

Advanced User’s Guide

Version 3.5

August, 2016

Ming Hu
National Oceanic and Atmospheric Administration (NOAA)/Earth System Research Laboratory Cooperative

Institute for Research in Environmental Sciences (CIRES)

Chunhua Zhou, Hui Shao, Don Stark, and Kathryn Newman
National Center for Atmospheric Research (NCAR)

���������

�����������

����������������
�������
��
�
�	���

����
�����	����
��������������
�����	�����
���
����			������

 ii

Acknowledgement

This user's guide is constructed with contributions from distributed GSI developers. We
give our special acknowledgement to these contributors and reviewers, including, but not
limit to:

National Centers for Environmental Prediction (NCEP) Environmental Modeling Center
(EMC):
John Derber, Russ Treadon, Mike Lueken, Wan-Shu Wu, Andrew Collard, and Ed Safford

National Center for Atmospheric Research (NCAR):
Xiang-Yu Huang, Syed Rizvi, Zhiquan Liu, and Arthur Mizzi

National Oceanic and Atmospheric Administration (NOAA) Earth System Research
Laboratory (ESRL):
Steve Weygandt, Dezso Devenyi, Joseph Olson, and Jeff Beck

Shanghai Meteorological Service:
Min Sun

The GSI community support and code management effort is sponsored by NOAA's Office
of Oceanic and Atmospheric Research (OAR). This work is also facilitated by NCAR.
NCAR is supported by the National Science Foundation (NSF).

 iii

Foreword

This document, designed for experienced users, includes advanced knowledge, features, and skills
of GSI as well as details of assimilation of specific data types. Users may use as a reference for
their special research topics. To read this guide, users should already read and understand the
content in the GSI User’s Guide.

This version of Advanced GSI User’s Guide was released with the community GSI version 3.5 in
August 2016. Please note, not like the basic GSI user’s guide which is being updated every year
and closely follows the GSI release code, this advanced user’s guide, as a reference, is only being
updated as needed and therefore doesn’t pertain to one specific code release.

There are 10 Chapters in this document:

Chapter 1: Overview
Chapter 2: Software Installation
Chapter 3: Advanced Topics on Run and Diagnosis
Chapter 4: GSI Theory
Chapter 5: GSI Code Structure
Chapter 6: Static Background Error Covariance
Chapter 7 Observations
Chapter 8: Satellite Radiance Data Assimilation
Chapter 9 Radar Data Assimilation
Chapter 10 GSI Applications

DTC may update the content of this advanced User’s Guide, if needed, between releasees. For the
latest version of this document, please visit the GSI User’s Website at

http://www.dtcenter.org/com-GSI/users.v3.5/docs/index.php

Please send questions and comments to:

gsi-help@ucar.edu

For referencing this document, please use:

Developmental Testbed Center, 2016: Gridpoint Statistical Interpolation Advanced User's
Guide Version 3.5. Available at http://www.dtcenter.org/com-
GSI/users.v3.5/docs/index.php, 119 pp.

For referencing the general aspect of the GSI community effort, please use:

Shao, H., J. Derber, X.-Y. Huang, M. Hu, K. Newman, D. Stark, M. Lueken, C. Zhou, L.
Nance, Y.-H. Kuo, B. Brown, 2016: Bridging Research to Operations Transitions: Status
and Plans of Community GSI. Bulletin of the American Meteorological Society,
doi:10.1175/BAMS-D-13-00245.1, in press

Table of Contents

 iv

Table of Contents

Chapter	 1:	 Overview	 ..	 1	

Chapter	 2:	 Software	 Installation	 ...	 3	
2.1	 Modifying	 the	 GSI	 Build	 Environment	 ..	 3	
2.2	 Understanding	 the	 Build	 System	 ...	 3	
2.2.1	 Configuration	 Resource	 File	 ..	 4	
2.2.2	 Modification	 Example	 ..	 6	

Chapter	 3:	 Advanced	 Topics	 on	 Run	 and	 Diagnosis	 ..	 8	
3.1	 Convergence	 Information	 from	 File	 fort.220	 ..	 8	
3.2	 Use	 Bundle	 To	 Configure	 Control,	 State	 Variables	 And	 Background	 Fields	 	 11	
3.3	 Using	 Observations	 Station	 Uselist	 And	 Rejection	 List	 In	 GSI	 	 12	
3.3.1	 Surface	 Observation	 Rejection	 And	 Use	 List	 ...	 13	
3.3.2	 Aircraft	 Observation	 Rejection	 ..	 14	

Chapter	 4:	 GSI	 Theory	 ...	 16	
4.1	 3DVAR	 Equations:	 ...	 16	
4.2	 Iterations	 To	 Find	 The	 Optimal	 Results	 ..	 17	
4.3	 Analysis	 Variables	 ...	 18	

Chapter	 5:	 GSI	 Code	 Structure	 ..	 19	
5.1	 Main	 Process	 ...	 19	
5.2	 GSI	 Background	 IO	 (for	 3DVAR)	 ...	 22	
5.3	 Observation	 Ingestion	 ...	 23	
5.4	 Observation	 Innovation	 Calculation	 ...	 24	
5.5 Inner	 Iteration	 ..	 25	

Chapter	 6:	 Static	 Background	 Error	 Covariance	 ..	 26	
6.1	 What	 Is	 Background	 Error	 Covariance	 ..	 26	
6.2	 Processing	 Of	 Background	 Error	 Matrix	 ...	 27	
6.3	 Apply	 Background	 Error	 Covariance	 ...	 29	

Chapter	 7	 Observations	 ..	 31	
7.1	 Process	 BUFR/PrepBUFR	 Files	 ...	 31	
7.1.1	 introduction	 ...	 31	
7.1.2	 Encode,	 Decode,	 Append	 A	 Simple	 BUFR	 File	 ...	 33	
7.1.2.1	 Decoding/Reading	 Data	 From	 A	 Simple	 BUFR	 File	 ...	 33	
7.1.2.2	 Encoding/Writing	 Data	 Into	 A	 Simple	 BUFR	 File	 ..	 41	
7.1.2.3	 Appending	 Data	 To	 A	 Simple	 BUFR	 File	 ...	 44	

7.1.3	 Encode,	 Decode,	 Append	 The	 PrepBUFR	 File	 ...	 46	
7.1.3.1	 Decoding/Reading	 Data	 From	 A	 PrepBUFR	 File	 ..	 46	
7.1.3.2	 More	 Exmaples	 On	 Processing	 Prepbufr	 Files	 ..	 48	

7.3	 GSI	 BUFR	 Interface	 ..	 49	
7.3.	 1	 GSI	 Observation	 Data	 Ingest	 And	 Process	 Procedure	 ..	 49	
7.3.2	 The	 BUFR	 Decoding	 In	 GSI	 Read	 Files	 ..	 53	

7.4	 NCEP	 Generated	 BUFR	 Files	 ...	 54	
7.4.1	 Knowledge	 on	 NCEP	 BUFR/PrepBUFR	 Files	 ...	 54	
7.4.2	 BUFR/PrepBUFR	 Data	 Resources	 for	 Community	 Users	 ..	 57	

7.5	 Observation	 Error	 Adjustment	 ...	 58	

Table of Contents

 v

Chapter	 8:	 Satellite	 Radiance	 Data	 Assimilation	 ...	 59	
8.1.	 Satellite	 Radiance	 Data	 Ingest	 And	 Distribution	 ...	 59	
8.1.1	 Link	 Radiance	 BUFR	 Files	 To	 GSI	 Recognized	 Names	 ...	 59	
8.1.2	 GSI	 Code	 To	 Ingest	 Radiance	 Data	 ...	 62	
8.1.3	 Information	 On	 Ingesting	 And	 Distribution	 ..	 65	

8.2.	 Radiance	 Observation	 Operator	 ...	 65	
8.3.	 	 Radiance	 Observation	 Quality	 Control	 ..	 66	
8.4.	 Bias	 Correction	 For	 Radiance	 Observations	 ...	 68	
8.4.1.	 Bias	 Correction	 For	 Satellite	 Observations	 ...	 68	
8.4.2.	 The	 GSI	 Bias	 Correction	 Procedure	 And	 Configurations	 ..	 69	
8.4.3	 Namelist,	 Satinfo,	 And	 Coefficients	 For	 Bias	 Correction	 ..	 71	
8.4.4	 Enhanced	 Radiance	 Bias	 Correction	 ...	 74	
8.4.5.	 Utility	 For	 Angle	 Bias	 Correction	 Outside	 GSI	 ...	 75	
8.4.6.	 Discussion	 of	 FAQ	 ..	 78	

8.5.	 Radiance Data Analysis Monitoring	 ..	 80	
Chapter	 9	 Radar	 Data	 Assimilation	 ..	 81	
9.1	 Prepare	 Radar	 Data	 Files	 for	 GSI	 ...	 81	
9.1.1	 Introduction	 ..	 81	
9.1.2.	 GSI	 Interface	 To	 Level	 II	 Radar	 Velocity	 ...	 82	
9.1.2.1	 Read	 observations	 from	 Level	 II	 radar	 radial	 velocity	 BUFR	 files	 ..	 82	
9.1.2.2	 Write	 Level	 II	 radar	 radial	 velocity	 observations	 to	 BUFR	 files	 ..	 84	

9.1.3	 GSI	 Interface	 To	 Radar	 Reflectivity	 ...	 84	
9.1.3.1	 Radar	 reflectivity	 preprocess	 code	 ...	 84	
9.1.3.2	 Radar	 reflectivity	 interface:	 content	 and	 structure	 ...	 85	
9.1.3.3	 Check	 the	 results	 ..	 86	

9.2	 Analyze	 Radar	 Radial	 Velocity	 With	 GSI	 ..	 87	
9.2.1	 Data	 Preprocessing	 Of	 Radar	 Radial	 Velocity	 Assimilation	 Within	 GSI	 	 88	
9.2.2	 The	 Processes	 Of	 The	 read_radar.f90	 Code	 ...	 95	

9.3	 Analyze	 Radar	 Reflectivity	 With	 GSI	 ..	 103	
9.4	 Information	 On	 Radar	 Data	 Quality	 Control	 ...	 105	

Chapter	 10	 GSI	 Applications	 ..	 106	
10.1	 Introduction	 To	 Hybrid	 4-‐Dimensional	 Ensemble-‐Variational	 Analysis	 	 106	
10.2	 Introduction	 to	 RTMA	 Analysis	 ...	 108	
10.2.1.	 Prepare	 First	 Guess	 File	 ...	 108	
10.2.2.	 Run	 GSI	 RTMA	 Analysis	 ...	 112	
10.2.3.	 Post-‐Process	 ...	 115	
10.2.4.	 Notes	 on	 This	 RTMA	 Section	 ...	 118	

Overview

 1

Chapter 1: Overview

Purpose of the Advanced GSI User’s Guide

This document is the second part of the GSI User’s Guide. For the history of GSI and its
community efforts, please refer to the Overview of the GSI User’s Guide, released with
each code version.

While the GSI User’s Guide focuses on basic information for compiling, running, and
diagnosing GSI, this Advanced GSI User’s Guide is intended to help users who have
mastered the fundamental portion of the GSI and would like to apply GSI for specific
research topics that need more advanced knowledge and skills.

Unlike the GSI User’s Guide, which is released annually with the official release, the
Advanced User’s Guide will initially release with the official release but may be updated
after the release based on needs and contributions from users and developers. The latest
release time and subversion will be indicated on the title page of this document.

Some of the contents of this Advanced User’s Guide are not updated to match the official
release of the GSI code like the fundamental portion. Therefore, users are advised to refer
to the relative content with caution, as there may be differences between the content and
the code. Please contact the GSI help desk with any issues with using this guide.

Some of the sections and chapters have only titles in this release (no content). These are
place hold for important topics of the GSI. The content will be added in the future as
knowledge and resources are available to update the topic. Users and developers are very
welcome to make any contributions to the guide, either with updated content or with new
additions.

This document is intended to provide useful assistance to experienced GSI users and
developers for advancing GSI development and research.

Subversion release log:

Version Release time Modifications
3.3.0.0 06/20/2014 Initial release with official release 3.3
3.3.0.1 07/07/2014 Fix typos in Equation 1-5 in Chapter 4
3.3.0.2 08/12/2014 Fix typos in Table in Section 5.5. Add step 5 in

radar reflectivity analysis in section 9.3
3.4.0.0 08/09/2015 Update on the use of anavinfo file in section 3.2

Add section 9.2.1 Data Preprocessing of Radar
Radial Velocity Assimilation within GSI
Add section 9.2.2 The Processes of the
read_radar.f90 code

Overview

 2

Update in section 10.1 GSI global analysis
Update in the namelist (Appendix A) based on
version 3.4

3.5.0.0 08/08/2016 Remove section 10.1 GSI global analysis to GSI
User’s Guide Chapter 6.
Added the introduction to the GSI 4D hybrid EnVar
as section 10.1.
Delete Appendix A because it is in GSI User’s
Guide Appendix C

Structure of this User’s Guide:

The User’s Guide is organized as follows:

Chapter 2 provides detailed information on software installation, including description
of examples for tailoring the building system on non-standard computing platforms.

Chapter 3 contains advanced topics related to running and diagnosing GSI
Chapter 4 illustrates the GSI data assimilation technique and minimization procedure

Chapter 5 introduces major processes and subroutines associated with GSI I/O,
observation ingestion, and innovation calculation.

Chapter 6 illustrates concept of background error covariance, estimation of static
background error covariance as well as how GSI processes background error
information.

Chapter 7 provides information regarding observation processing for GSI. It contains
basic skills for BUFR/PrepBUFR files, including how to encode, decode, and
append new data into these types of files. It also provides information on GSI
BUFR interface, NCEP processes for BUFR/PrepBUFR files, and the observation
error adjustment procedure inside GSI.

Chapter 8 discusses radiance data assimilation in GSI, including data ingestion, quality
control, bias correction, and other associated procedures.

Chapter 9 discusses radar data assimilation in GSI.
Chapter 10 describes various GSI operational applications.

Software Installation

 3

Chapter 2: Software Installation

2.1 Modifying the GSI Build Environment

The GSI build system is designed to compile on most standard Unix/Linux systems.
Typically, if the WRF model builds on a system, GSI will build there as well. The lack of
standardization of Linux HPC environments, specifically from big vendors such as SGI and
IBM, may necessitate minor customization of the GSI build settings for those computing
environments.

Typical build problems seen can be traced back to issues with the location of libraries, MPI
wrappers for the compiler, or the support utilities such as cpp. These sorts of issues can
usually be solved by customizing the default configuration file settings. Unfortunately this
may involve an iterative process where the build parameters are modified, the compile
script is run, build errors diagnosed, and the process repeated.

2.2 Understanding the Build System

The GSI build system uses a collection of data files and scripts to create a configuration
resource file that defines the local build environment.

At the top most level there are four scripts. The clean script removes everything created by
the build. The configure script takes local system information and queries the user to
select from a collection of build options. The results of this are saved into a resource file
called configure.gsi. Once the configure.gsi file is created, the actual build is initiated
by running the compile script. The compile script then calls the top-level makefile,
substitutes in settings from the configure file, and builds the source code.

Name Content
makefile Top-level makefile
arch/ Build options and machine architecture specifics
clean Script to clean up the directory structure
configure Script to configure the build environment for compilation.

Creates a resource file called configure.gsi
compile Script for building the GSI system. Requires the existence

of the configure.gsi prior to running

The compile script uses the resource file configure.gsi to set paths and environment
variables required by the compile. The configure script generates the resource file
configure.gsi by calling the Perl script Config.pl, located in the arch/ directory. The
script Config.pl combines the build information from the files in the arch/ directory with

Software Installation

 4

machine specific and user provided build information to construct the configure.gsi
resource file.

A “clean” script is provided to remove the build objects from the directory structure.
Running ./clean scrubs the directory structure of the object and module files. Running a
clean-all ./clean –a removes everything generated by the build, including the library files,
executables, and the configure resource file. Should the build fail, it is strongly
recommended that the user run a ./clean –a prior to rerunning the compile script.

The arch/ directory contains a number of files used to construct the configuration resource
file configure.gsi.

File name Description
preamble Uniform requirements for the code. Currently only contains

shell information and comments.
configure.defaults Selection of compilers and options.

Users can edit this file if a change to the compilation
options or library locations is needed. It can also be
edited to add a new compilation option if needed.

postamble Standard compilation (“make”) rules and dependencies

Most users will not need to modify any of these files unless experiencing significant build
issues. Should a user require a significant customization of the build for their local
computing environment, those changes would be saved to the configure.defaults file
only after first testing these new changes in the temporary configure.gsi file.

2.2.1 Configuration Resource File

The configuration resource file configure.gsi contains build information, such as
compiler flags and paths to system libraries, specific to a particular machine architecture
and compiler.

To illustrate its contents, lets look at the resource for the Linux Intel/gcc build.

Settings for Linux x86_64, Intel/gnu compiler (ifort & gcc) (dmpar,optimize)#

The header describes the overall build environment

• Linux x86 with 64 bit word size
• Uses Intel Fortran and GNU C compilers

The link path points to an Intel version of NetCDF and the OpenMP libraries.

LDFLAGS = -Wl,-rpath,/usr/local/netcdf3-ifort/lib -openmp

The code directory location and include directory:

COREDIR = $HOME/comGSIv3.4_EnKFv1.0

Software Installation

 5

INC_DIR = $(COREDIR)/include

Compiler definitions
• Intel ifort Fortran compiler
• GNU gcc C compiler

SFC = ifort
SF90 = ifort -free
SCC = gcc

The include paths for GSI source code and NetCDF:

INC_FLAGS = -module $(INC_DIR) -I $(INC_DIR) -I /usr/local/netcdf3-ifort/include

The default Fortran compiler flags for the main source code:

FFLAGS_DEFAULT = -fp-model precise -assume byterecl -convert big_endian
FFLAGS_FULLOPT = -O3
FFLAGS = $(FFLAGS_OPT) $(FFLAGS_DEFAULT) $(INC_FLAGS) $(LDFLAGS) –DLINUX

Note that the flag ‘convert big_endian” switches the byte order from the native “little
endian” to “big endian.” This allows GSI to ingest “big endian” binary files and there by
maintaining compatibility with legacy NOAA output.

The default Fortran compiler flags for the external libraries:

FFLAGS_BACIO = -O3 $(FFLAGS_DEFAULT)
FFLAGS_BUFR = -O3 $(FFLAGS_DEFAULT) $(FFLAGS_i4r8)
CFLAGS_BUFR = -O3 -DUNDERSCORE
FFLAGS_CLOUD = -O3 $(FFLAGS_DEFAULT)
FFLAGS_CRTM = -O2 $(FFLAGS_DEFAULT)
FFLAGS_GFSIO = -O3 $(FFLAGS_DEFAULT) $(FFLAGS_i4r4)
FFLAGS_SFCIO = -O3 $(FFLAGS_DEFAULT) $(FFLAGS_i4r4)
FFLAGS_SIGIO = -O3 $(FFLAGS_DEFAULT) $(FFLAGS_i4r4)
FFLAGS_SP = -O3 $(FFLAGS_DEFAULT) $(FFLAGS_i4r8)
FFLAGS_W3 = -O3 $(FFLAGS_DEFAULT)

The default CPP path and flags. If your system has multiple versions of cpp and you do not
wish to use the version in your path, it may be necessary to specify the specific version
here

CPP = cpp
CPP_FLAGS = -C -P -D$(BYTE_ORDER) -D_REAL8_ -DWRF -DLINUX
CPP_F90FLAGS = -traditional-cpp -lang-fortran

The MPI compiler definitions:

DM_FC = mpif90 –f90=$(SFC)
DM_F90 = mpif90 –free –f90=$(SFC)
DM_CC = gcc

A few comments should be made here about the use of the mpif90 wrapper to invoke the
“parallel” compiler build. The default version of the build shown here has the additional
flag –f90=$(SFC) following the call to mpif90. This flag specifies what compiler is to
be used for the parallel build. In this example SFC = ifort there by telling the script to
use the Intel compiler. This is the standard with the open source versions of MPI such as
MPICH2 and OPENMPI. Supercomputer venders such as SGI, CRAY, and IBM no longer
follow this convention. Depending on the vendor, including the –f90= flag results in, at
the least, compiler warnings, and at most, compiler errors. Because of this situation, the

Software Installation

 6

release code has an extra build option for each of the compilers ,“Vendor supplied MPI,”
which removes the –f90= flag from the build rules.

Unfortunately this is not the end of this story. The two vendors SGI MPT and IBM PE have
done away with the mpif90 wrapper completely and instead prefer to call the Intel
compiler directory with an additional MPI flag:

DM_FC = ifort
DM_F90 = ifort –free

 This will be addressed in next section illustrating how to modify the build rules.

 The default C compiler flags:

CFLAGS = -O0 -DLINUX -DUNDERSCORE
CFLAGS2 = -DLINUX -Dfunder -DFortranByte=char -DFortranInt=int -DFortranLlong='long
long'

The default library paths and names
• Variable LAPACK_PATH needs to point to the MKL library location
• The library names may be different on other systems

MYLIBsys = -L$(LAPACK_PATH) -mkl=sequential

NetCDF path information
• Older versions of NetCDF only have the single library –lnetcdf. If you are using an

older version you may need to remove the first library name.

NETCDFPATH = /usr/local/netcdf3-ifort
NETCDFLIBS = -lnetcdff -lnetcdf $(NETCDF_PATH)

It should not be necessary to modify anything below the NetCDF environment variables.

2.2.2 Modification Example

To demonstrate how one would go about modifying the configuration resource file, the
generic Linux/Intel configuration will be ported to build on an SGI MPT Linux cluster
called Zeus. Zeus comes with a vender-supplied version of MPI, which necessitates
modification of the MPI paths.

The first change is that Zeus does not use the traditional MPI wrappers such as mpif90 to
invoke the compiler. Instead the Intel compiler is called directly with an additional –lmpi
flag to specify an MPI build. Therefore the DM compiler definitions become:

DM_FC = ifort
DM_F90 = ifort –free
DM_CC = gcc

Next, additional link flags for MPI are needed. These are in bold.

LDFLAGS = -Wl,-rpath,/usr/local/netcdf3-ifort/lib -L$MPI_ROOT/lib -lmpi -openmp

Software Installation

 7

Then add the path to the MPI include directory, along with the additional Fortran flag.

FFLAGS_DEFAULT = -msse2 -fp-model precise -assume byterecl -I$MPI_ROOT/include

An equivalent include path for the C flags are also needed.

CFLAGS = -O0 -DLINUX -DUNDERSCORE -I$MPI_ROOT/include

These changes should be saved to the users configure.gsi resource file and tested. Once
they are confirmed to work, they may be moved into the configure.defaults file located
in the arch/ directory as a new build target.

To save your new build configuration, open the file configure.defaults, located in the
arch/ directory. You will notice that it contains a collection of platform/compiler specific
entries. The first entry is for the IBM platform, using the xlf compiler with 64-bit word
size. This entry is indicated by a label at the top of the block starting with the tag #ARCH.
For the 64-bit IBM build, the tag is:

 #ARCH AIX 64-bit #dmpar

The block for the 64-bit IBM build is immediately followed by the 32-bit IBM build entry,
which is indicated by the tag:

 #ARCH AIX 32-bit #dmpar

with each subsequent build specification is delineated by a similar tag.

For our port of the generic Intel build to Zeus, locate the tag for the Linux/Intel build with
64 bit words. Its header looks like this:

#ARCH Linux x86_64, Intel compiler (ifort & gcc) # (dmpar,optimize)

Duplicate this entry and give it a unique name by modifying the ARCH entry.

#ARCH Linux x86_64, Intel compiler SGI MPT (ifort & gcc) #
(dmpar,optimize)

Then update the variables to match the settings in the configure.gsi resource file tested
previously, and save your changes. Now when you run the ./configure script, there will be
a new build option for an SGI MPT build.

Advanced Topics on Run and Diagnosis

 8

Chapter 3: Advanced Topics on Run and Diagnosis

The basic skills of running GSI and diagnosing GSI results are introduced in the Chapter 3
and Chapter 4 of the GSI User’s Guide. This chapter discusses some complex issues for
advanced users to further tune and diagnosis GSI runs.

3.1 Convergence Information from File fort.220

In file fort.220, users can find more detailed minimization information about each
iteration. The following example uses the first two iterations to explain the meaning of
each value:

Minimization iteration 0

1)
 J= 0.000000000000000000E+00 0.000000000000000000E+00 0.000000000000000000E+00
 0.000000000000000000E+00 0.000000000000000000E+00 0.000000000000000000E+00
 0.000000000000000000E+00 0.000000000000000000E+00 0.118329009942697698E+05
 0.190285043373867524E+05 0.401338098573457983E+05 0.468178247339593265E+04
 0.000000000000000000E+00 0.000000000000000000E+00 0.000000000000000000E+00
 0.000000000000000000E+00 0.000000000000000000E+00 0.000000000000000000E+00
 0.000000000000000000E+00 0.000000000000000000E+00 0.000000000000000000E+00
 0.185513606236281089E+05 0.100380070802053093E+06 0.000000000000000000E+00
 0.000000000000000000E+00 0.000000000000000000E+00 0.000000000000000000E+00
 0.000000000000000000E+00 0.000000000000000000E+00 0.000000000000000000E+00
 0.000000000000000000E+00 0.000000000000000000E+00

2)
 b=-0.310927744401462716E+04 0.000000000000000000E+00 0.000000000000000000E+00
 0.000000000000000000E+00 0.000000000000000000E+00 0.000000000000000000E+00
 0.000000000000000000E+00 0.000000000000000000E+00 0.410038969466198277E+06
 0.723694789994664703E+06 0.287063341578062015E+06 0.294343224843158402E+05
 0.000000000000000000E+00 0.000000000000000000E+00 0.000000000000000000E+00
 0.000000000000000000E+00 0.000000000000000000E+00 0.000000000000000000E+00
 0.000000000000000000E+00 0.000000000000000000E+00 0.000000000000000000E+00
 0.357063077297121385E+06 0.259969713154007923E+08 0.000000000000000000E+00
 0.000000000000000000E+00 0.000000000000000000E+00 0.000000000000000000E+00
 0.000000000000000000E+00 0.000000000000000000E+00 0.000000000000000000E+00
 0.000000000000000000E+00 0.000000000000000000E+00

3)
 c= 0.310927744401462659E+08 0.000000000000000000E+00 0.000000000000000000E+00
 0.000000000000000000E+00 0.000000000000000000E+00 0.000000000000000000E+00
 0.000000000000000000E+00 0.000000000000000000E+00 0.595529299391540965E+08
 0.968629709661563464E+08 0.320963665012150593E+08 0.207128030095876056E+07
 0.000000000000000000E+00 0.000000000000000000E+00 0.000000000000000000E+00
 0.000000000000000000E+00 0.000000000000000000E+00 0.000000000000000000E+00
 0.000000000000000000E+00 0.000000000000000000E+00 0.000000000000000000E+00
 0.141290320912310097E+09 0.325532123706306098E+11 0.000000000000000000E+00
 0.000000000000000000E+00 0.000000000000000000E+00 0.000000000000000000E+00
 0.000000000000000000E+00 0.000000000000000000E+00 0.000000000000000000E+00
 0.000000000000000000E+00 0.000000000000000000E+00

4)
EJ= 0.277433945264109695E+02 0.000000000000000000E+00 0.000000000000000000E+00
 0.000000000000000000E+00 0.000000000000000000E+00 0.000000000000000000E+00
 0.000000000000000000E+00 0.000000000000000000E+00 0.111001385595905754E+05
 0.177294227112127074E+05 0.396140623480684926E+05 0.462763172936301229E+04
 0.000000000000000000E+00 0.000000000000000000E+00 0.000000000000000000E+00
 0.000000000000000000E+00 0.000000000000000000E+00 0.000000000000000000E+00
 0.000000000000000000E+00 0.000000000000000000E+00 0.000000000000000000E+00
 0.179761712946645360E+05 0.741628809765858670E+05 0.000000000000000000E+00

Advanced Topics on Run and Diagnosis

 9

 0.000000000000000000E+00 0.000000000000000000E+00 0.000000000000000000E+00
 0.000000000000000000E+00 0.000000000000000000E+00 0.000000000000000000E+00
 0.000000000000000000E+00 0.000000000000000000E+00

5)
 stepsize estimates = 0.100000000000000005E-03 0.944604610006952448E-03

0.944604610006930960E-03
 stepsize stprat = 0.894135600291783517E+00 0.227490031410343044E-13
 stepsize guesses = 0.100000E-03 0.900000E-04 0.110000E-03 0.000000E+00 0.944605E-03

0.935159E-03 0.954051E-03
 penalties = 0.000000E+00 0.559315E+03 -0.552732E+03 0.588939E+04 -0.234810E+05

-0.234780E+05 -0.234780E+05
pcgsoi: gnorm(1:2) 3.109277444014627486E+07 3.109277444014627486E+07
costterms Jb,Jo,Jc,Jl = 1 0 0.000000000000000000E+00 1.946084290880794579E+05

0.000000000000000000E+00 0.000000000000000000E+00
cost,grad,step,b,step? = 1 0 1.946084290880794579E+05 5.576089529423489694E+03

9.446046100069309653E-04 0.000000000000000000E+00 good
estimated penalty reduction this iteration 1 0 2.937037807406784850E+04

1.509203800251368577E-01%
penalty and grad reduction WRT outer and initial iter= 1 0 1.000000000000000000E+00

