quadrupled CO ₂ , relative to AMIP.			
TIER	6.6	Cloud response to an imposed change in SST pattern.	Consistent with CFMIP requirements, add a patterned SST perturbation to the AMIP SSTs of expt. 3.3 (which is the "control" for this run).	30		
	6.7a	Aqua-planet : control run	Aqua-planet : control run Aqua-planet : control run Consistent with CFMIP requirements (with CO ₂ set to AMIP mean concentration), impose zonally uniform SSTs on a planet without continents.			
	6.7ъ	Aqua-planet: cloud response to imposed 4xCO ₂ (Hansen-style diagnosis).	Consistent with CFMIP requirements, impose 4xCO ₂ (relative to AMIP mean CO ₂) on the zonally uniform SSTs of expt. 6.7a (which is the control for this run).	5		
	6.7c	Aqua-planet: cloud response to an imposed uniform change in SST.	Consistent with CFMIP requirements, add a uniform +4K to the zonally uniform SSTs of expt. 6.7a (which is the control for this run).	5		
TIER 2	6.8	Cloud response to an imposed uniform change in SST	Consistent with CFMIP requirements, add a uniform +4 K SST to the AMIP SSTs of expt. 3.3 (which is the "control" for this run).	30		


*Available from

Example 2: Tropical Cyclone Genesis in Global Forecast Models


- Use understanding of tropical cyclone structure for automated storm "tracker"
 - Warm core, cyclonic vortices
 - Tropical and subtropical regions
- Apply quantitative thresholds appropriate for model resolvable scales
- Collect statistics on formation
 - Inter-model comparisons
 - Comparison with observed formations
 - Depends on choice of space/time windows for comparison with model
 - Relate formation statistics to other model variables

Input from Mike Fiorino, ESRL

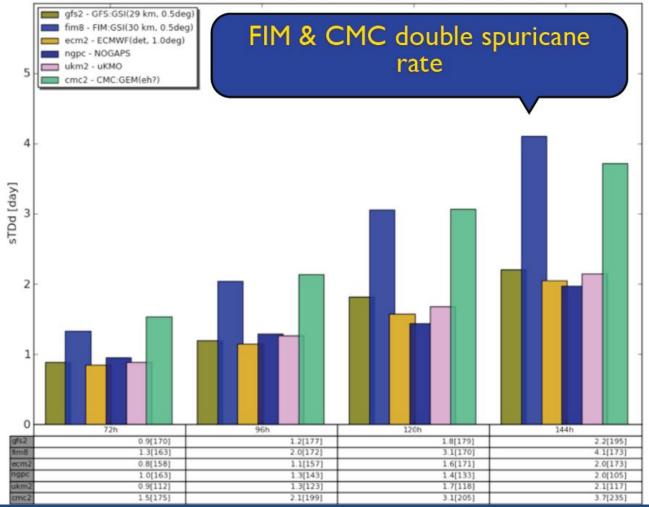
120-h ECMWF forecast valid 2010102912 20L(shary)&21L(tomas).2010

120-h FIM forecast...

LANT 2010 :: 120 h genesis forecast stats...

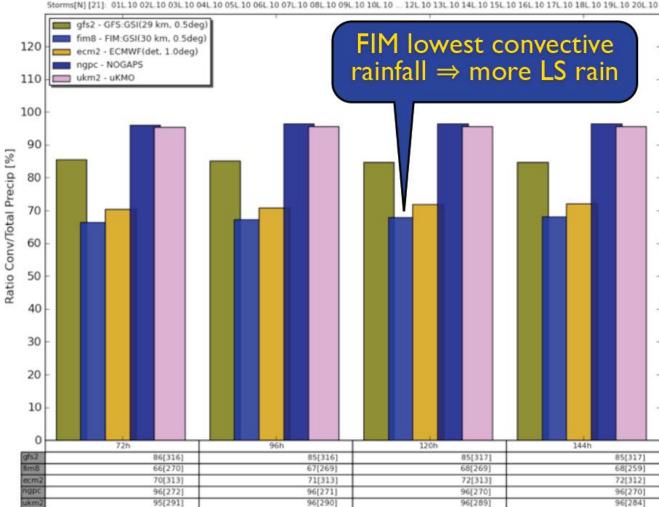
TCgen Stats :: Gentau: 120 [h] Basin: LANT Year: 2010 Models: GFS, ECM, UKM, NGP

Storm	GFS	ECM	UKM	NGP	
01L.2010 [HU2 085 kt] ALEX	0/	3/ 2.9	0/	0/	25
02L.2010 [TD 030 kt] TWO	0/	0/	1/ 1.7	0/	25
03L.2010 [TS 035 kt] BONNIE	0/	0/	0/	0/	
04L.2010 [TS 050 kt] COLIN	0/	1/ 0.6	0/	1/ 2.3	50
05L.2010 [TD 030 kt] FIVE	1/ 4.3	0/	0/	0/	25
06L.2010 [HU4 115 kt] DANIELLE	0/	2/ 2.5	1/ 0.8	2/ 1.3	75
07L.2010 [HU4 120 kt] EARL	1/ 0.3	2/ 1.3	0/	1/ 0.2	75
08L.2010 [TS 055 kt] FIONA	0/	0/	0/	0/	
09L.2010 [TS 035 kt] GASTON	0/	0/	1/0.3	0/	25
10L.2010 [TS 055 kt] HERMINE	1/ 0.2	1/0.3	0/	0/	50
11L.2010 [HU4 135 kt] IGOR	2/ 2.5	2/ 0.7	0/	0/	50
12L.2010 [HU4 115 kt] JULIA	2/ 0.9	3/ 3.2	1/ 1.6	1/0.4	100
13L.2010 [HU3 105 kt] KARL	1/ 0.4	3/ 4.3	0/	1/0.4	75
14L.2010 [HU1 070 kt] LISA	3/ 4.4	2/ 5.9	2/ 5.4	1/ 1.3	100
15L.2010 [TS 050 kt] MATTHEW	1/0.4	0/	0/	1/0.4	50
16L.2010 [TS 035 kt] NICOLE	3/ 2.0	3/ 1.0	2/ 4.8	2/8.3	100
17L.2010 [HU1 075 kt] OTTO	2/ 0.9	1/ 0.2	0/	2/ 3.5	75
18L.2010 [HU2 085 kt] PAULA	3/ 3.0	3/ 4.6	3/7.5	1/ 2.2	100
19L.2010 [HU1 080 kt] RICHARD	3/ 5.4	2/ 0.4	3/ 3.5	1/ 2.6	100
20L.2010 [HU1 065 kt] SHARY	3/ 2.2	2/ 1.6	0/	0/	50
bottomline by model	62	67	38	52	


18/20 - 1 model 14/20 - 2&3 models

> ECMWF/ GFS highest success rate

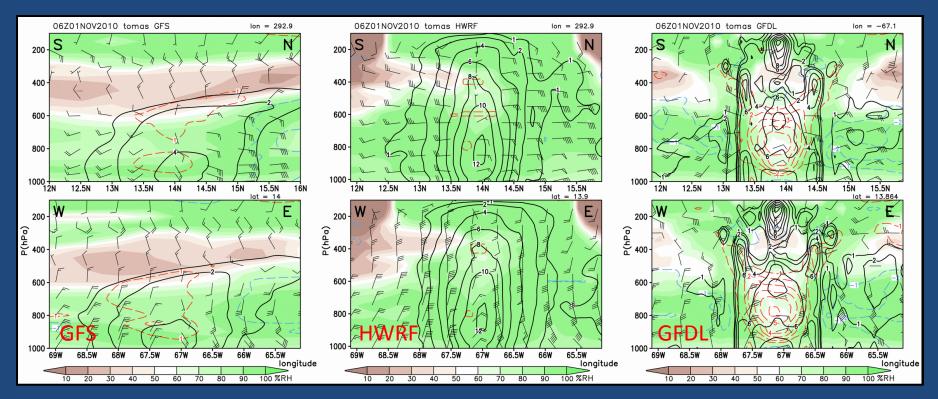
LANT 2010 spuricanes mean SD 20100600-110100


