

(additional **WM≈AM** and **WM≈OM** communications in progress)

Data flow in operational coupled HWRF

RUN-TIME COMMUNICATIONS

- if Component's GP is not a sea GP, Component sends a special value, to be discarded by interpolation procedure
- if no data is obtained at a GP by interpolation procedure, background data is used
- each Component can be run either in the coupled system or standalone, with the same code/executable (if there is nothing to communicate with, Component works standalone)

Data interpolation

• Interpolation: bilinear in elementary grid cells, sea points to sea points only

• Data not supplied by interpolation, due to domain and sea-land mask inconsistencies, are provided by:

background (e. g. GFS) data

 extrapolation on domain's sea-point-connected component, for a specified number of grid steps, with (AM SST) or without (OM surface fluxes) relaxation to background data

Parallelized interpolation

Domain to interpolate from (fields broadcast)

Domain to interpolate to (fields tiled)

Interpolation initialization: for each domain 2 gridpoint p_{ij} find domain 1 elementary grid cell C_{k1} such that p_{ij} lies inside C_{k1}

Data:

- the domains are not necessarily quadrilateral
- elementary grid cells C_{kl} are quadrilateral but not necessarily the elementary cell (k,l), (k+1,l), (k+1,l+1), (k,l+1) in terms of indexing
- gridpoints are represented by their latitudes/longitudes (or other common coordinates); grids are general (not latitudinal/longitudinal)

Methods:

- direct search: ~N⁴ operations: inefficient. Cannot be pre-computed once and forever, as each forecast uses its own domains
- <u>current method</u>: ~N³ operations. Algorithm: go along a "continuous" path on grid 2; check if the current segment of the path crosses domain 1 boundary an odd number of times, thus determining if the current domain 2 gridpoint lies inside domain 1; if it does, search for the grid 1 cell using the one found for the previous domain 2 gridpoint as a 1st guess and if necessary continuing the search in expanding rectangles
- Implication for the case of AM moving nested grid: initialization performed for a "total" grid covering the entire static domain and including all possible positions of the moving grid as sub-grids. Alternative: dynamic (run-time) initialization

EFFICIENCY

 T_1 – WCT of Component 1 T_2 – WCT of Component 2 T_C – WCT of interpolation + of intercomponent communications T – WCT of Coupled System

"Ideal communication setup" definition: for given T_1 , T_2 , T_C T is a minimum (neither Component waits for the other Component). "Ideal" does NOT mean that $T_C=0$; however, if $T_C=0$ then for the "ideal" case $T=max(T_1,T_2)$.

For "ideal communication setup" with separate interpolation process(-es) (current design):

 $T=max(min(T_1,T_2)+T_C,max(T_1,T_2))$

l.e. if T₁≥T₂ then

$$T=max(T_2+T_C,T_1)$$

For "ideal communication setup" without separate interpolation processes:

$$T=max(T_1+T_{C1},T_2+T_{C2})$$

On Jet, T_c =60 s. per model forecast day for 2013 version; T_c=15 s. per model forecast day for 2014 version (SST extrapolation optimized)