1.000000000000000000E+00 1.000000000000000000E+00
1.000000000000000000E+00

Minimization iteration 1
 J= 0.277433945264109712E+02 0.000000000000000000E+00 0.000000000000000000E+00
 0.000000000000000000E+00 0.000000000000000000E+00 0.000000000000000000E+00
 0.000000000000000000E+00 0.000000000000000000E+00 0.111001385595905754E+05
 0.177294227112127073E+05 0.396140623480684925E+05 0.462763172936301231E+04
 0.000000000000000000E+00 0.000000000000000000E+00 0.000000000000000000E+00
 0.000000000000000000E+00 0.000000000000000000E+00 0.000000000000000000E+00
 0.000000000000000000E+00 0.000000000000000000E+00 0.000000000000000000E+00
 0.179761712946645356E+05 0.741628809765858657E+05 0.000000000000000000E+00
 0.000000000000000000E+00 0.000000000000000000E+00 0.000000000000000000E+00
 0.000000000000000000E+00 0.000000000000000000E+00 0.000000000000000000E+00
 0.000000000000000000E+00 0.000000000000000000E+00
 b=-0.103454706240741566E+06 0.000000000000000000E+00 0.000000000000000000E+00
 0.000000000000000000E+00 0.000000000000000000E+00 0.000000000000000000E+00
 0.000000000000000000E+00 0.000000000000000000E+00 0.471859414082640217E+06
 0.836887408435857958E+06 0.444144650683562874E+06 0.493857599036264164E+05
 0.000000000000000000E+00 0.000000000000000000E+00 0.000000000000000000E+00
 0.000000000000000000E+00 0.000000000000000000E+00 0.000000000000000000E+00
 0.000000000000000000E+00 0.000000000000000000E+00 0.000000000000000000E+00
 0.143436922590024884E+06-0.241501731777713210E+08 0.000000000000000000E+00
 0.000000000000000000E+00 0.000000000000000000E+00 0.000000000000000000E+00
 0.000000000000000000E+00 0.000000000000000000E+00 0.000000000000000000E+00
 0.000000000000000000E+00 0.000000000000000000E+00
 c= 0.744926644276673220E+08 0.000000000000000000E+00 0.000000000000000000E+00
 0.000000000000000000E+00 0.000000000000000000E+00 0.000000000000000000E+00
 0.000000000000000000E+00 0.000000000000000000E+00 0.187038212807235956E+09
 0.245074032578180438E+09 0.116810874950575594E+09 0.631952836573825778E+07
 0.000000000000000000E+00 0.000000000000000000E+00 0.000000000000000000E+00
 0.000000000000000000E+00 0.000000000000000000E+00 0.000000000000000000E+00
 0.000000000000000000E+00 0.000000000000000000E+00 0.000000000000000000E+00
 0.327987495483898158E+09 0.597416983300266383E+11 0.000000000000000000E+00
 0.000000000000000000E+00 0.000000000000000000E+00 0.000000000000000000E+00
 0.000000000000000000E+00 0.000000000000000000E+00 0.000000000000000000E+00
 0.000000000000000000E+00 0.000000000000000000E+00
EJ= 0.907421173071728001E+02 0.000000000000000000E+00 0.000000000000000000E+00
 0.000000000000000000E+00 0.000000000000000000E+00 0.000000000000000000E+00
 0.000000000000000000E+00 0.000000000000000000E+00 0.104139003066849756E+05
 0.165779309617118123E+05 0.390129888433980952E+05 0.456584643970885767E+04
 0.000000000000000000E+00 0.000000000000000000E+00 0.000000000000000000E+00
 0.000000000000000000E+00 0.000000000000000000E+00 0.000000000000000000E+00
 0.000000000000000000E+00 0.000000000000000000E+00 0.000000000000000000E+00
 0.175622634769410845E+05 0.567994645981838240E+05 0.000000000000000000E+00
 0.000000000000000000E+00 0.000000000000000000E+00 0.000000000000000000E+00
 0.000000000000000000E+00 0.000000000000000000E+00 0.000000000000000000E+00
 0.000000000000000000E+00 0.000000000000000000E+00
 stepsize estimates = 0.944604610006930965E-03 0.577090170662210155E-03
0.577090170662210132E-03
 stepsize stprat = 0.636840580602851869E+00 0.386854261310281249E-16

Advanced Topics on Run and Diagnosis

 10

 stepsize guesses = 0.944605E-03 0.850144E-03 0.103907E-02 0.000000E+00 0.577090E-03
0.571319E-03 0.582861E-03
 penalties = 0.000000E+00 -0.367282E+04 0.475604E+04 0.120164E+05 -0.819848E+04
-0.819646E+04 -0.819646E+04
pcgsoi: gnorm(1:2) 3.502903930399505794E+07 3.502903930399504304E+07
costterms Jb,Jo,Jc,Jl = 1 1 2.774339452641097026E+01 1.652103076194851892E+05
0.000000000000000000E+00 0.000000000000000000E+00
cost,grad,step,b,step? = 1 1 1.652380510140116094E+05 5.918533543369932886E+03
5.770901706622101049E-04 1.126597414824659582E+00 good
estimated penalty reduction this iteration 1 1 2.021491427007579478E+04
1.038748134641514359E-01%
penalty and grad reduction WRT outer and initial iter= 1 1 8.490796199748631423E-01
1.061412933228467859E+00 8.490796199748631423E-01 1.126597414824660026E+00

For each inner iteration, there are 5 sections of outputs. The 1st iteration is labeled with
numbers 1 to 5, with a detailed explanation below:

1 – 4) detailed information on the cost function (J=), b term for estimate stepsize
(b=), c term for estimate stepsize (c=), estimate terms in penalty (EJ). There are
32 (8 + number of observation types) items listed in each and the meanings of
these items are:

1 contribution from background, satellite radiance bias, and

precipitation bias
2 place holder for future linear linear term
3 contribution from dry pressure constraint term (Jc)

4 contribution from negative moisture constraint term (Jl/Jq)
5 contribution from excess moisture term (Jl/Jq)
6 contribution from negative gust constraint term
7 contribution from negative vis constraint term
8 contribution from negative pblh constraint term

9-32: contributions to Jo from different observation types:

9 contribution from ps observation term
10 contribution from t observation term
11 contribution from w observation term
12 contribution from q observation term
13 contribution from spd observation term
14 contribution from srw observation term
15 contribution from rw observation term
16 contribution from dw observation term
17 contribution from sst observation term
18 contribution from pw observation term
19 contribution from pcp observation term
20 contribution from oz observation term
21 contribution from o3l observation term (not used)
22 contribution from gps observation term
23 contribution from rad observation term
24 contribution from tcp observation term
25 contribution from lagrangian tracer
26 contribution from carbon monoxide
27 contribution from modis aerosol aod
28 contribution from level modis aero aod
29 contribution from in-situ pm2_5 obs

Advanced Topics on Run and Diagnosis

 11

30 contribution from gust monoxide
31 contribution from vis aerosol aod
32 contribution from pb1h modis aero aod

For further understand of these terms, it is suggested that the users check
stpcalc.f90 for the code including the above information.

Some terms in section 5 are explained below:

• stepsize estimates: final step size estimates
• stepsize stprat: convergence in stepsize estimation
• gnorm(1:2): 1=(norm of the gradient)2, 2= (norm of the gradient)2
• Jb,Jo,Jc,Jl: the values of cost function, background term (Jb), observations

term (Jo), dry pressure constraint term (Jc), and negative and excess moisture term
(Jl).

• cost,grad,step,b : see explanations in the 1st part of this section.
• estimated penalty reduction this iteration:

(penalty current solution- estimate of penalty for new solution),
(penalty current solution- estimate of penalty for new solution)/(original penalty)

• penalty and grad reduction WRT outer and initial iter=
Penalty reduction to the 1st inner loop value, Grad reduction to the 1st inner loop value ,
Penalty reduction to the original (1st outer) value, Grad reduction to the original (1st outer)
value

3.2 Use Bundle To Configure Control, State Variables And Background
Fields

Since the GSI release version 3.0, the control variables, state variables, and background
fields can be configured through a new info file named “anavinfo”. Different GSI
applications need a different anavinfo file to setup the control variables, state variables, and
background fields. In the ./fix directory of the release package, there are many example
anavinfo files for different GSI applications. Because this is a work in progress, users
should use one of the sample anavinfo files instead of making a new one. The released GSI
run script has added the link for this new info file.

Below is an example of an avaninfo file for an ARW (anavinfo_arw_netcdf) case:

met_guess::
!var level crtm_use desc orig_name
 cw 30 10 cloud_condensate cw
ql 30 10 cloud_liquid ql
qi 30 10 cloud_ice qi
qr 30 10 rain qr
qs 30 10 snow qs
qg 30 10 graupel qg

Advanced Topics on Run and Diagnosis

 12

::

state_vector::
!var level itracer amedge source funcof
 u 30 0 no met_guess u
 v 30 0 no met_guess v
 tv 30 0 no met_guess tv
 tsen 30 0 no met_guess tv,q
 q 30 1 no met_guess q
 oz 30 1 no met_guess oz
 cw 30 1 no met_guess cw
 p3d 31 0 yes met_guess p3d
 ps 1 0 no met_guess p3d
 sst 1 0 no met_guess sst
::
control_vector::
!var level itracer as/tsfc_sdv an_amp0 source funcof
 sf 30 0 1.00 -1.0 state u,v
 vp 30 0 1.00 -1.0 state u,v
 ps 1 0 0.50 -1.0 state p3d
 t 30 0 0.70 -1.0 state tv
 q 30 1 0.70 -1.0 state q
 oz 30 1 0.50 -1.0 state oz
 sst 1 0 1.00 -1.0 state sst
 cw 30 1 1.00 -1.0 state cw
 stl 1 0 1.00 -1.0 motley sst
 sti 1 0 1.00 -1.0 motley sst
::

There are three sections in this file:

met_guess:: section to configure background fields
state_vector:: section to configure state variables
control_vector:: section to configure control variables

In each section, the 1st column sets up the variable name and 2nd column sets up the vertical
levels. The 4th column in the section control_vector is the normalized scale factor for the
background error variance. Please be aware that starting from GSI version 3.4, the vertical
levels (2nd column) in the anavinfo file should exactly match the vertical levels of the GSI
background field. And the variables might also be different between different versions of
GSI code and different GSI applications. Users are advised to modify the anavinfo file that
comes with the release code to suit their own application.

3.3 Using Observations Station Uselist And Rejection List In GSI

The GSI tries to use all available observations but has also to make significant efforts to
avoid bad observations getting into the analysis. The data quality control before GSI and
the gross check inside GSI are two major ways to find and toss the bad observations. In
addition, GSI can also use station rejection list and uselist to further control which data
should be used in the GSI. The rejection list assumes all observations should be used in the
GSI analysis except ones in the rejection list, while the uselist assumes all observations
should NOT be used except ones in the uselist.

Advanced Topics on Run and Diagnosis

 13

3.3.1 Surface Observation Rejection And Use List

GSI has many kinds of surface rejection list and uselist files. Those files are listed and
explained in the following table. If those files are not existing in a GSI run, then the
function of using rejection list and uselist will be turned off automatically.

File name used in
GSI

Rejection list
and uselist
array in GSI

Content Sample files in fix directory

mesonetuselist cprovider mesonet provider names
from the uselist

nam_mesonet_uselist.txt

w_rejectlist w_rjlist station names from the
reject list for wind

new_rtma_w_rejectlist

t_rejectlist t_rjlist station names from the
reject lists for temperature

new_rtma_t_rejectlist
t_day_rejectlist t_day_rjlist new_rtma_t_day_rejectlist
t_night_rejectlist t_night_rjlist new_rtma_t_night_rejectlist
p_rejectlist p_rjlist station names from the

reject list for surface
pressure

new_rtma_p_rejectlistmore

q_rejectlist q_rjlist station names from the
reject lists for specific
humidity

new_rtma_q_rejectlist
q_day_rejectlist q_day_rjlist new_rtma_q_day_rejectlist
q_night_rejectlist q_night_rjlist new_rtma_q_night_rejectlist
mesonet_stnuselist csta_winduse 'good' mesonet station

names from the station
uselist

nam_mesonet_stnuselist.txt

wbinuselist csta_windbin wind direction stratified
wind accept lists

new_rtma_wbinuselist

Note, this table is based on the subroutine init_rjlists in file sfcobsqc.f90.

At the beginning of subroutine read_prepbufr, the subroutine init_rjlists is called to read
station names from the rejection list and uselist files. When a surface observation is read in,
subroutine get_usagerj is called to compare the station name with the rejection list and
uselist to reset the usage flag of the observation.

For rejection list of temperature, moisture, surface pressure, and wind observation other
than mesonet wind:

• if incoming usage value is >=6. then do nothing since read_prepbufr has already
flagged this observation and assigned a specific usage value to it;

• if usage value is < 6 and those observations are found in the rejection list, set
usage=5000.

• if usage value is < 6 and those observations are not found in the rejection list, keep
the original usage value.

Advanced Topics on Run and Diagnosis

 14

Now, only mesonet wind observation has both uselist and rejection list, the details of apply
those lists are if usage value is < 6, then:

• set usage = 6000 and check if this wind observation is found in one of the three
uselist:

o mesonet provider names uselist
o 'good' mesonet station names uselist
o wind direction stratified wind accept lists

if found this station in uselist, then set original usage value, otherwise, the usage
flag of this station is 6000.

• After uselist check, all mesonet observations then go through the rejection list just
as other surface wind observations to check if toss this station. So, the stations
flagged to use in uselist check may be flagged to large value again in the rejection
list.

As a background knowledge, the observation with usage flag larger than outer loop number
will not be used in the GSI analysis. The above check of the rejection list and uselist are
summarized in the following table:

Observation type List type Rejection list and
uselist array in GSI

If station name match,
Usage flag change to

Temperature:

Reject list t_rjlist
t_day_rjlist
t_night_rjlist

r5000
r5100
r5100

Moisture

Reject list q_rjlist
q_day_rjlist
q_night_rjlist

r5100
r5100

Ps Reject list p_rjlist r5000
surface wind
other than mesonet

Reject list w_rjlist r5000

Mesonet wind

Uselist

Set all mesonet obs to
usage_rj=r6000, then
• cprovider
• csta_winduse
• csta_windbin

usage_rj0
usage_rj0
usage_rj0

Reject list w_rjlist r6100
r6200

3.3.2 Aircraft Observation Rejection

GSI also has rejection list for aircraft observations (PrepBUFR type 129 to 140 and 229 to
240), which are listed and explained in the following table. Again, if those files are not

Advanced Topics on Run and Diagnosis

 15

existing in a GSI run, then the function of using rejection list and uselist will be turned off
automatically.

File name used in
GSI

Array in GSI Content Sample files in fix directory

current_bad_aircraft t_aircraft_rjlist Aircraft tag number from
the reject list for
temperature

rap_current_bad_aircraft.txt

w_aircraft_rjlist Aircraft tag number from
the reject list for wind

q_aircraft_rjlist Aircraft tag number from
the reject list for moisture

The rejection lists for aircraft are used in the same way just like the rejection list for surface
data. But the rejection list for temperature, wind, and moisture are save in the same file.

GSI Theory

 16

Chapter 4: GSI Theory

The GSI was developed originally as a three-dimensional variational (3DVAR) data
assimilation system. It has been evolving to an Ensemble-Var hybrid system in recent
years.

As a reference for users to understand the basic GSI analysis procedure, a brief summary of
the 3DVAR mathematical theory and the minimization steps used in the GSI is given in
this Chapter.

4.1 3DVAR Equations:

The basic 3DVAR equation is:

𝐽 = !
! 𝑥𝑎 − 𝑥𝑏

𝑇𝐵!! 𝑥𝑎 − 𝑥𝑏 + !
! 𝐻𝑥𝑎 − 𝑜𝑜

𝑇𝑂!! 𝐻𝑥𝑎 − 𝑜𝑜 + 𝐽𝑐 (1)
where:

: Analysis fields
: Background fields
: Background error covariance matrix
: Observation operator
: Observations
: Observation error covariance

Jc: Constraint terms (e.g., dynamical constraint, moisture constraint)

Define an analysis increment (Δx=) , then equation (1) becomes:

 𝐽 = !

!𝑥
𝑇𝐵!!𝑥+ !

! 𝐻(𝑥𝑏 + 𝑥)− 𝑜𝑜
𝑇𝑂!! 𝐻(𝑥𝑏 + 𝑥)− 𝑜𝑜 + 𝐽𝑐 (2)

By assuming the linearity of the observation operator H, equation (2) can be written as:

 𝐽 = !

!𝑥
𝑇𝐵!!𝑥+ !

! 𝐻𝑥− (𝑜𝑜 −𝐻𝑥𝑏)
𝑇
𝑂!! 𝐻𝑥− (𝑜𝑜 −𝐻𝑥𝑏) + 𝐽𝑐 (3)

Next, define the observation innovation as , equation (3) becomes:

 𝐽 = !

!𝑥
𝑇𝐵!!𝑥+ !

! 𝐻𝑥− 𝑜 𝑇𝑂!! 𝐻𝑥− 𝑜 + 𝐽𝑐 (4)

ax

bx
B
H
oo
O

a bx x x= −

o bo o Hx= −

GSI Theory

 17

4.2 Iterations To Find The Optimal Results

To improve convergence ,GSI preconditions its cost function by defining a new variable

. Equation (4), in terms of the new variable y, becomes:

 𝐽 = !

!𝑦
𝑇𝐵𝑦+ !

! 𝐻𝐵𝑦− 𝑜 𝑇𝑂!! 𝐻𝐵𝑦− 𝑜 + 𝐽𝑐 (5)

Using the chain rule, the gradients of background and observation parts of the cost function
(4) with respect to x and cost function (5) with respect to y have the form:

 (6)
 (7)

Equations (6) and (7) are simultaneously minimized by employing an iterative Conjugate
Gradient process.

Start by assuming:

Then iterate over n:

∇𝑥𝐽𝑛 = 𝐵!!𝑥𝑛!! +𝐻𝑇𝑂!! 𝐻𝑥𝑛!! − 𝑜 = 𝑦𝑛!! +𝐻𝑇𝑂!! 𝐻𝑥𝑛!! − 𝑜

∇𝑦𝐽𝑛 = 𝐵∇𝑥𝐽𝑛

Dir· xn = ∇yJn + βDir· xn-1
Dir· yn = ∇xJn + βDir· yn-1

xn = xn-1 + αDir·xn
yn = yn-1 + αDir·yn

Until either the maximum number of iterations has been reached or the gradient is
sufficiently minimized.

During the above iteration, the is calculated in subroutine pcgsoi and the stepsize () is
calculated in subroutine stpcalc.

Please note that the current version GSI has more minimization options in addition to the
one described above. Such as:

• Minimize cost function using sqrt(B) preconditioner when namelist variable lsqrtb
is set to true.

• Minimization using Bi-conjugate gradient for minimization when namelist variable
lbicg is set to true

1y B x−=

1 1()T
x J B x H O Hx o− −∇ = + −

1()T T T
y J B y B H O HBy o−∇ = + − xB J= ∇

0 0 0x y= =

β α

GSI Theory

 18

4.3 Analysis Variables

Typically, there are seven analysis variables used in GSI analysis:

Stream function (ψ)
Unbalanced velocity potential (χ)
Unbalanced virtual temperature (T)
Unbalanced surface pressure (P)
Pseudo relative humidity [qoption =1] or normalized relative humidity [qoption=2]
Ozone mixing ratio (only for global GSI)
Cloud condensate mixing ratio (only for global GSI)

With broader application of GSI for chemical data assimilation, some new variables, such
as trace gases, aerosols, and chemistry are added as analysis variables. Also, gust and
visibility were added as analysis variables for RTMA application.

GSI Code Structure

 19

Chapter 5: GSI Code Structure

This Chapter introduces the basic code structure of the GSI. Section 5.1 describes the main
processes of the GSI consisting of the three main routines. Sections 5.2 to 5.5 introduce the
code related to four important parts of GSI: background IO, observation ingestion,
observation innovation calculation, and minimization iteration.

5.1 Main Process

At the top most level of abstraction, the GSI code is divided into three phases; the
initialization, the run, and the finalize phase. The philosophy behind this division is to
create a modular program structure with tasks that are independent of one another.

The main top-level driver routine is called gsimain and is located in the file gsimain.f90.
Ninety percent of gsimain.f90 is a variety of useful Meta data.

• Major change history
• List of input and output files
• List of subroutines and modules
• List of external libraries
• Complete list of exit states
• A discussion of important namelist options

Possibly the most important of these is the list of exit codes. Should the GSI run fail from
an internal error, the exit code may provide sufficient insight to resolve the issue. The final
lines of gsimain.f90 consist of the three main calls to initialize, run and finalize. The
table below summarizes each of these phases.

GSI Code Structure

 20

gsimain.f90 main steps in each call

call gsimain_initialize
(gsimod.F90)

• gsi_4dcoupler_parallel_init
• MPI initialize
• Initialize defaults of variables in modules
• Read in user input from namelist
• 4DVAR setup if it is true (not supported)
• Check user input for consistency among

parameters for given setups
• Optional read in namelist for single observation

run
• Write namelist to standard out
• If this is a wrf regional run, the run interface

with wrf:
call convert_regional_guess (details in section 6.2.2)

• Initialize variables, create/initialize arrays
• Initialize values in radinfo and aeroinfo

call gsimain_run

(gsimod.F90)

• Call the main GSI driver routine
 call gsisub(mype)
 (check next page for steps in gsisub)

If 4DVAR, then:
call gsi_4dcoupler_final_traj

call gsimain_finalize

(gsimod.F90)

• Deallocate arrays
• MPI finalize

GSI Code Structure

 21

GSI main process (continue)

subroutine gsisub (gsisub.F90)
 high level driver for GSI
If not ESMF
• Allocate grid arrays
• Get date, grid, and other information

from background files
End if not ESMF
• If single observation test:

Create prep.bufr file with single obs
in it

• If regional analysis:
Read in Level 2 land radar winds
and create radar wind superob file

call radar_bufr_read_all
• If initial pass:

Read info files for assimilation of
various observations

• If initial pass:
Computer random number for
precipitation forward model

• Complete setup and execute external
and internal minimization loops
if (lobserver) then

if initial pass: call observer_init
 call observer_run

if last pass: call observer_finalize
else

call glbsoi(mype)
endif

• If last pass:

Deallocate arrays

Note: lobserver = if true, calculate

observation departure
vectors only.

subroutine glbsoi (glbsoi.f90)
driver for GSI

• Initialize timer for this procedure
• If l_hyb_ens is true, then initialize

machinery for hybrid ensemble 3dvar
• Check for alternative minimizations
• Initialize observer
• Check GSI options against available

number of guess time levels
• Read observations and scatter
• Create/setup background error and

background error balance
• If l_hyb_ens is true, then read in

ensemble perturbations
• If 4d-var and not 1st outer loop, then

read output from previous
minimization.

• Set error (variance) for predictors
(only use guess)

• Set errors and create variables for
dynamical constraint

• Main outer analysis loop

do jiter=jiterstart,jiterlast
Ø Set up right hand side of analysis equation

call setuprhsall (details in section 6.2.4)
Ø Set up right hand side of adjoint of analysis

equation if forecast sensitivity to observations
Ø Inner minimization loop

if (laltmin) then
if (lsqrtb) call sqrtmin
if (lbicg) call bicg

else
call pcinfo
call pcgsoi (details in section 6.2.5)

endif
Ø Save information for next minimization
Ø Save output of adjoint of analysis equation
end do ! jiter

• Calculate and write O-A information
• Deallocate arrays
• Write updated bias correction

coefficients
• Finalize observer
• Finalize timer for this procedure

GSI Code Structure

 22

5.2 GSI Background IO (for 3DVAR)
 Read background
Background files Convert to internal format Read in and distribution

NMM NetCDF

NMM binary

ARW NetCDF

ARW binary

RTMA(twodvar)

nems_nmmb

CMAQ

global GFS

 (regional_io.f90)
convert_regional_guess

convert_netcdf_nmm

convert_binary_nmm

convert_netcdf_mass

convert_binary_mass

convert_binary_2d

convert_nems_nmmb

read_guess (read_guess.F90)

read_wrf_nmm_netcdf_guess

read_wrf_nmm_binary_guess

read_wrf_mass_netcdf_guess

read_wrf_mass_binary_guess

read_2d_guess

read_nems_nmmb_guess

read_cmaq_guess

read_bias (bias correction fields)
if (use_gfs_nemsio) then

read_nems
read_nems_chem

else
read_gfs
read_gfs_chem

 Output analysis result

write_all (write_all.F90)

write_regional_analysis

if (use_gfs_nemsio)

write_nems
else

write_gfs
write_bias (bias correction)

 (regional_io.f90)
write_regional_analysis

wrwrfnmma_netcdf
update_netcdf_nmm
wrwrfnmma_binary

wrwrfmassa_netcdf
update_netcdf_mass
wrwrfmassa_binary

wr2d_binary

wrnemsnmma_binary

write_cmaq

Analysis results file

NMM NetCDF

NMM binary

ARW NetCDF

ARW binary

RTMA(twodvar)

nems_nmmb

CMAQ

global GFS

Note: this chart doesn’t include ensemble member ingest
for hybrid

GSI Code Structure

 23

5.3 Observation Ingestion
Data type
(ditype)

Observation type
(obstype)

Subroutine that reads
data

conv

t, q, ps, pw, spd, mta_cld,
gos_ctp, gust, vis

read_prepbufr

uv from satwnd read_satwnd
Not from satwnd read_prepbufr

sst

from mods read_modsbufr
not from mods read_prepbufr

srw read_superwinds
tcp read_tcps
lag read_lag
rw (radar winds Level-2) read_radar
dw (lidar winds) read_lidar
rad_ref read_RadarRef_mosaic
lghtn read_lightning
larccld read_NASA_LaRC
pm2_5 read_anowbufr
pblh read_pblb

rad
(satellite
radiances)

(platform)
not AQUA

amsua

read_bufrtovs

(TOVS 1b data)

amsub
msu
mhs
hirs4,3,2
ssu

(platform)
AQUA

airs
read_airs
(airs data)

amsua
hsb

atms read_atms
iasi read_iasi
cris read_cris
sndr, sndrd1/2/3/4 read_goesndr

(GOES sounder data)
ssmi read_ssmi
amsre_low/mid/hig read_amsre

ssmis,
ssmis_las/uas/img/env

read_ssmis

goes_img read_goesimg
seviri read_seviri
avhrr_navy read_avhrr_navy
avhrr read_avhrr

ozone subuv2, omi, gome,
o3lev, mls

read_ozone

co mopitt read_co
pcp pcp_ssmi, pcp_tmi,

pcp_amsu,pcp_stage3
read_pcp

gps gps_ref, gps_bnd read_gps
aero aod read_aerosol

Note: This table is based on
subroutine read_obs in
read_obs.F90:

• Data type is saved in

array ditype
• Observation type is save

in array obstype. In
namelist, the observation
type is dtype

Then in subroutine obs_para
(obs_para.f90), each
processor reads through all
obs_input.* files, pick
observations within its sub-
domain, and save them into a
file called:
pe*.obs-type_outer-loop,
where * is 4 digital processor
ID.

Each observation type uses one or
more processors to read in the
data and then write the data into a
intermediate file called
obs_input.*, where * is a
processor ID that is used to read
in certain observation type.

GSI Code Structure

 24

5.4 Observation Innovation Calculation
Data type
(ditype)

Observation type
(obstype)

Subroutine
calculate

innovation

conv

t setupt
uv setupw
q setupq
ps setupps
pw setuppw
spd setupspd
sst setupsst
srw setupsrw
tcp setuptcp
lag setuplag
rw (radar winds Level-2) setuprw
dw (lidar winds) setupdw
pm2_5 setuppm2_5
gust setupgust
vis setupvis
pblh setuppb1h

rad
(satellite
radiances)

(platform)
not AQUA

amsua

setuprad

amsub
msu
mhs
hirs4,3,2
ssu

(platform)
AQUA

airs
amsua
hsb

atms
iasi
cris
sndr, sndrd1, sndrd2
sndrd3, sndrd4
ssmi
amsre_low/mid/hig
 ssmis ssmis_*
goes_img
seviri
avhrr_navy
avhrr

ozone subuv2, omi, gome, setupozlay
o3lev, mls setupozlev

pcp pcp_ssmi, pcp_tmi,
pcp_amsu,pcp_stage3

setuppcp

co mopitt, subuv2 setupco
gps gps_ref setupref

gps_bnd setupbend

Note: this table is based on subroutine
setuprhsall in setuprhsall.f90:
• Data type is saved in array ditype
• Observation type is in array obstype

• The observation departure from the
background of each outer loop is
calculated in subroutine setuprhsall.