Mean Scaled TD days (sTDd) [day] in: atLANTic basin AKA 'Spuricanes'

Storms[N] [21]: 01L10 02L10 03L10 04L10 05L10 06L10 07L10 08L10 09L10 10L10 ... 12L10 13L10 14L10 15L10 16L10 17L10 18L10 19L10 20L10

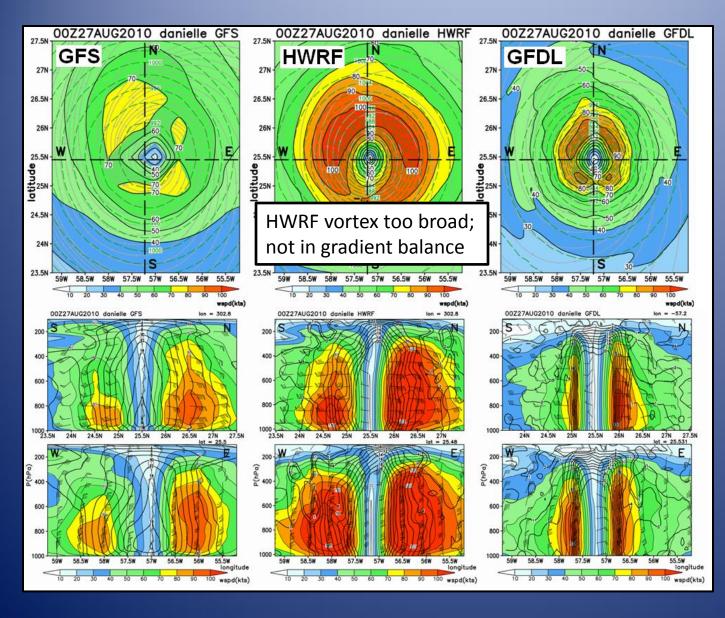
LANT 2010 spuricanes mean prconv/prtot 20100600-110100

Ratio Conv/Total Precip [%] in: atLANTic basin


Example 3. Vortex structure diagnostics for HWRF initialization

- Operational HWRF showed consistent spindown problem in early forecast periods
- Possible suspect is improper wind structure and pressure-wind balance
- Model intercomparison of wind structure – HWRF, GFDL, GFS models
- Study by NHC to provide guidance to EMC model developers

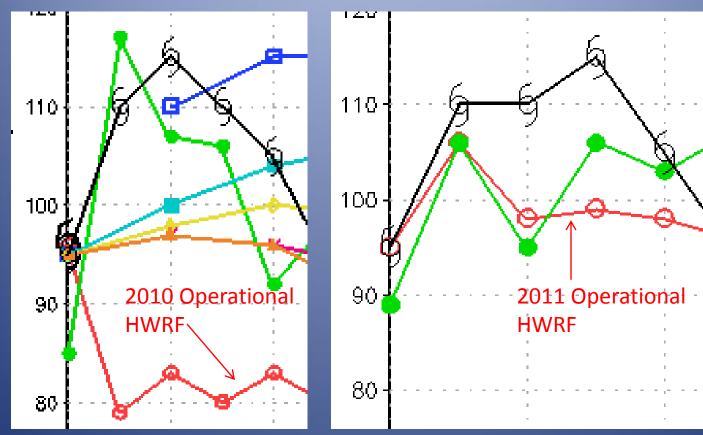
Input from Wallace Hogsett (NHC) and Ryan Torn (SUNYA)


NHC Diagnostics

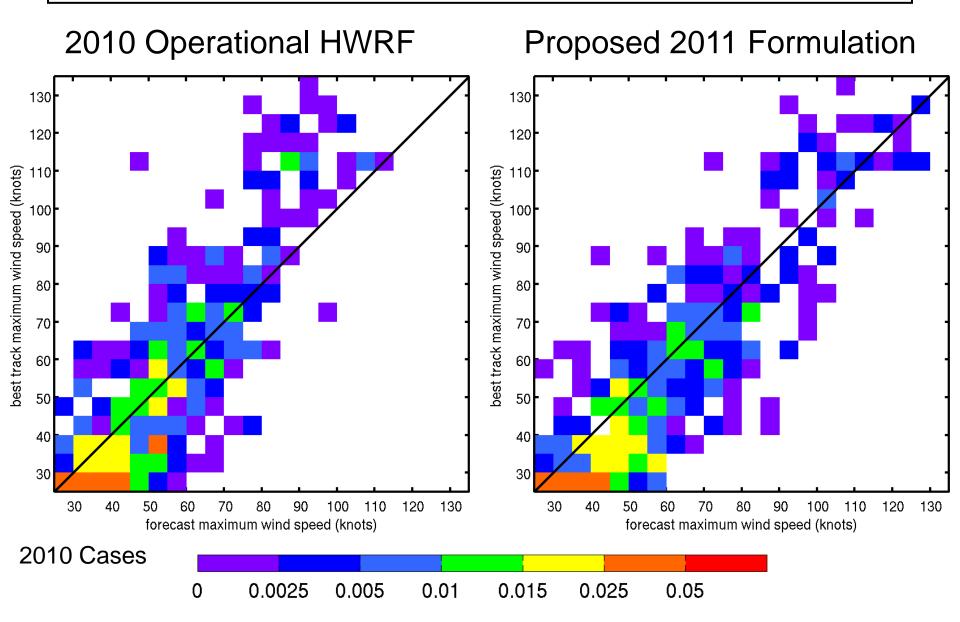
- NHC has developed a system to compare vortex structure among the models in real time.
- Results from the 2010 season have brought to light some important issues with the current models, e.g. the vortex initialization.

<u>Above</u>: South-north (top) and West-East (bottom) vertical cross sections from the GFS (left), HWRF (middle), and GFDL (right). Relative vorticity is contoured. Note the differences in vertical structure among the models.

NHC Diagnostics, cont.



By archiving and analyzing the output from the new real-time diagnostic system, we have been able to identify some systematic characteristics of the various models, e.g. the excessive breadth (compared to other models and observations) of the HWRF vortex in some cases...


The too-large initial HWRF vortex led to a spin-down of the winds. This problem has been addressed for 2011.

