HWRF v3.7a Tutorial NCWCP, January 25-27, 2016

HWRF Idealized Capability

Mrinal Biswas

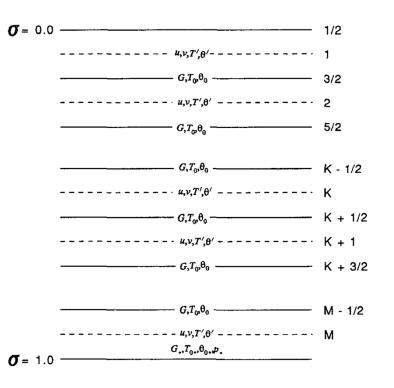
National Center for Atmospheric Research

Slides are adapted from L. Bernardet's Idealized talk at China titorial

Developmental Testbed Center-

Acknowledgements Sara Michelson (NOAA ESRL/PSD & CU/CIRES) Young Kwon (formerly from NOAA EMC)

Overview of idealized capability


- Initialization uses a prescribed vortex superposed onto a quiescent environment. Default
 - Max intensity of 20 ms⁻¹
 - Radius of maximum winds (RMW) 90 km
- The model configuration is same as the real run
 - Three domains with telescopic nests
- f- or β -plane
- Lower boundary is water (no land masses)
- Sea surface temperature
 - time-invariant (no ocean coupling)
 - horizontally homogeneous
 - default =302 K
- Uses: research and development

Wang,Y., 1995: An inverse balance equation in sigma coordinates for model initialization *Mon. Wea. Rev.*, **123**, 482–488.

Creation of the idealized vortex - I

The vortex is based on the balance equation relating prescribed wind fields to mass fields

- The atmosphere is divided into M layers in the sigma coordinate system.
- The initial background state temperature (T_o) along with a prescribed forcing term (G) in the balance equation are defined at the interfaces of the model layers.
- The initial vortex winds along with the temperature perturbation (*T*'), derived from the background state are defined at mid-levels levels between the interfaces.

Creation of the idealized vortex - II

• The wind field of the initial vortex is prescribed in cylindrical polar coordinates by:

$$V(r,\sigma) = V_m(\frac{r}{r_m})\sin(\frac{\pi\sigma}{2})e^{\frac{[1-(r/r_m)]^b}{b}}$$

where V_m is the maximum wind at the surface, r_m is the radius of maximum wind, r is the radius from the vortex center, and b = 1.

• The forcing term in the balance equation is given by:

$$G(u,v) = 2J(u,v) + f\zeta - u\beta$$

where J is the Jacobian, f is the Coriolis parameter, ζ is the vorticity and β is the meridional gradient of the Coriolis parameter.

Developmental Testbed Center

Creation of the idealized vortex - III

• The pressure at $\sigma = 1$ is obtained by solving the Poisson equation: $\nabla^2 \ln(n) = \frac{G_d}{G_d}$

$$\nabla^2 \ln(p_*) = \frac{G_d}{RT_d^0}$$

where subscript *d* denotes the variable evaluated at $\sigma = 1$.

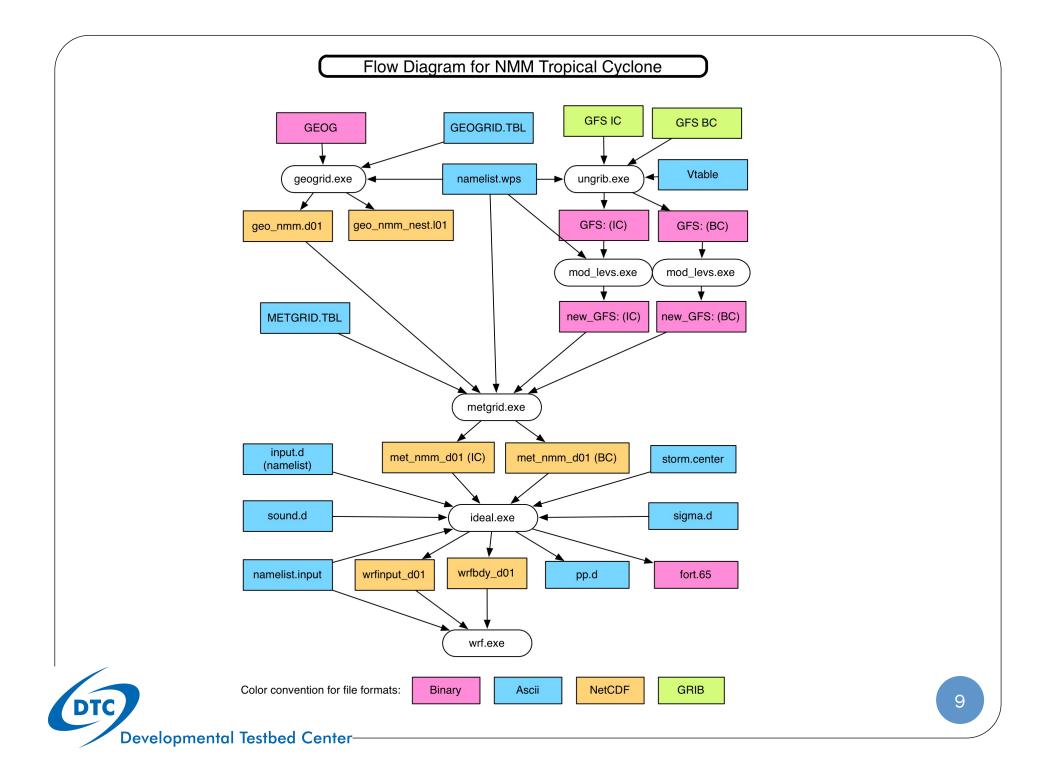
• The temperature perturbations at the rest of the sigma levels are determined by solving Poisson equation:

$$\nabla^2 T'_k = \nabla \cdot \left[\left(\frac{\partial T'}{\partial \ln(\sigma)} \right) \nabla \ln(p_*) \right] + \left[\left(\frac{\partial T_0}{\partial \ln(\sigma)} \right) \nabla^2 \ln(p_*) \right]_k - \left[\frac{\partial G}{R \partial \ln(\sigma)} \right]_k$$

• Finally, using the non-hydrostatic approximation, the geopotential heights are obtained from the total temperature and moisture fields.

Code and scripts

- WPS
 - *geogrid.exe, ungrib.exe, mod_levs.exe, metgrid.exe*
- No vortex initialization, data assimilation, or ocean
- WRF
 - <u>Must</u> compile HWRF with IDEAL_NMM_TC=1
 - Specifying ./compile nmm_tropical_cyclone on the command line
 - *wrf.exe, ideal.exe* (cannot use wrf.exe from real compilation)
- UPP and graphics
- Scripts
 - Do not use the wrappers in hwrf-utilities to run
 - They use invoke the vortex initialization (not needed for idealized)
 - Just run executables (all in command line; except *wrf.exe* in batch)
 - Use a script to run UPP and generate GrADS graphics


Input files

- Two GFS GRIB files to provide a template for IC and LBC
 - Files *gfs.t12z.pgrb2.0p25.f000* and *gfs.t12z.pgrb2.0p25.f126*
- Files in *WRFV3_idealized/test/nmm_tropical_cyclone*
 - Namelist file for WPS: *namelist.wps*
 - Namelist file for WRF: *namelist.input*
 - Vortex description file: *input.d*
 - Intensity, RMW, f or β plane
 - Sounding data: *sound.d*
 - 30 levels (or change number of levels in code)
 - Vortex center file: *storm.center*
 - Sigma file: *sigma.d*
 - Do not change this file
- Lookup tables for running WRF in *hwrf-utilities/parm*

Idealized model initialization

- Use WPS (*geogrid*) to setup domain
- Use WPS (ungrib, mod_levs, and metgrid) to process GFS for IC/LBC
 - *mod_levs* is used to reduce data in GFS file to expedite processing
 - Outputs are just a template to add the environment and vortex
- Use *ideal.exe* to create the actual IC and LBC (*wrfiput* and *wrfbdy*)
 - LBC are quiescent. This inevitably leads to some reflection when waves emanating from the vortex reach the outer domain boundaries

Working directories

- Will need a working directory
 - workdir = /glade/scratch/\${USER}/Idealized
 - Subdirectories
 - WRFV3
 - WPSV3
 - *wpsprd* (for running WPS: geogrid, ungrib, mod_levs, metgrid)
 - *wrfprd* (for running ideal and wrf)

Submitting to batch system

- geogrid.exe, ungrib.exe, mod_levs.exe, metgrid.exe, ideal.exe
 - Executables can be run on command line
- wrf.exe
 - Will be submitted to the batch system

Running geogrid

Enter the working directory

cd \$workdir/wpsprd

Copy the WPS namelist

cp \${WORKDIR}/ WRFV3/test/nmm_tropical_cyclone/namelist.wps .

Edit namelist.wps and set path

geog_data_path = location of file

Run executable geogrid.exe on a compute node or batch system

\${WORKDIR}/WPSV3/geogrid.exe

Verify that the output files were created

```
ls -l geo_nmm.d01.nc geo_nmm_nest.l01.nc \
    geo_nmm_nest.l02.nc
```

Developmental Testbed Center

Running ungrib

Link the ungrib table

ln _fs \${WORKDIR}/WPSV3/ungrib/Variable_Tables/Vtable.GFS Vtable
Link the two input GFS files

ln -fs \${DATA}/gfs.t12z.pgrb2.0p25.f* .