• A array (rdiagbuf) that holds
observation innovation for diagnosis is
generated in each setup routine. (Also
see A.2)

• The index of the data array for
temperature in setupt is list below:

index content
1 ier obs error
2 ilon grid relative obs location

(x)
3 ilat grid relative obs location

(y)
4 ipres pressure
5 itob t observation
6 id station id
7 itime observation time in data

array
8 ikxx observation type
9 iqt flag indicating if

moisture obs available
10 iqc quality mark
11 ier2 original-original obs

error ratio
12 iuse use parameter
13 idomsfc dominant surface type
14 iskint surface skin temperature
15 iff10 10 meter wind factor
16 isfcr surface roughness
17 ilone longitude (degrees)
18 ilate latitude (degrees)
19 istnelv station elevation (m)
20 iobshgt observation height (m)
21 izz surface height
22 iprvd observation provider
23 isprvd observation subprovider
24 icat data level category
25 iptrb t perturbation

GSI Code Structure

 25

5.5 Inner Iteration

The inner iteration loop of GSI is where the cost function minimization is computed. GSI
provides several minimization options, but here we will focus on the preconditioned
conjugate gradient method. The inner iteration of the GSI variational analysis is performed
in subroutine pcgsoi (pcgsoi.f90). inside the following loop:

 inner_iteration: do iter=0,niter(jiter)

 …

 end do inner_iteration

The main steps inside the loop are listed as a table below with the corresponding code and
the terms of equation in Section 6.1.

Steps in inner
iteration

Code in pcgsoi.f90 Corresponding equations in
Chapter 4 (variables are
defined in Chapter 4)

Gradient of
observation term

call intall 𝐻𝑇𝑂!! 𝐻𝑥𝑛!! − 𝑜

Add gradient of
background term

gradx(i)=gradx(i)+yhatsave(i)
∇𝑥𝐽𝑛 = 𝐻𝑇𝑂!! 𝐻𝑥𝑛!! − 𝑜 + 𝑦𝑛!!

Apply background
error covariance

call bkerror(gradx,grady) ∇𝑦𝐽𝑛 = 𝐵∇𝑥𝐽𝑛

Calculate norm of
gradients

 b=β

𝛽 =
∇𝑥𝐽𝑛 − ∇𝑥𝐽𝑛!! 𝑇∇𝑦𝐽𝑛

∇𝑥𝐽𝑛 − ∇𝑥𝐽𝑛!! 𝑇
𝐷𝑖𝑟 ∙ 𝑥𝑛

Calculate new
search direction

dirx(i)=-grady(i)+b*dirx(i)
diry(i)=-gradx(i)+b*diry(i)

Dir· xn = ∇yJn + βDir· xn-1
Dir· yn = ∇xJn + βDir· yn-1

Calculate stepsize call stpcalc stp=𝛼 = 𝑎
𝑏
 Update solution

inside stpcalc
xhatsave(i)=xhatsave(i)+stp*dirx(i)
yhatsave(i)=yhatsave(i)+stp*diry(i)

xn = xn-1 + αDir·xn
yn = yn-1 + αDir·yn

For detailed steps, advanced developers are suggested to read through the code and send
questions to gsi_help@ucar.edu.

Static Background Error Covariance

 26

Chapter 6: Static Background Error Covariance

The background error covariance is most important part of variational analysis method to
determine the impact ratio, distribution, and relations of the analysis increments. In this
Chapter, we will discuss the issues related to static background error covariance used in
the GSI analysis.

6.1 What Is Background Error Covariance

Background error covariance plays a very important role in determining the quality of
variational analysis for NWP models. It controls what percentage of the innovation
becomes the analysis increment, how each observation impacts a broad area, and the
balance among different analysis variables.

Since most of the data assimilation background is model forecasts from a prior time step,
the background error covariance matrix (B) can be defined as the error covariance of model
forecasts:

[Forecast (x) – Truth (xtruth)]

Since the actual state of atmosphere (truth) is not known, the forecast errors need to be
estimated. When estimating forecast errors, the most common methods are the “NMC
method” and “ensemble method”. In the “NMC method”, forecast errors are estimated with
the difference of two (typically 12 and 24 hours) forecasts valid for the same time. In the
“ensemble method”, the forecast errors are estimated with ensemble perturbations
(ensemble - ensemble mean).

Because of the size of the model variables, the full size of a B matrix is extremely large. It
is typically on the order of 106x106, which in its present form cannot be stored in any
computer. This problem is simplified by using an ideal set of analysis variables for which
the analysis is performed. These are generally referred to as “analysis control variables”.
The analysis control variables are selected such that the cross-correlations between these
variables are minimum, which means less off-diagonal terms in B. The cross dependency
among these analysis control variables is removed. The balance between analysis variables
(such as mass and wind fields) are achieved with pre-computed “regression coefficients”.
Further, the forecast errors are modeled as a Gaussian distribution with pre-computed
variances and “lengthscale” parameters for each of the analysis control variables. We will
use the following sub-sections to briefly introduce how GSI processes these pre-computed
background error statistics and applies them in a GSI analysis.

To achieve desired regression coefficients, variance, and lengthscale parameters, offline
computation should be conducted with a sufficiently large data set for a period of time,
typically, more than one month. For this purpose, a separate utility called “gen_be” can be
used. It is released as a stand-alone tool for the generation of the background error
covariance matrix based on the forecasts from a user defined forecast system. Details about

Static Background Error Covariance

 27

this utility can be found in the 2012 GSI residential tutorial lecture by Rizvi et al. (the
lecture slides are available on-line at the GSI User’s Page).

6.2 Processing Of Background Error Matrix

The GSI package has several files in ~/comGSI_v3.2/fix/ to hold the pre-computed
background error statistics for different GSI applications with different grid configurations.
Since the GSI code has a build-in mechanism to interpolate the input background error
matrix to any desired analysis grid, the following two background error files can be used to
specify the B matrix for any GSI regional application.

• nam_nmmstat_na.gcv : contains the regional background error statistics,
computed using forecasts from the NCEP’s NAM model covering North
America. The values of this B matrix cover the northern hemisphere with 93
latitude lines from -2.5 degree to 89.5 degree with 60 vertical sigma levels from
0.9975289 to 0.01364.

• nam_glb_berror.f77.gcv : contains the global background errors based on the
NCEP’s GFS model, a global forecast model. The values of this B matrix covers
global with 192 latitude lines from -90 degree to 90 degree and with 42 vertical
sigma levels from 0.99597 to 0.013831.

Also included in this release package is the background error matrix for RTMA GSI:

• new_rtma_regional_nmm_berror.f77.gcv

These background error matrix files listed above are Big Endian binary files. In the same
directory, nam_nmmstat_na.gcv_Little_Endian and nam_glb_berror.f77.gcv_Little_Endian
are their Little Endian versions for certain computer platforms that cannot compile GSI
with the Big Endian option. In this release version, GSI can be compiled with the Big
Endian option with PGI and Intel, but not with gfortran compiler.

All the parameters for the global background error statistics are latitude dependent. In the
case of the regional background error statistics, regression coefficients of velocity potential
as well as variances and horizontal lengthscales for all the control variables are latitude
dependent. The remaining parameters such as regression coefficients for unbalanced
“surface pressure”, “temperature” and vertical lengthscales for all the fields do not vary
with latitude.

In the GSI code, the background error statistics are initially read in at their original sigma
levels and interpolated vertically in log (sigma) coordinates on the analysis vertical sigma
levels. In subroutines “prewgt” and “prewgt_reg”, lengthscales (both horizontal and
vertical) and variance information are read in and then vertically interpolated to analysis
grids by calling “berror_read_wgt” and “berror_read_wgt_reg”, while the balance
information is read in and vertically interpolated to analysis grids by calling
“berror_read_bal” and “berror_read_bal_reg”, respectively for global and regional
applications.

Static Background Error Covariance

 28

Table 6.1 shows the list of arrays in which the original background error statistics are read
by the various subroutines discussed above.

Table 6.1 The information on arrays used by GSI background error matrix
Category Array

name
Dimension Content

Balance
(Horizontal
regression
coefficients)

agvi 0:mlat+1,1:nsig,1:nsig Regression coefficients for stream
function and temperature

wgvi 0:mlat+1,1:nsig Regression coefficients for stream
function and surface pressure

bvi 0:mlat+1,1:nsig Regression coefficients for stream
function and velocity potential

Horizontal
and vertical
influence
scale

hwll 0:mlat+1,1:nsig,1:nc3d horizontal lengthscales for stream
function, unbalanced velocity potential,
unbalanced temperature, and relative
humidity

hwllp 0:mlat+1, nc2d horizontal lengthscale for unbalanced
surface pressure

vz 1:nsig, 0:mlat+1, 1:nc3d Vertical lengthscale for stream function,
unbalanced velocity potential, unbalanced
temperature, and relative humidity

variance

corz 1:mlat,1:nsig,1:nc3d Square root of variance for stream
function, unbalanced velocity potential,
unbalanced temperature, and relative
humidity

corp 1:mlat,nc2d Square root of variance for unbalanced
surface pressure

Note: mlat = number of latitude in original background error coefficient domain,
nsig = number of vertical levels in analysis grid

 nc3d = number of 3 dimensional analysis variables
 nc2d = number of 2 dimensional analysis variables

Horizontal interpolation of regression coefficients to the desired grid is done for global and
regional applications respectively in subroutines “prebal” and “prebal_reg”, residing in the
“balmod.f90” module. Horizontally interpolated regression coefficients on the desired grid
are stored in “bvz”, “agvz”,“wgvz” and “bvk”, “agvk”, “wgvk” arrays for global and
regional applications, respectively. These regression coefficients are used in subroutine
balance to build the respective balance part of velocity potential, temperature, and surface
pressure fields.

In subroutines “prewgt_reg” and “prewgt”, horizontal and vertical lengthscales (hwll,
hwllp, vz) and variance (corz, corp) information are horizontally interpolated and adjusted
with the corresponding input tuning parameters (“vs”,”hzscl”, “as3d” and “as2d”) supplied
through gsiparm.anl and anavinfo.txt. Desired information is finally processed and
transformed to new arrays such as “slw”, “sli”, “dssv” and “dssvs”, which are subsequently
used for recursive filter applications both in the horizontal and vertical directions. The
variance array: dssv is an allocated array for 3D variables with dimensions “lat”, “lon”,
“nsig”, “variables”. The dssvs is an allocated array for 2D variables with dimensions

Static Background Error Covariance

 29

“lat”, “lon”, “variables”. For both of these arrays, allocation of variables is decided by the
input parameters supplied via “anavinfo” and from the background grid configuration.

6.3 Apply Background Error Covariance

According to the variational equations used in the GSI, the background error covariance is
used to calculate the gradient of the cost function with respect to y based on the gradient of
the cost function with respect to x, which can be represented below following Section
6.1.2:

 (subroutine bkerror(gradx,grady))

Because B is very complex and has a very large dimension in most data analysis domains,
in reality, it must be decomposed into several sub-matrices to fulfill its function step by
step. In GSI, the B matrix is decomposed into the following form:

 B = B balanceV B Z (B x B y B y B x) B Z V B T

balance

The function of each sub-matrix is explained in table 6.2:

Table 6.2 the function of sub-B matrix
Sub-matrix of B Function Subroutine GSI files

 balance among different variables balance balmod.f90

 adjoint of balance equation tbalance balmod.f90

 Square root of variance bkgvar bkgvar.f90
 vertical smoother frfhvo smoothzrf.f90

 Self-adjoint smoothers in West-East
(Bx) and South-North (By) direction

smoothrf smoothzrf.f90

The composition of B is achieved by calling bkerror in following three steps:

Step 1. Adjoint of balance equation () is done by calling tbalance

Step 2. Apply square root of variances, vertical and horizontal parts of background error
correlation by calling subroutine bkgcov

• Multiply by square root of background error variances () by calling bkgvar;

• Apply vertical smoother () by calling frfhvo;

• Convert from subdomain to the full horizontal field distributed among
processors by calling general_sub2grid;

JBJ xy ∇=∇

balanceB
T
balanceB
V
ZB

xyyx BBBB

T
balanceB

V

ZB

Static Background Error Covariance

 30

• Apply self-adjoint smoothers in West-East (Bx) and South-North (By) direction
by calling smoothrf. Smoothing in the horizontal is achieved by calling ryxyyx
at each vertical sigma level in a loop over number of vertical sigma levels
(nlevs). Smoothing for three horizontal scales is done with the corresponding
weighting factors (hswgt) and horizontal lengthscale tuning factors (hzscl);

• The horizontal field is transformed back to respective subdomains by calling
general_grid2sub;

• Apply vertical smoother () by calling frfhvo;

• Multiply by the square root of background error variances () by calling
bkgvar.

Step 3. Application of balance equation () is done by calling balance

In this step the balance part of velocity potential, temperature and surface pressure is
computed from the stream function filled by using the corresponding regression
coefficients as follows:

velocity potential = unbalanced velocity potential + stream function

temperature = unbalanced temperature + stream function

surface pressure = unbalanced surface pressure + stream function

ZB

V

balanceB

()Balance st vpB →

()Balance st tB →

()Balance st pB →

Observations

 31

Chapter 7 Observations

The observation types that can be used by GSI and how to add or remove certain
observation have been discussed in detail in the GSI User’s Guide. But there are more
issues related to observations that users should know when they apply their own data with
GSI or want o improve the use of data. As an operation system, GSI development team has
invested significant effort to improve the data process inside and outside GSI.

In this chapter, we will discuss several important observation issues for better application
of the GSI, including:

• Process BUFR/PrepBUFR files
• Understand GSI interface to the observations
• The basic knowledge on NCEP observation files
• Observation error inflation inside the GSI

The first three topics are tailored from the “BUFR/PrepBUFR User’s Guide” to help users
process observations for GSI more quickly. If users have problem to understand the
BUFR/PrepBUFR process or want to learn more details of the DC BUFR table and more
examples on PrepBUFR process, please check BUFR User’s Page and the BUFR User’s
Guide:

http://www.dtcenter.org/com-GSI/BUFR/index.php

7.1 Process BUFR/PrepBUFR Files

7.1.1 introduction

BUFR (Binary Universal Form for the Representation of meteorological data) is Table
Driven Data Representation Forms approved by the World Meteorological Organization
(WMO) for operational use since 1988. Since then, it has been used for the representation
and exchange of observational data, as well as for archiving of all types of observational
data in operation centers, including National Center for Environmental Prediction (NCEP).

BUFR is a self-descriptive table driven code form that offers great advantages of flexibility
and expandability compared with the traditional alphanumeric code form as well as
packing to reduce message sizes.

As one of the operation centers, NCEP converts and archives all observational data
received into a BUFR tank and provides several kinds of BUFR files for its global and
regional numerical weather forecast systems. These BUFR files are used by the NCEP
operational data analysis system, Gridpoint Statistical Interpolation (GSI), as the standard
data sources. Therefore, it is one of DTC’s GSI user support tasks to provide suitable

Observations

 32

documentation for community GSI users to acquire basic knowledge and skills to use
BUFR form.

In this Section, a set of simple example programs is employed to explain how to process
BUFR/PrepBUFR files. The PrepBUFR is the NCEP term for “prepared” or QC’d data in
BUFR format (NCEP convention/standard). These examples are Fortran codes and are
available in the community GSI release version 3 and later package under directory
./util/bufr_tools/. Through these examples, users can easily understand the usage of several
commonly used BUFRLIB subroutines, and how these subroutines, together with DX
BUFR table, are worked together to encode, decode, append BUFR/PrepBUFR files. These
examples can also serve as a starting point for users to solve their specific BUFR file
processing problems.

The examples studied in this section include:

bufr_encode_sample.f90: Write one temperature observation with location and time
into a BUFR file.

bufr_decode_sample.f90: Read	 one	 temperature	 observation	 with location and time
out	 from	 the	 BUFR	 file.

bufr_append_sample.f90: Append	 one	 temperature	 observation	 with location and
time	 into	 an	 existing	 BUFR	 file.

Please note that these examples are based on the NCEP BUFRLIB. We will use examples
to introduce commonly used BUFRLIB subroutines and functions and the code structure of
BUFR processing.
	
BUFR/PrepBUFR	 file	 structure	

	
BUFR	 file	 structure	 should	 be	 described	 as:	 “A	 BUFR	 message	 contains	 one	 or	 more	
BUFR	 data	 subsets.	 Each	 data	 subset	 contains	 the	 data	 for	 a	 single	 report	 from	 a	
particular	 observing	 site	 at	 a	 particular	 time	 and	 location,	 in	 addition	 to	 time	 and	
location	 information.	 Typically	 each	 data	 subset	 contains	 data	 values	 such	 as	
pressure,	 temperature,	 wind	 direction	 and	 speed,	 humidity,	 etc.	 for	 that	 particular	
observation.	 Finally,	 BUFR	 messages	 themselves	 are	 typically	 stored	 in	 files	
containing	 many	 other	 BUFR	 messages	 of	 similar	 content.”	 Therefore,	 if	 we	
summarize	 in	 a	 top-‐down	 fashion,	 we	 would	 say:	
	

“A	 BUFR	 file	 contains	 one	 or	 more	 BUFR	 messages,	 	
each	 message	 containing	 one	 or	 more	 BUFR	 data	 subsets,	 	
each	 subset	 containing	 one	 or	 more	 BUFR	 data	 values.	 “	

	
We	 can	 also	 represent	 the	 BUFR/PrepBUFR	 file	 structure	 using	 the	 following	 figure.	
	

Observations

 33

	

7.1.2 Encode, Decode, Append A Simple BUFR File

7.1.2.1 Decoding/Reading Data From A Simple BUFR File

The following is from the code bufr_decode_sample.f90, which shows how to read specific
observation values (among a large variety) out from a BUFR file.

program bufr_decode_sample
!
! example of reading observations from bufr
!
 implicit none

 character(80):: hdstr='XOB YOB DHR'
 character(80):: obstr='TOB'
 real(8) :: hdr(3),obs(1,10)

 integer :: ireadmg,ireadsb
 character(8) subset
 integer :: unit_in=10
 integer :: idate,iret,num_message,num_subset

! decode
 open(unit_in,file='sample.bufr',action='read',form='unformatted')
 call openbf(unit_in,'IN',unit_in)
 call datelen(10)
 num_message=0
 msg_report: do while (ireadmg(unit_in,subset,idate) == 0)
 num_message=num_message+1
 num_subset = 0
 write(*,'(I10,I4,a10)') idate,num_message,subset
 sb_report: do while (ireadsb(unit_in) == 0)
 num_subset = num_subset+1
 call ufbint(unit_in,hdr,3,1 ,iret,hdstr)
 call ufbint(unit_in,obs,1,10,iret,obstr)
 write(*,'(2I5,4f8.1)') num_subset,iret,hdr,obs(1,1)

Observations

 34

 enddo sb_report
 enddo msg_report
 call closbf(unit_in)

end program

Specifically, this example will read all temperature observation values with observation
location and time from a BUFR file named sample.bufr.

The structure of the above FORTRAN BUFR decoding code matches the top-down
hierarchy of a BUFR file. To better illustrate this structure, the code is divided into four
different levels:

open(unit_in,file='sample.bufr',action='read',form='unformatted')
call openbf(unit_in,'IN',unit_in)

 msg_report: do while (ireadmg(unit_in,subset,idate) == 0)

 sb_report: do while (ireadsb(unit_in) == 0)

 call ufbint(unit_in,hdr,3,1 ,iret,hdstr)
 call ufbint(unit_in,obs,1,10,iret,obstr)

 enddo sb_report

 enddo msg_report

call closbf(unit_in)

● The 1st Level: the three RED lines are the first level (file level) statements, which

open/close a BUFR file for decoding.
● The 2nd Level: the two BLUE lines are the second level (message level)

statements, which read in BUFR messages from the BUFR file. Each loop reads
in one message until the last message in the file is reached.

● The 3rd Level: the two GREEN lines are the third level (subset level) statements,
which read in BUFR data subsets from a BUFR message. Each loop reads in
one subset until the last subset in the message is reached.

● The 4th Level: The BLACK lines are the fourth level (data level) statements,
which read in user picked data values into user defined arrays from each BUFR
subset.

All BUFR encode, decode, and append programs have the same structure as listed here.
The message loop (msg_report) and subset loop (sb_report) are needed only if there
are multiple messages in a file and multiple subsets in a message, which is the case for
most types of observations.

1 2 3 4

Observations

 35

There are several commonly used BUFRLIB subroutines/functions in the code. We will
explain the usage of each of them in detail based on the NCO BUFRLIB document. Users
are encouraged to read the explanations carefully in parallel to the example code to
understand the usage of each function. Understanding the usage of these functions and
BUFR file structure are key to successfully processing all NCEP BUFR files.

1st level (file level): open a BUFR file

 open(unit_in,file='sample.bufr',action='read',form='unformatted')
 call openbf(unit_in,'IN',unit_in)

 …
 call closbf(unit_in)

• The open command: Fortran command to link a BUFR file with a logical unit.

Here the action is ‘read’ because we want to decode (read) only. The form is
always “unformatted” because the BUFR file is a binary stream.

• openbf:

CALL OPENBF (LUBFR, CIO, LUNDX)

Input arguments:
 LUBFR INTEGER Logical unit for BUFR file

 CIO CHAR*(*) 'IN' or 'OUT' or 'APX' (or NUL', 'NODX',
 'SEC3' or 'QUIET')

 LUNDX INTEGER Logical unit for BUFR tables

This subroutine identifies to the BUFRLIB software a BUFR file that is connected
to logical unit LUBFR. The argument CIO is a character string describing how the
file will be used, e.g. 'IN' is used to access an existing file of BUFR messages for
reading/decoding BUFR, and 'OUT' is used to access a new file for
writing/encoding BUFR. An option 'APX' behaves like 'OUT', except that output is
then appended to an existing BUFR file rather than creating a new one from
scratch, and there are also some additional options 'NUL', 'NODX', 'SEC3',
'QUIET'. It will be sufficient to further consider only the 'IN', 'OUT', 'APX' cases
for the purposes of this discussion. The third argument LUNDX identifies the
logical unit of DX BUFR table. Except when CIO='SEC3', every BUFR file that is
presented to the BUFRLIB software must have a DX BUFR tables file associated
with it, and these tables may be defined within a separate ASCII text file or, in the
case of an existing BUFR file, may be embedded within the first few BUFR
messages of the file itself, and in which case the user needs to set LUNDX to the
same value as LUBFR. In any case, note that LUBFR and LUNDX are logical unit
numbers; therefore, the user must have already associated these logical unit
numbers with actual filenames on the local system, typically via a FORTRAN
"OPEN" statement.

Observations

 36

Currently, as many as 32 BUFR files can be simultaneously connected to the
BUFRLIB software for processing. Of course, each one must have a unique LUBFR
number and be defined to the software via a separate call to subroutine OPENBF.

In this example, LUBFR=LUNDX= unit_in since BUFR table is already embedded
within the BUFR messages of the file itself. CIO uses ‘IN’ for reading BUFR file.

● closbf:
Since OPENBF is used to initiate access to a BUFR file, CLOSBF would be used to
terminate this access:

 CALL CLOSBF (LUBFR)

 Input argument:
 LUBFR INTEGER Logical unit for BUFR file

This subroutine severs the connection between logical unit LUBFR and the
BUFRLIB software. It is always good to call CLOSBF for every LUBFR that was
identified via OPENBF; CLOSBF will actually execute a FORTRAN "CLOSE" on
logical unit LUBFR before returning, whereas OPENBF did not itself handle the
FORTRAN "OPEN" of the same LUBFR.

Now that we have covered the library subroutines that operate on the BUFR file level, and
recalling the BUFR file structure that was previously discussed, it is now time to continue
on to the BUFR message level:

2nd level (message level): read in messages

 msg_report: do while (ireadmg(unit_in,subset,idate) == 0)
 …
 enddo msg_report

● Function ireadmg:

IRET = IREADMG (LUBFR, CSUBSET, IDATE)

 Input argument:
 LUBFR INTEGER Logical unit for BUFR file

 Output arguments:
 CSUBSET CHAR*(*) Table A mnemonic (name/type) for BUFR message
 IDATE INTEGER Section 1 date-time for BUFR message
 IRET INTEGER Return code:
 0 = normal return
 -1 = no more BUFR messages in LUBFR

Subroutine IREADMG reads the next BUFR message from the given BUFR file
pointed to by LUBFR, returns IRET as its function value. It reads the next BUFR
message into internal arrays within the BUFRLIB software (from where it can be
easily manipulated or further parsed) rather than passed back to the application
program directly. If the return code IRET contains the value -1, then there are no

Observations

 37

more BUFR messages within the given BUFR file, and the file will be automatically
disconnected from the BUFRLIB software via an internal call to subroutine CLOSBF.
Otherwise, if IRET returns with the value 0, then the character argument CSUBSET
will contain the Table A mnemonic, which describes a type of data subset, and the
integer argument IDATE will contain the date-time in format of YYMMDDHH or
YYYYMMDDHH determined by subroutine DATELEN.

In this example, the loop meg_report will use ireadmg function to read all message
in from the BUFR file until getting a none-zero return value (IRET=-1).

After IREADMG reads a BUFR message into the internal arrays, we can get into the 3rd
level of the code to read a data subset from that internal message:

3rd level (subset level): read in data subsets

 sb_report: do while (ireadsb(unit_in) == 0)
 …
 enddo sb_report

● Function ireadsb:

IRET = IREADSB (LUBFR)

Input argument:
 LUBFR INTEGER Logical unit for BUFR file
Output arguments:
 IRET INTEGER Return code:
 0 = normal return
 -1 = no more BUFR data subsets in
 current BUFR message

Function IREADSB reads a data subset from the internal arrays. A return code value
of -1 within IRET indicates that there are no more data subsets within the given
BUFR message.

Again, in this example, the loop sb_report will use ireadsb function to read all
subset in from the internal array until getting a none-zero return value (IRET=-1).

Once a subset has been successfully read with IRET=0, then we are ready to call the data-
level subroutines in order to retrieve actual data values from this subset:

4th level (data level): read in picked data values

This is the level where observation values are read into user-defined arrays. To understand
how to read in observations from a BUFR subset, the following two questions need to be
addressed:

1) How do I know what kind of data are included in the subset (or a BUFR file)?

This question can be answered by checking the content of a BUFR table and mnemonics.
Chapter 3 of the BUFR User’s Guide discusses the BUFR table and mnemonics in detail.

Observations

 38

Here we illustrate how to use the BUFR table to solve the problem directly. As an example,
an excerpt from the BUFR table in sample.bufr for the message type ADPUPA is shown
below. We will use this table information to illustrate how to track observation variables in
ADPUPA (the upper level data type):

|--|
MNEMONIC	NUMBER	DESCRIPTION
ADPUPA	A48102	UPPER-AIR (RAOB, PIBAL, RECCO, DROPS) REPORTS
AIRCAR	A48103	MDCRS ACARS AIRCRAFT REPORTS

MNEMONIC	SEQUENCE
ADPUPA	HEADR SIRC {PRSLEVEL} <SST_INFO> <PREWXSEQ> {CLOUDSEQ}
ADPUPA	<CLOU2SEQ> <SWINDSEQ> <AFIC_SEQ> <TURB3SEQ>

| HEADR | SID XOB YOB DHR ELV TYP T29 TSB ITP SQN PROCN RPT |
| HEADR | TCOR <RSRD_SEQ> |

|--|
MNEMONIC	NUMBER	DESCRIPTION
SID	001194	STATION IDENTIFICATI
XOB	006240	LONGITUDE
YOB	005002	LATITUDE
DHR	004215	OBSERVATION TIME MINUS CYCLE TI
ELV	010199	STATION ELEVATION
TYP	055007	PREPBUFR REPORT TYP

|--|
MNEMONIC	SCAL	REFERENCE	BIT	UNITS	-------------

SID	0	0	64	CCITT IA5	-------------
XOB	2	-18000	16	DEG E	-------------
YOB	2	-9000	15	DEG N	-------------
DHR	3	-24000	16	HOURS	-------------
ELV	0	-1000	17	METER	-------------
TYP	0	0	9	CODE TABL	-------------

The four color boxes here are used to separate the different parts of the BUFR table, which
can also be marked as Part 1 (red), Part 2 (blue), Part 3 (yellow), and Part 4 (green) in the
order they are listed above.

As discussed before, IREADMG reads in a message with three output arguments. The first
output argument is:

CSUBSET Table A mnemonic for BUFR message

It returns the message type (also called data type). This message type is the starting point to
learn what types of observations are included in this message. The description of message
types can be found in the first section of a BUFR table, that is the Part 1 (red) in the sample
BUFR table.

Observations

 39

Here, if CSUBSET has the value of ADPUPA, the contents of this message or all subsets (third
level) are upper air reports (like rawinsonde). A search of ADPUPA in the BUFR table returns
the first two lines of Part 2 (blue), in which ADPUPA is followed by a sequence of items like:
HEADR SIRC {PRSLEVEL}…. If we then search for HEADR in the same file, we can find the
last two lines in Part 2 (blue), in which HEADR leads the sequence containing SID XOB YOB
DHR ELV TYP … .

If we then search for SID XOB YOB DHR ELV TYP in the same file, we can find the
definition of these items in Part 3 (yellow). Clearly, the message type ADPUPA includes
variables like station ID, observation location (longitude, latitude), observation time, etc.
These are important variables to describe an observation. If we keep searching for other
items under ADPUPA, we can also find lots of observation variables are included in ADPUPA.
Please note that a complete list of all variables in a message type could be very long and
complex, but we don’t need to learn about all of them - we only need to know what we
need for our specific application.

The last part of the BUFR table (Part 4, green) includes useful unit information for a
variable; for example, the unit of XOB is DEG (degree) and the unit of DHR is HOURS (hours).
Users will not likely need to make use of the scale, reference, and bit information.

There are lots of other details on BUFR tables, but the above information should be
sufficient for now to learn about BUFR file processing applications using the NCEP
BUFRLIB software with the examples in this Chapter.

2). How Do I Tell BUFRLIB To Only Read In Specific Data Information?

