Forecast Verification

Kathryn M. Newman

National Center for Atmospheric Research Developmental Testbed Center

Outline

• Introduction to Forecast Verification

- Introduction
- Observations
- Basic verification metrics
- Uncertainty & Confidence intervals

• MET & MET-TC

- MET Overview
- Verification tools using model output
- TC-specific tools

Introduction to Forecast Verification

Introduction

• What is Verification?

- The process of comparing forecasts to relevant observations
- Measures quality of forecasts
- Evaluation of a particular model or condition

• Why Verify?

- Help understand model biases and performance of models under certain conditions
- Help users interpret forecasts
- Identify forecast weakness, strengths, differences

Introduction

- Verification goals depend on the questions we want to answer
 - Determines which attribute(s) to measure
 - Drives choices in which statistics to compute, how to stratify the data, and what graphics to produce
- Before starting any verification study:
 - 1. Identify multiple verification attributes that provide answers to the questions of interest

Position, wind, QPF, RI, landfall ...

- 2. Select measures and graphics to appropriately measure and represent the attributes of interest
 - Track (along/cross) error, Intensity error, Contingency tables ...
- 3. Identify a standard of comparison that provides a reference level of skill

CLIPER, SHIFOR, Baseline model ...

Observations

- Observations are an important consideration for TC verification
 - Quality and quantity of observations available
 - Typically sparse or intermittent
 - May infer characteristics from indirect measures (satellite)

Variable	Suggested observations	Suggested analyses		
Position of storm	Reconnaissance flights, visible & IR satellite	Best track, IBTrACS		
center	imagery, passive microwave imagery			
Intensity – maximum	Dropwinsonde, microwave radiometer	Best track, IBTrACS,		
sustained wind		Dvorak analysis		
Intensity – central	Ship, buoy, synop, AWS	IBTrACS, Dvorak		
pressure		analysis		
Storm structure	Reconnaissance flights, Doppler radar, visible	H*Wind, MTCSWA,		
	& IR satellite imagery, passive microwave	ARCHER		
Storm life cycle		NWP model analysis		
Precipitation	Rain gauge, radar, passive microwave,	Blended gauge-radar,		
	spaceborne radar	blended satellite		
Wind speed over land	Synop, AWS, Doppler radar			
Wind speed over sea	Buoy, ship reports, dropwinsondes,	H*Wind, MTCSWA		
	scatterometer, passive microwave imagers			
	and sounders			
Storm surge	Tide gauge, GPS buoy			
Waves – significant	Buoy, ship reports, altimeter	Blended analyses		
wave height				
Waves – spectra	Altimeter			

Suggested observations and analyses for verifying forecasts of TC variables and associated hazards. (WMO report on TC verification)

https://www.wmo.int/pages/prog/arep/wwrp/new/documents/TC_verification_Final_11Nov13.pdf

Observations

- Best track analysis
 - Subjective assessment of TC's center location and intensity (6 hr) using all observations available
 - Includes center position, maximum sfc winds, minimum center pressure, quadrant radii of 34/50/64 kt winds
 - Subjectively smoothed