12 h Maximum Wind Speed

Example 4: Vortex Asymmetry Analysis

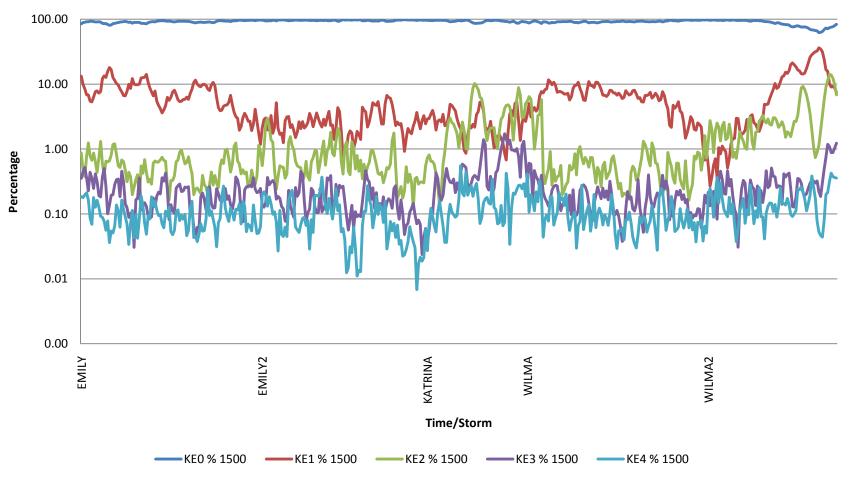
Physical processes

- Kinematic addition of storm translation increases wind to right
 - Friction asymmetries, advection by tangential wind moves wind maximum to right front
- Vertical shear enhances convection on downshear side of storm
 - Increased convection and advection moves wind max to downshear left quadrant
- Radial vorticity gradient can support Vortex Rossby Waves (RVW) that move against the tangential flow
 - Simple theory for VRW phase speed
 - C = V(1 1/n), V = tangential wind, n = azimuthal wave number
 - For n=2, C = V/2
- Perform diagnostics on HWRFx simulations to evaluate physical processes (9 km grid)
- Five real data simulations for Hurricanes Emily (2), Katrina (1) and Wilma (2)

Input from Kate Maclay (CIRA/CSU) and M. DeMaria (NESDIS)

Low-Level Wind Asymmetries

- Translation
 - Wavenumber 1 tied to motion vector
- Shear
 - Wavenumber 2 tied to shear vector
- Vortex Rossby Waves
 - Wavenumber 2 or higher, cyclonic rotation slower than tangential wind advection
- Composite wind fields relative to shear and motion vectors
- Use Fourier decomposition of wind field in azimuthal direction

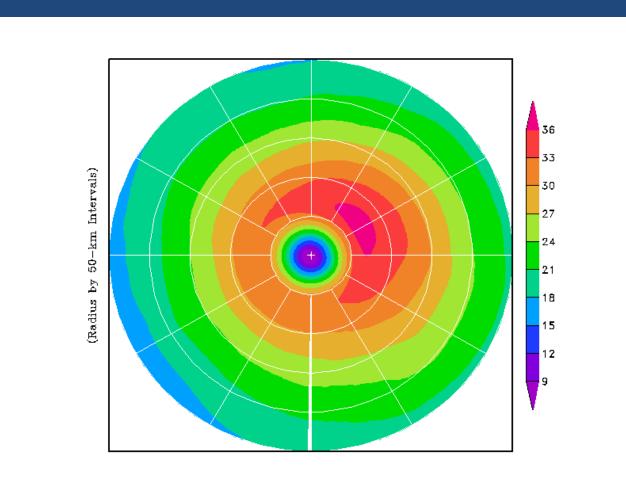

 $u(r, \theta, P, t) = \Sigma u_n e^{-in\theta} v(r, \theta, P, t) = \Sigma v_n e^{-in\theta}$

 $u_n = (1/2\pi) \int u e^{in\theta} d\theta$ $v_n = (1/2\pi) \int v_n e^{in\theta} d\theta$

Parseval's Identity: $\int (u^2 + v^2) d\theta = 2\pi \Sigma (u_n u_n^* + v_n v_n^*)$

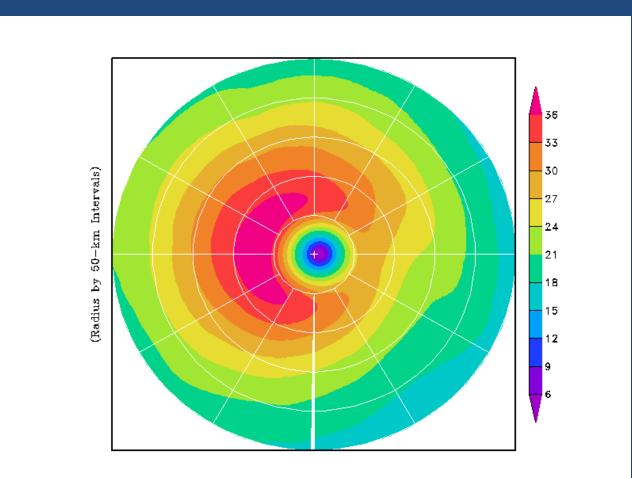
KE Wave Decomposition r=0 to 200 km, 1 hourly data

1500m KEn/KEtotal %

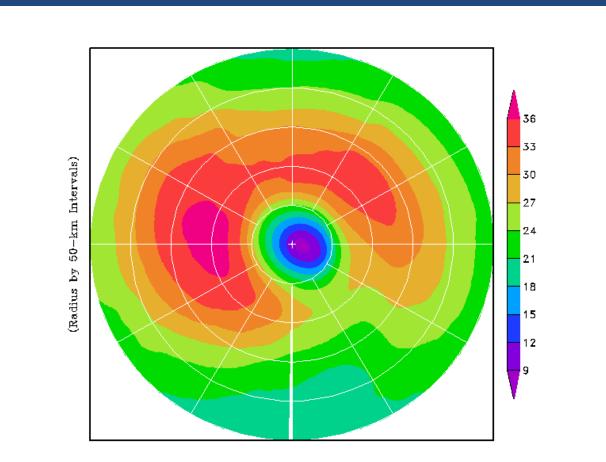

Composite Analysis – Wind

- Hurricane Emily 2005

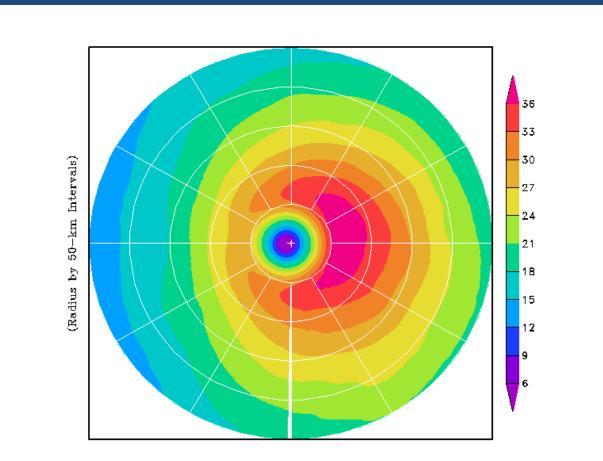
 07/13/00z HWRFx simulation
 07/15/00z HWRFx simulation
- Hurricane Katrina 2005
 08/26/00z HWRFx simulation
- Hurricane Wilma 2005


 10/18/00z HWRFx simulation
 10/22/00z HWRFx simulation

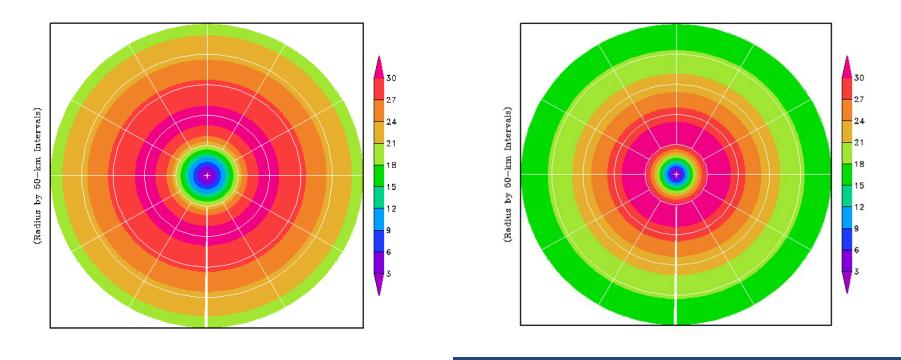
All Storms - 10m Winds – Motion Relative


