

HWRF Internals
Sam Trahan

January 2016

Overview

● Interaction between layers
● Configuration
● Tasks, Products and the Database

Interaction Between Layers

ecFlow

Rocoto

J-Jobs

scripts/ex*py

ush/hwrf_expt.py

ush/
hwrf, pom, hycom

ush/hwrf_alerts.py

ush/
produtil

Python

exec/hwrf_*

Rocoto

Interaction Between Layers

● ecFlow server
● Runs *.ecf scripts
● which call J-jobs
● which find python
● and call the script

– may need to set env.
vars or pass arguments

ecFlow

J-Jobs

scripts/ex*py

ush/hwrf_expt.py

ush/
hwrf, pom, hycom

ush/hwrf_alerts.py

ush/
produtil

Python

exec/hwrf_*

ecFlow

J-Jobs

Rocoto

Interaction Between Layers

● rocoto/run_hwrf.py
– makes XML file

– calls rocotorun

– which submits batch
jobs

– that run scripts
● Same scripts, arguments,

dependencies, env vars
as ecFlow.

scripts/ex*py

ush/hwrf_expt.py

ush/
hwrf, pom, hycom

ush/hwrf_alerts.py

ush/
produtil

Python

exec/hwrf_*

ecFlow

J-Jobs

Rocoto

Interaction Between Layers

● Everything from scripts
on down is identical
regardless of workflow
system.scripts/ex*py

ush/hwrf_expt.py

ush/
hwrf, pom, hycom

ush/hwrf_alerts.py

ush/
produtil

Python

exec/hwrf_*

ecFlow

J-Jobs

Rocoto

Interaction Between Layers

● scripts/ex*py
– Load and initialize:

● hwrf_expt
● hwrf_alerts

– hwrf_expt makes objects
using hwrf, pom and
hycom modules

– Scripts run some class
methods in those
objects.

scripts/ex*py

ush/hwrf_expt.py

ush/
hwrf, pom, hycom

ush/hwrf_alerts.py

ush/
produtil

Python

exec/hwrf_*

ecFlow

J-Jobs

Rocoto

Interaction Between Layers

● ush/{hwrf,pom}/*py
– Python classes that know

how to run the HWRF
system.

– Built on top of produtil and
the HWRF executables.

● ush/produtil
– Python functions and

classes that perform basic
functionality

● Python core library
underlies produtil.

scripts/ex*py

ush/hwrf_expt.py

ush/
hwrf, pom, hycom

ush/hwrf_alerts.py

ush/
produtil

Python

exec/hwrf_*

Directories

$WORKhwrf

$COMhwrf

$HOMEhwrf

parm/ fix/
exec/ =
compiled
programs

ush/ scripts/

rocoto/ = job
cards, deps

ecf/ = job
cards. deps

jobs/
(for ecflow)

Temporary
files

Final files
(delivery area)

fix, parm
Data and Configuration

● fix - large binary files
● parm

– Files used directly.

– Files passed through
configuration system to
generate namelists

– Python “conf” files

● HWRF Configuation
System
– UNIX Conf files

– parm/*.conf

– Config data can be
substituted automatically
to strings, namelists, etc.

ush/hwrf/*py
hwrf_expt

Configuration

parm/*.conf

hwrf_input.conf

hwrf.conf

system.conf

hwrf_holdvars.conf

hwrf_basic.conf

user-specified
files and options

JHWRF_LAUNCH
run_hwrf.py

exhwrf_launch
hwrf.launcher.launch

COM/
storm1.conf

storm2.conf

hwrf.launcher.
HWRFLauncher

hwrf.config.HWRFConfig

hwrf.task.HWRFTask
... and its subclasses ...

hwrf.namelist.*
and direct conf usage

Tasks and Products

● Part of underlying object structure.
● A product is a deliverable.

– Usually a file, with metadata

– Maybe multiple files.

● A task is a mechanism that consumes and
produces products, with a well-defined way of
executing the mechanism (task.run()).

hwrf_expt.
runwrf

Task/Product Example
How do we track this many files!?

geo_nmm
d01

wrfinput
_d01

wrfanl
_d02

wrfanl
_d03

hwrf_expt.
gdas_merge

hwrf_expt.
gfs_init.
geogrid

hwrf_expt.
gfs_init.
realinit

wrfbdy
_d01

hwrf_expt.
gfs_init.
realfcst

wrfout_d01
T+0wrfout_d01
T+0wrfout_d01
T+0wrfout_d01
T+0wrfout_d01

T+126

wrfout_d01
T+0wrfout_d01
T+0wrfout_d01
T+0wrfout_d01
T+0wrfout_d02

T+126

wrfout_d01
T+0wrfout_d01
T+0wrfout_d01
T+0wrfout_d01
T+0wrfout_d03

T+126

wrfdiag_d01
wrfdiag_d02
wrfdiag_d03

hwrf_expt.
nonsatpost

hwrf_expt.
gribtask

egrid gribsegrid gribsegrid gribsegrid gribsegrid gribs

egrid gribsegrid gribsegrid gribsegrid gribs
pressure

gribs

hwrf_expt.
trackertrack

hwrf_expt.
nhcp

How do we track this many files!?

● Typical approaches are flawed:
– Run “stat” or “ls -l” many times.

● Waste of metadata, hard on filesystem.

– Generate flag files.
● Waste of metadata, hard on filesystem.

– Rerun same operation multiple times as needed.
● Waste of CPU and I/O.

– Mix post and regridding in same job.
● Huge waste during serial processing.

● These limited, shell-based approaches are why
the NCEP suite is so expensive.

Database
Communicate Products and Tasks Between Jobs

Table “products”

Table “metadata”

id available location type

geogrid::geo_nmm_nest 1 /new/location Product

task::geogrid 10 /path/to/work/dir Task

id key value

geogrid::geo_nmm_nest minsize 100000000

● $WORKhwrf/hwrf_state.sqlite3
– Communicate paths and data availability instantly

between jobs.

– Allows post and products to run in parallel in two jobs.
● Separate serial and parallel pieces. Eliminate stat, ls -l, flag

files.

Primary, Backup Data Sources
● Some tasks need inputs from other tasks.

– runwrf.add_wrfinput(gdas_merge)
● Get input from gdas_merge

– runwrf.add_wrfinput(gfs_init.rstage3)
● If GDAS merge fails, try getting wrfinput from GFS analysis

vortex relocation step.

– runwrf.add_wrfinput(gfs_init.realinit)
● If relocation also failed, get it from GFS analysis
● (This one is disabled; we would rather the workflow fail.)

● Generates a list of objects, each of which are
queried for input, until one is found that has data
– Intentionally fails unless [config] allow_fallbacks=yes

Fallbacks

● Many jobs have fallback options:
– Run uncoupled.

– Get wrfinput from GFS analysis relocation

– etc.

● Some are enabled automatically via:
– [config] allow_fallbacks=yes

– (Turned on by default in operations.)

● Others can be done manually via editing
$COMhwrf/storm*.conf, and resubmitting jobs.

More Information - Later Talks

● Object-Oriented Scripting
● Python “produtil” Package
● HWRF Logging Overview
● Troubleshooting HWRF
● Configuring HWRF
● Rocoto for HWRF
● HWRF Database
● Debugging HWRF Scripts
● Demo Session: Add a new component to HWRF

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19