From the BUFR table discussion above, we can see a message or a subset could include
lots of information. In this example, we only wants to read in temperature observation,
along with its longitude, latitude, and observation time. Here we will use this example to
illustrate how to solve this question. From the BUFR table, for the message type ADPUPA,
the name of longitude, latitude, and time in the BUFR table are 'XOB YOB DHR' within the
sequence HEADER. Similarly, the name of the temperature observation can be found as
'TOB' in the sequence {PRSLEVEL} (not shown in the example BUFR table). Actually, most
conventional message types contain such observation information.

In the example code, the first several lines define the information we want to read:

 character(80):: hdstr='XOB YOB DHR'
 character(80):: obstr='TOB'
 real(8) :: hdr(3),obs(1,10)

hdstr is a string of blank-separated names (mnemonics) associated with array hdr, while
obstr is another string associated with array obs. Please note that arrays (hdr and obs)
have to be defined as REAL*8 arrays. Now let’s first learn the usage of subroutine ufbint
which is called in the following two lines.

Observations

 40

call ufbint(unit_in,hdr,3,1 ,iret,hdstr)
call ufbint(unit_in,obs,1,10,iret,obstr)

● ufbint
CALL UFBINT (LUBFR, R8ARR, MXMN, MXLV, NLV, CMNSTR)

Input arguments:
 LUBFR INTEGER Logical unit for BUFR file
 CMNSTR CHAR*(*) String of blank-separated mnemonics
 associated with R8ARR
 MXMN INTEGER Size of first dimension of R8ARR
 MXLV INTEGER Size of second dimension of R8ARR
 OR number of levels of data values
 to be written to data subset

Input or output argument (depending on context of LUBFR):
 R8ARR(*,*) REAL*8 Data values written/read to/from
 data subset

Output argument:
 NLV INTEGER Number of levels of data values
 written/read to/from data subset

Subroutine UFBINT writes or reads specified values to or from the current BUFR
data subset within the internal arrays, with the direction of the data transfer being
determined by the context of LUBFR, if LUBFR points to a BUFR file that is open
for input (i.e. reading/decoding BUFR), then data values are read from the internal
data subset; otherwise, data values are written to the internal data subset. The actual
data transfer occurs through the use of the two-dimensional REAL*8 array R8ARR
whose actual first dimension MXMN must always be passed in. The call argument
MXLV, on the other hand, contains the actual second dimension of R8ARR only
when LUBFR points to a BUFR file that is open for input (i.e. reading/decoding
BUFR); otherwise, whenever LUBFR points to a BUFR file that is open for output
(i.e. writing/encoding BUFR), MXLV instead contains the actual number of levels
of data values that are to be written to the data subset (and where this number must
be less than or equal to the actual second dimension of R8ARR). In either case, the
input character string CMNSTR always contains a blank-separated list of
"mnemonics" which correspond to the REAL*8 values contained within the first
dimension of R8ARR, and the output argument NLV always denotes the actual
number of levels of those values that were written/read to/from the second
dimension of R8ARR, where each such level represents a repetition of the
mnemonics within CMNSTR. Note that, when LUBFR points to a BUFR file that is
open for output (i.e. writing/encoding BUFR), we would certainly expect that the
output value NLV is equal to the value of MXLV that was input, and indeed this is
the case unless some type of error occurred in storing one or more of the data
levels.

Observations

 41

In this case, after we run the two BUFRLIB subroutines, longitude (XOB), latitude (YOB), and
observation time (DHR) will be read into array hdr and temperature observations (TOB) is
read into array obs. The array contents should be:

● hdr(1) - longitude
● hdr(2) - latitude
● hdr(3) - time
● obs(1,1) - temperature observation in 1st level (single level)
● obs(1,2) - temperature observation in 2nd level for multi-level observation
● obs(1,3) - temperature observation in 3rd level for multi-level observation
● ...

Because these two lines are inside the message and subset loops, we can get temperature
observation with location and time from all observations in the BUFR file. If data subsets
contain some missing data, the data values in the array are assigned as 10.0E10.

Now, only one BUFRLIB subroutine datelen left in the code needs to be explained:

● datelen:

 CALL DATELEN (LEN)
 Input argument:
 LEN INTEGER Length of Section 1 date-time values to
 be output by message-reading subroutines
 such as READMG, READERME, etc.
 8 = YYMMDDHH (i.e. 2-digit year)
 10 = YYYYMMDDHH (i.e. 4-digit year)

This subroutine allows the user to specify the format for the IDATE output argument that is
returned by READMG.

7.1.2.2 Encoding/Writing Data Into A Simple BUFR File

The following is from the program bufr_encode_sample.f90, which shows how to write a
few observation variables into a new BUFR file.

program bufr_encode_sample
!
! example of writing one value into a bufr file
!
 implicit none

 character(80):: hdstr='XOB YOB DHR'
 character(80):: obstr='TOB'
 real(8) :: hdr(3),obs(1,1)

Observations

 42

 character(8) subset
 integer :: unit_out=10,unit_table=20
 integer :: idate,iret

! set data values
 hdr(1)=75.;hdr(2)=30.;hdr(3)=-0.1
 obs(1,1)=287.15
 idate=2008120100 ! YYYYMMDDHH
 subset='ADPUPA' ! upper-air reports

! encode
 open(unit_table,file='table_prepbufr.txt')
 open(unit_out,file='sample.bufr',action='write' &
 ,form='unformatted')
 call datelen(10)
 call openbf(unit_out,'OUT',unit_table)
 call openmb(unit_out,subset,idate)
 call ufbint(unit_out,hdr,3,1,iret,hdstr)
 call ufbint(unit_out,obs,1,1,iret,obstr)
 call writsb(unit_out)
 call closmg(unit_out)
 call closbf(unit_out)

end program

Specifically, this example will write one temperature observation value with observation
location and time to a BUFR file named as sample.bufr.

Here, we can see the BUFR encode procedure has the same structure as the decode
procedure: file level, message level, subset level, which are marked in the same color as the
decode example in Section 7.1.2.1. The major difference between encode and decode are
highlighted in bold in the code and explained below:

● open(unit_table,file='table_prepbufr.txt')

To encode some observation values into a new BUFR file, a pre-existing BUFR
table file is necessary and needs to be opened.

● open(unit_out,file='sample.bufr',action='write',form='unformatted')

The action in Fortran open command has to be “write”.

● call openbf(unit_out,'OUT',unit_table)

The second input parameter is set to “OUT” to access a new file for writing. The
third parameter is the logical unit of BUFR table file so that BUFR table will be
written into BUFR file. Please check the detailed explanation for openbf in section
7.1.2.1.

● call openmb(unit_out,subset,idate)

CALL OPENMB (LUBFR, CSUBSET, IDATE)

Observations

 43

Input arguments:
 LUBFR INTEGER Logical unit for BUFR file
 CSUBSET CHAR*(*) Table A mnemonic for type of BUFR
 message to be opened
 IDATE INTEGER Date-time to be stored within
 Section 1 of BUFR message

This function opens and initializes a new BUFR message for eventual output to
LUBFR, using the arguments CSUBSET and IDATE to indicate the type and time of
message to be encoded. It only opens a new message if either CSUBSET or IDATE
has changed, and otherwise will simply return while leaving the existing internal
message unchanged, so that subsequent data subsets can be stored within the same
internal message. For this reason, OPENMB allows for the storage of an increased
number of data subsets within each BUFR message and therefore improves overall
encoding efficiency. Regardless, whenever a new BUFR message is opened and
initialized, the existing internal BUFR message (if any) will be automatically closed
and written to output via an internal call to the following subroutine:

● call closmg(unit_out)

CALL CLOSEMG (LUBFR)
Input arguments:
 LUBFR INTEGER Logical unit for BUFR file

Furthermore, since, in the case of a BUFR file that was opened for input, each
subsequent call to subroutine IREADMG will likewise automatically clear an
existing message from the internal arrays before reading in the new one, for this
reason, it is rare to ever see subroutine CLOSMG called directly from within an
application program!

● call writsb(unit_out)

CALL WRITSB (LUBFR)

Input argument:
 LUBFR INTEGER Logical unit for BUFR file

	
This	 subroutine	 is	 called	 to	 indicate	 to	 the	 BUFRLIB	 software	 that	 all	 necessary	
data	 values	 for	 this	 subset	 have	 been	 stored	 and	 thus	 that	 the	 subset	 is	 ready	
to	 be	 encoded	 and	 packed	 into	 the	 current	 message	 for	 the	 BUFR	 file	
associated	 with	 logical	 unit	 LUBFR.	 However,	 we	 should	 note	 that	 the	 BUFRLIB	
software	 will	 not	 allow	 any	 single	 BUFR	 message	 to	 grow	 larger	 than	 a	 certain	
size	 (usually	 10000	 bytes,	 although	 this	 can	 be	 increased	 via	 a	 call	 to	
subroutine	 MAXOUT);	 	

Before this subroutine, we can see two consecutive calls to the subroutine ufbint,
which is the same as in the decode example. However, this time, the strings hdstr
tells the BUFR subroutine ufbint that the array hdr holds longitude, latitude and
observation time, the string obstr tells ufbint that the array obs holds

Observations

 44

temperature observations. The data subset is ready and written into the BUFR file
via call writsb.

7.1.2.3 Appending Data To A Simple BUFR File

The following is from the program bufr_append_sample.f90, which shows how to append a
new observation variable into an existing BUFR file.

program
! sample of appending one observation into bufr file
 implicit none

 character(80):: hdstr='XOB YOB DHR'
 character(80):: obstr='TOB'
 real(8) :: hdr(3),obs(1,1)

 character(8) subset
 integer :: unit_out=10,unit_table=20
 integer :: idate,iret

! set data values
 hdr(1)=85.0;hdr(2)=50.0;hdr(3)=0.2
 obs(1,1)=300.0
 idate=2008120101 ! YYYYMMDDHH
 subset='ADPSFC' ! surface land reports

! get bufr table from existing bufr file
 open(unit_table,file='table_prepbufr_app.txt')
 open(unit_out,file='sample.bufr',status='old',form='unformatted')
 call openbf(unit_out,'IN',unit_out)
 call dxdump(unit_out,unit_table)
 call closbf(unit_out)

! append
 open(unit_out,file='sample.bufr',status='old',form='unformatted')
 call datelen(10)
 call openbf(unit_out,'APN',unit_table)
 call openmb(unit_out,subset,idate)
 call ufbint(unit_out,hdr,3,1,iret,hdstr)
 call ufbint(unit_out,obs,1,1,iret,obstr)
 call writsb(unit_out)
 call closmg(unit_out)
 call closbf(unit_out)

end program

Specifically, this example will append one temperature observation value with observation
location and time to an existing BUFR file named as sample.bufr.

Observations

 45

If we compare this code with the example code for encoding, we can find the code
structure and BUFRLIB functions used are very similar in two codes. But there is a key
point that needs special attention for appending:

● Appending has to use the exact same BUFR table as the existing BUFR file.

To ensure this, we add the following three lines to the code in order to extract the
BUFR table from the existing BUFR file:

 call openbf(unit_out,'IN',unit_out)
 call dxdump(unit_out,unit_table)
 call closbf(unit_out)

 Let’s learn subroutine dxdump.

 CALL DXDUMP (LUBFR, LDXOT)

 Input arguments:
 LUBFR INTEGER Logical unit for BUFR file
 LDXOT INTEGER Logical unit for output BUFR tables file

This	 subroutine	 provides	 a	 handy	 way	 to	 view	 the	 BUFR	 table	 information	 that	
is	 embedded	 in	 the	 first	 few	 messages	 of	 a	 BUFR	 file.	 The	 user	 needs	 only	 to	
have	 identified	 the	 file	 to	 the	 BUFRLIB	 software	 via	 a	 prior	 call	 to	 subroutine	
OPENBF,	 and	 then	 a	 subsequent	 call	 to	 subroutine	 DXDUMP	 will	 unpack	 the	
embedded	 tables	 information	 and	 write	 it	 out	 to	 the	 file	 pointed	 to	 by	 logical	
unit	 LDXOT.	 The	 output	 file	 is	 written	 with	 ASCII-‐text	 table	 format.	 Subroutine	
DXDUMP	 can	 be	 most	 useful	 for	 learning	 the	 contents	 of	 archive	 BUFR	 files.	 	

In this example, the BUFR table embedded in the BUFR file sample.bufr will be read
in and written into a text file called table_prepbufr_app.txt.

Comparing with the encode example again, there are two more slight differences in setups,
which are highlighted in the code as Bold and explained below:

● In the Fortran open command, the status has to be set as ‘old’ because appending

requires an existing BUFR file.
● In the subroutine openbf, the existing BUFR file and dumped BUFR table are

connected to BUFRLIB, the second input parameter has to be set as ‘APN’.

Observations

 46

7.1.3 Encode, Decode, Append The PrepBUFR File

In last section, we use three simplified examples to illustrate the code structure of the
BUFR file process (read, write and append) and explained commonly used BUFRLIB
functions in the example code. In this section, we will learn how to use the skills we
learned in previous sections to process a PrepBUFR file, which is one of major BUFR files
used in GSI for all conventional observations and retrieved standard observations.

7.1.3.1 Decoding/Reading Data From A PrepBUFR File

The following is from the code prepbufr_decode_all.f90, which reads all major
conventional observations and BUFR table out from a PrepBUFR file.

program prepbufr_decode_all
!
! read all observations out from prepbufr.
! read bufr table from prepbufr file
!
 implicit none

 integer, parameter :: mxmn=35, mxlv=250
 character(80):: hdstr='SID XOB YOB DHR TYP ELV SAID T29'
 character(80):: obstr='POB QOB TOB ZOB UOB VOB PWO CAT PRSS'
 character(80):: qcstr='PQM QQM TQM ZQM WQM NUL PWQ '
 character(80):: oestr='POE QOE TOE NUL WOE NUL PWE '

Compared to the mnemonic list used in the examples in 7.1.2.1, a clear difference here is
that more BUFR table mnemonics are involved because we want to read all major
observations, such as temperature (TOB), moisture (QOB), Pressure(POB), Height (ZOB),
wind (UOB and VOB). Also, we want to read the quality flags and observation errors with
these observations at the same time. Here is a list of content in these mnemonics strings:

• hdstr: defines report header information including the station ID, longitude, latitude,
time, report type, elevation, satellite ID, data dump report type.

• obstr: defines observation for pressure, specific humidity, temperature, height, u
and v component of wind, total precipitable water, data level category, surface
pressure.

• qcstr: defines the quality markers for each of observation variables listed in the
string obstr.

• oestr: defines the observation error for each of observation variables listed in the
string obstr.

More detailed information on these mnemonics can be found from the BUFR table named
with “prepobs_prep.bufrtable”, which is a text file dumped out during the decoding
process.

Observations

 47

real(8) :: hdr(mxmn),obs(mxmn,mxlv),qcf(mxmn,mxlv),oer(mxmn,mxlv)

The associated arrays are defined to hold the data values of mnemonics specified in hdstr,
obstr, qcstr, oestr. Note, mxmn=35, mxlv=250, which make the array can hold up to
250 levels of observations with up to 35 mnemonics in each level.

 INTEGER :: ireadmg,ireadsb
 character(8) :: subset
 integer :: unit_in=10,unit_table=24,idate,nmsg,ntb

 character(8) :: c_sid
 real(8) :: rstation_id
 equivalence(rstation_id,c_sid)

From our earlier discussions, it was noted that data values are normally read from or
written to BUFR subsets using REAL*8 arrays via subroutine. The character values are
read and written in the same way using a REAL*8 variable. Here, rstation_id is real(8);
c_sid is character(8); then FORTRAN EQUIVALENCE is used to covert the station ID
from REAL*8 to string that can be easily read by humans.

 integer :: i,k,iret

open(unit_table,file='prepobs_prep.bufrtable')

Fortran open command to link BUFR table with a logical unit, unit_table.

open(unit_in,file='prepbufr',form='unformatted',status='old')

Fortran open command to link a PrepBUFR file with a logical unit, unit_in.

call openbf(unit_in,'IN',unit_in)

Connect the PrepBUFR file to BUFRLIB. Since BUFR table is embedded in the
PrepBUFR file, the third argument is the same as first argument in this call.

call dxdump(unit_in,unit_table)

Dump BUFR table out from the existing PrepBUFR file and write to a ASCII file named
“prepobs_prep.bufrtable” through unit unit_table.

call datelen(10)

Specifies the date format as YYYYMMDDHH.

nmsg=0
 msg_report: do while (ireadmg(unit_in,subset,idate) == 0)
 nmsg=nmsg+1
 ntb = 0
 write(*,*)

Observations

 48

 write(*,'(3a,i10)') 'subset=',subset,' cycle time =',idate
 sb_report: do while (ireadsb(unit_in) == 0)

The msg_report loop reads each of messages until reaching the end of file. The
sb_report loop reads each of data subsets within the current message until the end of the
message.

 ntb = ntb+1
 call ufbint(unit_in,hdr,mxmn,1 ,iret,hdstr)
 call ufbint(unit_in,obs,mxmn,mxlv,iret,obstr)
 call ufbint(unit_in,oer,mxmn,mxlv,iret,oestr)
 call ufbint(unit_in,qcf,mxmn,mxlv,iret,qcstr)

Calling subroutine ufbint to read data based on mnemonics defined in hdstr, obstr,
oestr, qcstr from a subset and write to corresponding arrays hdr,obs, oer, qcf. The
iret is the actual returned number of pressure levels which have be read in even though
mxlv=250.

 rstation_id=hdr(1)
 write(*,*)
 write(*,'(2I10,a14,8f14.1)') ntb,iret,c_sid,(hdr(i),i=2,8)

 DO k=1,iret
 write(*,'(i3,a10,9f14.1)') k,'obs=',(obs(i,k),i=1,9)
 write(*,'(i3,a10,9f14.1)') k,'oer=',(oer(i,k),i=1,7)
 write(*,'(i3,a10,9f14.1)') k,'qcf=',(qcf(i,k),i=1,7)
 ENDDO

 enddo sb_report
 enddo msg_report

call closbf(unit_in)
end program

From this PrepBUFR decoding example, we can see that the code structure and functions
used are the same as the simple decoding example in section 7.1.2.1. But this example
defines more mnemonics and larger dimensions of the REAL*8 arrays to read all major
observation elements from the PrepBUFR file, including observation values, quality
markers, and observation errors.

7.1.3.2 More Examples On Processing Prepbufr Files

In BUFR/PrepBUFR User’s Guider, there are more examples on how to processing the
PrepBUFR files used by GSI. Please read that document if needed:

prepbufr_encode_surface.f90: Write	 a	 surface	 observation	 into	 a	 PrepBUFR	 file.
prepbufr_encode_upperair.f90: Write	 an	 upper	 air	 observation	 into	 the	 PrepBUFR	 file.
prepbufr_append_surface.f90: Append	 a	 surface	 observation	 into	 an	 existing	

Observations

 49

PrepBUFR	 file.
prepbufr_append_upperair.f90: Append	 an	 upper	 air	 observation	 into	 an	 existing	

PrepBUFR	 file.
prepbufr_append_retrieve.f90: Append	 a	 retrieved	 data	 into	 an	 existing	 PrepBUFR	 file.
bufr_decode_radiance.f90: Read	 	 TOVS	 1B	 radiance	 observations	 and	 BUFR	 table	

out	 from	 the	 radiance	 BUFR	 file.

7.3 GSI BUFR Interface

GSI has a set of code to ingest and process observation data from BUFR/PrepBUFR files
for the analysis. This section will first explain the procedure of observation ingest and
process within the GSI system. Then, we provide 4 examples from GSI observation
ingesting subroutines to illustrate how GSI interfaces with the BUFR files.

7.3. 1 GSI Observation Data Ingest And Process Procedure

As an important component of any data analysis system, observation data ingesting and
processing is a key part of the GSI system. The data types that can be used in the GSI
analysis and the corresponding subroutines that read in these data types are listed in the
section 5.3 of the Advanced GSI User’s Guide. But there are more details that users should
know to be able to handle the observation data in GSI with confidence and flexibility. This
section introduces the complete structure of GSI observation data ingesting and processing
step-by step, including run scripts and namelist setup, data ingesting driver routine, read
subroutines, observation data partition, and innovation calculation.

• Step 1: Link BUFR/PrepBUFR file to GSI recognized names in GSI run scripts

In the GSI run script, there is a section to link the BUFR/PrepBUFR files to GSI
recognized file names in the GSI run directory. The script looks like:

Link to the prepbufr data
ln -s ${PREPBUFR} ./prepbufr

Link to the radiance data
ln -s ${OBS_ROOT}/gdas1.t12z.1bamua.tm00.bufr_d amsuabufr
ln -s ${OBS_ROOT}/gdas1.t12z.1bhrs4.tm00.bufr_d hirs4bufr
ln -s ${OBS_ROOT}/gdas1.t12z.1bmhs.tm00.bufr_d mhsbufr

Clearly, the PrepBUFR file: gdas1.t12z.prepbufr.nr, which is the file pointed by
${PREPBUFR}, and the BUFR files: gdas1.t12z.1bamua.tm00.bufr_d and
gdas1.t12z.1bhrs4.tm00.bufr_d are the files we downloaded from NCEP data hub. The
names of these files are determined by NCEP based on the operation systems that use the
files. The BUFR files used in GSI can also be the observation files generated by users and
named by users. But GSI itself doesn’t recognize the names of these files. So, in the GSI
run scripts, these files must be linked to the GSI run directory with a name that GSI knows.

Observations

 50

In the section 3.1 of the GSI User’s Guider has a table that lists all the GSI recognized data
file names at the left column, the contents of the data files at the middle column, and the
sample GDAS BUFR/PrepBUFR file names at the left column. The following is a sample
of the table.

GSI	 Name	 	 Content	 Example	 file	 names	
prepbufr	 Conventional	 observations,	 including	 ps,	 t,	 q,	 pw,	

uv,	 spd,	 dw,	 sst,	 from	 observation	 platforms	 such	
as	 METAR,	 sounding,	 et	 al.	

gdas1.t12z.prepbufr	

amsuabufr	 AMSU-‐A	 1b	 radiance	 (brightness	 temperatures)	 from	
satellites	 NOAA-‐15,	 16,	 17,18,	 19	 and	 METOP-‐A	

gdas1.t12z.1bamua.tm00.bufr_d	

amsubbufr	 AMSU-‐B	 1b	 radiance	 (brightness	 temperatures)	
from	 satellites	 NOAA15,	 16,17	

gdas1.t12z.1bamub.tm00.bufr_d	

radarbufr	 Radar	 radial	 velocity	 Level	 2.5	 data	 ndas.t12z.	 radwnd.	 tm12.bufr_d	
gpsrobufr	 GPS	 radio	 occultation	 observation	 gdas1.t12z.gpsro.tm00.bufr_d	
ssmirrbufr	 Precipitation	 rate	 observations	 fromSSM/I	 gdas1.t12z.spssmi.tm00.bufr_d	
hirs4bufr	 HIRS4	 1b	 radiance	 observation	 from	 satellite	

NOAA	 18,	 19	 and	 METOP-‐A	
gdas1.t12z.1bhrs4.tm00.bufr_d	

msubufr	 MSU	 observation	 from	 satgellite	 NOAA	 14	 	 gdas1.t12z.1bmsu.tm00.bufr_d	

So, in the GSI run script, the files in the right column are linked to the run directory with a
new name at the left column. As a matter of fact, the file names in the left column can be
changed if users prefer to do so and know how to change them in the GSI namelist data file
setup section. But we recommend to leave the file names as is because the current names in
the left column are a good indication of the contents of the corresponding BUFR
observation files and are used by many the GSI applications.

• Step 2: GSI Namelist data configuration section: &OBS_INPUT

In the GSI namelist, section &OBS_INOUT is used to setup data usage such as the links
between data types and data files, data time window, and satellite data thinning. The
following is a sample of the namelist section &OBS_INOUT:

&OBS_INPUT
 dmesh(1)=120.0,dmesh(2)=60.0,dmesh(3)=60.0,dmesh(4)=60.0,dmesh(5)=120,time_window_max=1.5,
 dfile(01)='prepbufr’, dtype(01)='ps', dplat(01)=' ', dsis(01)='ps', dval(01)=1.0, dthin(01)=0,
 dfile(02)='prepbufr' dtype(02)='t', dplat(02)=' ', dsis(02)='t', dval(02)=1.0, dthin(02)=0,
 dfile(03)='prepbufr', dtype(03)='q', dplat(03)=' ', dsis(03)='q', dval(03)=1.0, dthin(03)=0,
 dfile(04)='prepbufr', dtype(04)='uv', dplat(04)=' ', dsis(04)='uv', dval(04)=1.0, dthin(04)=0,
……
 dfile(27)='msubufr', dtype(27)='msu', dplat(27)='n14', dsis(27)='msu_n14', dval(27)=2.0, dthin(27)=2,
 dfile(28)='amsuabufr', dtype(28)='amsua', dplat(28)='n15', dsis(28)='amsua_n15’, dval(28)=10.0, dthin(28)=2,
 dfile(29)='amsuabufr’, dtype(29)='amsua', dplat(29)='n16', dsis(29)='amsua_n16’, dval(29)=0.0, dthin(29)=2,

Users may notice that the first column, dfile, is the GSI recognized file names listed in the
section 3.1 of the GSI User’s Guider . The 2nd column, dtype, is the observation type. The
3rd column, dplat, is satellite platform ID. And the 4th column, dsis, is the data type from
convinfo file or Sensor/instrument/satellite flag from satinfo file.

In the GSI data ingesting driver, it is the data type, dtype, that is used to decide which
routine to call for reading the data from the corresponding input file defined by dfile. For
example, when the GSI reaches the code to read “t”, it will open file 'prepbufr'

Observations

 51

(dfile(02)) to read temperature in. Or when the GSI reaches the point to read in AMSU-
A from NOAA 16, it will open file 'amsuabufr’ (dfile(29)) to read in the data. From
the namelist setup, it is possible that GSI reads in “t” from one PrepBUFR file
(dfile(02)) but reads in ‘q’ from another PrepBUFR file (dfile(03)), which gives more
flexibility to control the data used in the GSI analysis.

• Step 3: GSI data ingest driver

In GSI, subroutine read_obs (inside file read_obs.F90) is used to read, select, and reformat
observation data. It is the driver for routines that read different types of the observational
data. This routine loops through all data types listed in dtype and checks the data usage and
file availability. If the data file exists and the info files indicate the use of the data type, one
or several processors will be assigned to read the data from the corresponding file setup in
dfile. Please refer to the section 4.3 of the GSI User’s Guide for more information on
using the info file to control data usage. Here we give two chunks of the code from
subroutine read_obs as examples to illustrate how to find routines that read different
observation data types.

Example 1: Process conventional (prepbufr) data

!
 if(ditype(i) == 'conv')then
 if (obstype == 't' .or. obstype == 'uv' .or. &
 obstype == 'q' .or. obstype == 'ps' .or. &
 obstype == 'pw' .or. obstype == 'spd'.or. &
 obstype == 'mta_cld' .or. obstype == 'gos_ctp') then
 call read_prepbufr(nread,npuse,nouse,infile,obstype,lunout,twind,sis,&
 prsl_full)
 string='READ_PREPBUFR'

From this chunk of the code, we can see the subroutine read_prepbufr will be used to read
the data type ‘t’, ‘uv’, ‘q’, ‘ps’, ‘pw’, ‘spd’, ‘mta_cld’, ‘gos_ctp’ from PrepBUFR file saved
in “infile”.

Example 2: Process TOVS 1b data

!
 if (platid /= 'aqua' .and. (obstype == 'amsua' .or. &
 obstype == 'amsub' .or. obstype == 'msu' .or. &
 obstype == 'mhs' .or. obstype == 'hirs4' .or. &
 obstype == 'hirs3' .or. obstype == 'hirs2' .or. &
 obstype == 'ssu')) then
 llb=1
 lll=1
 if((obstype == 'amsua' .or. obstype == 'amsub' .or. obstype == 'mhs') .and. &
 (platid /= 'metop-a' .or. platid /='metop-b' .or. platid /= 'metop-c'))lll=2
 call read_bufrtovs(mype,val_dat,ithin,isfcalc,rmesh,platid,gstime,&
 infile,lunout,obstype,nread,npuse,nouse,twind,sis, &
 mype_root,mype_sub(mm1,i),npe_sub(i),mpi_comm_sub(i),llb,lll)
 string='READ_BUFRTOVS'

Observations

 52

From this chunk of the code, we can see the subroutine read_bufrtovs will be used to read
many kinds of radiance data such as ‘amsua’, ‘amsub’, ‘msu’, ‘mhs’, ‘hirs’, ‘ssu’ from
radiance BUFR file saved in “infile”. But these radiance data are not observed by AQUA.

In the subroutine read_obs, users can find similar portion of the code deciding which
subroutine is used to read in the data for certain data type. For each subroutine, the input
variables always includes parameters like:

infile = dfile of the namelist section &OBS_INOUT
obstype = dtype of the namelist section &OBS_INOUT
sis = dsis of the namelist section &OBS_INOUT

• Step 4: Read in observations and initial check of the observations

The data types and the corresponding GSI subroutines that read in these data types are
listed in the table of section 5.3. From the table, we can see there are 28 subroutines
employed by GSI to read in different kinds of BUFR/PrepBUFR files. Also from the table,
we can easily find the GSI subroutine that actually reads in the certain observations from
the BUFR/PrepBUFR files. The same subroutines also do the quality control to the
observation data, data thinning, and checks to insure that the data are in the analysis
domain and time window.

