Ocean, Waves and Sea Spray in HWRF

Efforts, Progress and Future

Hyun-Sook Kim Hyun.sook.kim@noaa.gov

Behalf of Hendrik L. Tolman Chief, Marine Modeling and Analysis Branch NOAA/NWS/NCEP/EMC

Hendrik.Tolman@noaa.gov

HWRF tutorial, Jan 15, 2014

Hurricane modeling team at EMC

- V. Tallapragada and team (7 + leveraging EMC \approx 5).
- Original GFDL hurricane model coupled to POM ocean model in operations since 2005.
 - Main justification is to improve intensity forecast.
- Now in HWRF hurricane model.
 - Presently with POM model coupling from GFDL since 2007.
 - Moving to HYCOM coupling.
- In Progress and Future:
 - 3-way coupling Add wave coupling in collaboration with URI and U. Miami.
 - NOAA Environmental Modeling System (NEMS) framework Earth System Modeling Framework (ESMF) compliance in collaboration with NLR and U. Miami

HWRF-HYCOM

Coupled hurricane modeling with regional ocean components

2-way coupling

HWRF tutorial, Jan 15, 2014

Typhoon Forecasts for the 2012 and 2013 season HWRF-HYCOM (cpl) vs. HWRF (ctl)

2-way coupling

Track Verification (639 cases)

The differences in TC track between Coupled (cpl) and persistent SST (ctl) forecasts are very small.

Analysis of the individual components suggests that the tracks have a southwestward bias, but having ocean coupled corrects this bias. cf. southward bias (Khain and Ginis, 1991) or northward bias (Bender et al. 1993) for a westward moving storm.

Typhoon Forecasts for the 2012 and 2013 seasons HWRF-HYCOM (cpl) vs. HWRF (ctl)

2-way coupling

V_{max} (kt)

HWRF-HYCOM better for 2013

 $\mathsf{V}_{\mathsf{max}}$

Vmax. vs. Pmin

SST Analysis

2-way coupling

statistics @day 5 for Jelawat 18W: cycle=2012092200

HYCOM SST

- Similar cold wake
- (~26°C) at a similar
- degree of cooling
- $(~3^{\circ}C)$
- Mesoscale variability **GFS SST**
- No change in GFS SST
- No cold wake and no
- cooling
- No Mesoscale variability

HYCOM SST

- Similar magnitude of mean
- **Higher correlation** coefficient (0.899)
- Lower RMSD (0.6) and STD (0.5).

Analysis of Storm size , Wind pattern, and Heat flux

HWRF-HYCOM (cpl) HWRF (ctl) LHTFL for 2012092600 LHTFL for 2012092600 SHTFL 2012092600 1000₆ 1₆₀₀ 20, 600²⁰ 400 16 -50 400 16 -100 200 12 200 12 -150 -150 -200 H3Y2 - fhr=48for IC=00:00UTC 2012/09/24 H213 - fhr=48for IC=00:00UTC 2012/09/24 Jelawat 18W 48 forecast hr IC: 2012/09/24 00Z On footprint of 1000 km radius Each panel :

2-way coupling

Latent Heat (top left) 0~1100; Sensible Heat (top right) -200~200; LH+SH (bottom) -200~1200

HWRF-HYCOM cf. HWRF:

- Size Smaller by ~5%
- Wind Pattern Asymmetric
 - → SST feedback plays significant.
 - Magnitude Smaller by 25% (LHT), 14% (SHT) and 26% (combined).

Preliminary Conclusion

(coupled) HWRF-HYCOM compared to (non-coupled) HWRF:

- 1. Smaller storm size on average, and Contracting with time (less than 5%).
- 2. Asymmetric wind pattern.
- 3. (Slower translation speed.)
- 4. Lower surface enthalpy (less than 26%).
- 5. HYCOM SST cooler than GFS.
- 6. Meso-scale dominant.

Maximum Potential Intensity (MPI)

Emanuel (2003)

$$V_{\rm max}^2 \propto \frac{(T_1 - T_2)}{C_d T_2} F_h$$

 $T_{1} = SST;$ $T_{2} = \text{outflow temperature};$ $C_{d} = \text{drag coefficient};$ and $E_{h} = (I HT + SHT) \text{ the surface flux of enthalow}$

 $F_h = (LHT+SHT)$ the surface flux of enthalpy.

- > *T1, LHT, SHT, Cd* and (*Ch*) are either explicitly or implicitly related with SST.
- Coupling w/ an ocean model results in the SST feedback.
- The simulations are done w/o optimal tuning for coupling. Results are textbook example.

Hence, re-considered are:

- 1. Sub-grid parameterization in both the atmospheric and oceanic components;
- 2. Optimizing air-sea flux parameters to two-way coupling system, e.g. Cd & Ch. Or, employing three-way coupling.

3-way coupling

HWRF-POM/HYCOM-WaveWatchIII Coupling

Atmospheric Boundary Layer

HWRF three-way coupled Air-Sea Interface Module (ASIM)

URI 3-way coupling

ASIM implemented in HWRF includes the following physical processes affected by surface waves:

Hurricane model

surface stress includes effects of sea state, directionality of wind and waves, sea spray, and surface currents.

Wave model

- Forced by sea state-dependent wind stress.
- includes effects of ocean currents.

