The Coupled System

(additional $\mathbf{W M} \rightleftarrows \mathbf{A M}$ and $\mathbf{W M} \rightleftarrows \mathbf{O M}$ communications in progress)

Data flow in operational coupled HWRF

RUN-TIME COMMUNICATIONS

OM	Interpolation	AM
hand-shaking; exchange of grids, sea/land masks Time loop time step $=\Delta \mathrm{t}_{\mathrm{o}}$; coupling time step $\Delta t_{c}=n_{0} \Delta t_{0}$ get initial surf. fluxes send SST \qquad do time step \qquad receive surf. fluxes if/where available; update surf. fluxes (for next time step)	Initialization (find grid-2 cell for each grid-1 point)	hand-shaking; exchange of grids, sea/land masks Time loop time step $=\Delta \mathrm{t}_{\mathrm{A}}$; coupling time step $\Delta t_{\mathrm{C}}=\mathrm{n}_{\mathrm{A}} \Delta \mathrm{t}_{\mathrm{A}}$ receive SST if/where available; update SST \qquad do time step accumulate surf. fluxes \qquad send accumulated surface fluxes

- if Component's GP is not a sea GP, Component sends a special value, to be discarded by interpolation procedure
- if no data is obtained at a GP by interpolation procedure, background data is used
- each Component can be run either in the coupled system or standalone, with the same code/executable (if there is nothing to communicate with, Component works standalone)

Data interpolation

- Interpolation: bilinear in elementary grid cells, sea points to sea points only

- Data not supplied by interpolation, due to domain and sea-land mask inconsistencies, are provided by:
- background (e. g. GFS) data
- extrapolation on domain's sea-point-connected component, for a specified number of grid steps, with (AM SST) or without (OM surface fluxes) relaxation to background data

Parallelized interpolation

Domain to interpolate from (fields broadcast)

Domain to interpolate to (fields tiled)

Interpolation initialization: for each domain 2 gridpoint $p_{i j}$ find domain 1 elementary grid cell $\mathrm{C}_{\mathrm{k} 1}$ such that p_{ij} lies inside $\mathrm{C}_{\mathrm{k} 1}$

Data:

- the domains are not necessarily quadrilateral
- elementary grid cells $\mathbf{C}_{\mathbf{k l}}$ are quadrilateral but not necessarily the elementary cell $(k, l),(k+1, l),(k+1, l+1),(k, l+1)$ in terms of indexing
- gridpoints are represented by their latitudes/longitudes (or other common coordinates); grids are general (not latitudinal/longitudinal)

Methods:

- direct search: $\sim \mathbf{N}^{4}$ operations: inefficient. Cannot be pre-computed once and forever, as each forecast uses its own domains
- current method: $\sim \mathbf{N}^{3}$ operations. Algorithm: go along a "continuous" path on grid 2 ; check if the current segment of the path crosses domain 1 boundary an odd number of times, thus determining if the current domain 2 gridpoint lies inside domain 1 ; if it does, search for the grid 1 cell using the one found for the previous domain 2 gridpoint as a $1^{\text {st }}$ guess and if necessary continuing the search in expanding rectangles
- Implication for the case of AM moving nested grid: initialization performed for a "total" grid covering the entire static domain and including all possible positions of the moving grid as sub-grids. Alternative: dynamic (run-time) initialization

EFFICIENCY

T 1 - WCT of Component 1
T_{2} - WCT of Component 2
$\mathrm{T}_{\mathrm{C}}-$ WCT of interpolation + of intercomponent
communications
T - WCT of Coupled System
"Ideal communication setup" definition: for given $T_{1}, T_{2}, T_{C} T$ is a minimum (neither Component waits for the other Component). "Ideal" does NOT mean that $\mathrm{T}_{\mathrm{C}}=0$; however, if $\mathrm{T}_{\mathrm{C}}=0$ then for the "ideal" case $\mathrm{T}=\max \left(\mathrm{T}_{1}, \mathrm{~T}_{2}\right)$.

For "ideal communication setup" with separate interpolation process(-es) (current design):

$$
\mathrm{T}=\max \left(\min \left(\mathrm{T}_{1}, \mathrm{~T}_{2}\right)+\mathrm{T}_{\mathrm{C}}, \max \left(\mathrm{~T}_{1}, \mathrm{~T}_{2}\right)\right)
$$

l.e. if $T_{1} \geq T_{2}$ then

$$
T=\max \left(T_{2}+T_{c}, T_{1}\right)
$$

For "ideal communication setup" without separate interpolation processes:

$$
\mathrm{T}=\max \left(\mathrm{T}_{1}+\mathrm{T}_{\mathrm{C} 1}, \mathrm{~T}_{2}+\mathrm{T}_{\mathrm{C} 2}\right)
$$

On Jet, $T_{c}=60$ s. per model forecast day for 2013 version; $T_{c}=15 \mathrm{~s}$. per model forecast day for 2014 version (SST extrapolation optimized)

