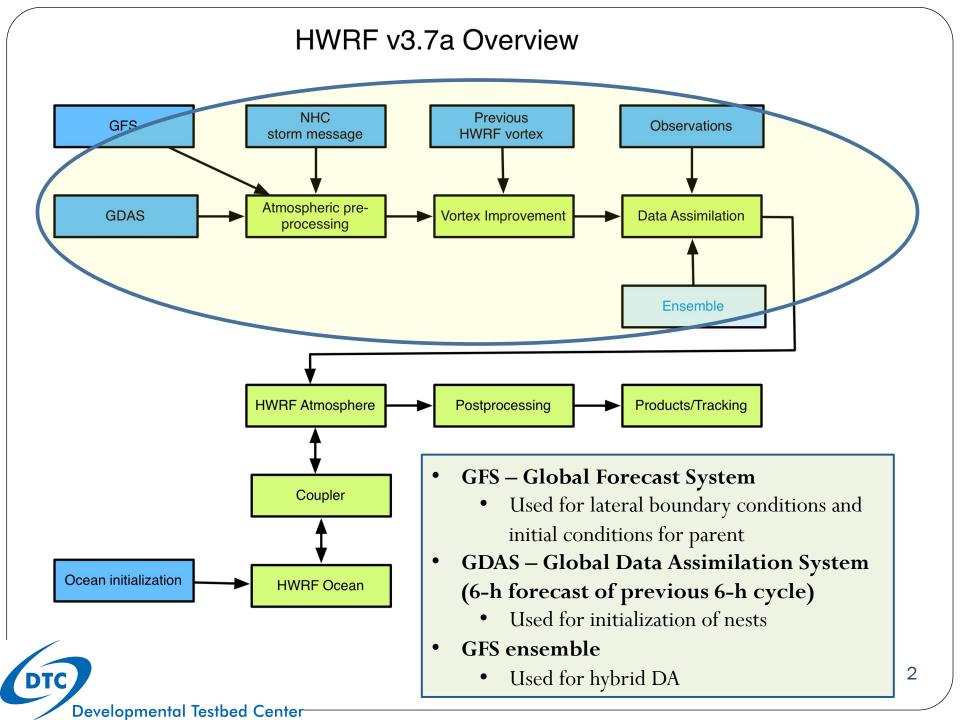
HWRF v3.7a Tutorial College Park, MD, Jan 25, 2016


HWRF Initialization Overview

Christina Holt

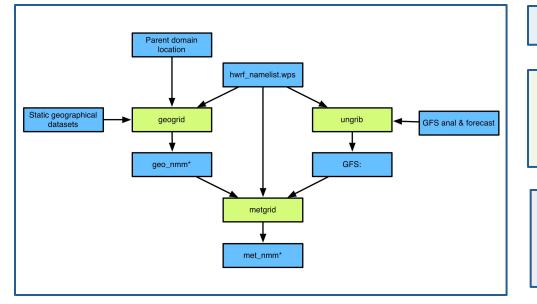
NOAA ESRL Global Systems Division, Boulder CO University of Colorado CIRES, Boulder CO

Slides provided by Ligia Bernardet

Domain location

Location (10*lat, 10*lon)

Direction(°); speed (dm/s)


HWRF is only launched when a TC Vital message is issued

Parent domain location depends on the storm location and 72-h official projection

- E. g., JTWC 07W SOULIK 20130709 1200 203N 1381E 285 057...
- Domain center latitude (CENLA) if STORM_LAT < 15.0 then CENLA=15.0 if 15.0 ≤ STORM_LAT ≤ 25.0 then CENLA=STORM_LAT if 25.0 < STORM_LAT < 35.0 then CENLA=25.0 etc.
- Domain center longitude (CENLO)
 - The domain center longitude is the average of storm center and the 72-h forecast
 - If 72-h forecast absent, d01 center is 20W from storm center
 - To assure that the domain center is separated from the storm center by at most 5 degrees, the following procedure is followed:
 if CENLO > STORM_LON+5 then CENLO= STORM_LON + 5
 if CENLO < STORM_LON- 5 then CENLO= STORM_LON 5

The outer nest (d02) and inner nest (d03) are centered on the storm

WRF Preprocessing System (WPS)

Script determines domain location

Geogrid reads geographical static data (topography etc.) and interpolates them to WRF grids

Ungrib reads selected variables from global model analysis and forecast in GRIB format

Metgrid horizontally interpolates global model data to WRF grid

WRF Preprocessing System Users' Guide (see Chapter 2): http://www.dtcenter.org/HurrWRF/users/docs/users_guide/WRF-NMM_2015.pdf

