# Aircraft Observations of Hurricanes to Improve the Understanding and Prediction of Tropical Cyclones



#### Robert Rogers NOAA/AOML Hurricane Research Division Miami, FL

## Motivation

- Many important physical processes within TCs occur over a multitude of spatial and temporal scales, from environmental to vortex to convective to turbulent to microphysical
- Observations key component of balanced approach toward advancing understanding and improving forecasts (observations, modeling, theory)
- Three primary platforms for observations airborne, spaceborne, and land-based

## Multiscale processes in hurricanes



## Spatio-Temporal Scales of Atmospheric Processes

Macro α scale



### **Optimal interactions among observations, modeling, and theory**



## Types of Observations <u>Airborne</u>

• In-situ



Expendables

- Dropsondes
- AXBT, AXCP, buoy



- Remote Sensors
  - Doppler Radar
  - SFMR
  - DWL
  - WSRA
  - Scatterometer/ profiler
  - UAS



Coyote UAS









### Types of Observations - Airborne Environmental structure

• Synoptic-surveillance using dropsondes



- Analytical & numerical studies.
- Ensemble track forecasting & targeted observations.



### Types of Observations - Airborne Environmental structure

## Targeted upper ocean observations

TC impact on upper ocean effect of Hurricanes Gustav and Ike (2008)







#### Vortex-scale measurements using Airborne Doppler radar



#### Composite axisymmetric vortex structure from mature hurricanes



Composite asymmetric vortex structure of mature hurricanes in vertical shear





Composite mean 2-7 km vortex tilt

Composite mean 2-km reflectivity (shaded, dBZ) and vertical velocity (contour, m/s)

### Types of Observations - Airborne Convective Structure

Radar measurements in Hurricane Dennis (2005)



Doppler velocity (m/s)

Reflectivity (dBZ)

## Types of Observations - Airborne Boundary Layer Structure

Radial variation of mean PBL structures from GPS dropsonde composites



- 794 dropsondes in 13 different storms
- normalized by RMW and peak value within composite

## Types of Observations - Airborne Turbulent Structure

Turbulent kinetic energy inferred from airborne Doppler



### Types of Observations - Airborne Microphysical Structure

Flight-level parameters during north-south leg on July 6 for Dennis (2005)







### Types of Observations Spaceborne

- Geostationary
  - visible, infrared, water vapor channels
  - cloud structure, cloud-drift winds



- Polar-orbiting
  - active scatterometer
  - surface wind speed and direction



#### Polar-orbiting

- passive microwave channels
- precipitation structure, ice scattering





### Types of Observations - Spaceborne Environmental structure

Upper-level winds and vertical shear derived from cloud drift winds



### Types of Observations - Spaceborne Environmental structure

Mosaic of total precipitable water from SSMI polar orbiter



### Types of Observations - Spaceborne Environmental and Vortex structure

#### ASCAT surface winds for Invest 91 (2011)



### Types of Observations - Spaceborne Vortex and convective structure

#### 37 and 85 GHz microwave brightness temperatures for Invest 91 (2011)





#### 85 GHz microwave brightness temperatures for Rita (2005)



### Types of Observations - Spaceborne Vortex and convective structure

#### Eyewall/rainband/stratiform partitioning from TRMM Precipitation Radar





#### Synergy of high resolution forecast and airborne observations



Hurricane Isaac (2012)



**NOAA Hurricane Forecast Improvement Project** 

Meeting the Nation's Needs F. Zhang (PSU), Aberson, Aksoy, Gamache, Gopal (AOML/HRD)