Storm Motion

All Storms – 10m Winds – Shear Relative

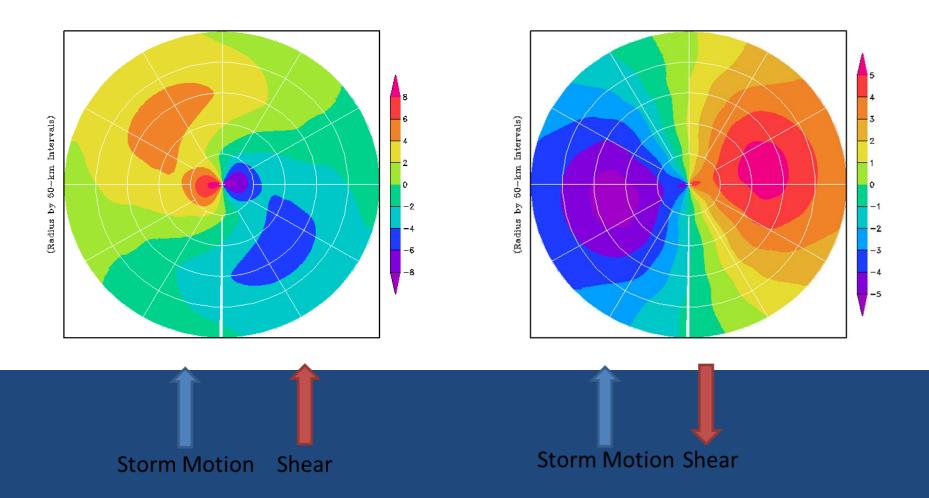

Shear

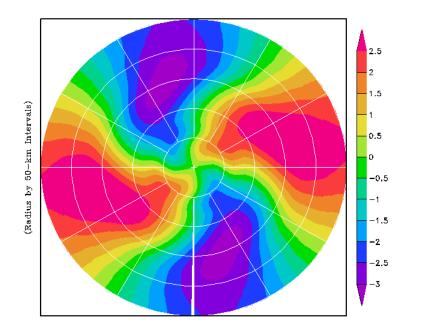
Aligned – 10m Winds – Motion Relative, cases with shear/motion aligned

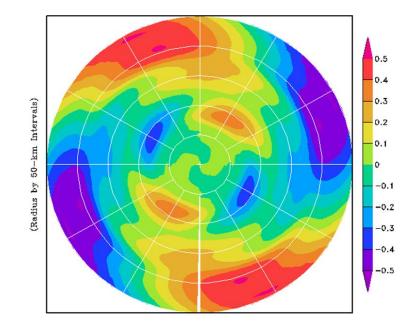


Storm MotionShear

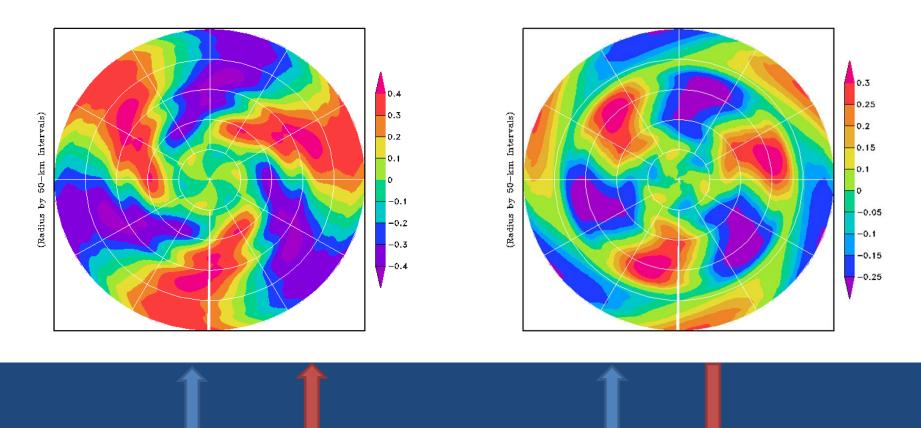
Opposed – 10m Winds – Motion Relative cases with motion, shear opposed

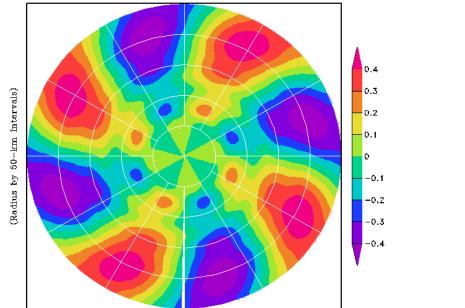


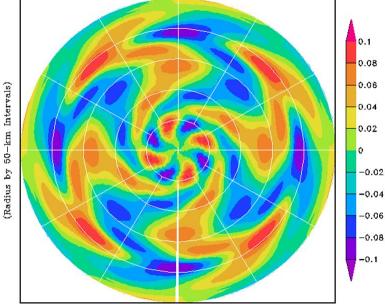

Storm MotionShear



Storm Motion Shear

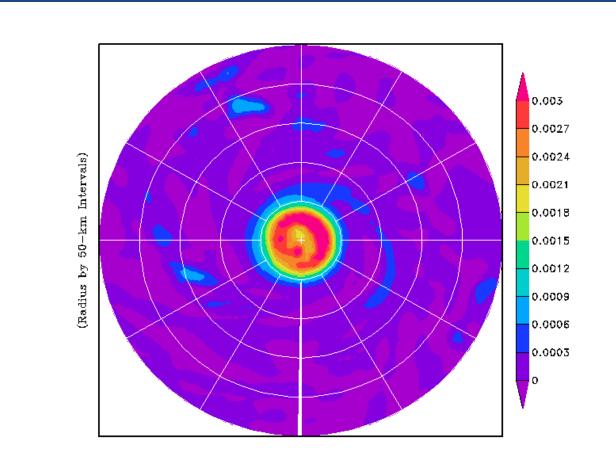





Storm Motion Shear

Storm Motion Shear

Storm Motion Shear



Storm Motion Shear

HWRF-x Emily 07/15/00Z Vorticity Animation

Phase speeds being calculated of wavenumber 2 and higher features

Summary of Asymmetry Diagnostics

- Motion and shear induced asymmetries are dominate features
- Propagating VRW features have smaller amplitude in wavenumber 2
- Fourier decomposition useful diagnostic tool

Example 5. Statistical Diagnostics of Inner Core

- Predictability time scale of convection and boundary layer processes is very short
 - Little opportunity for direct comparison with observations
- Diagnostics of statistical distributions of convection
 - Comparison with aircraft radar observations
- Impact of boundary parameterizations on average inner core wind structure
 - Comparison with aircraft GPS soundings
- Diagnostics from HWRFx 27:9:3 km resolution