Example of WPS namelist

&share ref_lat = 21.0, wrf_core = 'NMM', $\max_{dom} = 3$, ref_lon = 287.25, start date = '2012-10-26 12:00:00', end_date = '2012-10-31_12:00:00', interval_seconds = 432000, io_form_geogrid = 2, / (i,j) of SW corner of &ungrib parent domain &geogrid out_format = 'WPS', prefix = 'FILE',/ parent_id = 1, 1, 2,parent_grid_ratio = 1,3,3, i_parent_start = 1,99,12, &metgrid j_parent_start = 1,201,35, fg_name = 'FILE', = 288, 142, 265io_form_metgrid = 2, e_we = 576, 274, 472 e_sn $geog_data_res = '2m', '2m', '2m'$ dx = 0.135, dy = 0.135Grid spacing of d01 DTC Number of grid points in each domain **Developmental Testbed Center**

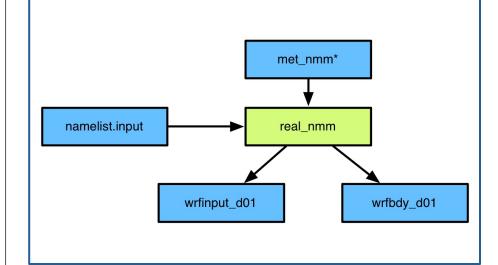
map_proj = 'rotated_ll' WPS geographical dataset geog_data_path = path_to_datasets/wps_geog, opt_geogrid_tbl_path = path_to_geogrid_table,

Center of parent domain

opt_metgrid_tbl_path = path_to_metgrid_table

Additional files used in WPS

Geogrid table


- Specifies source and interpolation method for geographical datasets
- Ungrib table:Vtable
 - Specifies which fields to extract from GRIB file

Metgrid table

• Specifies methods for interpolating parent model data to WRF grid

The real program

The *real_nmm.exe* program is used to vertically interpolate the global model data to the WRF levels

HWRF operational uses 61 levels in AL & EP, and 43 in all other basins by default. (These configurations can be used for any basin)

Real_nmm.exe is also used to compute derived
variables that are not present in the global
data but are needed for WRF

Real_nmm.exe outputs initial & and boundary conditions that can be used to start WRF

For idealized simulations, program *ideal.exe* is used instead of *real_nmm.exe*

Real Users' Guide (see Chapter 3):

http://www.dtcenter.org/HurrWRF/users/docs/users_guide/WRF-NMM_2015.pdf

Developmental Testbed Center

DTC

The real/WRF namelist

&time_control

Begin, end time Freq of boundary files Freq of output

&domains

Timestep

Number of domains and dimensions

Grid spacing

Location of nests

Vertical levels

&physics

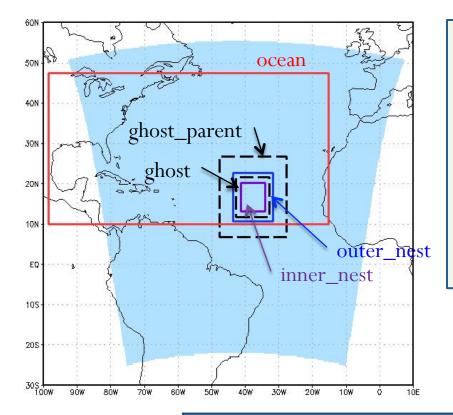
Cumulus, microphysics, radiation, PBL

Physics timesteps

Vortex tracker options

WRF also uses several lookup tables to expedite computations in the physical parameterizations

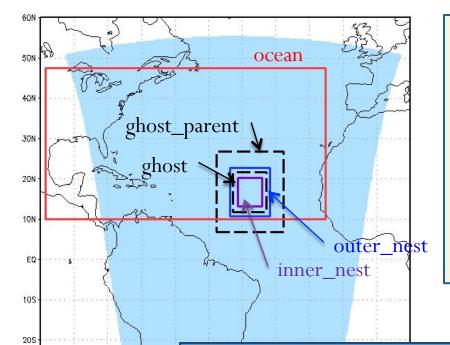
WRF Users' Guide (see Chapter 4):


http://www.dtcenter.org/HurrWRF/users/docs/users_guide/WRF-NMM_2015.pdf

Review

- **Step 1**: define location of parent domain
- **Geogrid**: puts geographical static data in WRF grid
- **Ungrib & Metgrid**: horizontally interpolate GFS data (in GRIB format) to WRF parent grid for initialization
- **Real**: interpolate GFS data to WRF vertical levels
- Once steps above are completed, a full set of ICs in the 3D parent WRF grid are available for starting the main forecast
- All of the steps above are performed automatically by the HWRF Python scripts
- The next steps are used to improve the vortex in these ICs