Ocean model

- forced by sea state-dependent wind stress, modified by growing or decaying wave fields and Coriolis-Stokes forcing..
- turbulent mixing is modulated by the Stokes drift (Langmuir turbulence)

 α - Charnock coefficient

 λ - Mean wavelength

Cp – wave age

 $\mathbf{\tau}_{\text{Coriolis-Stokes}}$ - Coriolis-Stokes stress

- $\boldsymbol{\tau}_{air}$ Wind Stress at wave height
- \mathbf{U}_{λ} wind vector at reference height

Q_{air} – Heat Flux

 γ - Misalignment (wind angle - stress angle) Hs – significant wave height SST – Sea surface temperature τ_{diff} - Surface wave momentum budget U_{ref} - wind vector at reference height U_c - current vector R_{air} – air moisture

: Langmuir turbulence effect – will be included in the turbulence closure model (in collaboration with Kukulka, U. Delaware)

: wave-dependent momentum flux budget terms (Fan et al. 2010)

S - wave spectrum

: Coriolis-Stokes forcing term (Polton et al. 2005)

f - Coriolis parameter

Wind profile in Wave Boundary Layer (WBL)

Wind shear is not aligned with wind stress. Wind profile is explicitly solved, and the misalignment angle (γ) is determined.

URI

3-way coupling

Cd vs. Wind for different ASIM parameterization options

ASIM includes three sea-state dependent Cd parameterization options tested here using an empirically-driven wave spectrum from the Joint North Sea Wave Project (Elfounhaily et al. 1997).

HWRF tutorial, Jan 15, 2014

URI 3-way coupling

Sea state dependent Cd

URI 3-way coupling

 Ψ - Wave spectrum

- Form drag is obtained by integrating the 2D wave spectrum times growth rate over all wavenumbers and directions.
- The short wave spectral tail and growth rate are parameterized in ASIM using different theoretical and empirical methods.

ASIM momentum flux budget terms In idealized hurricane

URI

3-way coupling

Investigation of sea-state dependent Cd Idealized hurricane

URI 3-way coupling

Results: GFDL-POM-WW3

URI 3-way coupling

HWRF tutorial, Jan 15, 2014

Results: GFDL-POM-WW3

URI 3-way coupling

HWRF tutorial, Jan 15, 2014

For coupled HWRF (2-way):

- 1. Focus on best possible description of physical states for all models.
 - Better physics makes for a better model. But ..., better physics in a well tuned model will almost always detune the model.
- 2. Deal with de-tuning of model due to "improved" physics in two ways, which makes most sense.
 - Deal with this as bias treatment in coupler (quick and dirty).
 - Retune as possible, particularly when individual processes are documented to describe nature better (long term systematic approach).
- 3. We need to have a set of metrics for HWRF that reflects this, track and intensity alone will never work.
- 4. Coupled model makes further development of modeling system a little more complicated.
 - This is an unavoidable side effect of doing things physically better.

- 5. The key for this kind of coupled modeling is in the fluxes.
 - A weather model with a fixed or climatological SST is constrained in terms of systematic seasonal – climate shifts. But, In a coupled model, there is no constraint to the ocean state.
 - Hence, spurious drifts of the SST and mixed layer in general in the ocean will result in spurious drifts in the weather model, with a strong possibility of (nonlinear) feedback
- 6. Developing this coupled model is a cyclic process:
 - First emphasis on getting the ocean right,
 - In the process, we found many issues with HWRF.
 - Not necessarily major issues for HWRF, but critical for realistic coupling with a realistic ocean model.
 - POM appears less sensitive to these errors as ocean responses are suppressed to gain a more robust system.
 - Fixes and updates in the HWRF model require a revisit to make sure that all ocean responses are realistic.
 - ... and this will never stop...

HWRF tutorial, Jan 15, 2014

Coupling HWRF weather model to HYCOM ocean model.

- Regional ocean model nested in basin scale ocean model.
- Basin scale ocean model set up to work well with GFS fluxes.
- HWRF fluxes are systematically different from GFS fluxes resulting in SST drift issues:
 - No drift in RTOFS ← GFS.
 - > Drift in RTOFS ↔ HWRF.
 - Short term fix in coupler.
 - Successful.
 - Eventually, correct the HWRF

fluxes (since 2012)

- Long term NWS issue
 - Will require collaboration.
 - e.g. wind stress

Courtesy Hyun-Sook Kim and Jamese Sims

HWRF-HYCOM example

HWRF-HYCOM example

Needed modification in coupler for HWRF-HYCOM coupling (and any other ocean). Coupler needs to know which atmosphere and ocean models are used.

Winds / waves example

So, coupling gives you better resolution of parameters in time, and therefore gives a better wave model.

• This, and not coupling physics is the reason why the coupled wave-weather model at ECMWF gives improved wave prediction.

However, if you go to high spatial resolution coupled modeling, time scales of coupling also become smaller, and

- Waves in a traditional model become higher and higher and less and less reliable, but
- If wind fields are smoothed before passing them on to the wave model, wave model behavior remains reliable.

Winds examples

Coupler needs to know scales in atmosphere used for waves. Or wave model physics need to be modified to account for wind scales resolved. Generic coupler needs both.

As mentioned before:

Better physics should result in better models.

But there are more subtle reasons too:

• Coupling forces you to take a closer look at details of the constituent models, in ways that are often complimentary to the way the models are conventionally validated.

> ECMWF wave-atmosphere coupling.

- This often leads to systematic improvement of the constituent models, that often has a positive impact on the constituent models, even if the impact on the actual coupling is found to be minimal.
 - **HYCOM HWRF coupling.**

Future: Challenge for HWRF NOAA Environmental Modeling System (NEMS) team at EMC

Mark Iredell and team (4 + EMC + OAR + Navy + ...).

Earth System Modeling Framework (ESMF): USA federal coupling standard

This is the basic framework / architecture.

Either core of the model, or wrapper around existing software.

ESMF Based Software Architecture