Observational databases used in composites

Doppler database

40 radar analyses in 8 different storms

Storm name	Date (mm/dd/yyyy)	Number of analyses	best track intensity (kt)	t+24 h intensity change (kt)
Guillermo	8/2/1997	4	105	25
Fabian	9/3/2003	3	110	0
Isabel	9/12/2003	2	140	0
Isabel	9/13/2003	1	140	0
Isabel	9/14/2003	4	140	-25
Frances	8/30/2004	3	110	15
Frances	8/31/2004	2	125	-5
Frances	9/1/2004	3	120	-5
Ivan	9/7/2004	4	105	15
Katrina	8/28/2005	1	150	-70
Katrina	8/29/2005	3	110	-80
Rita	9/21/2005	3	145	-20
Rita	9/22/2005	3	125	-15
Paloma	11/8/2008	4	125	-100

GPS dropsonde database

794 dropsondes in 13 different storms

Storm name	Year	Storm Intensity range (kt)	Number of sondes
Erika	1997	83 - 110	40
Bonnie	1998	68 - 93	76
Georges	1998	66 - 78	39
Mitch	1999	145 - 155	28
Bret	1999	75 - 90	33
Dennis	1999	65 - 70	7
Floyd	1999	80 - 110	40
Fabian	2003	68 - 120	131
Isabel	2003	85 - 140	162
Frances	2004	68 - 83	62
Ivan	2004	65 - 135	123
Dennis	2005	65 - 70	7
Katrina	2005	68 - 100	46

Rogers et al., MWR, 2011 (in review)

Zhang et al., MWR, 2011 (in review)

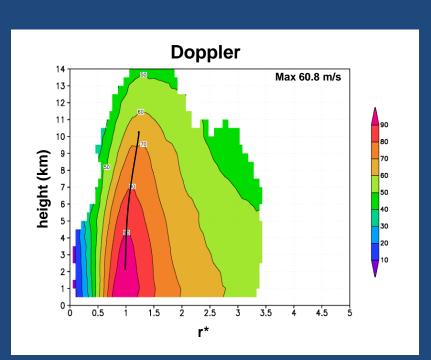
Simulation databases used in composites

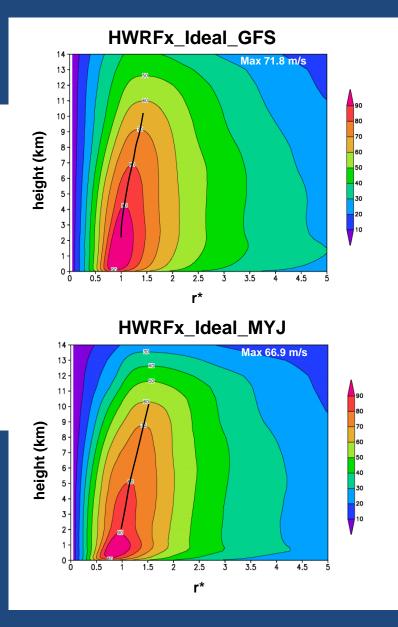
HWRFx Real-data database

34 model output times in 16 runs of 5 different storms

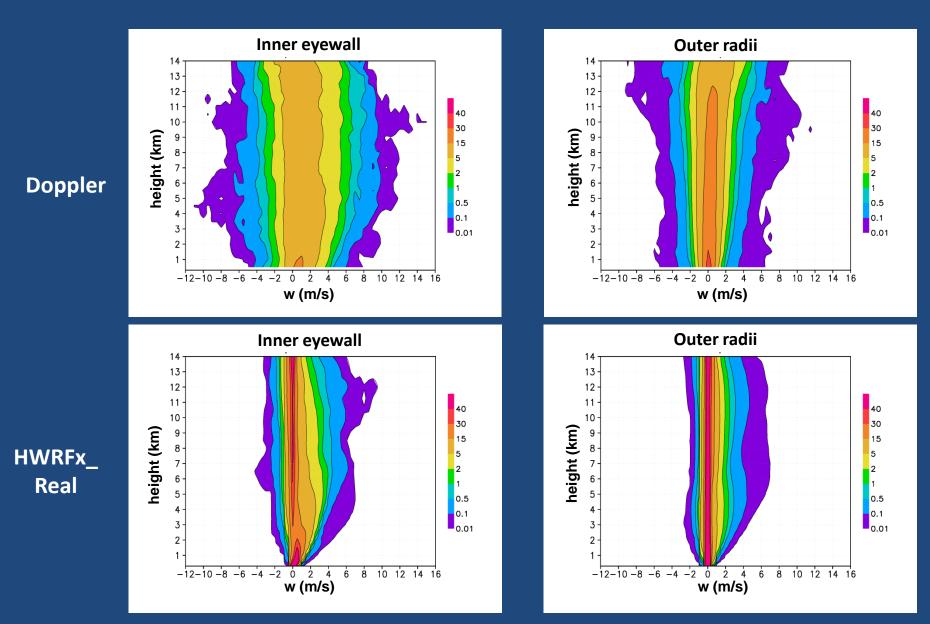
Storm	Initialization time	Forecast hour	Peak wind (kt)	24-h intensity change (kt, centered)
Wilma (2005)	2005101912	24	135	-7.5
		36	120	-67.5
	2005101900	24	120	20
		36	127.5	7.5
	2005101800	48	90	15
	2005101700	60	67.5	15
		72	70	7.5
Rita (2005)	2005092200	24	145	-27.5
		36	127.5	-25
	2005092100	24	105	12.5
		36	110	7.5
		48	112.5	0
	2005092000	48	97.5	15
		60	100	7.5
		72	105	5
Katrina (2005)	2005082800	24	120	17.5
		36	130	-35
	2005082700	24	97.5	10
		36	100	12.5
		48	110	12.5
	2005082600	48	67.5	10
		60	70	7.5
		72	75	-10
Karl (2010)	2010091600	36	100	-15
	2010091518	48	100	7.5
	2010091500	72	105	-45
Earl (2010)	2010083100	24	115	-10
		48	105	10
		60	105	-5
	2010082812	60	120	12.5
		72	110	-5
		84	115	2.5
		96	112.5	-2.5
	2010082700	96	110	-2.5

- All runs at 27:9:3 km with GFS PBL, Ferrier microphysics and SAS convection on all meshes

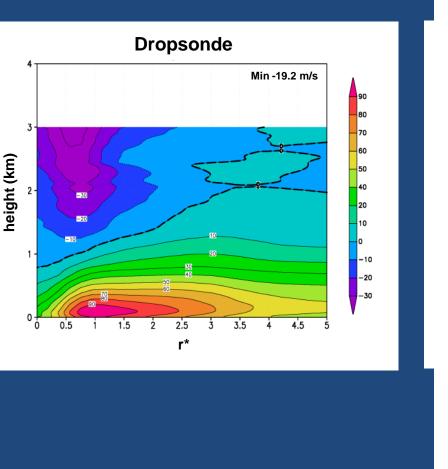

Idealized HWRFx runs

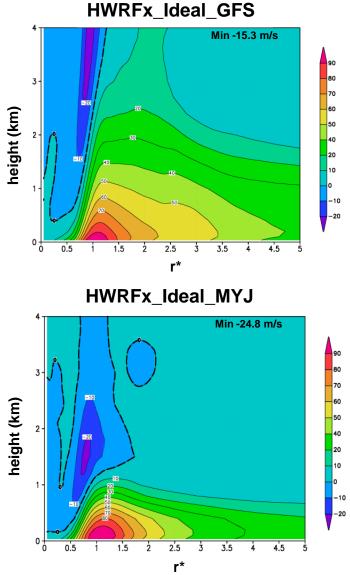

- 2 runs
 - GFS PBL
 - MYJ PBL
- both runs at 27:9:3 km, use Ferrier microphysics, SAS convection scheme on all meshes