These read_* subroutines listed in the table of section 5.3 are the GSI interface to the
BUFR/PrepBUFR that users should check when trying to analyze their own data using the
GSI system. We will discuss how to check the structure of these read_* subroutines in
section 7.3.2 of this Chapter.

After we read in the observations for each element, such as “t”, “q”, “wind”, GSI will write
out observations for certain element in the analysis domain and time to one binary file,
which will be read in again by the next step for data partitioning into sub-domains (if run
with multiple processors).

• Step 5: sub-domain partition

When GSI runs in parallel mode, both the background and the observation data need to be
partitioned into sub-domains. This step is done after the observation data have been read in
and saved in the internal format. The code to assign and distribute observations to sub-
domains is call “obs_para”, which is a subroutine inside the file “obs_para.f90”. Please
note that after this step, the observations from all observation elements are saved in the
same binary file for each processor.

• Step 6: innovation calculation

As an important step of the data analysis system, observation innovation calculation also
involves lots of code. The section 5.4 of the Advanced GSI User’s Guide provides a table
to list innovation calculations for the different kinds of observation elements. We will not

Observations

 53

introduce these calculations in this document but would like to remind users that
innovation calculation is also a key component in the use of observation data in the
analysis.

7.3.2 The BUFR Decoding In GSI Read Files

From the previous section, we can see that there are many steps involved in the GSI system
to ingest and process the observation data from BUFR/PrepBUFR files for the final
analysis. To encode new data for the GSI, the best way to start is reading the related GSI
code for BUFR/PrepBUFR data ingesting and checking the mnemonics used in the code to
figure out the data needed in the GSI. In the table of section 5.3, we have provided a
complete list of GSI subroutines for the observation data ingesting. Here we will give 2
examples to illustrate how to extract the GSI BUFR interface from the GSI read_*
subroutines and delete other functions that are not related to the BUFR decoding from the
subroutine, such as observation location and time checking, data thinning, and quality
control checking, etc.

Example 1: read_prebufr.f90

The file read_prepbufr.f90 is in GSI source code directory (./src/main) and it reads
conventional data from the PrepBUFR file. Specific observation types read by this routine
include surface pressure, temperature, winds (components and speeds), moisture, total
precipitable water, and cloud and weather. This file has over one thousand lines and most
of the code are not related to the PrepBUFR decoding. Here, as an example, we deleted all
the code that are not for PrepBUFR decoding and shortened the file down to 197 lines. The
full code is listed in the Appendix B and can be downloaded from the Examples Page of
the BUFR website. Here we will only show the mnemonics used by the GSI PrepBUFR
decoding to get an idea what are the GSI expected variables from the PrepBUFR file.

 data hdstr /'SID XOB YOB DHR TYP ELV SAID T29'/
 data hdstr2 /'TYP SAID T29 SID'/
 data obstr /'POB QOB TOB ZOB UOB VOB PWO CAT PRSS' /
 data drift /'XDR YDR HRDR '/
 data sststr /'MSST DBSS SST1 SSTQM SSTOE '/
 data qcstr /'PQM QQM TQM ZQM WQM NUL PWQ '/
 data oestr /'POE QOE TOE NUL WOE NUL PWE '/
 data satqcstr /'QIFN'/
 data prvstr /'PRVSTG'/
 data sprvstr /'SPRVSTG'/
 data levstr /'POB'/
 data metarcldstr /'CLAM HOCB'/ ! cloud amount and cloud base height
 data metarwthstr /'PRWE'/ ! present weather
 data metarvisstr /'HOVI'/ ! visibility
 data geoscldstr /'CDTP TOCC GCDTT CDTP_QM'/

Compared to the PrepBUFR processing examples we provided, we can see that there is
more information expected by the GSI PrepBUFR interface. Please note that not all the
variables listed in the above mnemonics are needed for a GSI run. Some are for certain
special GSI applications only, such as the cloud observations, which are used in the Rapid
Refresh system only. So, if users only want to generate a PrepBUFR file that contains a
part of the observations expected by these mnemonics, the GSI still can run successfully

Observations

 54

and use the observation data to get a final analysis. But from the previous introduction to
the GSI observation data processing procedure, users can see that there are many steps
involved in the data usage in the GSI analysis. A complete picture of the data flow in GSI
system will be very helpful for users who work on data impact studies with GSI, especially
when they need to generate the new PrepBUFR file for their new data.

Example 2: read_airs.f90:

The file read_airs.f90 is in GSI source code directory (./src/main) and it reads BUFR
format AQUA radiance (brightness temperature) observations. This file has 768 lines. To
simplify this example, we deleted all the code that is not related to the BUFR decoding and
shortened the file down to 82 lines. The full code is listed in the Appendix and can be
download from the Examples Page of the BUFR website. Again, we will only show the
lines that include mnemonics used by decoding to get an idea what variables are expected
by GSI from the AIRS BUFR file.

allspotlist='SIID YEAR MNTH DAYS HOUR MINU SECO CLATH CLONH SAZA BEARAZ FOVN'

 call ufbrep(lnbufr,allchan,1,n_totchan,iret,'TMBR')

 call ufbint(lnbufr,aquaspot,2,1,iret,'SOZA SOLAZI')

Here, we highlight the mnemonics and we will leave then for users to find out the exactly
meaning of these mnemonics by checking the BUFR table.

Summary:

In the course of preparing this document and extending the BUFR/PrepBUFR support for
GSI, we outline portions of 4 GSI BUFR ingest interface files for users to reference:

read_prepbufr.f90
read_airs.f90
read_bufrtovs.f90
read_gps.f90

Users can find these files in the Examples Page of the BUFR user’s website. There is
makefile provided with these files to help users properly compile the code. These files can
also be used to decode the corresponding NCEP operation PrepBUFR/BUFR files.

7.4 NCEP Generated BUFR Files

7.4.1 Knowledge on NCEP BUFR/PrepBUFR Files
	
	 NCEP	 saves	 most	 of	 the	 observation	 data	 in WMO	 BUFR	 format.	 PrepBUFR	 is	 the	 final	
step	 in	 preparing	 most	 of	 the	 observations	 for	 data	 assimilation,	 the	 NCEP	 term	 for	

Observations

 55

“prepared”	 or	 QC’d	 data	 in	 BUFR	 format	 (NCEP	 convention/standard).	 Please	 note	
that	 a	 PrepBUFR	 file	 is	 still	 a	 BUFR	 file,	 but	 has	 more	 QC	 information.	 NCEP	 uses	
PrepBUFR	 files	 to	 organize	 conventional	 observations	 and	 satellite	 retrievals	 as	 well	
as	 other	 related	 information	 (such	 as	 quality	 marks)	 into	 single	 files.	 The	 BUFRLIB	
software	 and	 BUFR	 table	 are	 needed	 for	 processing	 BUFR/PrepBUFR	 files.	
	 	
NCEP generates different BUFR/PrepBUFR files for each of its operation systems. The
“PrepBUFR” includes the major conventional observations for assimilation into the various
NCEP analyses, including the North American Model (NAM) and NAM Data Assimilation
System (NDAS), unified grid-point statistical interpolation analysis (GSI) (the "NAM" and
"NDAS" networks), the Global Forecast System and Global Data Assimilation System
unified GSI (the "GFS" and "GDAS" networks), the Climate Data Assimilation System
SSI (the "CDAS" network), the Rapid Update Cycle (the "RUC" network) and the Real
Time Mesoscale Analysis (the "RTMA" network).

 In this section, we will briefly introduce several types of BUFR/ PrepBUFR files mostly
accessed by the research community to help users decide which one is the best for their
GSI applications. Each type of BUFR/PrepBUFR file has its own coverage, data cut-off
time, and quality control procedures, which result in different quality marker values for the
same observation in different files.

● File name convention:

The following is a list of example file names we collected from NCEP FTP site:

gdas1.t00z.prepbufr.nr
gfs.t00z.gpsro.tm00.bufr_d
ndas.t18z.1bamub.tm03.bufr_d
nam.t00z.aircar.tm00.bufr_d.nr
ndas.t18z.prepbufr.tm03.nr

These file names reflect information of the observations within the file. Let us
explain the meaning of the filenames, segment by segment, separated by dots:

○ The 1st section is the operation system name, indicating which operation

system this file is created/used for. For example: gdas1 is for the Global
Data Assimilation System (GDAS), gfs for the Global Forecast System
(GFS), ndas for the North American Data Assimilation System (NDAS),
nam for the North American Mesoscale (NAM) forecast system.

○ The second section is analysis hour, indicating which analysis hour this file
is used for. For example: t00z is for 00Z analysis, t18z for 18Z analysis.

○ The third section is data type, indicating what kinds of data are included in
the file. For example: prepbufr is for conventional observations, gpsro for
GSPRO, 1bamub for AMSU-B, and aircar for aircraft observations.

Observations

 56

○ From fourth section, there is different information for different operational
files:

■ bufr_d tells us it is a BUFR format file. We may think prepbufr as a
special data “format” here.

■ nr tells us that the file only includes non-restricted data (we can only
access non-restricted data).

■ tm00 and tm03, where the two digital number is hours. They also
indicate the time of the file used in the analysis. When the number is
00, the file analysis time is the same as showed in the second
segment. When it is a number larger than 0, it indicates the analysis
time of the file is the time in the second segment minus this number.
For example: the analysis time for ndas.t18z.1bamub.tm03.bufr_d is
15Z (18Z - 03h = 15Z). This file is used in the catch up cycles
during NDAS that have a delayed analysis start time to wait for more
observations.

● Data coverage and cut off time:

Each operational system requires different data types, data coverage, cut off time,
and quality control procedures. The details of these setups need a long technical
note to describe but here we can briefly introduce some major features of each file:

○ GDAS (gdas1) covers the global and has the latest cut off time (6 hours),

which means it includes most of the available real-time observation data.
○ GFS (gfs) covers the global but has a shorter cut off time (2:45 hours)

compared to GDAS.
○ NDAS(ndas) covers the North America and has a longer cut off time than

NAM, which means it includes more real-time data than NAM.
○ NAM(nam) covers the North America but has a shorter cut off time

comparing to others.
○ Data quality control processes for PrepBUFR files in each observation

system are different but their results are reflected as quality markers, which
can be easily checked by decoding the specific PrepBUFR file.

○ For data types in each PrepBUFR file, please check the following section.

● Code table for PrepBUFR report types

The complete list of the conventional observation types (and their BUFR codes)
used by each NCEP operation system are documented at the following links:

Global GFS and GDAS GSI analyses:

Observations

 57

http://www.emc.ncep.noaa.gov/mmb/data_processing/prepbufr.doc/table_2.htm

Global CDAS/reanalysis systems:

http://www.emc.ncep.noaa.gov/mmb/data_processing/prepbufr.doc/table_3.htm

Regional NAM and NDAS GSI analyses:

http://www.emc.ncep.noaa.gov/mmb/data_processing/prepbufr.doc/table_4.htm

Rapid Update Cycle (RUC) 3DVAR analysis:

http://www.emc.ncep.noaa.gov/mmb/data_processing/prepbufr.doc/table_5.htm

Here we give a simplified table for the most commonly used data types:

7.4.2 BUFR/PrepBUFR Data Resources for Community Users

There are several sources to get real-time and archived atmospheric observations and
model forecasts. Some of them provide NCEP operation BUFR/PrepBUFR files for
community. Below is a list we are aware of. Users are welcome to send us new data source
links to share with the community.

Data in BUFR format

● NCEP NOMADS Site:
○ PrepBufr for GDAS (Global) - 1 month buffer:

http://nomads.ncep.noaa.gov/pub/data/nccf/com/gfs/prod/
○ PrepBufr for NDAS (North America) - 1 month buffer:

http://nomads.ncep.noaa.gov/pub/data/nccf/com/nam/prod/

● NCEP FTP Site:
○ PrepBufr for GDAS (Global) - 3 day buffer:

ftp://ftpprd.ncep.noaa.gov/pub/data/nccf/com/gfs/prod/
○ PrepBufr for NDAS (North America) - 3 day buffer:

ftp://ftpprd.ncep.noaa.gov/pub/data/nccf/com/nam/prod/

● NCDC NOMADS Site:
○ PrepBufr for GDAS (Global) - archive starting May 2007:

http://nomads.ncdc.noaa.gov/data/gdas/

Observations

 58

● NCAR Computational and Information Systems Laboratory (CISL) Research Data
Archive (RDA) Site:

○ DS337.0: NCEP ADP Global Upper Air and Surface Observations
(PREPBUFR and NetCDF PB2NC Output) - archive starting May 1997:

http://dss.ucar.edu/datasets/ds337.0/
○ DS337.0 Subset: Interactive tool for running PB2NC over a specified time

period and geographic region:
http://dss.ucar.edu/datasets/ds337.0/forms/337_subset.php

7.5 Observation Error Adjustment

The actual observation errors used in GSI analysis start with the “external” (either from
PrepBUFR files or an error table file) observation errors in the obserr array and go through
multiple adjustments based on observation quality, vertical sigma location, observation
density, time of the observations, etc. The major adjustments occur in read_prepbufr.f90
and some are listed as follows:

1. Observation errors for each variable are bonded by their corresponding lower limits.
Currently, these lower limits are hard coded and prescribed in read_prepbufr. The
observation error limits for temperature, moisture, wind, surface pressure and total
precipitable water are: terrmin=0.5, qerrmin=0.1, werrmin=1.0, perrmin=0.5,
pwerrmin=1.0, respectively.

2. Observation errors are adjusted based on the quality markers from the prepbufr data
files. If the quality markers from prepbufr are larger than a threshold value (lim_qm
in read_prepbuf.f90r), the corresponding observation errors are adjusted to a very
large number (1.0x106, which indicates a bad observation and will not make any
impact on the analysis results). If the quality markers are smaller than lim_qm, the
observation errors are adjusted based on the vertical location and vertical
distribution of the observations. Please refer to the BUFR/PrepBUFR User’s Guide
for more details on the quality markers and the values of lim_qm.

3. If an observation quality marker is either 3 or 7, the observation error can be
inflated by setting inflate_error as true. The value of the inflation factor may be set
based on observation types. However, currently it is fixed as 1.2.

4. For certain observation types (e.g., T), their observation errors are amplified by a
factor of 1.2 if the observation locations are above 100 hPa.

Besides the above-mentioned adjustments, observation errors are further inflated during the
observation innovation calculation (e.g., in the subroutines listed in section 3.2.4 of the
Advanced User’s Guide) when the observation is located either lower than the lowest
analysis level or higher than the highest analysis level. In the same routine, GSI performs
gross error checks and, if oberror_tune is set to true, observation error tuning (this function
is not discussed in this document).

Satellite Radiance Data Assimilation

 59

Chapter 8: Satellite Radiance Data Assimilation

Satellite radiance data analysis is one of the most advanced and important features in the
GSI system. GSI has developed complex functions and code components to ingest,
analyze, bias correct, and monitor radiance observations from various satellite instruments.
In this chapter, we will discuss these satellite radiance analysis related aspects from the
users point of view, including how to correctly setup and run GSI with radiance
observations, how to check and understand the radiance analysis results, bias correction,
and monitoring radiance observations. Related code structure will also be described to help
advanced users to further investigate and apply radiance data analysis with GSI.

8.1. Satellite Radiance Data Ingest And Distribution

8.1.1 Link Radiance BUFR Files To GSI Recognized Names

All radiance observations used by the GSI are saved in the BUFR format. For detailed
information on the BUFR format and its processing techniques, please see the
BUFR/PrepBUFR User’s Guide, which is available on line:

http://www.dtcenter.org/com-GSI/BUFR/docs/index.php

In the Section 3.1 of this user’s guide, we introduced all GSI BUFR/PrepBUFR
observation files and the GSI recognized observation file names in table 3.1. From this
table, we can see most of the BUFR files are used for satellite radiance data. Here, we will
use a small part of the table to explain the link between the GSI name and the file name:

GSI Name Content Example file names
amsuabufr AMSU-A 1b radiance (brightness

temperatures) from satellites NOAA-15,
16, 17,18, 19 and METOP-A

gdas1.t12z.1bamua.tm00.bufr_d

amsubbufr AMSU-B 1b radiance (brightness
temperatures) from satellites NOAA15,
16,17

gdas1.t12z.1bamub.tm00.bufr_d

The right column of the table gives example radiance BUFR files that can be downloaded
from the NCEP data servers (please see BUFR/PrepBUFR user’s guide for the naming
convention for these files), while the left column is the data file name that GSI expects
during observation data ingestion. The middle column is a brief explanation of the data
content in each file.

As explained in section 5.2.1, running radiance data analysis with GSI could be as simple
as linking the radiance BUFR files to the GSI run directory with the GSI recognized name
in the run script. For example, if we add the following two lines to the GSI run script:

Satellite Radiance Data Assimilation

 60

Link to the radiance data
ln -s ${OBS_ROOT}/gdas1.t12z.1bamua.tm00.bufr_d amsuabufr
ln -s ${OBS_ROOT}/gdas1.t12z.1bamub.tm00.bufr_d amsubbufr

we should see that AMSU-A and AMSU-B observations are analyzed in the GSI analysis,
as illustrated in the rest of Section 5.2. Here, we will give more detail on the setup and
usage of the GSI recognized observation file name (GSI name) in the left column of the
table 3.1.

The GSI names, amsuabufr and amsubbufr, are actually decided by the parameters in
the GSI namelist section OBS_INPUT. As an example, the relevant part of OBS_INPUT
is:

 dfile(28)='amsuabufr', dtype(28)='amsua', dplat(28)='n15', dsis(28)='amsua_n15',
 dfile(29)='amsuabufr', dtype(29)='amsua', dplat(29)='n16', dsis(29)='amsua_n16',
 dfile(30)='amsuabufr', dtype(30)='amsua', dplat(30)='n17', dsis(30)='amsua_n17',
 dfile(31)='amsuabufr', dtype(31)='amsua', dplat(31)='n18', dsis(31)='amsua_n18',
 dfile(32)='amsuabufr', dtype(32)='amsua', dplat(32)='metop-a', dsis(32)='amsua_metop-a',
 dfile(33)='airsbufr', dtype(33)='amsua', dplat(33)='aqua', dsis(33)='amsua_aqua',
 dfile(34)='amsubbufr', dtype(34)='amsub', dplat(34)='n15', dsis(34)='amsub_n15',
 dfile(35)='amsubbufr', dtype(35)='amsub', dplat(35)='n16' dsis(35)='amsub_n16',
 dfile(36)='amsubbufr', dtype(36)='amsub', dplat(36)='n17', dsis(36)='amsub_n17',

Please note that the last two columns of the OBS_INPUT have been excluded for
conciseness. From this list, we can see the content of dfile is the GSI name, which is the
observation file name recognized by GSI, while dtype and dplat indicate the radiance
instruments and the satellite name associated with the GSI name in dfile. The dsis is the
radiance observation type that is the combination of the instruments and satellite names.
This list tells us that the GSI expects NOAA-15 AMSU-A radiance observations from a
BUFR file with name amsuabufr. It also reads in the NOAA-18 AMSU-A observations
from the same file. For NOAA-17 AMSU-B observations, GSI will read them in from a
file named amsubbufr.

It is possible to change the GSI name in dfile to a user specified name (for example,
‘amsuagsi’ rather than 'amsuabufr') as long as the GSI name (amsuabufr)in the link from
the BUFR file (gdas1.t12z.1bamua.tm00.bufr_d) to the GSI name has also been
changed. The following demonstrates the process required to change the name in dfile.

Set new name in namelist section OBS_NPUT:

 dfile(28)='amsuagsi', dtype(28)='amsua', dplat(28)='n15', dsis(28)='amsua_n15',
 dfile(29)='amsuagsi', dtype(29)='amsua', dplat(29)='n16', dsis(29)='amsua_n16',

Then change the GSI name in the run script:

ln -s ${OBS_ROOT}/gdas1.t12z.1bamua.tm00.bufr_d amsuagsi

It is advised to use the GSI names provided in the released run script because they describe
the contents of the file well and are used by many users. However, the flexibility to setup a
different GSI name does give GSI more ability to analyze radiance observations from

Satellite Radiance Data Assimilation

 61

different resources. For example, if we want GSI to assimilate NOAA-15 AMSU-A
observations from a BUFR file named gdas1.t12z.1bamua.tm00.bufr_d and
NOAA-16 AMSU-A observations from another BUFR file named
gdas2.t12z.1bamua.tm00.bufr_d, we can setup the run script and namelist as
follows:

Set the GSI names in the namelist section OBS_INPUT:

 dfile(28)='amsuabufr', dtype(28)='amsua', dplat(28)='n15', dsis(28)='amsua_n15',
 dfile(29)='amsuagsi', dtype(29)='amsua', dplat(29)='n16', dsis(29)='amsua_n16',

And then, link them in the run script:

ln -s ${OBS_ROOT}/gdas1.t12z.1bamua.tm00.bufr_d amsuabufr
ln -s ${OBS_ROOT}/gdas2.t12z.1bamua.tm00.bufr_d amsuagsi

Now, GSI will read in NOAA-15 AMSU-A observations from the GSI file amsuabufr,
which is the BUFR file gdas1.t12z.1bamua.tm00.bufr, and read in NOAA-16
AMSU-A observations from another GSI file amsuagsi, which is the BUFR file
gdas2.t12z.1bamua.tm00.bufr.

A common user mistake in the setup of the radiance data analysis is forgetting to add the
radiance observation type the user wants to use into the OBS_INPUT. Some users may
notice that NOAA-19 AMSU-A is not on the list of the OBS_INPUT setups in release
version 3.0. To use GSI to analyze NOAA-19 AMSU-A observations with the run script
and name list from release version 3.0, users need to add one more line in OBS_INPUT,
for example:

 dfile(79)='amsuabufr', dtype(79)='amsua', dplat(79)='n19', dsis(79)='amsua_n19',

Where index 79 for this new line is from the existing number of parameter “ndat” in
namelist section SETUP plus 1. The “ndat” should also be set to 79.

In this case, NOAA-19 AMSU-A observations should be included in the BUFR file that
amsuabufr is linked to. The released run script will be continually updated to include new
satellite platforms, however users are suggested to double-check the content of the BUFR
file and the setup of the namelist if desired data types are missing from the analysis.

The radiance data normally need to be thinned in the analysis, the last column (dthin(26)=1,)
in the namelist section OBS_INPUT is used to setup radiance data thinning. The details of
radiance data thinning are described in section 3.3 under item 7.

More detailed control on how to use each channel of certain radiance observation types in
the GSI analysis can be achieved by setting up the satinfo file. The use of the satinfo file
was previously introduced in section 4.3. Please note the satinfo file may be structured
differently in different released versions.

Satellite Radiance Data Assimilation

 62

8.1.2 GSI Code To Ingest Radiance Data

GSI has a set of files (subroutines) named read_*.f90 to read in different types of
observations, including satellite radiance. The table in Section 6.2.3 gives a complete list of
such subroutines. Below is an excerpt of the table that applies to radiance data:

From this table, we can see TOVS 1b observations from the NOAA and METOP satellites
are read in by subroutine read_bufrtovs and the GEOS sounder and SSMI observations are
read in by subroutine read_goesndr and read_ssmi.

In general, GSI reads in radiance observations from external BUFR files, picks the
observations within the analysis domain and time window, performs thinning based on the
coarse grid setup in OBS_INPUT, and saves them into an intermediate binary file using a
general data format across all observation types.

In this user’s guide, we will use subroutine read_bufrtovs (read_bufrtovs.f90) as an
example to introduce some important aspects of GSI radiance observation ingesting. All
these aspects can be extended to other radiance ingesting subroutines because they share
the same code structure and BUFR techniques. We hope these points can help advanced
users learn the detailed content inside the GSI radiance observation process and add new
observations for their GSI application.

• BUFR file ingesting

The basic structure of BUFR file ingesting has two loops to read in every message
(read_subset) from the BUFR file and then read in all observations (read_loop) from
each message. In the subroutine read_bufrtovs, the two loops are marked by the following
code:

Data type
(ditype)

Observation type
(obstype)

Subroutine that reads data

rad
(satellite
radiances)

(platform)
not AQUA

amsub

read_bufrtovs

(TOVS 1b data)

amsua
msu
mhs
hirs4,3,2
ssu

sndr, sndrd1, sndrd2
sndrd3, sndrd4

read_goesndr
(GOES sounder data)

ssmi read_ssmi

Satellite Radiance Data Assimilation

 63

! Loop to read bufr file
 next=0
 read_subset: do while(ireadmg(lnbufr,subset,idate)>=0)
 ...
 read_loop: do while (ireadsb(lnbufr)==0)

 ...

! End of bufr read loops
 enddo read_loop
 enddo read_subset
 call closbf(lnbufr)

The content of each observation needed by GSI can be found by searching the BUFR
mnemonics (bold in following code sample), for example, the following lines of the code
give a list of mnemonics included in the subroutine:

 hdr1b ='SAID FOVN YEAR MNTH DAYS HOUR MINU SECO CLAT CLON CLATH CLONH HOLS'
 if (atms) hdr1b ='SAID FOVN YEAR MNTH DAYS HOUR MINU SECO CLAT CLON CLATH CLONH HMSL'

 hdr2b ='SAZA SOZA BEARAZ SOLAZI'

 call ufbrep(lnbufr,data1b8,1,nchanl,iret,'TMBR')
 call ufbrep(lnbufr,data1b8,1,nchanl,iret,'TMBRST')

An explanation of each mnemonic can be easily found from the BUFR table used to
generate this BUFR file. Users can get this BUFR table on-line, from decoding the BUFR
file, or checking the BUFR file bufrtab.012 in the fix directory of the release package. For
example, a search for SAZA SOZA in bufrtab.012, we found the following two lines:

| SAZA | 007024 | SATELLITE ZENITH ANGLE |
| SOZA | 007025 | SOLAR ZENITH ANGLE |

These lines tell us that GSI needs to read in satellite zenith angle and solar zenith angle for
each observation profile.

• Data selection in reading process

In the data ingesting subroutine, only observations within the analysis domain (for regional
applications) and time window are processed for the thinning. After establishing a coarse
grid based on the setups in the parameters from OBS_INPUT, GSI starts a smart selection
of radiance fields of view for the coarse grid. This processing of radiance data thinning not
only selects the nearest radiance observation in a coarse grid, but also considers the quality
of the radiance observations. The observation for each grid box is chosen based on its
quality through a combined penalty value that considers the following criteria:

1. Remove observations where the key channels are bad
2. Prefer observations that have a larger number of good channels
3. Skip observations that the Field of View (FOV) are out of range

Satellite Radiance Data Assimilation

 64

4. Prefer profiles that are over better surface fields. For many observation types,
the order is (best to worst): sea, sea ice, snow/ land, mixed but this may vary by
instrument.

5. Prefer observations based on available data quality predictors

• Internal observation data format

After data thinning, the best quality radiance observation for each coarse grid is then saved
with surface status (calculated from the background) in a two-dimensional array called
“data_all”. The 1st dimension of the array saves all information about one observation and
the 2nd one loops through the observations. The code that assigns the content of the array
starts like:

 data_all(1 ,itx)= rsat ! satellite ID
 data_all(2 ,itx)= t4dv ! time
 data_all(3 ,itx)= dlon ! grid relative longitude
 data_all(4 ,itx)= dlat ! grid relative latitude

and ends like:

 do i=1,nchanl
 data_all(i+nreal,itx)=data1b8(i)
 end do

The code itself gives clear notation on the content of the 1st dimension of the array except
for the last three lines. For example, it clearly tells us the first 4 items in the array are
satellite ID (rsat), observation time (t4dv), and grid relative longitude (dlon) and latitude
(dlat). However, there is no clear notation for data_all(i+nreal,itx), a little search for
the array data1b8 indicates it contains the brightness temperature from all channels in an
observation profile.

After reading and processing all observations in the BUFR file and saving them in the data
array “data_all”, this array is written to an intermediate binary file at the end of the
subroutine read_bufrtovs.

• Observation count in stdout file

From the stdout file, we can see the following information counting the data during the data
ingesting stage, an example from the case in Chapter 5:

READ_BUFRTOVS: file=amsuabufr type=amsua sis=amsua_n15 nread= 128055
ithin= 2 rmesh= 60.000000 isfcalc= 0 ndata= 53932 ntask= 1

This tells us that the subroutine read_bufrtovs is reading NOAA-15 AMSU-A observations
from file amsuabufr. There are 128055 observations (profile number * channels number)
read in from the BUFR file and 53932 observations kept for further processing after data
selection and thinning.

Satellite Radiance Data Assimilation

 65

8.1.3 Information On Ingesting And Distribution

The analysis in GSI is done in each subdomain for MPI runs. The observation number in
each sub-domain can be found in the stdout file. All data types are listed in the stdout file
as shown in the following example, using the same example as section 5.2.2:

OBS_PARA: ps 2352 2572 8367 2673
OBS_PARA: t 4617 4331 12418 4852
OBS_PARA: q 3828 3908 11096 3632
OBS_PARA: pw 89 31 141 23
OBS_PARA: uv 5704 4835 15025 4900
OBS_PARA: sst 0 0 2 0
OBS_PARA: hirs4 metop-a 0 0 416 731
OBS_PARA: amsua n15 2563 1323 1048 1669
OBS_PARA: amsua n18 1002 2119 0 390
OBS_PARA: amsua metop-a 0 0 1268 2279
OBS_PARA: amsub n17 0 0 1717 2891
OBS_PARA: hirs4 n19 244 1093 0 235
OBS_PARA: amsua n19 651 3486 0 469

Please note the number in each subdomain is the number of the radiance profiles, not the
number of observed channels. Each profile includes many channels. For example, each
HIRS observation has 19 channels, each MSU has 4 channels, each AMSU-A has 15 and
AMSU-B has 5, each MHS has 5 and SSU has 3.