#### Impact Of Aircraft Observations On HWRF Forecast - Improving Storm Structure At Initial Time -



The Hurricane Research Division of AOML developed a state-of the-art inner core data assimilation system for HWRF (HEDAS) [Runs in real-time under HFIP]

|         | HWKF       | ISAAC 0          | Jai M−S                             | CRUSS S                        | SECT LU                   | N=-02.30 |     |
|---------|------------|------------------|-------------------------------------|--------------------------------|---------------------------|----------|-----|
| 100 -   |            | SAA(<br>O<br>(No | <mark>C Ini</mark><br>perat<br>Data | tial vor<br>ional F<br>a Assin | tex (v<br>IWRI<br>nilatio | vind)    |     |
| 200 ·   |            | -20              | A Second                            |                                | 70 80                     | n        |     |
| - 300 · | SOUTH      |                  |                                     | 60<br>70<br>80                 | 90                        | 80 NO    | RTH |
| 400 -   | 20-        |                  | 25                                  |                                | /                         | 1 0 Q    |     |
| 500 -   |            | 60               |                                     | 90                             |                           | 80 80    |     |
| 600 -   | - <u> </u> | 90 - 50          | $\frac{1}{2}$                       | 80                             |                           | 8D       |     |
| 700 -   |            |                  |                                     |                                |                           | L        |     |
| 800 -   |            |                  | -80                                 | $2^{\circ}/$                   |                           | 90       |     |
| 900 -   | <u> </u>   | 90               | - diama                             | -90                            |                           | 80       |     |
| 1000    | 21N        | 22N              | 23N                                 | 24N                            | 25N                       | 26N      |     |
| -       | _          |                  |                                     |                                |                           |          |     |

HWRF-HEDAS IC ISAAC N-S CROSS SECT LON=-82.5

75 85 95 105 115 125, 135, 145, 155, ....



| ISAAC (2012): Intensity Errors (kt) |    |    |    |    |  |
|-------------------------------------|----|----|----|----|--|
| Forecast Hrs                        | 12 | 24 | 36 | 48 |  |
| <b>Operational HWRF</b>             | 13 | 16 | 26 | 26 |  |
| With P3 Data                        | 8  | 3  | 9  | 20 |  |
| # Cases                             | 9  | 7  | 5  | 3  |  |

#### Aksoy, A., S. Lorsolo, T. Vukicevic, K. Sellwood, S. Aberson, and F. Zhang, 2012: <u>The HWRF Hurricane Ensemble Data Assimilation</u> <u>System (HEDAS) for high resolution data: The impact of airborne Doppler radar observations in an OSSE</u>. Mon. Wea. Rev (in press).

### **Use of Observations - Model evaluation**

Modification of vertical eddy diffusivity (Km) in the operational HWRF model based on in situ measurements



PBL scheme used in HWRF is too diffusive

#### Use of Observations - Model evaluation Sensitivity of radial wind (shaded, m s<sup>-1</sup>) to vertical eddy diffusivity



 Peak radial inflow stronger with more accurate K<sub>m</sub>
Depth of inflow layer more consistent with dropsonde composites using more accurate K<sub>m</sub>

Dashed line is inflow layer depth from dropsonde composite

Zhang et al. 2011

height (km)

0

()

composite

3

radius (r/RMW)

5

### Use of Observations - Model evaluation

Comparison of observed and forecast images for Earl (2010) from HEDAS and HWRF ICs



Naval Research Lab www.nrlmry.navy.mil/sat\_products.html <-- 89H Brightness Temp (Kelvin) -->

#### Forecast initial time 12:00Z, 08/29/2010

What is relationship between vortex tilt and rapid intensification?



P-3 Lower fuselage

**HWRF** simulated

What is relationship between vortex tilt and rapid intensification?



What is relationship between vortex tilt and rapid intensification?

Time series of SHIPS-derived 850-200 hPa shear (m/s), 2-5 km and 2-8 km tilt magnitude (km)



- large displacement prior to RI onset, continued large displacement at RI onset
- bulk of displacement above 5 km altitude
- vortex becomes nearly aligned several hours after RI onset
- vortex tilts 45-90 degrees left of shear vector prior to RI, oscillates around shear vector after
- vortex alignment is an effect, and not a cause, of RI

## Summary

- Wealth of observations across multiple scales collected over many years, continue to be collected in real time
- New tools being developed to analyze observations
  - TKE fields
  - Composites of Doppler and dropsonde measurements
- These observations serve a variety of purposes
  - Model evaluation
  - Data assimilation
  - Hypothesis testing
- Partnerships among government, academic institutions needed to help digest and analyze observational data
  - Testbeds (e.g., JHT, DTC, JCSDA)
  - Hurricane Forecast Improvement Project (HFIP)