Link the GFS files to the names expected by ungrib \${WORKDIR}WPSV3/link_grib.csh gfs.t12z.pgrb2.0p25.f000 \ gfs.t12z.pgrb2.0p25.f120

ls -1 GRIBFILE.AAA GRIBFILE.AAB

Run ungrib

\${WORKDIR}/WPSV3/ungrib.exe

Verify that the output files were created _1s -1 GFS:2012-10-26_12 GFS:2012-10-31_12

Running mod_levls

Run mod_levs. Not MPI job, so does not require batch system

\${WORKDIR}/WPSV3/util/mod_levs.exe GFS:2012-10-26_12 new_GFS:2012-10-26_12
\${WORKDIR}/WPSV3/util/mod_levs.exe GFS:2012-10-31_12 new_GFS:2012-10-31_12

Verify that the output files were created

ls -l new_GFS:2012-10-26_12 new_GFS:2012-10-31_12

• Note: only the levels listed in variable *press_pa* in *namelist.wps* will be retained.

Running metgrid

Link the metgrid table

ln _fs \${WORKDIR}/WPSV3/metgrid/METGRID.TBL.NMM ./METGRID.TBL
Edit namelist.wps set paths

```
opt_metgrid_tbl_path = = '.'
```

Run metgrid

\${WORKDIR}/WPSV3/metgrid.exe

Verify that the output files were created

Running ideal - I

Enter the working directory

cd \$workdir/wrfprd

Link WRF input files

ln -fs \${WORKDIR}/WRFV3/run/ETAMPNEW_DATA ./

- ln -fs \${WORKDIR}/WRFV3/run/ETAMPNEW_DATA.expanded_rain ./
- ln -fs \${WORKDIR}/WRFV3/run/GENPARM.TBL ./
- ln -fs \${WORKDIR}/WRFV3/run/LANDUSE.TBL ./
- ln -fs \${WORKDIR}/WRFV3/run/SOILPARM.TBL ./
- ln -fs \${WORKDIR}/WRFV3/run/VEGPARM.TBL ./
- ln -fs \${WORKDIR}/WRFV3/run/tr49t67 ./
- ln -fs \${WORKDIR}/WRFV3/run/tr49t85 ./
- ln -fs \${WORKDIR}/WRFV3/run/tr67t85 ./
- ln -fs \${WORKDIR}/WRFV3/run/ozone.formatted ./
- ln -fs \${WORKDIR}/WRFV3/run/ozone_lat.formatted ./
- ln -fs \${WORKDIR}/WRFV3/run/ozone_plev.formatted ./
- ln -fs \${WORKDIR}/WRFV3/run/RRTM_DATA ./
- ln -fs \${WORKDIR}/WRFV3/run/RRTMG_LW_DATA ./
- ln -fs \${WORKDIR}/WRFV3/run/RRTMG_SW_DATA ./

Running ideal - II

Link the WPS files

ln -fs \${WORKDIR}/wpsprd/met_nmm* .

ln -fs \${WORKDIR}/wpsprd/geo_nmm* .

Copy namelist input

cp \${WORKDIR}/WRFV3/test/nmm_tropical_cyclone/namelist.input .

Running ideal - III

Copy the idealized simulation input files

cp \${WORKDIR}/WRFV3/test/nmm_tropical_cyclone/input.d .

cp \${WORKDIR}/WRFV3/test/nmm_tropical_cyclone/sigma.d .

cp \${WORKDIR}/WRFV3/test/nmm_tropical_cyclone/sound.d .

cp \${WORKDIR}/WRFV3/test/nmm_tropical_cyclone/storm.center .

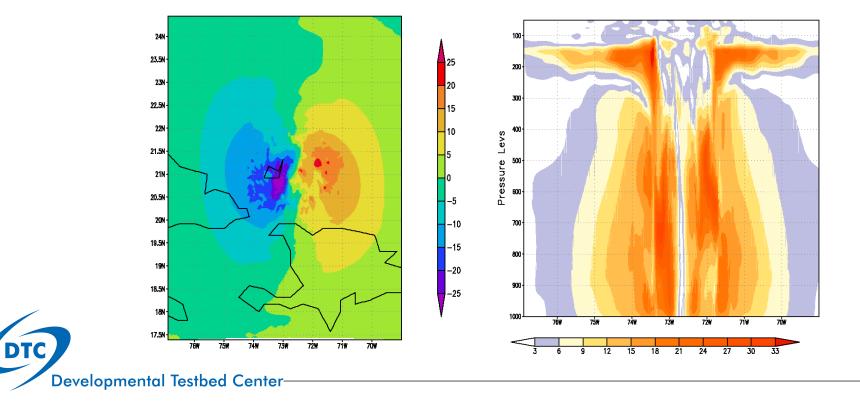
Edit and modify files *input.d*, *sound.d*, if desired

File *storm.center* should not be altered (storm in center of inner nest)

File *sigma.d* should not be altered (vertical levels to create the initial vortex)

Run *ideal.exe* using script to submit it to batch queue

\${WORKDIR}/WRFV3/main/ideal.exe


Verify that the output files were created

ls _l wrfinput_d01 wrfbdy_d01 fort.65

Running WRF

Run wrf.exe using script to submit it to batch queue
 bsub < run.wrf.ideal.csh
Verify that the output files were created</pre>

ls —l wrfout_d01* wrfout_d02* wrfout_d03*

19