AL, 09	2011082200,	, BEST,	0, 179N,	650W,	60,	993, TS,	34, NEQ,	130,	30,	30,	90, 1010,	125,	30, 6	0,	0,	ι,	0,	,	0,	0,	IRENE, M, 12, NEQ,	360,	60,	15,	120
AL, 09	2011082200,	, BEST,	0, 179N,	650W,	60,	993, TS,	50, NEQ,	30,	0,	0,	30, 1010,	125,	30, 6	0,	0,	L,	0,	,	0,	0,	IRENE, M, 12, NEQ,	360,	60,	15,	120
AL, 09	2011082206,	, BEST,	0, 182N,	659W,	65,	990, HU,	34, NEQ,	130,	60,	60,	90, 1010,	150,	15, 7	5,	0,	L,	ø,	,	0,	0,	IRENE, D, 12, NEQ,	360,	60,	15,	120
AL, 09	2011082206,	, BEST,	0, 182N,	659W,	65,	990, HU,	50, NEQ,	40,	25,	20,	35, 1010,	150,	15, 7	5,	0,	L,	0,	,	0,	0,	IRENE, D, 12, NEQ,	360,	60,	15,	120
AL, 09	2011082206,	, BEST,	0, 182N,	659W,	65,	990, HU,	64, NEQ,	25,	0,	0,	0, 1010,	150,	15, 7	5,	0,	L,	0,	,	0,	0,	IRENE, D, 12, NEQ,	360,	60,	15,	120
AL, 09	2011082212,	, BEST,	0, 189N,	670W,	70,	989, HU,	34, NEQ,	160,	60,	60,	90, 1010,	200,	15, 8	5,	0,	L,	0,	,	0,	0,	IRENE, D, 12, NEQ,	180,	60,	0,	120
AL, 09	2011082212,	, BEST,	0, 189N,	670W,	70,	989, HU,	50, NEQ,	40,	25,	20,	35, 1010,	200,	15, 8	15,	0,	L,	0,	,	0,	0,	IRENE, D, 12, NEQ,	180,	60,	0,	120
AL, 09	2011082212,	, BEST,	0, 189N,	670W,	70,	989, HU,	64, NEQ,	25,	0,	0,	0, 1010,	200,	15, 8	5,	0,	L,	0,	,	0,	0,	IRENE, D, 12, NEQ,	180,	60,	0,	120
AL, 09	2011082218,	, BEST,	0, 193N,	680W,	75,	988, HU,	34, NEQ,	160,	60,	40,	90, 1010,	250,	15, 8	5,	0,	L,	0,	,	0,	0,	IRENE, D, 12, NEQ,	180,	60,	0,	120
AL, 09	2011082218,	, BEST,	0, 193N,	680W,	75,	988, HU,	50, NEQ,	40,	30,	20,	35, 1010,	250,	15, 8	5,	0,	L,	0,	,	0,	0,	IRENE, D, 12, NEQ,	180,	60,	0,	120
AL, 09	2011082218,	, BEST,	0, 193N,	680W,	75,	988, HU,	64, NEQ,	25,	0,	0,	0, 1010,	250,	15, 8	5,	0,	L,	0,	,	0,	0,	IRENE, D, 12, NEQ,	180,	60,	0,	120
AL, 09	2011082300,	, BEST,	0, 197N,	688W,	80,	981, HU,	34, NEQ,	160,	70,	50,	100, 1010,	300,	15, 10	5, 3	80,	L,	0,	,	0,	0,	IRENE, D, 12, NEQ,	180,	60,	0,	120
AL, 09	2011082300,	, BEST,	0, 197N,	688W,	80,	981, HU,	50, NEQ,	70,	30,	30,	70, 1010,	300,	15, 10	5, 3	10,	L,	ø,	,	0,	0,	IRENE, D, 12, NEQ,	180,	60,	0,	120
AL, 09	2011082300,	, BEST,	0, 197N,	688W,	80,	981, HU,	64, NEQ,	25,	0,	0,	35, 1010,	300,	15, 10	5, 3	80,	L,	0,	,	0,	0,	IRENE, D, 12, NEQ,	180,	60,	0,	120
AL, 09	2011082306,	, BEST,	0, 201N,	697W,	80,	978, HU,	34, NEQ,	180,	120,	90,	130, 1010,	300,	15, 10	5,	0,	L,	0,	,	0,	0,	IRENE, D, 12, NEQ,	180,	120,	35,	150
AL, 09	2011082306,	, BEST,	0, 201N,	697W,	80,	978, HU,	50, NEQ,	90,	60,	40,	70, 1010,	300,	15, 10	5,	0,	L,	0,	,	0,	0,	IRENE, D, 12, NEQ,	180,	120,	35,	150
AL, 09	2011082306,	, BEST,	0, 201N,	697W,	80,	978, HU,	64, NEQ,	45,	30,	20,	35, 1010,	300,	15, 10	5,	0,	L,	0,	,	0,	0,	IRENE, D, 12, NEQ,	180,	120,	35,	150
AL, 09	2011082312,	, BEST,	0, 204N,	706W,	80,	978, HU,	34, NEQ,	180,	120,	90,	130, 1008,	300,	15, 10	5,	0,	L,	0,	,	0,	0,	IRENE, D, 12, NEQ,	180,	120,	35,	150
AL, 09	2011082312,	, BEST,	0, 204N,	706W,	80,	978, HU,	50, NEQ,	90,	60,	40,	70, 1008,	300,	15, 10	5,	0,	ι,	0,	,	0,	0,	IRENE, D, 12, NEQ,	180,	120,	35,	150

Follows ATCF format – more on this later!