Preparing vortex initialization: <u>Analysis</u>



Step 1: WRF Analysis run (90 s WRF run)

- Is used as a tool to downscale global data from *real*'s wrfinput_d01 file to HWRF outer_nest (d02), and inner_nest (d03)
- Outputs "analyses" files for d02 and d03, which are t=0 "WRF restart" files, containing variables needed by vortex relocation

Domains for WRF Analysis and HWRF forecast are identical			
d01 - 18 km	d02 – 6 km	d03 - 2 km	
80°x80°	12°x12°	7.1°x7.1°	

Preparing vortex initialization: <u>Ghost</u>

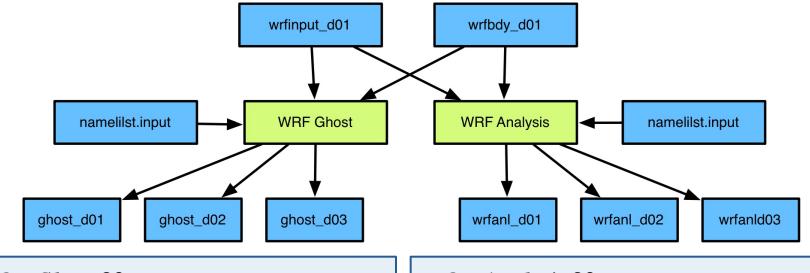
Step 2: WRF Ghost run (90 sWRF run)

- Downscales global data from *real*'s wrfinput_d01 file to a <u>large</u> highresolution domain for storm-scale data assimilation
- Outputs ghost-sized "analyses" files for ghost d02 and ghost d03, containing variables needed by DA package

	Domains for HWRF forecast, WRF Analysis, WRF Ghost				
٥́١		d01 - 18 km	d02 – 6 km	d03 - 2 km	
	HWRF Forecast	$80^{\circ}x80^{\circ}$	12°x12°	7.1°x7.1°	
	WRF Analysis	$80^{\circ}x80^{\circ}$	12°x12°	7.1°x7.1°	
	WRF Ghost	80°x80°	26°x26°	13°x13°	

Developmental Testbed Center

305 | 100W


90W

80W

70W

60

Summary of last Analysis & Ghost runs

WRF Ghost 90-s run

- Downscales info from global model
- Provides first guess for storm-scale DA

WRF Analysis 90-s run

- Downscales info from global model
- d01,d02,d03 used as main input to vortex initialization procedure
- d01 output used for identifying location of vortex in global model for removal

Vortex initialization: Stage 1

Cold Start?

OR

Cycled Start?

