Team members

• AOML/HRD (Team Lead: G. S. Gopalakrishnan)

G. Alaka, R. Black, H. Chen, J. Delgado, S. Diaz, S. Goldenberg, K. Sellwood, R. St. Fleur, T. Quirino, J. Zhang, X. Zhang, and HRD colleagues

 NCEP/EMC (Brach Chief: V. Tallapragada; Team co-Lead: S. Trahan & Z. Zhang)

B. Ferrier, Hyun-Sook Kim, Q. Liu, J. Michalakes, D. Sheinin, M. Tong, S. Trahan, W. Wang, Z. Zhang, and EMC/Hurricane team

• DTC (Task lead: Kathryn Newman)

L. Bernardet, L. Carson, J. Frimel, C. Holt, and HWRF task team

• GFDL

T. Marchok and M. Bender

• URI

B. Thomas and I. Ginis

• NPS

M. Boothe, M. Montgomery, and B. Rutherford

Operational Requirements

- Requirements for a TC prediction model
 - Model can provide customers required forecast guidance in a timely manner
 - Model parallelism can fit current and future supercomputer architecture
 - Model is operationally feasible
 - Operational framework (software and hardware)
 - Forecast center infrastructure

Horizontal-Temporal Scales of Atmospheric Processes

Scientific Requirements

- Preserve across processes on TC genesis, intensifying, decaying, and landfall processes within an integrated modeling system to:
 - Represent both the short wave and long wave ends of the scale spectrum
 - Study on multi-scale interactions e.g. storm-storm interaction, TC-terrain interaction, and landfall processes and QPF etc.
- Model has sufficient resolution that can represent TC inner core physics and can predict TC structure (3 km or less)
 - Non-hydrostatic model becomes required
 - Physics schemes should be suitable to the high-resolution model

Objectives

- Tailor a tool that is operationally feasible and transferable at minimum cost in the near future
- Create a model for R&D of the next generation across-scale TC forecast system
- Maintain all capabilities available to operational HWRF, including cycling and initialization that can be utilized for testing high-resolution physics, advanced data assimilation, ensemble forecast, etc.
- Quantify model bias and diagnose sources of model errors

Idea of Moving Nest

Nesting Scheme and Feedback

Nesting Scheme and Feedback

The basin-scale HWRF

Multiple Movable Nests HWRF System

Isaac-Ileana-Kirk real-time 3-km predictions

Cycling scheme

The operational HWRF

Cycling scheme

The basin-scale HWRF

Multi-storm Initialization

Basin-scale HWRF vs. Operational HWRF

	2013 Opt. HWRF (H213)	2013 Basin-scale HWRF (H3HW)	2014 Opt. HWRF (H214)	2015 Opt. HWRF (H215)	2015 Basin-scale HWRF (H5HW)			
Domain	27 KM: 77.6° X 77.6° 9 KM: 10.5° X 10.14° 3 KM: 7.18° X 6.46°	27 KM: 213.6° X 113.6° 9 KM: 10.5° X 10.14° 3 KM: 7.18° X 6.46°	27 KM: 77.6° X 77.6° 9 KM: 12.66° X 12.18° 3 KM: 7.9° X 7.06°	18 KM: 77.6° X 77.6° 6 KM: 12.74° X 12.29° 2 KM: 7.94° X 7.07°	27 KM: 213.6° X 113.6° 9 KM: 12.66° X 12.18° 3 KM: 7.9° X 7.06°			
Vertical Levels	42 levels	61 levels	61 levels	61 levels	61 levels			
Model Top	50hPa	2hPa	2hPa	2hPa	2hPa			
Vortex Initialization	at 3 KM	at 3 KM	at 3 KM	at 2 KM	at 3 KM			
Data Assimilation	GSI	No GSI	Hybrid	Hybrid + Ensemble (TDR)	Hybrid			
Cycling	Yes (9-3 km vortex)	Yes (9-3 km vortex)	Yes (9-3 km vortex)	Yes (9-3 km vortex)	Yes (9-3 km vortex)			
Ocean Coupling	Yes	No	Yes	Yes	No			
Multiple Storm	No	Yes	No	No	Yes			
Physics schemes								
Microphysics	Modified Ferrier	Modified Ferrier	Modified Ferrier	Modified Ferrier-Aligo	Modified Ferrier-Aligo			
Radiation	GFDL	GFDL	GFDL	RRTMG	RRTMG			
Surface	GFDL	GFDL	GFDL	GFDL(V215)	GFDL(V215)			
PBL Scheme	Modified GFS	Modified GFS	Modified GFS	Modified GFS (V215)	Modified GFS (V215)			
Convection	SAS, No CP (3 KM)	SAS, No CP (3 KM)	SAS, No CP (3 KM)	SAS, No CP (2 KM)	SAS, No CP (3 KM)			
Land Surface	GFDL Slab	GFDL Slab	GFDL Slab	NOAH	NOAH			

Basin-scale HWRF vs. Operational HWRF (Parent domain)

Stratified verification (2011-14)

Stratified verification (2011-14)

Stratified verification

Stratified verification (2011-14)

Stratified verification (2111-14)

Multi-storm Interactions Impacts of Far-Field TCs?

Long-lived TCs in the Basin-scale HWRF

Storm-storm Interaction

- How often does the storm-storm interaction happen?
- What is the forecast implication?
- What are the interaction processes?

Global Storm Occurrence in All Basins

Number of Storms	Global	% of occurrence	NHC alone	JTWC alone
1+	15287	70	8300	12022
2+	9148	42	4632	4461
3+	4956	23	2260	987
4+	2521	12	864	155
5+	1081	5	243	14
6+	387	2	69	0
7+	99	0.5	4	0
8+	22	0.1	0	0
9+	0	0	0	0

Data: real-time TCVital during 2000-2014

Tallapragada et al, 2014

Frequency of Multi-storm

of TCs/pTCs in AL/EP per Verified AL Cycle

In 86% of verified Atlantic forecast cycles, at least 2 disturbances are present.

Forecast Implication

25

Example of Binary TC interaction

Damrey: 28 JUL-02 AUG

Forecast Issue

- Basin-wide model forecast produced superior tracks after 3000Z
- JTWC operational forecast struggled except at early stage because of the complicate interactions
- All models including GFS have bigger landfall location errors even 48 hour forecast

Initial time 2012072912 Initial time 2012073000 Initial time 2012080100 ₂₇

Roadmap to Transitions

- Develop ocean coupling capability for basinscale HWRF
- Develop parent domain data assimilation capability
- Scalability test
- Framework improvement for higher resolution
- Forecast products for basin-scale forecast applications and diagnostics

Summary

- The HWRF multi-storm modeling system was developed in AOML/ HRD in collaboration with NCEP/EMC and DTC under the support of NOAA's HFIP
- The system can expand to any number of high-resolution movable nests centered on storms that may exist in the regional domain but current scripts allow for only 5 storms as it is currently limited in the HWRF code
- The system can not only provide simultaneous high-resolution forecasts for multiple storms, but also improve the representation of storm-storm interactions, synoptic-scale flows, and the TC life cycle from genesis, intensifying, decaying to landfall
- The system may be applied to various unique research on TCs, such as storm-storm interaction, model bias diagnostics, physical scheme evaluation and improvement, and localized multiple-vortex initialization and advanced data assimilation