- both runs taken at 6-hourly intervals between 48 and 96 h during simulation


Symmetric vortex-scale

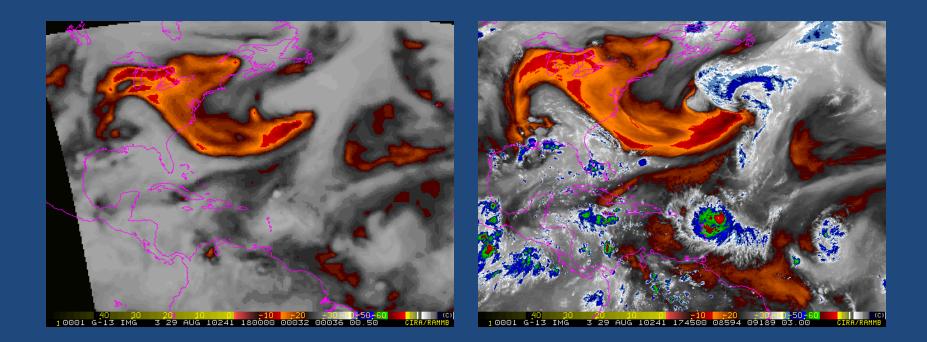
Tangential wind (% of maximum)

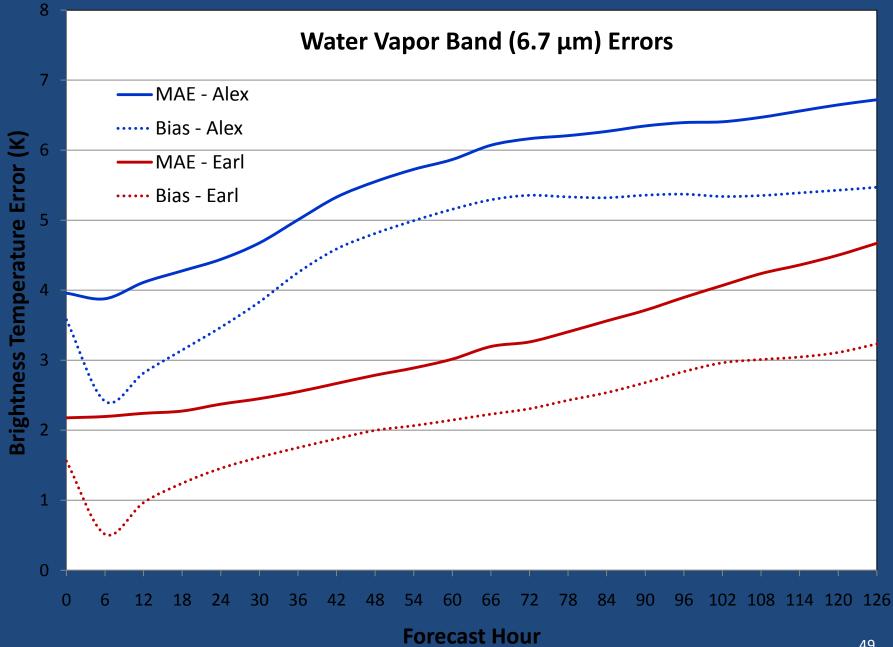



Convective-scale statistics as f(proximity to RMW) Vertical velocity CFADs (%, no precipitation masking for HWRFx)

Symmetric boundary-layer

Radial wind (% of minimum, i.e., peak inflow)




Example 6. Forward Radiative Transfer Model Diagnostics

- Remote sensing observations are indirect measurements of model parameters
 - Radar
 - Satellite vis, IR and microwave
- Method 1: Retrieve model parameters from remote sensing observations
- Method 2: Apply radiative transfer code to model out to create "synthetic" model observations

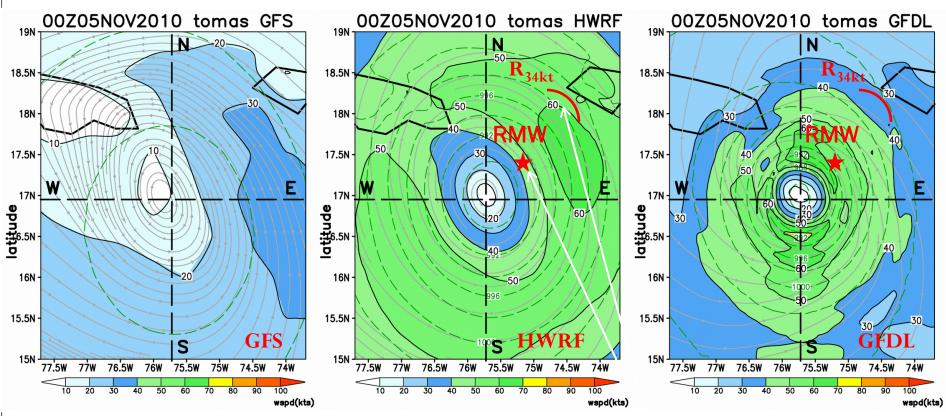
HWRF Synthetic – Real GOES Comparison GOES Channel 3 (Water Vapor)

6 hr Images 0 to 126 hr at 6 hr for Hurricane Earl starting 29 Aug 2010 at 18 UTC

Some Hurricane Model Diagnostics Utilities

- NHC Diagnostic Module
- EMC HPLOT Program
- NESDIS/CIRA Large Scale Model Diagnostics

 Used for statistical intensity model development
- AOML/HRD DiaPost


Input from Mrinal Biswas (DTC) and Wallace Hogsett (NHC)

NHC Diagnostic Module

- Capabilities
 - This diagnostics system inputs data from GFS/GFDL/HWRF and outputs figures of vortex structure.
 - Goal is to facilitate inter-model comparisons of initial vortex structure and gain insight into systematic characteristics of the various model initializations.

NHC Diagnostic Tool – Tomas Approaches Jamaica

<u>Above</u>: near-surface winds (shaded, kts), streamlines, and surface pressure (green dashed, hPa) from the GFS (left) and HWRF inner nest (center), and GFDL inner nest (right) ICs.

Approximate observed locations of RMW and 34kt radius (via P3 radar & SFMR).

* GFDL is superior to HWRF in this case in terms of constraining initial storm size, which is key factor in the initial balance/imbalance issue.
* Suggestion: Leverage GFDL size constraint methodology.