IF

Intensity $< 14 \text{ ms}^{-1}$

OR

Previous 6 —h forecast NOT available **THEN**

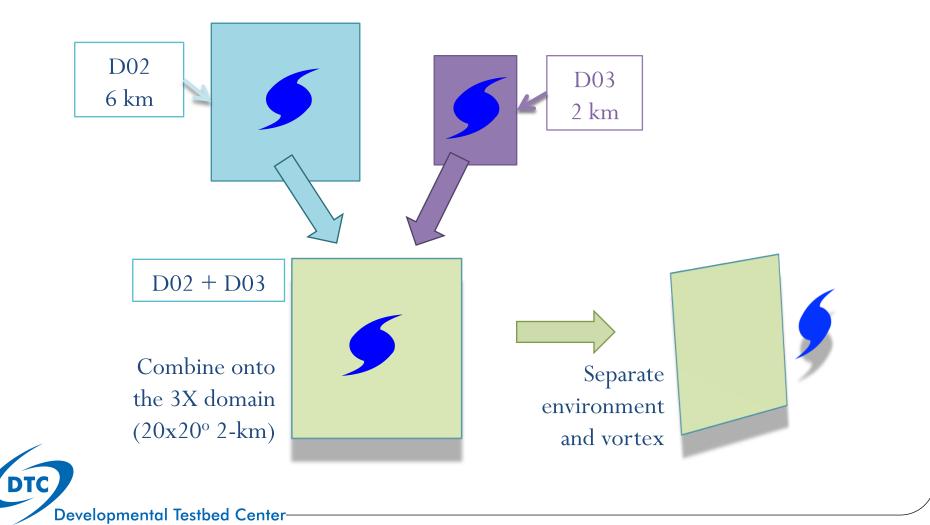
Exit Stage 1

IF

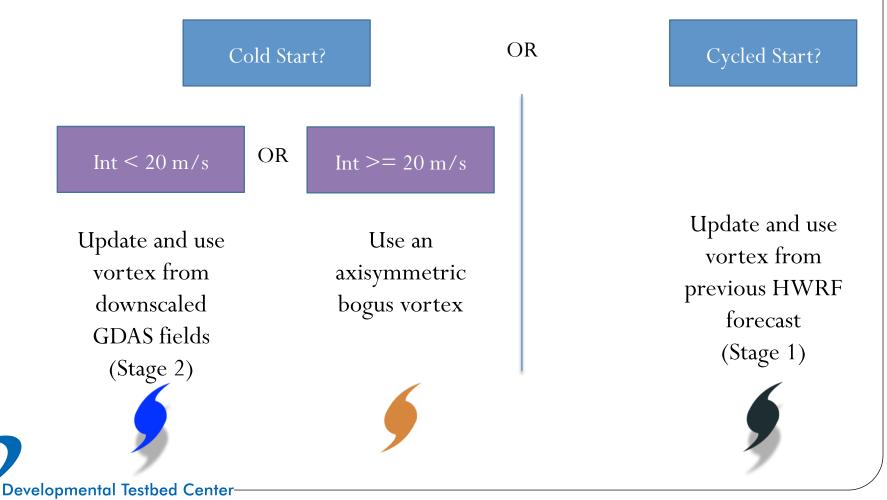
Intensity $>14 \text{ ms}^{-1}$

AND

Previous 6 –h forecast IS available THEN

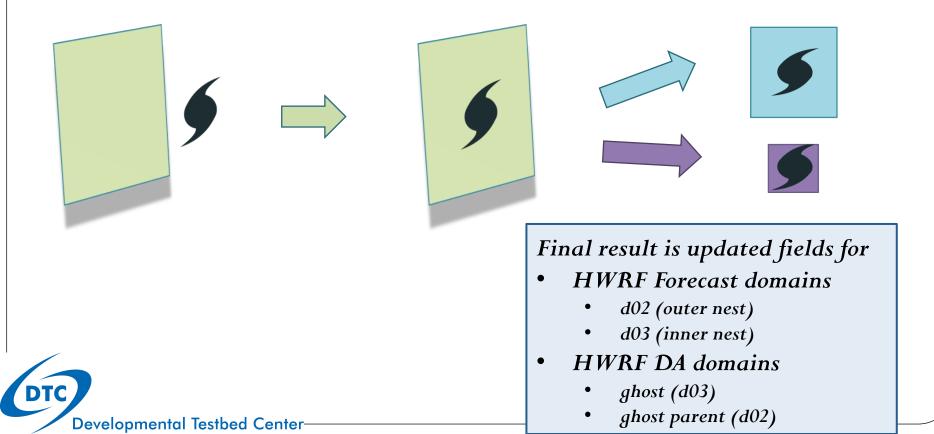

Start vortex adjustment process by extracting HWRF vortex from

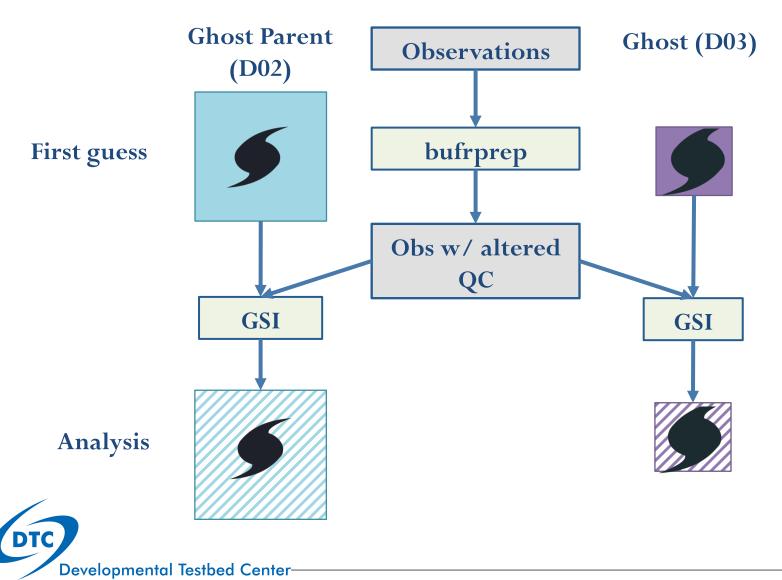
previous forecast



Vortex initialization: Stage 2

Separate the GDAS first guess vortex from environmental flow

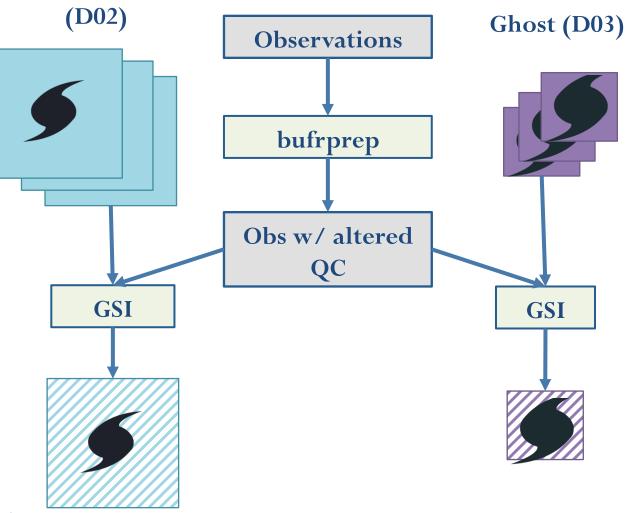

Vortex initialization: Stage 3 Determine which vortex will be used for initializing HWRF and update it using TCVitals

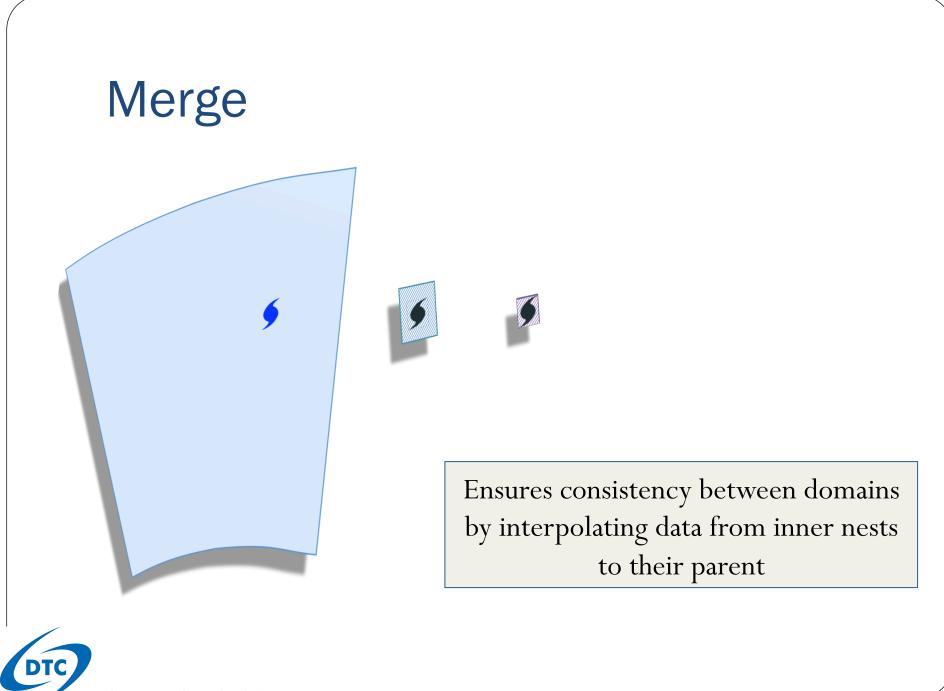

DTC

Vortex initialization: Stage 3

Put selected vortex in GDAS environmental flow for both analysis and ghost domains

GSI data assimilation (simplified)




GSI data assimilation (FGAT detail)

Ghost Parent

First guesses at -3h, 0h, +3h (WPS, Ghost, Analysis, real, and relocate are done for 3 time levels in order to use First Guess at Appropriate Time – FGAT)

Analysis

Initial conditions for HWRF forecast

wrfinput_d01

wrfinput_d02 wrfinput_d03 GFS analysis w/ GDAS background w/ merged info vortex improvement, from all GSI data assimilation, and merged info from all domains domains DTC

Thank you for your interest!

You can...

- Ask questions during the tutorial
- Visit our website: <u>http://www.dtcenter.org/HurrWRF/users</u>
 - HWRF v3.7a Users Guide: <u>http://www.dtcenter.org/HurrWRF/users/docs/users_guide/HWRF_v3.7a_UG.pdf</u>
 - Scientific Documentation: <u>http://www.dtcenter.org/HurrWRF/users/docs/scientific_documents/HWRF_v3.7a_SD.pdf</u>
 - WRF-NMM Users Guide:

http://www.dtcenter.org/HurrWRF/users/docs/users_guide/WRF-NMM_2015.pdf

Contact me later: christina.holt@noaa.gov

DTC