8.2. Radiance Observation Operator

The observation operator for radiance observations is very complex and out of the scope of
this user’s guide. Here, we only briefly introduce some features of the radiance observation
operator. The Community Radiative Transfer Model (CRTM) developed by JCSDA is
employed by the GSI system to transform control variables into simulated radiance or
brightness temperatures. This operator can be illustrated by the following equation:

 y=K(x,z)
 where:

y are simulated radiance observations;
x are profiles of temperature, moisture, and ozone;
K is the radiative transfer equation (CRTM);
z are unknown parameters such as the surface emissivity, CO2 profile, methane

profile, etc.

In GSI, x (including surface conditions) are calculated based on the background fields and
then are put into the CRTM functions (K) to calculate the simulated radiance observations
y. When unknowns in K(x, z) are too large, which may be from the formulation of K or
unknown variables (z), observed radiance data cannot be reliably used and must be
removed during quality control. Examples of this include when clouds, trace gases, or
aerosols exist in the observed column. The description of radiance data quality control can
be found in the next section. For advanced users needing to learn the details of the radiance

Satellite Radiance Data Assimilation

 66

observation operator in GSI, please check the corresponding subroutine listed in the right
column of the section 6.2.4 table.

Because GSI uses the CRTM functions as part of the radiance observation operator, the
CRTM coefficients have to be available during the radiance data analysis. In the GSI
release package, these CRTM coefficients are linked to the running directory by the run
script before the GSI starts to run. The details of linking CRTM coefficients can be found
in Chapter 3 in the introduction of the GSI run scripts. Please note that the GSI run script
does not know which kind of radiance observations will be used in the analysis. The script
links all the CRTM coefficients for the radiance observation types listed in the satinfo file.
After reading in radiance observations from BUFR files, GSI recognizes which kind of
radiance observations to be used and only reads in the corresponding coefficients needed.
Therefore, users only need to check whether the CRTM coefficients of the user interested
radiance data types are linked correctly. At the same time, users can ignore the warning
information on the missing CRTM coefficients if those coefficients are for the radiance
data types that are not used in the application.

8.3. Radiance Observation Quality Control

The quality control (QC) may be the most important aspect of satellite data assimilation.
Unlike conventional observations from a prepbufr file, which includes the quality markers
from the NCEP quality control process, the satellite radiance BUFR file does not include
observation quality information. Instead, the quality control for radiance observations is
inside the GSI.

The GSI radiance data quality control starts right after the radiance observations are read in
(such as in read_bufrtovs.f90). We can think of the processing of radiance data thinning as
a part of the quality control because the thinning process selects the best quality
observations. The major radiance data quality control step is after the calculation of the
radiance observation departure in file setuprad.f90. Many QC steps are employed to
capture problematic satellite data, which mainly come from the following 4 sources:

• Instrument problems
• Clouds and precipitation simulation errors
• Surface emissivity simulation errors.
• Processing errors (e.g., wrong height assignment, incorrect tracking, etc.)

In GSI, each instrument has its own quality control subroutine. All these subroutines are in
the file qcmod.f90 and are listed as follows for reference:

Satellite Radiance Data Assimilation

 67

subroutine name Quality Control for
qc_ssmi ssmi, amsre, and ssmis
qc_seviri seviri data
qc_ssu ssu data
qc_goesimg GOES image
qc_msu msu data
qc_irsnd ir sounder data(hirs, goessndr, airs, iasi, cris)
qc_avhrr avhrr and avhrr_navy
qc_amsua amsua data
qc_mhs amsub, mhs and hsb data
qc_atms atms data

After calculating the radiance observation departure from the background and bias
correction, these QC functions are called for each instrument to either toss the bad
(questionable) observations or inflate the low confidence observations. The number of
filtered observations by these QC functions is summarized in the radiance fit file (fort.207)
as 7 QC categories (steps). To help users understand the meanings of these numbers in the
radiance fit file, we will briefly introduce these QC steps in subroutine qc_amusa in the
following table. Please note these QC categories may have different meaning for different
instruments:

Category Quality Control steps Action to observations
QC1 Cloud affected profile, (factch4 > 0.5) Toss channel 1-6, 16
QC2 Inaccurate emissivity /surface temperature

estimate over sea
Toss channel 1-6, 16

QC3 Cloud affected profile (Scattering index
factch6 > 1.0)

Toss channel 1-7, 16

QC4 Inflate observation error over high terrain
(>2000m)

Inflate channel 7
observation error

QC5 Inflate observation error over high terrain
(>4000m)

Inflate channel 8
observation error

QC6 Retrieved could liquid water path > 1.0 Part of QC1
QC7 Part of Scattering index > 1.0 Part of QC3

Using the same example as section 4.5.2:

 sat type penalty nobs iland isnoice icoast ireduce ivarl nlgross
 n15 amsua 19769.16042371 4149 673 1475 268 1311 30453 0
 qcpenalty qc1 qc2 qc3 qc4 qc5 qc6 qc7
 19769.16042371 883 63 2127 183 0 20 46

Using the above table, we can understand numbers listed under qc1 to qc7. Listed below
also includes the explanation of the numbers not in the above table, for a complete
understanding of this part of the radiance fit file. For other portions of the fit file, please see
the introduction in section 4.5.2.

Satellite Radiance Data Assimilation

 68

From the above example, we see there are 4149 NOAA-15 AMSU-A profiles after
thinning, among which there are:

673 profiles over land (iland)
1475 profiles over snow or ice (isnoice)
268 profiles over coast (icoast)
1311 profiles within tropics that has reduced qc bounds (ireduce)
30453 channels that failed in the general gross check (ivarl)
0 channels that passed the general gross check but failed the nonlinear gross check (nlgross)

883 profiles were tossed because of cloud affect based on factch4
63 profiles were tossed because of inaccurate emissivity /surface temperature estimate over sea
2127 profiles were tossed because of cloud affect based on factch6
183 profiles have inflated observation error because of high terrain (>2000m)
0 profiles have inflated observation error because of high terrain (>4000m)
20 profiles meet criterion QC6 (part of qc 1)
46 profiles meet criterion QC7 (part of qc 3)

So, nearly ¾ of the observations were tossed because of cloud effects.

8.4. Bias Correction For Radiance Observations

Using bias correction to correct the system bias in the satellite radiance observations is one
of the key steps to get a successful satellite radiance data assimilation. This section will
introduce the basic theory of the GSI bias correction, the procedures and configurations of
the bias correction in the GSI system, an explanation of the namelist, satinfo, and
coefficients for bias correction, the use of the angle bias correction utility, and discussions
of some common issues users encounter in the application of the GSI bias correction.

8.4.1. Bias Correction For Satellite Observations

Observation bias can systematically damage the data assimilation results and,
consequently, the quality of the forecasting system. Biases in satellite observations are of
particular concern because they may larger than the signal and damage the numerical
weather prediction system in a very short period of time.

Biases between the satellite observations and the model may come from the following
sources:

• satellite instrument itself (e.g. poor calibration or characterization, or adverse
environmental effects);

• radiative transfer model (RTM) linking the atmospheric state to the radiation
measured by the satellite (e.g. errors in the physics or spectroscopy, or from non-
modeled atmospheric processes);

• systematic errors in the background atmospheric state provided by the NWP model
used for monitoring.

Satellite Radiance Data Assimilation

 69

In GSI, satellite observation bias is represented as a linear regression based on N state-
dependent predictors Pi(x), with associated coefficients βi :

Since the bias correction is applied to the radiance departures, this is equivalent to using the
modified definition of the observation operator:

H̃(x, β)=H(x)+BC(β, x)

The training of the bias correction consists in finding the vector β that allows the best fit
between the NWP fields x and the observations. This is obtained by minimizing the
following cost function:

For more details on the bias correction, please see the references listed below:

1. Auligne T., A. P. McNally and D. P. Dee. 2007. Adaptive bias correction for satellite data in a numerical

weather prediction system. Q. J. R. Meteorol. Soc. 133: 631-642.
2. Derber JC, Wu W-S. 1998. The use of TOVS cloud-cleared radiances in the NCEP SSI analysis system.

Mon. Weather Rev. 126: 2287–2299.
3. Harris BA, Kelly G. 2001. A satellite radiance-bias correction scheme for data assimilation. Q. J. R.

Meteorol. Soc. 127: 1453–1468.
4. Dee, D. P., 2004: Variational bias correction of radiance data in the ECMWF system. Pp. 97–112 in

Proceedings of the workshop on assimilation of high-spectral-resolution sounders in NWP. 28 June–1
July 2004, ECMWF, Reading, UK.

5. Dee, D. P. and S. M. Uppala, 2009, Variational bias correction of satellite radiance data in the ERA-
Interim reanalysis. Q. J. R. Meteorol. Soc. 135, 1830–1841.

8.4.2. The GSI Bias Correction Procedure And Configurations

In GSI, the bias correction for satellite radiance has two parts: one part is air mass bias
correction, also called the variational part of the bias correction; another part is angle
dependent bias correction. Each part of bias correction has its own bias correction
coefficient file:

● The satbias_angle file contains the angle dependent part of the brightness
temperature bias for each channel/instrument/satellite. Also included in this file is
the mean temperature lapse rate for each channel weighted by the weighting
function for the given channel/instrument.

● The satbias_in file contains the coefficients for the variational part of the bias
correction.

Satellite Radiance Data Assimilation

 70

GSI will read in the coefficients from both satbias_angle and satbias_in files, combine
them together with predictors to generate a system bias value for each channel, and then
subtract this system bias from the observation innovation during the radiance observation
operator calculation. During the minimization process, GSI will calculate the updated
coefficients for the predictive part of the bias correction and save the updated coefficients
in another file called “satbias_out”. The angle dependent bias coefficients are updated
outside of GSI using a utility named gsi_angleupdate in the release package. These new
mass and angle dependent bias coefficients should be used for the bias correction in the
next cycle of the GSI analysis.

To set up the bias correction for satellite radiance in the GSI system, users need to link the
right coefficient files in the run directory and keep the coefficient files updated in cycles:

Step 1, Link coefficient files for both air bias correction and angle dependent bias into the
GSI run directory before running the GSI executable.

The coefficient files should come from the previous data assimilation cycle. However, if
there is no previous data analysis cycle, the sample coefficient files can be copied from the
directory ./fix within the community release version as a cold start. When using the run
script with the released version, the following lines in the run script copy the coefficient
files:

SATANGL=${FIX_ROOT}/global_satangbias.txt
SATINFO=${FIX_ROOT}/global_satinfo.txt
...
 cp $SATANGL satbias_angle
 cp $SATINFO satinfo

for satellite bias correction
cp ${FIX_ROOT}/sample.satbias ./satbias_in

Within the directory ./fix, the sample angle dependent bias correction coefficients file is
called global_satangbias.txt, and the file for mass bias correction coefficients is
sample.satbias. Here, we also include the copy to the satinfo file because the bias
correction needs information from the satinfo file.

Step 2, Run GSI and save the output from the mass bias correction for next cycle

After running the GSI, an updated coefficient file for the mass bias correction is generated
in the run directory. This file is called “satbias_out”, which should be saved for the next
cycle of the GSI analysis. There is a line commented out in the released GSI run script
reserved for this purpose. The user should choose how to save the file for the next cycle:

GSI updating satbias_in

cp ./satbias_out ${FIX_ROOT}/sample.satbias

Step 3, Run the angle dependent bias correction utility after GSI runs and save updated
coefficients of angle dependent bias correction for use in the next cycle

Satellite Radiance Data Assimilation

 71

The update of the coefficients for angle dependent bias correction is done by a stand-alone
application named gsi_angleupdate located under the directory ./util, but outside the GSI
itself. This application reads in the diag files from the GSI analysis results and the old
angle dependent bias coefficients, updates the coefficients and saves them as a new file
called “satbias_ang.out”. We will introduce how to apply this utility in the next section.

Please note the cycling of the coefficients to let the bias information accumulate during the
data assimilation cycle is the key to getting the right bias correction.

8.4.3 Namelist, Satinfo, And Coefficients For Bias Correction

To conduct the bias correction, GSI needs several pieces of information from different
files:

● The satellite platform information from the GSI namelist
● The usage information for each channel from the satinfo file
● The coefficients from both mass and angle dependent bias correction coefficient

files

The following is a brief introduction to these files to help the user to understand the
contents of each file and know how to check if the user interested satellite channels are
correctly configured in these files.

● The satellite platform information from the GSI namelist

The complete explanation of the GSI run script and most often used namelist options can
be found in Chapter 3 of this guide. More details of setting up radiance data analysis in the
run script are described in section 1 of this chapter. Users should make sure that required
satellite instruments and platforms are in the list in &OBS_INPUT and have been correctly
linked to the BUFR files.

Also, the following is a list of GSI namelist options related to the bias correction:

Variable name Default value Description
diag_rad .true. logical to turn off or on the diagnostic radiance file

(true=on)
passive_bc .false. logical to turn off or on radiance bias correction for

monitored channels
adp_anglebc .false. option to perform variational angle bias correction

Satellite Radiance Data Assimilation

 72

● The usage information for each channel from the satinfo file

The GSI uses an information file called “satinfo” to control how to use each radiance
channel. Detailed information about satinfo can be found in the GSI User’s Guide Section
4.3. The following is an example:

!sensor/instr/sat chan iuse error error_cld ermax var_b var_pg icld_det
 amsua_n15 1 1 3.000 9.100 4.500 10.000 0.000 1
 amsua_n15 2 1 2.000 13.500 4.500 10.000 0.000 1
 amsua_n15 3 1 2.000 7.100 4.500 10.000 0.000 1
 amsua_n15 4 1 0.600 1.300 2.500 10.000 0.000 1

 amsua_n15 14 -1 2.000 1.400 4.500 10.000 0.000 -1
 amsua_n15 15 1 3.000 10.000 4.500 10.000 0.000 1
 hirs3_n17 1 -1 2.000 0.000 4.500 10.000 0.000 -1
 hirs3_n17 2 -1 0.600 0.000 2.500 10.000 0.000 -1
 hirs3_n17 3 -1 0.530 0.000 2.500 10.000 0.000 -1

Users can easily understand the first 2 columns are sensor/instrument/satellite and channel
number information. The 3rd column is the usage information, which has the following
meanings:

iuse Channel usage in GSI
-2 do not use
-1 monitor if diagnostics produced
0 monitor and use in QC only
1 use data with complete bias correction
2 use data with no air mass bias correction
3 use data with no angle dependent bias correction
4 use data with no bias correction

For bias correction purposes, please make sure user interested channels are listed in the
satinfo file and have been set to the correct usage flag.

● The coefficients from both mass and angle dependent bias correction coefficient

files

As previously introduced in this section, there are two bias correction coefficient files.
These files include the bias correction coefficients for each channel:

1) satbias_in

This file contains the coefficients for the predictive part of the bias correction (air mass
bias correction coefficients). There is a sample for this file named “sample.satbias” in the
GSI release package under the directory ./fix. All coefficients in this sample file are 0.

Satellite Radiance Data Assimilation

 73

Here, we use NOAA-15 AMSU-A from the satbias_out file from the radiance application
case in Chapter 5 as example:

 1 amsua_n15 1 0.472353 -0.231512 0.291223 0.000634 -0.148959
 2 amsua_n15 2 -0.677697 0.382025 1.424922 -0.000061 0.016514
 3 amsua_n15 3 -2.631062 0.134578 2.968469 -0.004946 1.213581
 4 amsua_n15 4 -0.470401 2.121855 5.764014 0.006496 1.333609
 5 amsua_n15 5 10.996354 -0.762965 1.787372 0.082404 -1.661531
 6 amsua_n15 6 -22.026905 -1.543174 -1.397403 0.175626 -11.384948
 7 amsua_n15 7 -1.954080 -0.293421 0.029899 -0.064129 3.039958
 8 amsua_n15 8 -9.468913 -1.490995 -0.856006 -0.013090 -0.945916
 9 amsua_n15 9 -22.737061 -2.195735 0.247890 -0.357354 -15.298422
 10 amsua_n15 10 -0.875332 2.212551 -0.392323 -0.337414 -8.785395
 11 amsua_n15 11 0.000000 0.000000 0.000000 0.000000 0.000000
 12 amsua_n15 12 2.800800 -4.042608 0.060067 0.913834 15.980004
 13 amsua_n15 13 0.000000 0.000000 0.000000 0.000000 0.000000
 14 amsua_n15 14 0.000000 0.000000 0.000000 0.000000 0.000000
 15 amsua_n15 15 -0.439501 0.539856 0.412582 -0.001741 0.158646

The first 3 columns are series number, the sensor/instrument/satellite, and channel number
of each instrument. Columns 4 through 8 are 5 coefficients for the predictive (air mass) part
of the bias correction, which has 5 predictors.

2) satbias_angle

The satbias_angle contains the angle dependent part of the brightness temperature bias.
There are two sample files for this in the GSI release package under the directory ./fix:
global_satangbias.txt and nam_global_satangbias.txt. Here we only give two channels as
examples from the file global_satangbias.txt:

1 amsua_n15 1 0.528768E-02
 0.063 -0.200 -0.411 -0.588 -0.638 -0.523 -0.493 -0.466 -0.482 -0.475
 -0.666 -0.587 -0.593 -0.602 -0.766 -0.955 -1.080 -1.218 -1.149 -1.374
 -1.553 -1.635 -1.715 -1.783 -1.689 -1.507 -1.473 -1.244 -1.233 -1.259
 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
2 amsua_n15 2 0.290661E-02
 -2.769 -2.880 -2.583 -2.449 -2.218 -1.810 -1.536 -1.242 -0.882 -0.788
 -0.676 -0.697 -0.508 -0.464 -0.544 -0.790 -0.945 -1.108 -1.002 -1.364
 -1.404 -1.315 -1.318 -1.151 -0.826 -0.219 0.086 0.631 1.121 1.807
 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

The first line for each channel looks like:

1 amsua_n15 1 0.528768E-02
2 amsua_n15 2 0.290661E-02

Satellite Radiance Data Assimilation

 74

The columns are series number, the sensor/instrument/satellite, channel number of each
instrument, and “T lap mean”, respectively. The next 90 numbers are coefficients for angle
dependent bias correction. These numbers correspond to the number of the FOV per scan.
For example, AMSU-A has 30 FOV per scan, which is using the first 30 numbers to
represents the bias correction coefficients for each FOV position, while the AMSU-B has
90 FOV per scan, all 90 numbers are used to do bias correction.

If there are some instruments in satinfo but not in satbias_in and satbias_angle, GSI will
set 0 as the initial value for these instruments and write out updated coefficients for these
new instruments in coefficient results files.

8.4.4 Enhanced Radiance Bias Correction

Since comGSIv3.3, the enhanced radiance bias correction is available to improve the
radiance bias correction and simplify the bias corrections cycles. In the enhanced radiance
bias correction, the angle bias is also calculated inside GSI instead of outside GSI like
previous versions. This section is tailor based on an email from Yunqiu Zhu on how to
setup the enhance bias correction in GSI , for more details on this enhanced radiance bias
correction, please check the following published paper:

Zhu, Y., Derber, J., Collard, A., Dee, D., Treadon, R., Gayno, G. and Jung, J. A. (2013),
Enhanced radiance bias correction in the National Centers for Environmental Prediction's
Gridpoint Statistical Interpolation data assimilation system. Q.J.R. Meteorol. Soc..
doi: 10.1002/qj.2233

The steps to get the enhanced radiance bias correction running are summarized as follows.

1. Add namelist options to turn on in the SETUP:

In ./run/ run_gsi.ksh, add the following namelist options in section SETUP

 newpc4pred=.true.,adp_anglebc=.true.,angord=4,
 passive_bc=.true.,use_edges=.false.,emiss_bc=.true.,
 diag_precon=.true.,step_start=1.e-3,

You may set the option passive_be=.true. if you want to do bias correction for the
passive channels as well.

2. Link bias files and diag files from previous cycle

Angle bias satbias_angle file and the separate angle bias correction step are no
longer needed. The files required at each analysis cycle are satbias_in, satbias_pc,
and diag files from previous analysis cycle. User can copy satbias_out ,
satbias_pc.out. in prevous cycle to current GSI run directory and rename the files as
satbias_in and satbias_pc. Please make sure that diag files is available to be used

Satellite Radiance Data Assimilation

 75

for the first analysis cycle. The diag file for guess are used here and the time tag is
removed when used in the bias correction, for example, previous cycle has diag file
called: diag_amsua_n18_ges.2014061915 In this cycle for bias correction, this file
should be called: diag_amsua_n18.

Since the format and units of the bias file are changed, at the very first time when
you start to use the enhanced radiance bias correction, please use the released
sample files in fix directory to start:

• rap_satbias_in_enhanced
• rap_satbias_pc_enhanced

3. script changes

Please make sure the GSI run scripts has code to save the diag files and bias files
for the next cycle bias correction.

8.4.5. Utility For Angle Bias Correction Outside GSI

Before the enhanced radiance bias correction available, the coefficients for correcting the
angle dependent part of the brightness temperature bias in the GSI are calculated after each
GSI run. The NCEP has developed a tool to calculate these coefficients and, the
community GSI release v3.1 started to include this tool as a part of the release package.
This tool is released as a directory named ./gsi_angupdate within ./comGSIv3.3/util . This
way is still working if users don’t want to use enhanced bias correction.

Please note the community GSI release package version 3.0 doesn’t have this tool. If users
are using the GSI release 3.0 and need this tool, please download the tar file
“gsi_angupdate.tar” from the GSI download page on-line. Once untarred, under the GSI
directory “./comGSIv3/util”, you will see a new directory: ./gsi_angupdate, which includes
the tool to update coefficients for radiance angle dependent bias correction.

• Compile

Inside the directory ./gsi_angupdate, type the following command:

./make

then check if executable “gsi_angupdate.exe” exists in the same directory.

Please note that before compiling this utility, the community GSI should already be
compiled successfully. Please refer to Chapter 2 of this User’s Guide on how to configure
and compile the community GSI.

• Run

Satellite Radiance Data Assimilation

 76

Before running “gsi_angupdate.exe”, make sure that GSI with radiance data have finished
successfully and the diagnostic files that hold O-B information have been generated in the
GSI run directory. The executable ““gsi_angupdate.exe” will read in O-B information from
the diagnostic files for each sensor to update coefficients for angle dependent bias
correction of the sensor.

To help users easily run this tool, a sample run script named run_gsi_angupdate.ksh is
provided within the ./comGSIv3.1.run directory. If a user uses the tar file downloaded
separately on-line, a similar run script can be found in the directory “./comGSI/util” with
the code.

This script is modified based on the GSI run script. The script has a similar structure.
Please check section 3.2.2.1 for instructions on setting up the machine environment, and
section 3.2.2.2 for setting up the run environment. The run environment portion is
illustrated below:

machine set up (users should change this part)

GSIPROC = processor number used for GSI analysis
#--
 GSIPROC=1
 ARCH='LINUX_PBS'
Supported configurations:
 # IBM_LSF,
 # LINUX, LINUX_LSF, LINUX_PBS,
 # DARWIN_PGI

In this script, only four parameters need to be set for a case study. These parameters have
been explained clearly in the run script and illustrated below:

case set up (users should change this part)

ANAL_TIME= analysis time (YYYYMMDDHH)
WORK_ROOT= working directory, where angupdate executable runs
GSI_WORK_ROOT= GSI working directory, where GSI runs
GSI_ANGUPDATE_EXE = path and name of the gsi angupdate executable
 ANAL_TIME=2011032212
 WORK_ROOT=./comGSIv3.1/run/angupdate_${ANAL_TIME}
 GSI_WORK_ROOT=./comGSIv3.1/run/arw_2011032212
 GSI_ANGUPDATE_EXE=./comGSIv3.1/util/gsi_angupdate/gsi_angupdate.exe

These parameters tell the analysis case time, where to find the GSI run directory and
gsi_angupdate.exe, and where to run gsi_angupdate.exe.

The run time information can be found in the stdout file. A successful run should end with
the following information:

Satellite Radiance Data Assimilation

 77

 PROGRAM GLOBAL_ANGUPDATE HAS ENDED. IBM RS/6000 SP

 After a successful run, an updated coefficients file named “satbias_ang.out” should be
found in the run directory.

• Namelist

The namelist for gsi_angupdate.exe has two sections: setup and obs_input. Here, we
only show and illustrate part of the namelist as an example.

 &setup
 jpch=2680,nstep=90,nsize=20,wgtang=0.008333333,wgtlap=0.0,
 iuseqc=1,dtmax=1.0,
 iyy1=${iy},imm1=${im},idd1=${id},ihh1=${ih},
 iyy2=${iy},imm2=${im},idd2=${id},ihh2=${ih},
 dth=01,ndat=50
 /
 &obs_input
 dtype(01)='hirs3', dplat(01)='n17', dsis(01)='hirs3_n17',
 dtype(02)='hirs4', dplat(02)='metop-a', dsis(02)='hirs4_metop-a',
 dtype(03)='goes_img', dplat(03)='g11', dsis(03)='imgr_g11',
 dtype(04)='goes_img', dplat(04)='g12', dsis(04)='imgr_g12',
 dtype(05)='airs', dplat(05)='aqua', dsis(05)='airs281SUBSET_aqua',
 dtype(06)='amsua', dplat(06)='n15', dsis(06)='amsua_n15',

The section obs_input only has three columns, which have the same meaning as their
counterparts in the GSI namelist, i.e., dtype and dplat specify the radiance instrument and
the satellite name, respectively, and dsis indicates the radiance observation type with a
name combining both the instrument and the satellite names.

Most of the parameters in the section setup are different from the section setup in GSI
namelist. We will explain these parameters below:

jpch: total channel number in coefficients file : satbias_ang.in
nstep: maximum number of FOV per scan
iyy1,imm1,idd1,ihh1: start date: year, month, day, and hour
iyy2,imm2,idd2,ihh2: end date: year, month, day, and hour
dth: time interval between start and end date. If start date is not equal to

end date, the code will loop based on dth through the period to
process multiple cycles.

ndat: Number of radiance observation types that can be processed, which
is the dimension for parameters in section: obs_input

iuseqc: >0 (i.e., 1), check variance. If errinv= (1 /(obs error)) is small
(small = less than 1.e-6), the observation did not pass quality
control. In this case, do not use this observation in computing
the update to the angle dependent bias.

Satellite Radiance Data Assimilation

 78

<=0 (i.e., 0 or -1), ensure (o-g)<dtmax. If the user says to ignore the
qc flag, check that the o-g difference falls within the user
specified maximum allowable difference. If the o-g lies outside
this bound, do not use this observation in computing the update
to the angle dependent bias.

dtmax: user specified maximum allowable difference for o-g difference
nsize: the sample size number. If sample size is less than this number, the

updating weight will be reduced based on sample size
wgtang: weight for updating the mean temperature lapse rate
wgtlap: weight for updating angle dependent bias coefficients. The update

will be faster as this number gets bigger.

8.4.6. Discussion of FAQ

In this section, we will discuss some frequently asked questions on satellite radiance bias
correction.

• Where to get bias correction coefficient files for the NCEP operational system.

The real-time satellite bias correction coefficients used for the NCEP operational
system is available on-line from the same website that holds observation
BUFR/PrepBUFR files:

For GDAS: http://nomads.ncep.noaa.gov/ pub/data/n ccf/com/gfs/prod
Once in the sub-directory, look for files with name similar to:

gdas1.t00z.abias for coefficients of mass bias correction.

For NAM: http://nomads.ncep.noaa.gov/ pub/data/n ccf/com/nam/prod
Once in the sub-directory, look for files with name similar to:

nam.t00z.satbias.tm00 for coefficients of mass bias correction.

Right now, the coefficient files for angle dependent bias correction are not available in
these web sites.

• Notes on released satbias_in and satbias_angle

As mentioned in this section, the released version provides sample files for these
coefficients under the directory ./fix:

satbias_in: sample.satbias
satbias_angle: global_satangbias.txt and nam_global_satangbias.txt

Satellite Radiance Data Assimilation

 79

These files are provided as a sample only. Users need to generate their own coefficients
based on their experiments. Usually, these coefficients need to be cycled for a period
(weeks or months) to get to a stage to do the right bias correction.

• What if the user has no bias correction coefficients and only runs short experiments
(e.g., a week) for radiance data assimilation?

Following the suggestion from NCEP experts, the following may help some users
to improve their radiance data assimilation experiments:
1) Start with coefficient files for a date as close as possible to your cases.
2) Run a single GSI analysis with mass bias and angle dependent bias correction.

You can get updated mass bias and angle dependent bias correction coefficient
files.

3) Run the same GSI analysis as step 2 using the same background and
observations but supply GSI with updated mass and angle dependent bias
correction coefficient files.

4) Repeat step 3 about 10 times to spin up the mass and angle dependent
coefficients.

5) Move on to the next cycle or analysis time and repeat steps 2 to 4.
6) After one or two days, the mass coefficient should be ready for the real case

test. Angle dependent bias correction will spin up slowly.

By starting two days prior to your real case period to spin up the coefficients, you
should be able to get better bias correction results.

