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What is Data Assimilation 
�  Numerical Weather Prediction (NWP) 

Given an estimate of the current state of the atmosphere (initial 
conditions), and appropriate surface (and lateral, if regional) boundary 
conditions, the model simulates the atmospheric evolution (forecasts) 

�  “Knowing the current state of the weather is as important as the 
numerical computer models processing the data.”-NOAA National 
Climatic Data Center   
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•  Model-based guess 
•  Obs-based guess 
•  Combined guess 
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What is Data Assimilation (Cont.) 

�  “Data assimilation is an analysis technique in which the observed 
information is accumulated into the model state by taking advantage of 
consistency constraints with laws of time evolution and physical properties”-F. 
Bouttier and P. Courtier, ECWMF Data Assimilation Training, 1999 

�  Initial conditions for NWP 
�  Calibration and validation 
�  Observing system design, monitoring and assessment 
�  Reanalysis 
�  Better understanding (Model errors, Data errors, Physical process 

interactions, etc) 
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Hybrid  Ensemble-Variational Data Analysis 
Concepts and Methods 

 



Three Dimensional Variational (3D-Var) Data 
Assimilation 

�  J: Cost function (penalty) = fit to background (Jb) + fit to observations (Jo)  
�  x: Analysis vector 
�  xb: background vector 
�  BVar: Background error (BE) covariance matrix(estimated offline) 
�  H: Observation operator (for 4D-var, H->forward operator HM, where M is 

a forward model) 
�  R: Observation error covariance 
�  y: Observation vector 

JVar x( )= 1
2
x-xb( )

T
BVar
-1 x-xb( )+ 12 y−Hx( )TR-1 y−Hx( )=Jb+Jo
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t? 

A scalar example: x here represents the temperature (t) outside 
 

tb=43F 
to=38F 

 J V a r ( t )  =   ½ ( t - t b ) σ B
- 1 ( t - t b )  +½( t o - t ) σ R

- 1 ( t o - t )  



3D-Var Data Assimilation (cont.) 

JVar x( )= 1
2
x-xb( )

T
BVar
-1 x-xb( )+ 12 y−Hx( )TR-1 y−Hx( )=Jb+Jo

�  Optimal xa is obtained by 
minimizing the cost function  

  

�  HT is called the Adjoint of the 
linearized observation operator 

∇JVar x( )=BVar-1 x-xb( )-HTR-1 y−Hx( )

∇JVar x( )=0
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σ B
- 1 ( t - t b ) - σ R

- 1 ( t o - t ) = 0  

t = σ B t 0 ( σ B + σ R ) - 1 + σ R t b ( σ B + σ R ) - 1  

Scalar example: What is the temperature (t)? 
 



Hypotheses assumed 
�  Linearized observation operator: the variations of the observation operator 

in the vicinity of the background state are linear:  
�  for any x close enough to xb : 

 H(x) –H(xb) = H(x – xb), where H is a linear operator 

�  Non-trivial errors: B and R are positive definite matrices 
�  Unbiased errors: the expectation of the background and observation errors 

is zero, i.e.,  < xb-xt  >= < y-H(xt) > = 0 

�  Uncorrelated errors: observation and background errors are mutually 
uncorrelated i.e. < (xb-xt)(y-H[xt])T  >=0 

�  Linear analysis: we look for an analysis defined by corrections to the 
background which depend linearly on background observation departures.  

�  Optimal analysis: we look for an analysis state which is as close as 
possible to the true state in an r.m.s. sense  
�  i.e. it is a minimum variance estimate 
�  it is closest in an r.m.s. sense to the true state xt   
�  If the background and observation error pdfs are Gaussian, then xa is also the maximum 

likelihood estimator of xt 
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Observation Term (Jo) 

�  Observation: y 
�  Observation operator: H 

�  Most (traditional measurements) 
�  3D interpolation 

�  Some (non-traditional) 
�  Complex function, e.g., 

�  Radiance= f(t,q), where f is a radiative 
transfer model 

�  Radar Reflectivity = f(qr,qs,qh) 