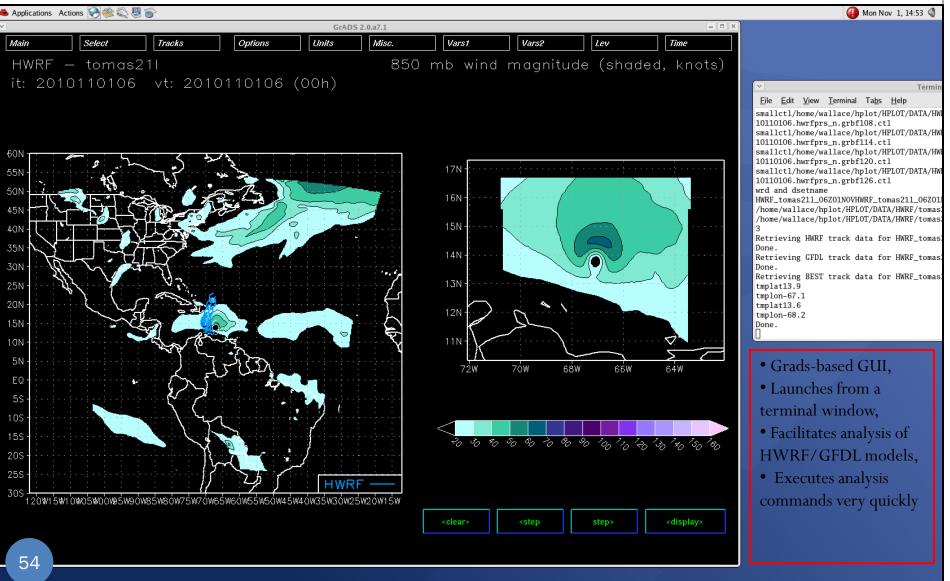
Developmental Testbed Center

NHC Diagnostic Tool

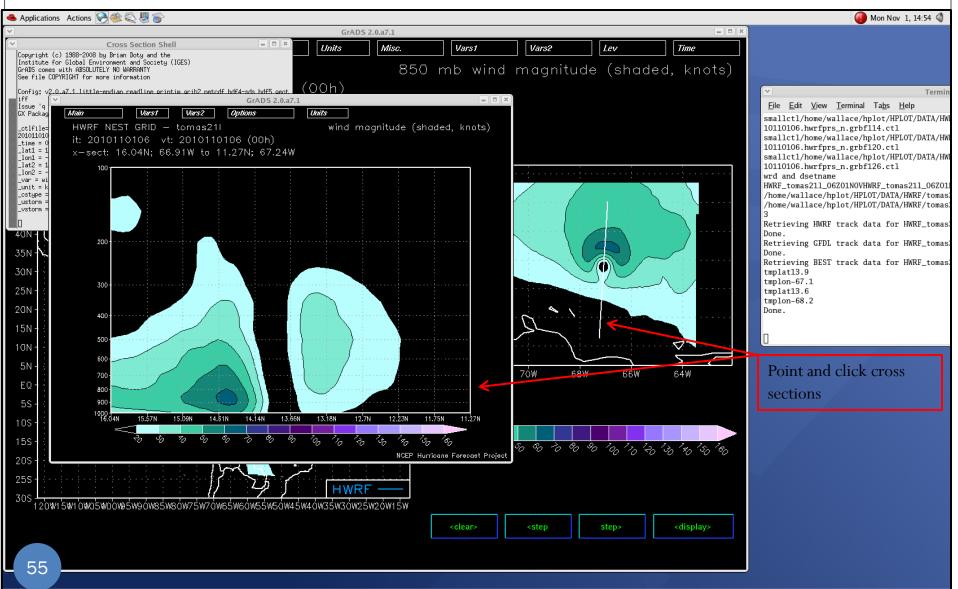
Wallace Hogsett, NHC

Diagnostic Tools: EMC HPLOT

- GUI based plotting program HPLOT (based on initial version developed by Tim Marchok and adapted for HWRF by Marshall Stoner) that allows visualization of several diagnostic components of the forecasts.
- Allows comparison of HWRF forecasts with other model forecasts as well as analysis/observations side by side (including difference plots on a uniform grid)
- Diagnostic measures include mean layer wind, vertical and zonal shear components, skew-T diagrams etc.
- Additional capabilities to compute statistical measures (RMS errors, anomaly correlation etc.) as well as filtering of storm component for evaluation of large-scale flow
- Vortex scale diagnostics include fixed/arbitrary horizontal/ vertical crosssections of wind, temperature, heating rates, RH etc., azimuthally averaged winds, data on cylindrical coordinates.



Vijay Tallapragada, EMC

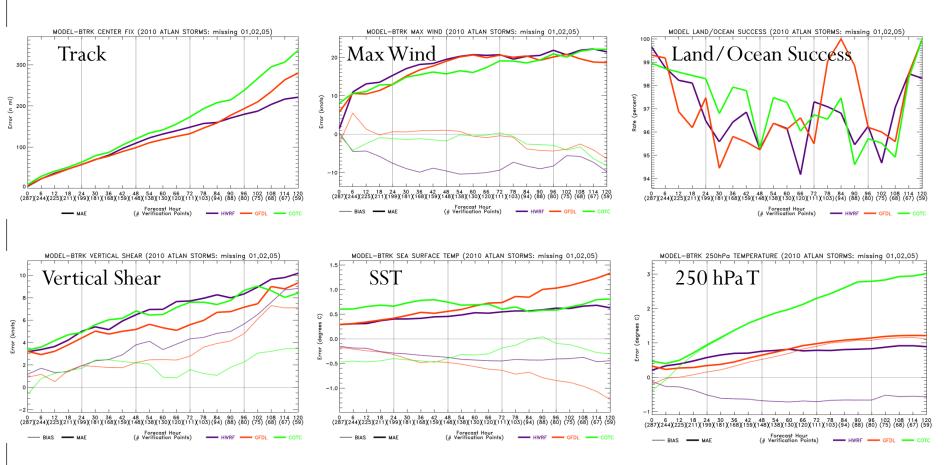

HPLOT – EMC/NHC Collaboration Analysis and forecast display tool

GrADS 2.0.

Terminal

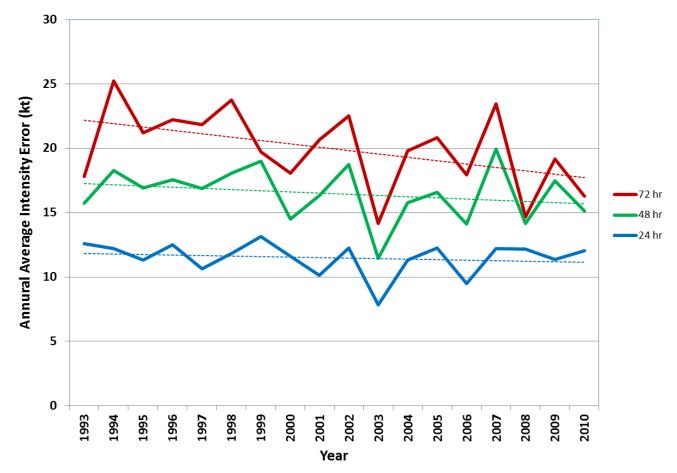
HPLOT – Point-and Click Cross Sections

Diagnostic Tools: Large Scale Model Parameters **SHIPS Intensity Model Development Code**