• Channel lists in satinfo, satbias_in and satbias_angle do not match

The radiance channels in satinfo should match the channels in satbias_in and
satbias_angle. If they do not match, GSI will match satbias_in based on channels in
satinfo:

If radiance channels only exist in satinfo but not in satbias_in, these channels will
be added to the updated coefficient files with 0 as the initial values.

If radiance channels are not in satinfo but are in satbias_in, the extra channels in
satbias_in will be removed from the updated files.

If channels in satinfo and satbias_angle do not match, GSI will use the channels in both
files, but the angle dependent update tool will crash due to the mismatch. Therefore,
users need to make sure the channels in satinfo and satbias_angle match.

• How to select suitable satellite radiance channels when assimilating radiance data with

GSI:
This question is not only for bias correction.

1) Model top and instrument weighting functions:

Satellite Radiance Data Assimilation

 80

Each channel has its own weighting function. If part of the weighting function is
above the model top, you may need to exclude this channel because your model
cannot obtain the correct simulated radiance from background.

2) Bias correction:
If a particular channel cannot be bias-corrected, for reasons such as the channel
is not correctly calibrated or due to instrument failure, you need to turn that
channel off. You may be able to check the time-series of bias for a certain
channel to get an idea of the status of the channel bias correction.

3) Test:
Try to view the data impact of each channel on the forecast to decide which
channel(s) are best for your application. You can monitor and perform bias
correction on each channel for a certain period and then turn that particular
channel from monitoring to usage in order to check the impact of the channel.

8.5. Radiance Data Analysis Monitoring

The NCEP operational GSI system includes a Radiance Monitoring Package to extract
certain radiance data from the GSI radiance diagnostic files and produce images as an aid
to monitor GSI radiance data assimilation performance and diagnose assimilation
problems. This package has been used at NCEP to support the following Radiance
Assimilation Monitoring web site:

http://www.emc.ncep.noaa.gov/gmb/gdas/radiance/index.html

As discussed in the previous sections of this Chapter, radiance data assimilation is a
complex process, in which data quality control and bias correction are key steps for a
successful GSI application with radiance observations. To help users to monitor their
radiance data assimilation with the GSI system, the DTC ported this useful package into
the community GSI system for the Linux platform and included it as one of the utility tools
in the release version 3.1.

NCEP has updated this package since release 3.1. In this release, the Radaince Monitoring
package has been taken out of the official community GSI release to give DTC more time
to port and test the new package. The code and instructions to the Radaince Monitoring
will be available on-line as a separate package. Please send gsi_help@ucar.edu for latest
update on this package.

Radar Data Assimilation

 81

Chapter 9 Radar Data Assimilation

The community GSI release version 3.2 and later includes functions for both radar radial
velocity and reflectivity analysis. The radial velocity observations in each bin are used in
variational process with other wind observations to improve wind field. The reflectivity
data are not used in variational process. Instead, they are used by GSD cloud analysis
package inside GSI to improve precipitation hydrometeor analysis and provide temperature
tendency in storm to enhance the storm initialization through WRF DDFI. Currently, the
radial velocity observations are used in NAM operation and reflectivity observations are
used in RAP and NAM operation.

9.1 Prepare Radar Data Files for GSI

9.1.1 Introduction

Real time data feeding for operational radar data analysis with GSI is complex, involving
many steps of data quality control and format converting. But in research, these steps can
be simplified so that community users can generate their own radar data files to feed GSI
for radar data analysis as long as they understand the GSI radar data interface. Since release
version 3.2, a new tool is available to help users understand the GSI radar data interface, it
includes:

• This section to explain the content and structure of the radial velocity and
reflectivity BUFR files used by the GSI.

• Sample code to learn how to encode and decode NCEP Level II radial velocity
BUFR files based on the NCEP radar data preprocess code

• Sample code to read NSSL MRMS mosaics tiles and to interpolate the mosaic to
analysis grid based on the RAP reflectivity preprocess.

Users should already be familiar with the basic BUFR process skills. If not, please visit the
DTC BUFR webpage:

http://www.dtcenter.org/com-GSI/BUFR/index.php

In the comGSIv3.2 package, The new sample code for GSI radar data interface is released
separately from the official package. Users can download it from the same download page
as the comGSIv3.2 package. It is named as “comGSI_v3.2_radar_process.tar.gz” and need
to be placed in directory ./util and un-tared before use. After comGSI_v3.3 release, this tool
is already under ./util directory.

Radar Data Assimilation

 82

9.1.2. GSI Interface To Level II Radar Velocity

To add your own radar level II radial velocity data into GSI analysis, the first thing is to
understand how GSI reads the radial velocity from the radar Level II radial velocity BUFR
files. In current GSI code and run script, the Level II radial velocity BUFR file is named as
“l2rwbufr” and reads in through a subroutine called “radar_bufr_read_all” (in file
read_l2bufr_mod.f90). The main functions of this subroutine are:

• decodes the BUFR file to read in the radial wind observations
• does “super-obbing” to get radar velocity super obs
• write out the new super obs to a binary file called “radar_supobs_from_level2”

Based on this subroutine and the BUFR output interface code from the NCEP radar Level
II radial wind process, we generated two sample codes to illustrate the content and the
structure of the radar level II radial velocity BUFR file used by GSI. Users can find these
two samples under directory ./util/radar_process/radialwind,

• bufr_decode_l2rwbufr.f90 : sample code to decode (read) the radial velocity from
BUFR file “l2rwbufr” and write radial velocity observations in a binary file.

• bufr_encode_l2rwbufr.f90 : sample code to read in radial velocity from the binary
file generated by bufr_decode_l2rwbufr.f90 and then encode (write) the radial
velocity to the BUFR file “l2rwbufr”.

A makefile in the same directory is provided for users to compile the code. The sample
code has to be compiled after successful compile the GSI. It can be compiled with both
Intel and PGI compilers.

9.1.2.1 Read observations from Level II radar radial velocity BUFR files

The sample code bufr_decode_l2rwbufr.f90 only has 87 lines. It has the same structure as
the other BUFR decoding code released by DTC as samples for users to learn BUFR file
decoding. After users know the general BUFR file decoding steps, the key to understand
the radar radial velocity BUFR file decode process is to know all the mnemonics used in
the code and the meanings of these mnemonics. Users can get explanations on each
mnemonic from a BUFR table called “bufr_radar.table”, which is a text file generated
during decoding sample BUFR file “l2rwbufr” using bufr_decode_l2rwbufr.f90.
In this document, we provide the following table to explain the meanings of the mnemonics
used in GSI Level II radial velocity interface. Please refer to the BUFR table itself for more
details.

Radar Data Assimilation

 83

The mnemonics and their meanings for radar Level II radial velocity
mnemonic Meaning dimension
SSTN RADAR STATION IDENTIFIER (SHORT) 1
CLAT RADAR STATION LATITUDE (COARSE

ACCURACY)
1

CLON RADAR STATION LONGITUDE (COARSE
ACCURACY)

1

HSMSL HEIGHT OF RADAR STATION GROUND ABOVE
MSL

1

HSALG HEIGHT OF ANTENNA ABOVE GROUND 1
ANEL ANTENNA ELEVATION ANGLE 1
ANAZ ANTENNA AZIMUTH ANGLE 1
QCRW QUALITY MARK FOR WINDS ALONG RADIAL

LINE
1

YEAR YEAR OF OBSERVATION BEAM 1
MNTH MONTH OF OBSERVATION BEAM 1
DAYS DAY OF OBSERVATION BEAM 1
HOUR HOUR OF OBSERVATION BEAM 1
MINU MINUTE OF OBSERVATION BEAM 1
SECO SECOND OF OBSERVATION BEAM 1
DIST125M DISTANCE FROM ANTENNA TO GATE CENTER

IN UNITS OF 125M
Beam

DMVR DOPPLER MEAN RADIAL VELOCITY Beam
DVSW DOPPLER VELOCITY SPECTRAL WIDTH Beam
SCID RADAR SCAN ID (RANGE 1-21) 1
HNQV HIGH NYQUIST VELOCITY 1
VOCP VOLUME COVERAGE PATTERN 1
VOID RADAR VOLUME ID (IN THE FORM DDHHMM) 1

In NCEP Level II radar radial velocity BUFR file, radar observations are organized and
saved as radial observation beams. Each subset includes observations from one beam. Two
parts of information are available in each subset about the beam:

• Head mnemonics (Single variables) describe the beam features:

SSTN CLAT CLON HSMSL HSALG ANEL ANAZ QCRW
YEAR MNTH DAYS HOUR MINU SECO
SCID HNQV VOCP VOID

• Arrays content the observation location (DIST125M), mean radial wind (DMVR), and
velocity spectral width (DVSW) along the beam

In our sample decoding file bufr_decode_l2rwbufr.f90, the above information of each beam
is read in beam by beam (subset by subset) until all the beams have been processed. If this
beam includes valid radial wind or velocity width observations, it will be saved to a binary
file: l2rwbufr.bin. We currently commented out most of the standard output information in
the file, but leave the final count on the total subsets that have valid observations.

Radar Data Assimilation

 84

9.1.2.2 Write Level II radar radial velocity observations to BUFR files

After familiar with the NCEP radar Level II radial wind BUFR file structure and content,
users can easily understand the sample encoding code bufr_encode_l2rwbufr.f90 in the
same directory. Based on this file, users can encode their own observations into a BUFR
file for GSI to do radial wind analysis.

The encoding shares the same mnemonics and structure as decoding. So, after run decode
sample, users can run encode sample to read in the radar observations from l2rwbufr.bin
and encode them into a new BUFR file called: l2rwbufr_new. Users may notice that the file
size of l2rwbufr_new is smaller than the size of l2rwbufr. This is because the l2rwbufr_new
only includes radial beam with valid observations while the l2rwbufr includes beams with
missing observations.

Another possible operation is to append some new radial wind observations to a exiting
NCEP Level II radial wind BUFR file. A little changes to the encoding sample will do the
job. Please refer to the BUFR user’s guide from DTC BUFR website for how to append the
observations.

Based on the NCEP radar data interface code, there are 4 variables, SCID HNQV VOCP
VOID, are in Level II BUFR file but not read in by GSI. Our sample codes keeps these 4
variables for reference only.

9.1.3 GSI Interface To Radar Reflectivity

The GSI interface to radar reflectivity is different from the one to Level II radar radial wind
introduced above. Before GSI, the radar reflectivity observations in certain height level
have to be horizontally interpolated into analysis grid points and saved into a BUFR file
called “refInGSI”. Then the GSI reads in these reflectivity columns over each grid point
from the BUFR to feed the reflectivity into the GSD cloud analysis package to improve the
precipitation analysis and storm forecast.

9.1.3.1 Radar reflectivity preprocess code

The GSD has developed an application package to preprocess both the NSSL radar
reflectivity mosaics and the NCEP radar reflectivity mosaics for RAP GSI cloud analysis.
DTC simplified that package to only preprocess NSSL new 4 tiles MRMS mosaics in
binary format. We will use this simplified package as an example to illustrate how to
prepare radar reflectivity BUFR for the community GSI release version 3.2 and later.

The package is under “./util/radar_process/reflectivity”. It includes fortran code, a
namelist “mosaic.namelist” for running the code, and a BUFR table
“prepobs_prep.bufrtable” for encoding the reflectivity BUFR files. The fortran code can be

Radar Data Assimilation

 85

compiled with Intel compiler only with the makefile under the same directory. After
compile, an executable named as “process_NSSL_mosaic.exe” should show up in the same
directory.

There are three steps to set up running environment for this executable:

1. The sample code will read the NSSL new 4 tiles MRMS mosaics in binary format.
The 4 tiles should be renamed as:

mosaic_t1 mosaic_t2 mosaic_t3 mosaic_t4
The sample code can only process 4 tiles MRMS mosaics binary files available
from NSSL since summer 2013. The code for processing old 8 tiles mosaic netcdf
files is not included in this package.

2. Configure namelist file, mosaic.namelist:

&setup
 tversion=4,
 analysis_time = 2013111518,
 dataPath = '../data/',
 bkfile = '../data/wrfinput_d01',
 /
where tversion is always set to 4. The analysis_time have format
YYYYMMDDHH; the dataPath is the directory that includes 4 mosaic tiles
(mosaic_t1-4); the bkfile is the path and WRF background file used for GSI
analysis.

3. Run process_NSSL_mosaic.exe with 4 cores.
Please note the code has to be run by at least 4 cores because each tile needs one
core to process. The namelist (mosaic.namelist) and BUFR table file
(prepobs_prep.bufrtable) should be in the same directory as the executable.

After run, the radar reflectivity BUFR file named as “NSSLRefInGSI.bufr” should show up
in run directory.

9.1.3.2 Radar reflectivity interface: content and structure

In this package, the file “write_bufr_ref.f90” is to write reflectivity into the BUFR file.
From this file, we can learn the structure and content of the reflectivity BUFR file.
The radar reflectivity observations are written column by column. Each subset includes the
information from one column. In each subset, there are only 6 mnemonics:

Radar Data Assimilation

 86

The mnemonics and their meanings for radar reflectivity
mnemonic meaning dimension
SID RADAR STATION IDENTIFIER (not used in GSI) 1
XOB X-index for grid coordinate of reflectivity column 1
YOB Y-index for grid coordinate of reflectivity column 1
DHR OBSERVATION TIME MINUS CYCLE TIME (not

used in GSI)
1

TYP PREPBUFR REPORT TYPE (not used in GSI) 1
HREF Horizontal reflectivity 31

Only XOB, YOB, and HREF are used by GSI, if users can wire their only reflectivity
observations over analysis grid with columns that has vertical level list below (in km):

 0.5, 0.75, 1, 1.25, 1.5, 1.75, 2, 2.25, 2.5, 2.75, 3, 3.5, 4, 4.5, 5, 5.5, 6, 6.5, 7, 7.5, 8,
8.5, 9, 10, 11, 12, 13, 14, 15, 16, 18

Then, users can use ““write_bufr_ref.f90” directory to encode BUFR file for GSI. If user’s
radar reflectivity column has different vertical levels, please contact DTC GSI help desk
for how to change the cloud analysis code for the new vertical levels.

9.1.3.3 Check the results

When generate the radar reflectivity BUFR file for GSI, the sample preprocess also write
out the composite reflectivity (compref.bin) based on reflectivity columns over the analysis
grid. This composite reflectivity can be used to check if the preprocess is process
reflectivity mosaic successfully.

In the release package under the reflectivity directory, we provide a NCL script,
plot_compositeRef.ncl, to help user plot the composite reflectivity. The result figure is
called compsiteRef.pdf and the figure from the sample data we provided on-line is shown
below.

Radar Data Assimilation

 87

Composite Reflectivity from the sample reflectivity preprocess, which is based on NSSL

MRMS reflectivity observations at 18Z, November 11, 2013

9.2 Analyze Radar Radial Velocity With GSI

After get the radar level II radial velocity BUFR file ready for GSI, users need to go
through the following steps to setup GSI radial velocity analysis.

1. Link the radial velocity BUFR file to GSI run directory in run scripts

GSI code has hardwired the BUFR file name for Level II radial velocity observations. So
the 1st step to use the radial velocity is to add a link in the GSI run scripts to link the radial
velocity BUFR file to GSI working directory with this hardwired name:

ln –s “the patch and name of level II radial velocity BUFR file” l2rwbufr

GSI can also analyze the level-III and level-2.5 radar velocity, which is available for NAM
application for many years. When both Level-II and Level-III/2.5 available, level-II will be
used over the III/2.5, but outside the Level-II radar coverage, Level-III/2.5 will be used.
The Level-II/2.5 BUFR file can be linked through the following line in the runs scripts:

ln –s “the patch and name of level III/2.5 radial velocity BUFR file” radarbufr

Radar Data Assimilation

 88

2. Setup GSI namelist for radial velocity analysis

In GSI namelist, only level III/2.5 radial velocity need to be set as the following sample:

dfile(09)='radarbufr', dtype(09)='rw', dplat(09)=' ', dsis(09)='rw', dval(09)=1.0, dthin(09)=0, dsfcalc(09)=0,

To apply high-resolution radial velocity to regional GSI analysis, radar observations need
to be thinned with superobs method. This superobs method is controlled by the following
namelist section:

&SUPEROB_RADAR

del_azimuth=5.,del_elev=.25,del_range=5000.,del_time=.5,elev_
angle_max=5.,minnum=50,range_max=100000.,
 l2superob_only=.false.,
 /

Please check Appendix A for the detailed explanation of the options in the
SUPEROB_RADAR section.

3. Setup convinfo for radial velocity

As other conventional observations, GSI uses “convinfo” file to control the data usage of
each observation type. Please check GSI user’s guide for details of “convinfo”, here is an
example of the line to control the radial velocity:

rw 999 0 1 2.5 0 0 0 10.0 10.0 2.0 10.0 0.000000 0 0. 0. 0

4. Check the radial velocity results

The fit of the analysis results to radial velocity is recorded in fort.209. We have introduced
how to check the fit (fort) files in the GSI User’s Guide. Here we suggest user to check
fort.209 file to get detailed information on bias, rms, and observation numbers for analysis.

9.2.1 Data Preprocessing Of Radar Radial Velocity Assimilation Within GSI

This section, drafted by Ming Sun, discusses how GSI does “super-obbing” to get radar
velocity super-obs after reading the level II radial velocity BUFR file named as “l2rwbufr”
and generates the new binary file called “radar_supobs_from_level2”.

1. Introduction

A significant characteristic of radar observation is its high spatial and temporal resolution,
which would also produce redundant information. Therefore, it is desirable to maximize
whatever data compression the ensemble of radar observations allows, while minimizing

Radar Data Assimilation

 89

any degradation of the information content. The term for a surrogate datum that replaces
several partially redundant actual data is a “super-observation” or “super-ob” (Alpert et al.,
2006).
In GSI source code directory (./src/main), the file read_l2bufr_mod.f90 reads the radar
radial velocity data from the BUFR file l2rwbufr, does “super-obbing” and writes out the
new super-obs to a new binary file named radar_supobs_from_level2.

2. Adaptable “Super-Ob” Parameters

In the GSI namelist, section &SUPEROB_RADAR is used to setup the spatial and temporal
sizes of a super-ob box, the minimum number of samples needed to make a super-ob, the
range of data used to construct super-obs and the logical flag to do “super-obbing” only.
The following is a sample of the namelist section &SUPEROB_RADAR:

&SUPEROB_RADAR

del_azimuth=5.,del_elev=.25,del_range=5000.,del_time=.5,elev_angle_max=5.,minnu
m=50,range_max=100000.,
 l2superob_only=.false.,

where del_azimuth is the azimuth range for super-ob box in units of degrees (default 5
degrees); the del_elev is the elevation angle range for super-ob box in units of degrees
(default 0.25 degrees); the del_range is the radial range for super-ob box in units of meters
(default 5km); the del_time is half of the time range for super-ob box in units of hours
(default 0.5h); the elev_angle_max is the maximum elevation angle in units of degrees and
the radar radial wind data above this elevation angle will not be used (default 5 degrees);
the minnum is the minimum number of samples in a super-ob box needed to make a super-
ob (default 50); the range_max is the maximum radial range to use in constructing super-
obs in units of meters and the radar radial wind data out of this range will not be used
(default 100km); the l2superob_only is the logical flag to do “super-obbing” only if set to
true (default false).

The super-obs are still in the radar polar coordinate, and the values of the parameters above
can define the bin numbers in azimuthal, radial and elevation directions. The bin number in
the azimuthal direction (nazbin) is the nearest integer to 360 divided by del_azimuth, the
bin number in the radial direction (nrbin) is the nearest integer to range_max devided by
del_range, and the bin number in the elevation direction (nelbin) is the nearest integer to
elev_angle_max devided by del_elev, so the total number of super-ob boxes for one radar
nthisrad is nrbin*nazbin*nelbin.

3. Create A Radar Information Table

The GSI does an initial decoding of the BUFR file l2rwbufr to read in ‘DIST125M’ and
‘SSTN CLAT CLON HSMSL HSALG ANEL YEAR MNTH DAYS HOUR MINU
SECO’ (refer to the BUFR table itself for more details).
l If the parameter l2superob_only is set to true, the radar observation time will be

printed out into stdout file:

 create superobs only, radar file date = ‘oyear’ ‘omonth’ ‘oday’ ‘ohour’
RADAR_BUFR_READ_ALL: analysis time is ‘oyear’ ‘omonth’ ‘oday’ ‘ohour’

Radar Data Assimilation

 90

If the parameter l2superob_only is set to false (default), the analysis time of the
background file and the radar observation time will be both printed out into stdout file:

 using restart file date = ‘byear’ ‘bmonth’ ‘bday’ ‘bhour’
RADAR_BUFR_READ_ALL: analysis time is ‘oyear’ ‘omonth’ ‘oday’ ‘ohour’

Users can use this information to check if the observation time is right and if the times
match between the background and observation files.

l The ‘DIST125M’ data is used to determine the multiplying factor for radial distance.

If the minimum difference of ‘DIST125M’ between the adjacent gates is 1, the factor
is set to 250
If the minimum difference of ‘DIST125M’ between the adjacent gates is 2, the factor
is set to 125.
If users see the following message in the stdout file:

RADAR_BUFR_READ_ALL: problem with level 2 bufr file, gate distance scale
factor undetermined, going with 125

which means the minimum difference of ‘DIST125M’ between the adjacent gates is
neither 1 nor 2, but the multiplying factor for radial distance is still set to 125 and the
process will still go on. This message only reminds the users that there might be some
wrong ‘DIST125M’ data.

l The GSI counts the radar number according to the radar station identifier ‘SSTN’
o The default maximum number of radars that GSI would deal with is 150, if users see

the following message in the stdout file:

RADAR_BUFR_READ_ALL: stop processing level 2 radar bufr file--increase
parameter max_num_radars

which means the radar numbers in the BUFR file exceed 150, if so, the parameter
max_num_radars should be changed in the file read_l2bufr_mod.f90:

integer(i_kind),parameter:: max_num_radars=150

o If the radar number is less than or equal to zero, the message:

RADAR_BUFR_READ_ALL: NO RADARS KEPT IN radar_bufr_read_all, continue without
level 2 data

will be printed in the stdout file and the “super-obbing” process will not be done.

o Because the reading process runs in a parallel mode, if the total radar number is greater
than zero meanwhile less than the defined maximum radar number, the information of
the minimum and maximum radar numbers processed by each core can be found in the
stdout file:

 min,max num_radars=num_radars_min num_radars_max

l The unique master tables of all radar station identifier, latitude, longitude and height

Radar Data Assimilation

 91

are created.
Table Name Dimension Content Mnemonic

master_stn_table

total radar
numbers

in
l2rwbufr

file

radar
station

identifier
SSTN

master_lat_table
radar

station
latitude

CLAT

master_lon_table
radar

station
longitude

CLON

master_hgt_table
radar

station
height

HSMSL+HSALG

4. “Super-Obbing ” Preprocessing

The GSI reopens and rereads the BUFR file l2rwbufr to read in ‘SSTN YEAR MNTH
DAYS HOUR MINU SECO ANAZ ANEL QCRW’ of a subset, and does following checks:
l If the elevation angle ‘ANEL’ is higher than the defined maximum elevation angle

elev_angle_max, the data ‘DIST125M DMVR DVSW’ of this subset will not be read
in. The parameter nradials_fail_angmax is used to counter the number of subsets
which are above the maximum elevation angle.

l If the absolute value of the difference between the radar observation time and analysis
time of the background file is larger than the defined time range del_time. The
parameter nradials_fail_time is used to counter the number of subsets which are out of
time range.

l The azimuth ‘ANAZ’ is transferred into azimuth index iazbin which ranges from 1 to
nazbin. If the calculated index is out of this range, the program will be stopped and the
following message can be found in the stdout file:

 RADAR_BUFR_READ_ALL: error in getting iazbin, program stops

which means there must be some wrong azimuth data in the BUFR file l2rwbufr.

l The elevation angle ‘ANEL’ will be transferred into elevation angle index ielbin which
ranges from 1 to nelbin. If the calculated index is out of this range, the data
‘DIST125M DMVR DVSW’ of this subset will not be read in. The parameter
nradials_fail_elb is used to counter the number of subsets which are out of the
elevation angle index range.

l The radar station identifier ‘SSTN’ will be compared with the created radar information table
master_stn_table. If there is no match station, the program will be stopped and the
following message can be found in the stdout file:

 index error in radar_bufr_read_all -- program stops – 0 ‘stn_id’

where stn_id is the wrong radar station identifier.

Radar Data Assimilation

 92

If the subset goes through all the checks above, GSI will read the ‘DIST125M DMVR
DVSW’ data which contain all the radar observations (number of gates) in a radial direction,
and do the following 5 steps:
Step 1, the distance from antenna to gate center is calculated by the multiplying factor for

radial distance multiplied by ‘DIST125M’. If the distance is greater than the
maximum radial range range_max, the radar data in this gate will not be used. The
parameter nrange_max is used to counter the number of gates which are out of the
maximum radial range.

Step 2, if the radial velocity ‘DMVR’ is greater than 100000, the radar data in this gate will
not be used. The parameter nobs_badvr is used to counter the number of gates
which have bad radial velocity data.

Step 3, if the velocity spectral width ‘DVSW’ is greater than 100000, the radar data in this
gate will not be used. The parameter nobs_badsr is used to counter the number of
gates which have bad velocity spectral width data.

Step 4, the distance is transferred into distance index irbin which ranges from 1 to nrbin, if
the distance index is out of this range, the radar data in this gate will not be used.
The parameter nobs_lrbin is used to counter the number of gates which have the
distance index less than 1 and nobs_hrbin is used to counter the number of gates
which have the distance index greater than nrbin.

Step 5, the three-dimensional coordinate (izabin, ielbin, irbin) is transferred into one-
dimensional coordinate iloc, using the formula:
iloc = nrbin*(nazbin*(ielbin-1)+(iazbin-1))+irbin
All the observations from the same radar at the same one-dimensional coordinate
iloc, which means in the same super-ob box, are added up and the number of
observations in the same super-ob box is counted. If the number of samples in a
super-ob box is less than the defined minimum number minnum, the data of this
super-ob box will not be used.

After doing these steps, all the statistical information is listed in the stdout file as shown in
the following example:

RADAR_BUFR_READ_ALL: num_radars_0 = 2
 master list radar 1 stn id,lat,lon,hgt,num = RSHI 31.01 121.89
44.0 4372
 master list radar 2 stn id,lat,lon,hgt,num = SHQP 31.08 120.96
42.0 6408
 RADAR_BUFR_READ_ALL: ddiffmin,distfact,idups= 2.00000000000000
 125.000000000000 0
 nthisrad= 28800
 nthisbins= 172800
 timemin,max= -3.055555555555555E-002 2.527777777777778E-002
 nradials_in= 6554
 nradials_fail_angmax= 2897
 nradials_fail_time= 0
 nradials_fail_elb= 0
 nobs_in= 1469686
 nobs_badvr= 0
 nobs_badsr= 12
 nobs_lrbin= 0
 nobs_hrbin= 0
 nrange_max= 392524
 ielbin,histo_el= 1 0
 ielbin,histo_el= 2 142854

Radar Data Assimilation

 93

 ielbin,histo_el= 3 85071
 ielbin,histo_el= 4 0
 ielbin,histo_el= 5 0
 ielbin,histo_el= 6 217218
 ielbin,histo_el= 7 8899
 ielbin,histo_el= 8 0
 ielbin,histo_el= 9 6365
 ielbin,histo_el= 10 209058
 ielbin,histo_el= 11 0
 ielbin,histo_el= 12 0
 ielbin,histo_el= 13 125610
 ielbin,histo_el= 14 77976
 ielbin,histo_el= 15 3795
 ielbin,histo_el= 16 0
 ielbin,histo_el= 17 131792
 ielbin,histo_el= 18 68512
 ielbin,histo_el= 19 0
 ielbin,histo_el= 20 0

where num_radars_0 is the total number of radars, in the example there are radars in the
BUFR file l2rwbufr; in this example, the 2 lines below list the detail information from each
radar, which include radar station identifier (RSHI and SHQP respectively), latitude
(31.01°N and 31.08°N respectively), longitude (121.89°E and 120.96°E respectively),
height (44.0m and 42.0m) and the number of useful super-ob boxes (4372 and 6408
respectively); ddiffmin means the minimum difference of ‘DIST125M’ between the
adjacent gates, in this example ddiffmin is 2, so the multiplying factor for radial distance
distfact is 125, and idups means the number of observations that the minimum difference of
‘DIST125M’ between the adjacent gates equals zero (normally 0 as shown in this
example); ‘nthisrad = 28800’ means he total number of super-ob boxes for one radar is
28800 and nthisbins equals nthisrad multiplied by 6 (in this example 28800*6=172800);
‘timemin,max= -3.055555555555555E-002 2.527777777777778E-002’ means the
minimum and maximum difference between the observation time and the analysis time of
the background in units of hour; ‘nradials_in=6554’ means the total number of subsets
read from the BUFR file l2rwbufr is 6554; ‘nradials_fail_angmax=2897’ means there are
2897 subsets above the maximum elevation angle; ‘nradials_fail_time=0’ means there is
no subset out of the time range; ‘nradials_fail_elb=0’ means there is no subset out of the
elevation angle index range; ‘nobs_in=1469686’ means the total number of gates read from
the subsets is 1469686; ‘nobs_badvr=0’ means there is no gate having bad radial velocity
data; ‘nobs_badsr=12’ means there are 12 gates having bad velocity spectral width data;
‘nobs_lrbin= 0’ means there is no gate having distance index less than 1; ‘nobs_hrbin=0’
means there is no gate having distance index greater than nrbin; ‘nrange_max=392524’
means there are 392524 gates out of the maximum radial range; ielbin and histo_el are the
elevation angle index and the total gates number of the elevation index respectively, in this
example there are totally 20 elevation angle indexes and 217218 gates in the elevation
angle index 6 (ielbin,histo_el=6 217218).