TC Metrics

- **Track Error**: great-circle distance between the forecast location and the actual location of the storm center (nmi)
- Along-track Error: indicator of whether a forecasting system is moving a storm too slowly/quickly
- **Cross-track Error**: indicates displacement to the right/left of the observed track
- Intensity Error: Difference between forecast and actual intensity (kts)
 - Raw intensity errors (bias) vs. absolute intensity errors (magnitude of error)

Graphics courtesy of NCAR TCMT

TC Metrics

- Storm structure, precipitation, wind speed, storm surge, waves, probabilistic forecasts and ensembles...
 - Going beyond basic track and intensity error
- New approaches for TC verification evolving

Images from NCAR. Methodology following Hamill et al 2011 (left), Fowler et al 2010 (right)

TC metrics

- Skill Scores: Used as a standard of comparison, skill diagrams are often used to compare model skill relative to CLIPER/SHIFOR
- Frequency of Superior Performance & Rank frequency: ranking a particular model forecast relative to the performance multiple model forecasts
- Distribution of errors: Box plots can be used to highlight the distributions of the errors in the forecasts

Uncertainty

- Observations and analysis products as well as models themselves are subject to uncertainty
- Need to be aware of sample size!
 - TCs typically have smaller samples due to lower frequency of occurrence relative to other weather phenomena
- Accounting for sampling uncertainty:
 - Verification statistic is a realization of a random process
 - What if the experiment were re-run under identical conditions? Would you get the same answer?

Confidence intervals

Mean Absolute Cross Track Error

Lead Time (h)

Mean absolute cross-track errors for two models.

Scores are very similar at short lead times, but seem to diverge at longer lead times

Confidence intervals

Confidence Intervals (CIs) indicate no significant difference between 0-36 h, after 84 h

Statistical significance indicated where CIs don't overlap

Multiple methods for computing CIs:

- Standard error about the mean or median
- Bootstrapping

Choice of alpha value for CIs

• e.g. 95%

Confidence intervals

- Two ways to examine scores:
 - CI about absolute scores
 - May be difficult to differentiate model performance differences
 - SS where two model CIs do not intersect
 - CI about Pairwise Differences
 - May allow for differentiation of model performance.
 - SS where CIs do not encompass 0
 - Stronger test removes common forecast challenges

MET & MET-Tropical Cycle

- What is MET?
 - MET is a set of tools for evaluating model forecasts
- A modular set of forecast evaluation tools
 - Freely available, highly configurable, fully documented, supported
- MET includes:
 - Reformatting tools
 - Statistical tools
 - Analysis tools
- MET works directly with post-processed model output to perform a large variety of statistical analyses

Precipitation frequency bias generated from MET output

- Overview of tools
- MET provides a variety of verification techniques:
 - Gridded model data to point-based observations
 - Gridded model data to gridded observations
 - Ensemble and probabilistic verification methods
 - Aggregating output through time and space
 - Object-based verification
 - Tropical cyclone verification
 - Tropical cyclone evaluation through MET-TC

MET-Tropical Cyclone

- WHAT is MET-TC?
 - A set of tools to aid in TC forecast evaluation and verification
 - Developed to replicate (and add to) the functionality of the NHC verification software
 - Modular set of tools which utilize the MET software framework
 - Allows for additional capabilities and features to be added to future releases
- WHY use MET-TC?
 - Provides a standard set of verification metrics and comprehensive output statistics
 - Available to all users
 - Enables consistent forecast evaluation studies to be undertaken across the community

MET Overview v5.1

Compile & Build

- Download MET (must be v4.1 or newer for MET-TC capabilities) release and compile locally
 - Need to register to download: <u>www.dtcenter.org/met/users</u>
- Supported platforms and compilers
 - 1. Linux with GNU compilers
 - 2. Linux with Portland Group (PGI) compilers
 - 3. Linux with Intel compilers

	Model Evaluation Tools DTC
You are here: DT	C • MET Users Page
Home	MET Downloads
Terms of Use	MET Software
Overview	To begin downloading MET, enter your e-mail address:
Download	
Documentation	External Libraries Needed To Build MET
User Support	BUFRLIB v10.2.3 for reading PrepBufr Observation files

20

HWRF verification using MET

- MET verification tools using HWRF model output
 - Large scale: verified against GFS, other configurations
 - TMP, SPFH, HGT ...
 - Storm scale QPF verification

HWRF Shifted (dashed) Unshifted (solid) vs CMORPH, 600 km BT Mask

MET-TC Tools

- TC-dland
 - Pre-computes distance to land file for use to TC-pairs
 - \checkmark More efficient than computing distances on the fly
- TC-pairs
 - Reads ATCF files to produce pair statistics (with reference TC dataset) on independent model input or user-specified consensus forecasts
 - \checkmark Pair generation can be subset based on user-defined filtering criteria
 - \checkmark Includes computation of consensus forecasts and baseline models
- TC-stat
 - Provides summary statistics and filtering jobs on TC-pairs output
 - \checkmark Stratifies pair output by various conditions and thresholds
 - ✓ Produces summary statistics on specific column(s) of interest
 - \checkmark Includes RIRW job type for rapid intensification studies

MET-TC: Getting Started...