### Extra slides

#### Observational databases used in composites

#### **Doppler database**

40 radar analyses in 8 different storms

| Storm name | Date (mm/dd/yyyy) | Number of analyses | best track intensity (kt) | t+24 h intensity change (kt) |
|------------|-------------------|--------------------|---------------------------|------------------------------|
| Guillermo  | 8/2/1997          | 4                  | 105                       | 25                           |
| Fabian     | 9/3/2003          | 3                  | 110                       | 0                            |
| Isabel     | 9/12/2003         | 2                  | 140                       | 0                            |
| Isabel     | 9/13/2003         | 1                  | 140                       | 0                            |
| Isabel     | 9/14/2003         | 4                  | 140                       | -25                          |
| Frances    | 8/30/2004         | 3                  | 110                       | 15                           |
| Frances    | 8/31/2004         | 2                  | 125                       | -5                           |
| Frances    | 9/1/2004          | 3                  | 120                       | -5                           |
| Ivan       | 9/7/2004          | 4                  | 105                       | 15                           |
| Katrina    | 8/28/2005         | 1                  | 150                       | -70                          |
| Katrina    | 8/29/2005         | 3                  | 110                       | -80                          |
| Rita       | 9/21/2005         | 3                  | 145                       | -20                          |
| Rita       | 9/22/2005         | 3                  | 125                       | -15                          |
| Paloma     | 11/8/2008         | 4                  | 125                       | -100                         |

#### GPS dropsonde database

794 dropsondes in 13 different storms

| Storm name | Year | Storm<br>Intensity<br>range (kt) | Number<br>of sondes |
|------------|------|----------------------------------|---------------------|
| Erika      | 1997 | 83 - 110                         | 40                  |
| Bonnie     | 1998 | 68 - 93                          | 76                  |
| Georges    | 1998 | 66 - 78                          | 39                  |
| Mitch      | 1999 | 145 - 155                        | 28                  |
| Bret       | 1999 | 75 - 90                          | 33                  |
| Dennis     | 1999 | 65 - 70                          | 7                   |
| Floyd      | 1999 | 80 - 110                         | 40                  |
| Fabian     | 2003 | 68 - 120                         | 131                 |
| Isabel     | 2003 | 85 - 140                         | 162                 |
| Frances    | 2004 | 68 - 83                          | 62                  |
| Ivan       | 2004 | 65 - 135                         | 123                 |
| Dennis     | 2005 | 65 - 70                          | 7                   |
| Katrina    | 2005 | 68 - 100                         | 46                  |

Rogers et al., MWR, 2011 (in review)

Zhang et al., MWR, 2011 (in press)

Composite asymmetric vortex structure from mature hurricanes





<sup>\*</sup>Shear rotated to be pointing east

Surface and flight-level wind speed (shaded, m/s) during steady-state phase of Earl (2010)





34

Lower fuselage images from storms used in airborne Doppler composite



#### Types of Observations - Airborne <u>Convective Structure</u> Partitioning into location relative to RMW



36

### **Types of Observations - Airborne Convective Structure**

#### Statistical characteristics (means, CFADs) of convective-scale features



14

height (km)











### Use of Observations – Data assimilation EnKF data assimilation of inner core observations



Assessing impact of assimilating inner-core observations into HWRF using HEDAS



#### Intensity error

#### Frequency of superior performance for intensity forecast





Assessing impact of assimilating inner-core observations into HWRF using HEDAS



### **Use of Observations - Model evaluation**

#### Evaluating impact of different PBL parameterizations on HWRF simulations of TC structure

Normalized tangential wind



#### Normalized radial wind in PBL





r\*



### Use of Observations - Model evaluation

CFADs of reflectivity from TRMM, airborne radars and high-resolution models



<sup>64</sup> TCs

233 aircraft radial leg 9 TCs 96 output times Δx 1.67 km 2 TCs 43

Asymmetric vortex structure in vertical shear as a function of vortex strength

Using Doppler composite dataset



#### Weak vortex

#### Strong vortex

#### Use of Observations – Hypothesis testing Symmetric vortex structure for rapidly-intensifying vs. steady state TCs • Using Doppler composite dataset