- HWRF
 - AL11 IGOR

											51	OKII DH	п										
NTIME (TIME LAT LON MAXWINI RMW MIN_SLF SHR_MAG SHR_MO STM_SPI STM_HDO STM_HDO STM_HDO STM_HDO STM_HDO STM_HDO STM_HDO STM_HO SOTANO 850YOR1 200JVRO	(HR) (DEG) (DEG) ((KT) ((KM) (KM) ((KM) ((KT) ((EG) ((KT) ((DEG) ((KT) ((DEG) ((LOC) ((KT) ((MM) ((KM)) ((KM)) ((MM) ((KM)) ((S))	$\begin{array}{c} 0\\ 17.6\\ 310.9\\ 130\\ 84\\ 934\\ 6\\ 117\\ 8\\ 285\\ 282\\ 9393\\ 59\\ 1426\\ 380\\ 62\\ 48\end{array}$	6 17.8 310.1 101 90 918 5 43 7 292 282 9999 59 1417 310 55 48	12 18,1 309,6 104 84 924 6 43 7 308 281 9999 58 1400 308 72 89	18 18.7 308.9 105 68 925 2 83 10 304 278 9999 59 1379 298 76 92	24 19,2 307,9 98 63 929 3 180 10 307 282 9999 60 1336 295 86 73	30 19.9 307.2 94 84 929 0 44 9312 284 9312 284 91 1340 304 108 91	36 20.4 306.5 90 92 928 8 353 9 9310 283 9999 59 1300 309 127 115	42 21.1 305.7 104 87 929 9 10 10 309 279 9995 8 1233 302 107 71	48 21.7 304.8 95 91 934 11 308 279 9999 59 1160 302 123 64	54 22.4 303.9 91 85 933 8 351 11 308 281 9999 59 1099 305 141 56	60 23.0 303.0 935 9 357 9 307 281 9999 59 1045 306 145 45	66 23.5 302.3 86 107 9341 27 9 306 279 9999 59 1012 306 141 48	72 24.0 301.5 91 106 9371 40 9 304 276 9999 58 979 310 151 71	78 24.5 300.7 92 93 12 39 10 306 277 9999 58 956 305 143 75	84 25.2 299.7 85 92 939 40 11 304 288 9999 59 948 303 139 44	90 25.7 298.7 939 41 11 307 291 9399 59 935 298 150 39	96 26.5 297.8 84 92 921 36 11 315 288 9999 59 971 297 154 43	102 27.3 296.9 93 936 936 22 23 11 318 286 999 59 59 1022 301 149 60	108 28.2 296.1 92 937 24 16 12 325 286 9999 59 1099 300 130 45	114 29.2 295.4 92 936 29 14 10 326 288 9999 59 1184 297 128 40	120 29.9 294.8 90 939 31 10 9 334 289 9999 59 1176 299 125 63	126 30,8 294,5 90 91 938 27 7 9 344 288 9999 59 1098 302 129 82
NLEV 02 TIME T_SURF P_SURF V_SURF T_1013 R_1013 Z_1013 U_1013 V_1013 T_1000 R_1000 Z_1000 U_1000 T_0950 R_0950	22 SURF 10: (HR) (10C) (%) (10KT) (10KT) (10KT) (10KT) (10KT) (10KT) (10KT) (10KT) (10KT) (10KT) (10KT) (10C) (%) (10C) (%) (%) (%) (%) (%) (%) (%) (%	13 1000 0 281 83 1010 -46 12 279 -3 -52 14 273 78 9 -55 16 233 89 54) 0950 6 292 80 1007 -40 -13 286 77 -5 -47 -5 -47 -10 281 75 6 -48 -48 -48 -10 240 240 86 52				i0 0700 30 279 85 1007 -30 19 279 83 -5 -33 23 274 81 7 -34 24 24 234 234 52			2550 05 48 279 85 1008 -43 7 276 83 -4 -50 11 270 82 7 -52 12 230 94 52		UNDING 60 0400 281 84 1007 -34 -10 277 82 -5 -38 -9 272 80 7 -39 -39 272 80 7 -39 -39 272 80 7 -39 -32 52 52			250 02 78 284 81 1004 -55 -15 277 80 -8 -63 -15 272 78 3 -63 -15 233 89 49			0 00050 96 284 82 1005 -71 -30 273 80 -7 -81 -31 268 78 5 -81 -31 228 89 50	102 283 82 1004 -62 -25 274 80 -26 268 79 4 -70 -26 268 79 4 -70 -26 229 90 49	108 283 83 1006 -60 -33 273 80 -69 -34 268 79 5 -69 -34 20 5 -69 -34 227 90 50	114 277 82 1004 -58 -25 270 80 -7 -65 -265 -265 -265 -265 -265 -265 -265	120 280 82 1006 -42 -33 271 80 -6 -48 -35 265 78 5 -48 -35 225 290 51	126 283 82 1005 -41 -24 272 79 -7 -46 -26 266 78 4 -47 -27 226 89 50

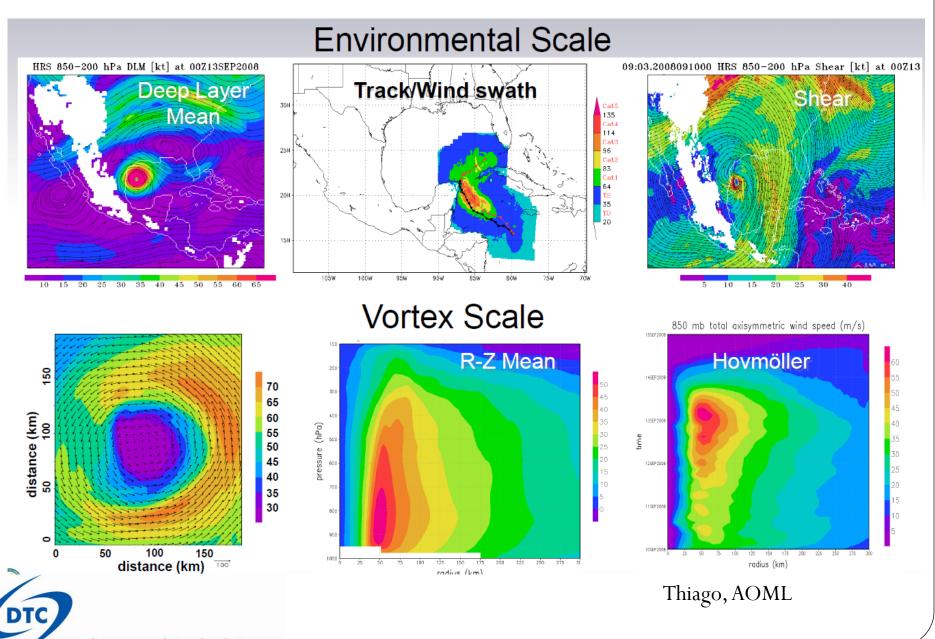
STORM DATA


DTC

Model Inter-comparison of Large-Scale Parameter Errors HWRF, GFDL, COAMPS-TC

Ground "truth": Working best track, GFS analyses, Reynolds SST analyses

Statistical-Dynamical Intensity Model Forecast Error Trend


SHIPS 1993-1999, D-SHIPS 2000-2005, LGEM 2006-2010 18 Year Improvements of 6%, 10% and 20% at 24, 48 and 72 hr

AOML/HRD Diapost

- One code, one executable all available within WRF framework (WRF application program interface)
- \bullet Orders of magnitude faster than NMM-wrfpost (at 9 km takes <5 minutes for processing 3-h WRF output for 5 day forecast)
- Provides binary/flat file data, GrADS control files compatible with GrADS. Also ASCII track information.
- Grib files produced via HFIP output module.
- Can be linked to official tracker via output module.
- Horizontal: Native rotated lat/lon (minimum loss in information) and standard lat/lon and Cylindrical projection for inner core
- Vertical: Native hybrid, standard pressure and height
- Wind swaths, Deep-layer mean, Shear and other hurricane/environment specific variables
- Inner core details: Hovmöller diagrams

Thiago, AOML

Developmental Testbed Center

Summary

- Hurricane model diagnostics are needed because of the complexity of these prediction systems
- Extract model parameters in the context of a conceptual or theoretical framework
- Diagnostics serve multiple purposes
 - Forecast model improvements
 - Inter-model comparisons
 - Comparisons with observations
 - Improved physical understanding of hurricane processes
- Diagnostic procedures are scale-dependent
- Several hurricane model diagnostic routines under development
 - Possible support by the DTC under HFIP