- Model output must be run through an internal/external vortex tracking algorithm (GFDL vortex tracker previous lecture)
- The input files must be in Automated Tropical Cyclone Forecasting System (ATCF) format.
 - Must adhere to for MET-TC tools to properly parse the input data (first 8 columns required)

For detailed information on ATCF format: http://www.nrlmry.navy.mil/ atcf_web/docs/database/new/abdeck.txt

• The best track analysis is used primarily used as the observational dataset in MET-TC.

All operational model aids and best track analysis can be found on the NHC ftp server: ftp://ftp.nhc.noaa.gov/atcf/archive/

MET-TC: easy filtering criteria

MODEL	WATCH/WARNING STATUS
STORM ID	THRESHOLD: Any value: initial time, valid time
BASIN	WATER ONLY
CYCLONE	RAPID INTENSITY
STORM NAME	LANDFALL
INITALIZATION TIME: Include, exclude, beginning, end	EVENT EQALIZATION
INITALIZATION/VALID HR	CONSENSUS FORECAST
VALID TIME: Include, exclude, beginning, end	LAG FORECAST
LEAD TIME	INTERPOLATED FORECASTS
MASKING	

MET-TC: TC_stat

- The **filter** job applies a flexible set of filtering criteria to subset track data
- The **summary** job computes summary statistics for one or more columns of data
- The **rirw** job identifies rapid intensification or weakening in the forecast and analysis track and applies flexible criteria to derive event contingency tables and statistics

MET-TC: HWRF RIRW Verification

- MET-TC includes Rapid Intensity Change verification capabilities
 - 30kt change over 24hr. Also includes relaxation capabilities for further diagnosis of model behavior
 - Contingency table statistics, distributions corresponding to the 4 quadrants of the contingency table

					Obser		
				1	RI	No RI	Total
	Model]	RI	1 (0.	28 3%)	253 (0.6%)	381 (0.9%)
	Forecast	Ne) RI	16 (4.	523 1%)	37654 (94.9%)	39277 (99%)
		T	otal	17 (4.	751 4%)	37907 (95.6%)	39658 (100%)
	POD		7.3%				
	PODN		99.3%				
วค	FAR		66.4%				
20	RI Event R	late	4.4%				

Mean of ADeck Maximum Wind Speed – BDeck Maximum Wind Speed by ADeck Model

Graphics tools

Graphical capabilities are included in the MET-TC release

0 314 0 314 0 314

342 342 342

356 356 356

0 0

295 295

268 268

Ö

000

R statistical language

243 243

ŏ

209 209 209

Ó

Lead Time (h)

References & Further Reading

- Verification methods for tropical cyclone forecasts: <u>https://www.wmo.int/pages/prog/arep/wwrp/new/documents/TC_verification_Final_11Nov13.pdf</u>
- Gilleland, E., 2010: Confidence intervals for forecast verification. NCAR Technical Note NCAR/TN-479+STR, 71pp. *Available at:*

http://nldr.library.ucar.edu/collections/technotes/asset-000-000-846.pdf

- Jolliffe and Stephenson (2011): Forecast verification: A practitioner's guide, 2nd Edition, Wiley & sons
- JWGFVR (2009): Recommendation on verification of precipitation forecasts. WMO/TD report, no.1485 WWRP 2009-1
- Nurmi (2003): Recommendations on the verification of local weather forecasts. ECMWF Technical Memorandum, no. 430
- Wilks (2006): Statistical methods in the atmospheric sciences, ch. 7. Academic Press
- NHC forecast verification: <u>http://www.nhc.noaa.gov/verification/index.shtml</u>
- WWRP/WGNE Joint Working Group on Forecast Verification Research: http:// www.cawcr.gov.au/projects/verification/

Appendix C of MET Documentation: http://www.dtcenter.org/met/users/docs/overview.php

• For MET code download and user's guide: <u>www.dtcenter.org/met/users</u>

• Contact for MET questions, help, comments: <u>met_help@ucar.edu</u>

HWRF questions?
<u>hwrf-help@ucar.edu</u>