�  Observation innovation: y-Hx 
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JVar x( )= 1
2
x-xb( )

T
BVar
-1 x-xb( )+ 12 y−Hx( )TR-1 y−Hx( )=Jb+Jo

�  Observation error covariance: R 
�  Instrument errors + representation errors 
�  No correlation between two observations (Typically assumed to 

be diagonal) 8 



Background Term 

�  Background: xb 

�  Analysis: x 
�  Start from  x = x b  

�  Analysis increment: x-xb 

�  Background error covariance: B 
�  Controls influence distance 
�  Contains multivariate information 
�  Controls amplitude of correction to 

background 
�  For NWP, matrix is prohibitively 

large 
�  Many components are modeled or 

ignored.  
�  Computed a priori 

JVar x( )= 1
2
x-xb( )

T
BVar
-1 x-xb( )+ 12 y−Hx( )TR-1 y−Hx( )=Jb+Jo
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Pseudo Single-Observation Test 

u v 

T q 

u v 

T q 
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Hybrid Ensemble 3D-Var 

�  BVar: (Static) background error (BE) covariance matrix(estimated 
offline) 

�  BEns: (Flow dependent) background error covariance matrix 
(estimated from ensemble) 

�  β: Weighting factor (0.25 means total B is ¾ ensemble) 

JVar x( )= β
2
x-xb( )

T
BVar
-1 x-xb( )+1−β2 x-xb( )

T
BEns
-1 x-xb( )+ Jo
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What Does Bens Do? 
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ü  Allows for flow-dependence/errors of the day 
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What Does Bens Do? 

3D-Var increment would be zero 
(Cross-variable covariances hard to model with static Bvar)  

Ps obs 

First guess 
SLP contours 

Precipitable 
water 
increment 

Surface pressure observation near “atmospheric river” 
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Background 

3D-Var Ensemble 

Hybrid 



How Does Bens Benefit Us? 
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�  Allows for flow-dependence/errors of the day 
�  Multivariate correlations from dynamic model 

� Quite difficult to incorporate into fixed error covariance 
models 

�  Evolves with system, can capture changes in the 
observing network 

�  More information extracted from the observations => 
better analysis => better forecasts 

But BEns is not perfect…at least not yet!   



Localization of BEns 



Why Hybrid? 
VAR  
(3D, 4D) 

EnKF Hybrid References 

Benefit from use of flow 
dependent ensemble 
covariance instead of 
static B  

x x Hamill and Snyder 2000; 
Wang et al. 2007b,2008ab, 
2009b, Wang 2011; 
Buehner et al. 2010ab 

Robust for small 
ensemble 

x Wang et al. 2007b, 2009b; 
Buehner et al. 2010b 

Better localization 
(physical space) for 
integrated measure, e.g. 
satellite radiance 

x Campbell et al. 2009 

Easy framework to add 
various constraints 

x x Kleist 2012 

Framework to treat non-
Gaussianity  

x x 

Use of various existing 
capabilities in VAR 

x x Kleist 2012 
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Single Temperature Observation 
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3D-Var 

Ensemble Hybrid 



So What’s the Catch? 
�  Need an ensemble that represents first guess uncertainty 

(background error) 
�  In principle, any ensemble can be used. However, ensemble 

should represent well the forecast errors 
�  This can mean O(50-100+) for NWP applications 

�  Smaller ensembles have larger sampling error (rely more heavily 
on BVar) 

�  Larger ensembles have increased computational expense 
�  Updating the ensemble (NCEP) 

�  Global only currently:  an Ensemble Kalman Filter is currently used 
for NCEP Global Forecasting System (GFS) 

�  Regional: using the GFS ensemble generated by the GFS & GSI-
hybrid system at each analysis time (ensemble members are 
updated during the GFS cycle) 

. 
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Coupled GSI-Hybrid Cycling (GFS) 
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Summary with GSI   

Analysis (output) 

Background field 

Static BE: berror 

Observations: prepbufr/bufr files 

Observation operator (setup*, CRTM) 

Observation error: errtable 
22 

JVar x( )= β
2
x-xb( )

T
BVar
-1 x-xb( )+1−β2 x-xb( )

T
BEns
-1 x-xb( )+ 12 y−Hx( )TR-1 y−Hx( )

Input ensemble 

Weighting factor 



GSI and Its Community Support 



History 
�  Optimal Interpolation (OI) Analysis system 

�  First statistic data analysis system 
�  The Spectral Statistical Interpolation (SSI) analysis system was 

developed at NCEP in the late 1980’s and early 1990’s   
�  First operational variational analysis system  
�  Directly assimilate radiances 

�  The Gridpoint Statistical Interpolation (GSI) analysis system was 
developed as the next generation global/regional analysis system 
�  Wan-Shu Wu, R. James Purser, David Parrish, 2002:Three-

Dimensional Variational Analysis with spatially Inhomogeneous 
Covariances. Mon. Wea. Rev., 130, 2905-2916. 

�  Based on SSI analysis system 
�  Replace spectral definition for background errors with grid point 

version based on recursive filters 
�  First implemented at NCEP in 2006 
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Current 
�  GSI used in NCEP operations for 

� Regional 
� Global 
� Hurricane 
� Real-Time Mesoscale Analysis 
� Rapid Refresh (ESRL/GSD) 

�  GMAO collaboration (NASA 4DVAR) 
�  Operational at AFWA 
�  Modification to fit into WRF and NCEP infrastructure 
�  Evolution to Earth System Modeling Framework (ESMF) 
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General Comments 
�  GSI analysis code is an evolving system. 

�  Scientific advances (hybrid, Ens-Var, new data & analysis 
variables) 

�  Improved coding 
�  More efficient algorithms  
�  Bundle structure 
�  Generalizations of code (portability, multiple-models, …) 
�  Improved documentation 

�  Code is intended to be used operationally as well as by the research 
community 
�  Coding requirements, ops. Infrastructure, efficiency, ease of usage 
�  External testing, user-friendly interface, transition to ops., 

distributed effort (potential duplication) 
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ü  HWRF is one of the GSI applications. Some other options/capabilities 
available or under development might not be introduced here. 



Community GSI 
�  Objective: 

�  Provide current operational GSI capabilities to the research 
community (O2R) and  a pathway for the research community to 
contribute to operational GSI (R2O) 

�  Provide a framework to enhance the collaboration from distributed 
GSI developers 

�  GSI Code support: 
�  Community GSI repository 
�  User’s webpage 
�  Annual code release with user’s guide 
�  Annual residential tutorial 
�  Help desk 

�  GSI code management 
�  Unified code review-commit procedure 
�  Development coordinated through GSI Review Committee 
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GSI for HWRF: wrfhelp@ucar.edu  
•  Bundled with HWRF release  
•  Consistent with general GSI code release 
•  Next release is planned for Summer 2014 

Community GSI – User Support 
�  General GSI support through User’s Page and help desk: 

  http://www.dtcenter.org/com-GSI/users/index.php 
�  Annual code release (general) 

� Tested with PGI, Intel, and GNU (gfortran) compilers 
� Latest version is V3.2 (July, 2013) 

� 2013 operational HWRF capabilities 
� Next release is planned for Spring 2014 
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Community GSI - Documents 
�  User’s Guide 

� Match each  
   official release 

�  Workshop 
presentations 

�  Tutorial lectures 
�  Technique 

documentations 
�  Code browser 

� Calling tree 
�  Key publications 
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Community GSI - Practice 
�  On-line tutorial for each release 
�  Residential tutorial practice cases 
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Reference 
�  Data Assimilation Concept and Methods (ECMWF 

Training Course, Bouttier & Courtier) 
�  GSI Tutorial Lectures:  

� Fundamentals of Data Assimilation (Tom Auligne) 
� Background and Observation Errors (Daryl Kleist) 
� GSI Hybrid Data Assimilation (Jeff Whitaker, Daryl 

Kleist) 
� Aerosol Data Assimilation (Zhiquan Liu) 
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