5. Create Super-Obs And Generate The radar_supobs_from_level2 File
The accumulated values of the same radar in the same super-ob box are divided by the
number of samples in the super-ob box expect for the radars near the polar (radar station
latitude is higher than 89.5 degrees). The variables include thisrange (radial range),
thisazimuth (azimuth), thistilt (elevation angle), thisvr (radial velocity), thisvr2 (the square

Radar Data Assimilation

 94

of radial velocity), thistime (time difference between observation and background). An
additional variable thiserr is calculated according to the following formula:

22
r rthiserr V V= −

The variable thishgt (height of the super-obs box) is also calculated. Then the elevation
angle, radial distance and azimuth are corrected and written into corrected_tilt, gamma and
corrected_azimuth respectively. Meanwhile, thislat and thislon (the latitude and longitude
of the super-obs box) are calculated.
So all the variables listed below for each super-ob box are written into a new binary file
named radar_supobs_from_level2.

Variable Meaning
this_staid radar station identifier
this_atalat radar station latitude
this_stalon radar station longitude
this_stahgt radar station height
thistime time difference between observation and background
thislat super-ob box latitude
thislon super-ob box longitude
thishgt super-ob box height
thisvr mean radial velocity
corrected_azimuth corrected azimuth
thiserr mean radial velocity errorr
corrected_tilt corrected elevation angle

Finally, some information can be found in the stdout file. Below is an example using the
same data in Section 4:

 for radar RSHI nsuper= 4372 delazmmax= 0.531495369516961
 vrmin,max= -20.9300000000000 20.9700000000000 errmin,max=
 0.309294787065859 14.6110084866894
 deltiltmin,max= 2.239541454977478E-002 0.663221332668083
 deldistmin,max= -326.328815013534 -0.148169009099547
 for radar SHQP nsuper= 6408 delazmmax= 0.530711027335997
 vrmin,max= -24.4200000000000 22.9650000000000 errmin,max=
 0.298880185862377 21.7435944590585
 deltiltmin,max= 2.102455505536138E-002 0.665819075690249
 deldistmin,max= -303.381730881694 -9.666676340202685E-002

Because there are two radars in this case, the statistical information of each radar is listed.
Take RSHI radar as an example:
• ‘nsuper=4372’ means there are 4372 super-ob boxes from RSHI radar used in this

example
• ‘delazmmax=0.531495369516961’ means the maximum corrected value of the

azimuth is 0.531495369516961 degrees
• ‘vrmin,max= -20.9300000000000 20.9700000000000’ means the minimum and

maximum values of the mean radial velocity are -20.93m/s and 20.97m/s respectively
• ‘errmin,max= 0.309294787065859 14.6110084866894’ means the minimum and

maximum values of the mean radial velocity error are 0.309294787065859m/s and
14.6110084866894m/s respectively

Radar Data Assimilation

 95

• ‘deltiltmin,max= 2.239541454977478E-002 0.663221332668083’ means the
minimum and maximum corrected values of the elevation angle are
2.239541454977478E-002 degrees and 0.663221332668083 degrees respectively

• ‘deldistmin,max= -326.328815013534 -0.148169009099547’ means the minimum
and maximum corrected values of the radial distance are -326.328815013534m and -
0.148169009099547m respectively

 total number of superobs written= 10780
 vrmin,maxall= -24.4200000000000 22.9650000000000
 errmin,maxall= 0.298880185862377 21.7435944590585
 delazmmaxall= 0.531495369516961
 deltiltmin,maxall= 2.102455505536138E-002 0.665819075690249
 deldistmin,maxall= -326.328815013534 -9.666676340202685E-002

The statistical information of all the radars are also listed in the stdout file:
• ‘total number of superobs written=10780’ means there are totally 10780 super-ob

boxes used in this example
• ‘vrmin,maxall=-24.4200000000000 22.9650000000000’ means the totally minimum

and maximum values of the mean radial velocity are -24.42m/s and 22.965m/s
respectively

• ‘errmin,maxall=0.298880185862377 21.7435944590585’ means the totally minimum
and maximum values of the mean radial velocity error are 0.298880185862377m/s and
21.7435944590585m/s respectively

• ‘delazmmaxall=0.531495369516961’ means the totally maximum corrected value of
the azimuth is 0.531495369516961 degrees

• ‘deltiltmin,maxall=2.102455505536138E-002 0.665819075690249’ means the totally
minimum and maximum corrected values of the elevation angle are
2.102455505536138E-002 degrees and 0.665819075690249 degrees respectively

• ‘deldistmin,maxall=-326.328815013534 -9.666676340202685E-002’ means the
totally minimum and maximum corrected values of the radial distance are -
326.328815013534m and -9.666676340202685E-002m respectively

Reference
Alpert J C, Kumar V K. Radial wind super-obs from the WSR-88D radars in the NCEP
operational assimilation system[J]. Monthly weather review, 2007, 135(3): 1090-1109.

9.2.2 The Processes Of The read_radar.f90 Code

This section was drafted by Ming Sun.

1. Check if radar wind files exist. If none exist, exit this routine.

The files include ‘radar_supobs_from_level2’, the level 2.5 and 3 super-obs files,
‘tldplrbufr’ and ‘tldplrso’ files

Radar Data Assimilation

 96

2. Set some parameters:

vad_leash=0.3 (used in VAD QC)
xscale=20000 (horizontal scale, unit: meters)
maxvadbins=15 (the maximum of VAD levels)
dzvad=304.8 (vad reports are every 1000 ft = 304.8 meters)

The information of these parameters will be listed in stdout file:

READ_RADAR: set vad_leash,xscale= 0.300000000000000 20000.0000000000
READ_RADAR: set maxvadbins,maxbadbins*dzvad= 15 4572.00000000000

3. Open BURF file ‘vadfile’(which is given in GSI namelist under &OBSQC section)
which includes VAD winds and read in all VAD winds so that radar data can be
decided to keep or not using VAD wind quality marks
If the ‘vadfile’ file does not exit the program will still go on and users will see the
information in stdout file:

READ_RADAR: nsuper2_in,nsuper2_kept= 12482 0
READ_RADAR: # no vad match = 12482

It tells you that all the observations have no VAD wind to match, and no observation is
kept.
If the file ‘vadfile’ exists and reads the first message correctly, a line will be found in
stdout file:

READ_RADAR: first read vad winds--use vad quality marks to qc 2.5/3 radar
winds

4. Find out whether the VAD data is in the BUFR file according to subtype(224) or type
in the ‘convinfo’ file and only read VAD wind data in the BUFR file.
There is also a time check, the VAD wind data outside the time window will not be
read.
For 3DVAR, the time window is set by both ‘twindow’ in the ‘convinfo’ file and half
an hour.

5. Create VAD wind information table
If the latitude and longitude of a new VAD wind station is less than 0.1 degrees away
from a VAD wind station reading before, then it will be considered as the same VAD
wind station, otherwise, the information of a new VAD wind station will be stored.
The parameter nvad counts the number of VAD wind stations, if it exceeds the
maxvad(default value is 500) defined in the program, the program will stop and the
error will be printed in the stdout file:

READ_RADAR: ***ERROR*** MORE THAN 500 RADARS: PROGRAM STOPS

which means the VAD wind station numbers in the BUFR file exceed 500, if so, the
parameter maxvad should be changed in the file read_radar.f90:

integer(i_kind),parameter:: maxvad=500

Radar Data Assimilation

 97

The VAD wind information table is created

Table
Name Dimension Content

vadlon

nvad

VAD station
longitude

vadlat VAD station latitude

vadid VAD station
identifier

6. Update vadqm table

If levels of the VAD data (levs) are greater than maxlevs(default value is 1500) defined
by the program, the program will stop and the error will be printed in the stdout file:

READ_RADAR: ***ERROR*** increase read_radar bufr size since number of
levs=’levs' > maxlevs=1500

which means the VAD wind levels beyond 1500, if so, the parameter maxlevs should be
changed in the file read_radar.f90:

integer(i_kind),parameter:: maxlevs=1500

If it is a new VAD wind station (the logical flag ‘newvad’ from read_prepbufr.f90), the
vadqm table will be updated according to the difference (diffuu, diffvv) between VAD
wind observation (Uvad,Vvad) and background wind (Ubk,Vbk).

€

diffuu =Uvad −Ubk

diffvv =Vvad −Vbk

If

€

diffuu2 + diffvv 2 >10.0, the VAD data will not be used.
If

€

diffvv > 8.0, the VAD data will not be used.
If

€

diffvv > 5.0and 5000.0zob < , the VAD data will not be used (zob is the height of
VAD wind observation).
If 7000.0zob > , the VAD data will not be used.

Translate zob (the height of VAD wind observation) into index ivadz (the height
divided by dzvad which defined before, default value is 304.8 meters). If ivadz is less
than 1 or greater than maxvadbins (default value is 15), the VAD data will not be used.

Varible Dimension Content

errzmax 1
The maximum difference between
observation height and the nearest

VAD level height

vadqm (nvad,
levs)

The maximum value of WQM (VAD
U-, V-component wind quality

marker) of a VAD wind station at a
level

Radar Data Assimilation

 98

vadqmmax 1 The maximum value of the vadqm
array

vadqmmin 1 The minimum value of the vadqm
array

vadu (nvad,
levs)

Add all the VAD U-component wind
up at the same VAD station and the

same level

vadv (nvad,
levs)

Add all the VAD V-component wind
up at the same VAD station and the

same level

vadcount (nvad,
levs)

Count the numbers at the same VAD
station and the same level

7. Print vadwnd table

vadu and vadv are divided by vadcount at the same VAD station and the same level so
that the average U-, V-component wind at every level of every station are obtained.
The VAD wind table will be printed in stdout file as follows:

n,lat,lon,qm= 1 31.08 120.96 -9 -9 2 2 2 2 2 2 2 2 2 2 2 2
2
……
errzmax= 48.0000000000000

where n is the serial number of VAD wind station, lat and lon are the latitude and
longitude of the VAD wind station, qm is the maximum value of WQM of this VAD
wind station at every level. There should be nvad lines in the stdout file.
The maximum difference between observation height and the nearest VAD level height
errzmax in the unit of meters is also listed in the stdout file.

8. Open and read the binary file ‘radar_supobs_from_level2’ which contains super-obs

All the variables in ‘radar_supobs_from_level2’ file are listed below

Variable Meaning
this_staid radar station identifier
this_atalat radar station latitude
this_stalon radar station longitude
this_stahgt radar station height
thistime time difference between observation and background
thislat super-ob box latitude
thislon super-ob box longitude
thishgt super-ob box height
thisvr mean radial wind
corrected_azimuth corrected azimuth
thiserr mean radial wind errorr
corrected_tilt corrected elevation angle

nsuper2_in is used to count the total number of the super-obs read from the binary file.

Radar Data Assimilation

 99

If the GSI is run under regional mode and the location of the radar is outside the region,
the super-obs will not be read but this super-ob is still counted in nsuper2_in.
dlatmax, dlonmax, dlatmin and dlonmin are used to store the maximum and minimum
grid-relative latitude and longitude of all the radar stations.

9. Find match VAD wind station for every super-ob radar station according to the distance
between the two stations.
If the distance between the VAD wind station and the super-ob radar station is less than
0.2 degrees, they are matched up.
numhits (dimension of nvad)counts the number of super-obs matched for every VAD
wind station.
novadmatch counts the number of super-obs which have no match VAD wind station
and if a super-ob has no matched VAD wind station, the super-ob data will not be used.
If the GSI is run under regional mode and the location of the matched VAD wind
station is outside the region, the super-ob data will not be used.
If the time difference between observation and background of the super-ob is larger
than the time window, it will not be used. For 3DVAR, the time window is half an
hour.

10. If the GSI is run under regional mode and the location of the super-ob observation is
outside the region, the super-ob data will not be used.
Compute the distance between the super-ob observation and the radar station, and
transform it into the distance index (irrr) according to xscale defined before (the default
value is 20000 meters). If irrr less than one or greater than max_rrr, which is the
integer of 100000.0 devided by xscale, the data will not be used, which means the
super-ob observations should be within 100km away from the radar station.

11. Calculate the azimuth index iaaa, which depends on the distance index (irrr). As
shown below, the azimuth is divided into 8 parts when irrr equals 1, and 16 parts when
irrr equals 2, 24 parts when irrr equal 3, and so on.

iaaamax and iaaamin are the maximum and minimum of the observation azimuth index
respectively.

12. Calculate the observation error (error)

Radar Data Assimilation

 100

Observation error (error) equals mean radial wind error (thiserror) multiplied by a
factor (erradar_inflate).
erradar_inflate is defined in the qcmod.f90 code, meaning radar error inflation factor
and the default value is one.
errmax and errmin are the maximum and minimum (greater than zero) of the
observation error respectively.

13. Perform limited QC based on azimuth angle, radial wind speed, distance from radar
site, elevation of radar, height of observation, observation error
l If the azimuth angle is greater than 400 degrees, the data is considered as a bad

data. ibadazm is used to count the numbers of bad azimuth angle data.
l If the radial wind is greater than 200 m/s, the data is considered as a bad data.

ibadwnd is used to count the numbers of bad radial wind data.
l If the distance between the super-ob observation and the radar station is greater

than 400 meters, the data is considered as a bad data. ibaddist is used to count the
numbers of bad distance data.

l If the radar station height is lower than -1000 meters or higher than 50000 meters,
the data is considered as a bad data. ibadstaheight is used to count the numbers of
bad radar station height data.

l If the super-ob observation height is lower than -1000 meters or higher than 50000
meters, the data is considered as a bad data. ibadheight is used to count the
numbers of bad observation height data.

l If the super-ob observation height is lower than the radar station height, the data is
considered as a bad data. iheightbelowsta is used to count the numbers of
observation height lower than radar station height data.

l If the mean radial wind error is greater than 6 or no more than 0, the data is
considered as a bad data. ibaderror is used to count the numbers of bad mean
radial wind error data.

notgood0 is used to count the total number of bad data mentioned above. And if the
data is a bad data, the checks below will not be done.

14. Check fit to VAD wind and VAD wind quality mark
l Transform the super-ob observation height into index ivadz (the height divided by

dzvad which defined before, default value is 304.8 meters). If ivadz is less than 1 or
greater than maxvadbins (default value is 15), the data is considered as a bad data
and the checks below will not be done. ioutofvadrange is used to count the
numbers that out of the VAD height range data.

l Calculate some variables as follows:
o weight:

2

1
max(4.0,)

thiswgt
thiserr

= , where thiserr is mean radial wind error of the

super-ob
o square of the radial wind difference between VAD and super-ob observation:

€

thisfit2 = (VADvr − thisvr)2 , where VARvr is the radial wind calculated from
VAD U,V-component wind and thisvr is mean radial wind of the super-ob

o square root of thisfit2:

Radar Data Assimilation

 101

€

thisfit = thisfit2
o speed of VAD wind:

2 2thisvadspd VADu VADv= + , where VADu and VADv are the VAD U,V-
component wind respectively

o vadfit2 is used to add all the thiswgt*thisfit2 up
o vadcount2 is used to count the number
o vadwgt2 is used to add all the thiswgt up

If the ratio
max(1,)

thisfit
thisvadspd

 is larger than vad_leash defined before (the default

value is 0.3), the data is considered as a bad data. ibadfit is used to count the
number of these bad fit data.
This check is commented out in comGSI_v3.3!

l Thin out the data
For the same distance index (irrr), azimuth angle index (iaaa), height index (ivadz)
and VAD wind station index (ivad), if the number of super-ob observation is more
than nboxmax (the default value is one), the data is thinned out. kthin is used to
count the number of thinned out data.

l VAD wind quality mark check
If the maximum value of WQM (VAD U-, V-component wind quality marker) of a
VAD wind station at a level is greater than 3.5 or less than -1, the data is
considered as a bad data. ibadvad is used to count the number of the bad VAD
wind quality marker data.
This check is commented out in comGSI_v3.3!

15. If the data passed all the checks above, then load it into output array
nsuper2_kept is used to count the total number of the kept good data.
level2 is used to count the number of the kept good data for each VAD wind station.
nobs_box is used to count the number of the kept good data for each thinned box.
notgood is used to count the number of the bad data which does not fit to VAD wind
and VAD wind quality mark.

Output Array
Member Variable Meaning

cdata(1) error wind observation error
(m/s)

cdata(2) dlon grid relative longitude
cdata(3) dlat grid relative latitude

cdata(4) height observation absolute
height (m)

cdata(5) rwnd radial wind observation
(m/s)

cdata(6) azm*deg2rad azimuth angle (radians)
cdata(7) t4dv observation time (hour)
cdata(8) ikx observation type
cdata(9) tiltangle tilt angle (radians)

Radar Data Assimilation

 102

cdata(10) staheight station elevation (m)
cdata(11) rstation_id station id
cdata(12) usage usage parameter
cdata(13) idomsfc dominate surface type
cdata(14) skint skin temperature
cdata(15) ff10 10 meter wind factor
cdata(16) sfcr surface roughness

cdata(17) dlon_earth*rad2deg earth relative longitude
(degrees)

cdata(18) dlat_earth*rad2deg earth relative latitude
(degrees)

cdata(19) dist
range from radar in km
(used to estimate beam

spread)

cdata(20) zsges model elevation at
radar site

cdata(21) thiserr mean radial wind errorr
cdata(22) two

16. Finally, some information can be found in the stdout file. Below is an example:

READ_RADAR: level 2 superobs: reached eof on 2/2.5/3 superob radar file
 READ_RADAR: nsuper2_in,nsuper2_kept= 12482 10704
 READ_RADAR: # no vad match = 0
 READ_RADAR: # out of vadrange= 0
 READ_RADAR: # bad azimuths= 0
 READ_RADAR: # bad winds = 0
 READ_RADAR: # bad dists = 0
 READ_RADAR: # bad stahgts = 0
 READ_RADAR: # bad obshgts = 0
 READ_RADAR: # bad errors = 372
 READ_RADAR: # bad vadwnd = 0
 READ_RADAR: # bad fit = 0
 READ_RADAR: # num thinned = 0
 READ_RADAR: # notgood0 = 372
 READ_RADAR: # notgood = 0
 READ_RADAR: # hgt belowsta= 0
 READ_RADAR: timemin,max = 4.940656458412465E-324 4.940656458412465E-324
 READ_RADAR: errmin,max = 0.198997487421342 26.2045158189491
 READ_RADAR: dlatmin,max,dlonmin,max= 200.880606608956
 203.096439643754 230.469249250455 260.028462165266
 READ_RADAR: iaaamin,max,8*max_rrr = 1 40 40

• ‘nsuper2_in,nsuper2_kept= 12482 10704’ means there are totally 12482 super-ob
boxes reading in this example, and 10704 super-ob boxes are kept after all the
checking process.

• ‘# no vad match = 0’ tells users how many super-ob boxes have no match VAD wind
station (refer to novadmatch).

• ‘# out of vadrange= 0’ tells users how many super-ob boxes are out of the VAD
height range (refer to ioutofvadrange).

• ‘# bad azimuths= 0’ tells users how many super-ob boxes have bad azimuth angle

Radar Data Assimilation

 103

(refer to ibadazm).
• ‘# bad winds = 0’ tells users how many super-ob boxes have bad bad radial wind

(refer to ibadwnd).
• ‘# bad dists = 0’ tells users how many super-ob boxes have bad distance (refer to

ibaddist).
• ‘# bad stahgts = 0’ tells users how many super-ob boxes have bad radar station height

(refer to ibadstaheight).
• ‘# bad obshgts = 0’ tells users how many super-ob boxes have bad observation height

(refer to ibadheight).
• ‘# bad errors = 372’ tells users how many super-ob boxes have bad mean radial wind

error (refer to ibaderror).
• ‘# bad vadwnd = 0’ tells users how many super-ob boxes have bad VAD wind

quality marker (refer to ibadvad).
• ‘# bad fit = 0’ tells users how many super-ob boxes are bad fit data (refer to ibadfit)
• ‘# num thinned = 0’ tells users how many super-ob boxes are thinned out (refer to

kthin)
• ‘# notgood0 = 372’ tells users how many super-ob boxes have not passed the

limited QC based on azimuth angle, radial wind speed, distance from radar site,
elevation of radar, height of observation, observation error (refer to notgood0)

• ‘# notgood = 0’ tells users how many super-ob boxes do not fit to VAD wind and
VAD wind quality mark (refer to notgood)

• ‘# hgt belowsta= 0’ tells users how many super-ob boxes have height lower than radar
station height (refer to iheightbelowsta)

• ‘timemin,max = 4.940656458412465E-324 4.940656458412465E-324’ means the
minimum and maximum observation time respectively.

• ‘errmin,max = 0.198997487421342 26.2045158189491’ means the minimum and
maximum of the observation error respectively

• ‘dlatmin,max,dlonmin,max= 200.880606608956 203.096439643754
230.469249250455 260.028462165266’ means the minimum and maximum grid-
relative latitude and longitude of all the radar stations

• ‘iaaamin,max,8*max_rrr = 1 40 40’ means the minimum, maximum of the
observation azimuth index and 8 times the maximum azimuth index (refer to iaaamin,
iaaamax, max_rrr)

9.3 Analyze Radar Reflectivity With GSI

After get the radar reflectivity BUFR file ready for GSI, users need to go through the
following steps to setup GSI reflectivity analysis.

1. Compile with GSD cloud analysis

Radar Data Assimilation

 104

Reflectivity observations are used with the GSI in GSD cloud analysis. To open the cloud
analysis in the GSI, users need to add the following bold conditional compiling option in
“configure.gsi” file:

CPP_FLAGS = -C -P -D_REAL8_ -DWRF –DLINUX -DRR_CLOUDANALYSIS

2. Setup GSI namelist for radial velocity analysis

In GSI namelist section “OBS_INPUT”, a line needs to be set to let GSI know the name of
the radar reflectivity:

 dfile(88)='refInGSI', dtype(88)='rad_ref', dplat(88)=' ', dsis(88)='rad_ref', dval(88)=1.0, dthin(88)=0, dsfcalc(88)=0,

Please note the total observation files number in namelist section SETUP need to be add 1:

ndat=original number + 1

The namelist options to control GSD cloud analysis, including the reflectivity analysis, are
in section RAPIDREFRESH_CLDSURF. Please check Appendix A for the detailed
explanation of the options in the RAPIDREFRESH_CLDSURF section.

3. Link the radial velocity BUFR file to GSI run directory in run scripts

After add GSI namelist for reflectivity, a new link need to be added in the GSI run scripts
to link the reflectivity BUFR file to GSI working directory with the name setup in the GSI
OBS_INPUT section:

ln –s “the patch and name of reflectivity BUFR file” refInGSI'

4. Setup convinfo for reflectivity

As other conventional observations and radial velocity, GSI uses “convinfo” file to control
the data usage of each observation type. Please check GSI user’s guide for details of
“convinfo”, here is an example of the line to contral the reflectivity:

rad_ref 999 0 1 1.5 0 0 0 7.0 5.6 1.3 10.0 0.000000 0 0. 0. 0

5. Setup anavinfo for reflectivity

Reflectivity is analyzed as part of the GSD cloud analysis. To open the GSD cloud
analysis, users also need to make the following changes to the met_guess section of the
anavinfo_arw_netcdf in fix files:

met_guess::
!var level crtm_use desc orig_name
 cw 30 10 cloud_condensate cw
 ql 30 10 cloud_liquid ql
 qi 30 10 cloud_ice qi
 qr 30 10 rain qr

Radar Data Assimilation

 105

 qs 30 10 snow qs
 qg 30 10 graupel qg
 qnr 30 10 rain_noconc qnr
::

6. Check the reflectivity analysis results

Because the reflectivity is not analzed with the variational method, there is no fit files for
the reflectivity. But users still can use the stdout file to find if the reflectivity is used in the
analysis.

• Check data distribution in stdout to look for line:

OBS_PARA: rad_ref ???? ???? ???? ????

• Check the line after minimization:

==
gsdcloudanalysis: Start generalized cloud analysis
==

• Check analysis increment for rain and snow mixing ratio

9.4 Information On Radar Data Quality Control

Radar data quality control is not discussed in this document because of the complexity of
the problem. Users can check Shun Liu’s slides in the 2010 Summer Community GSI
residential Tutorial on radar data assimilation for quality control steps conducted in radial
velocity process.

GSI Application

 106

Chapter 10 GSI Applications

10.1 Introduction To Hybrid 4-Dimensional Ensemble-Variational Analysis

The 4-Dimensional ensemble-variational analysis is the newly implemented feature of the
GSI-Hybrid system. It takes advantage of the time varying ensembles and first guess fields
so that the GSI analysis can get the flow-dependent background error information of
different time levels.

It is an upgrade on the hybrid ensemble-3DVAR analysis. To run the 4-D GSI-Hybrid
analysis using the multiple time level GFS ensembles, some additional changes are
required from the hybrid ensemble-3DVAR analysis, in both the namelist and the run
script:

Change 1: Link the ensemble members to the GSI run directory

This change is to link the GFS ensemble members of different time levels (usually three
time levels) to the GSI run directory. The current implementation can only accept the GFS
ensemble forecasts, which is corresponding to the namelist variable
regional_ensemble_option=1. Using an WRF ARW 4-D GSI-hybrid analysis case with
three time levels and 6-hour time window as an example, the following lines are needed in
the run script to link the GFS ensembles:

ensemble initial time is 6 hours earlier than the analysis time
m6date=`${HOME}/bin/da_advance_time.exe ${ANAL_TIME} -6 `

set the ensemble path and size
GFSENS=/where/your/GFS/ensemble/is
ENSEMBLE_SIZE=80

locate the GFS 6-hour ensemble files for hybrid analysis
 n=1
 m=0
 >filelist06
 while [[$n -le ${ENSEMBLE_SIZE}]]; do
 if [[-s ${GFSENS}/${m6date}/$(printf sfg_${m6date}_fhr06s_mem%03d $n)]];
then
 m=$(($m + 1))
 ln -sf ${GFSENS}/${m6date}/$(printf sfg_${m6date}_fhr06s_mem%03d $n) \
 ./$(printf sfg_${m6date}_fhr06s_mem%03d $m)
 ls ./$(printf sfg_${m6date}_fhr06s_mem%03d $m) >> filelist06
 fi
 n=$(($n + 1))
 done

locate the GFS 3-hour ensemble files for hybrid analysis
 n=1
 m=0
 >filelist03
 while [[$n -le ${ENSEMBLE_SIZE}]]; do
 if [[-s ${GFSENS}/${m6date}/$(printf sfg_${m6date}_fhr03s_mem%03d $n)]];
then

GSI Application

 107

 m=$(($m + 1))
 ln -sf ${GFSENS}/${m6date}/$(printf sfg_${m6date}_fhr03s_mem%03d $n) \
 ./$(printf sfg_${m6date}_fhr03s_mem%03d $m)
 ls ./$(printf sfg_${m6date}_fhr03s_mem%03d $m) >> filelist03
 fi
 n=$(($n + 1))
 done

locate the GFS 9-hour ensemble files for hybrid analysis
 n=1
 m=0
 >filelist09
 while [[$n -le ${ENSEMBLE_SIZE}]]; do
 if [[-s ${GFSENS}/${m6date}/$(printf sfg_${m6date}_fhr09s_mem%03d $n)]];
then
 m=$(($m + 1))
 ln -sf ${GFSENS}/${m6date}/$(printf sfg_${m6date}_fhr09s_mem%03d $n) \
 ./$(printf sfg_${m6date}_fhr09s_mem%03d $m)
 ls ./$(printf sfg_${m6date}_fhr09s_mem%03d $m) >> filelist09
 fi
 n=$(($n + 1))
 done

Change 2: Copy the first guess fields to the GSI run directory

This change is to link the first guess fields of different time levels (usually three time
levels) to the GSI run directory. Using an WRF ARW 4-D GSI-hybrid analysis centered at
2014080906 with three time levels and 6-hour time window as an example, the flowing
lines are used in the run script to locate and copy the first guess fields:

ANAL_TIME=2014080906
HH=`echo $ANAL_TIME | cut -c9-10`
WRF_TIME06=`${HOME}/bin/da_advance_time.exe ${ANAL_TIME} 0 -w `
WRF_TIME03=`${HOME}/bin/da_advance_time.exe ${ANAL_TIME} -3 -w `
WRF_TIME09=`${HOME}/bin/da_advance_time.exe ${ANAL_TIME} +3 -w `

… …
BK_FILE03=${BK_ROOT}/wrfout_d01_${WRF_TIME03}
BK_FILE06=${BK_ROOT}/wrfout_d01_${WRF_TIME06}
BK_FILE09=${BK_ROOT}/wrfout_d01_${WRF_TIME09}
 … …
cp ${BK_FILE06} ./wrf_inout
cp ${BK_FILE03} ./wrf_inou3
cp ${BK_FILE06} ./wrf_inou6
cp ${BK_FILE09} ./wrf_inou9

Change 3: Set up the namelist options in section SETUP

Users need to set l4densvar=.true., to turn on 4-D hybrid ensemble analysis. Users
also need add nhr_obsbin=3 if three time levels are used for the analysis.

After setup of the namelist parameters and the path and name of the ensemble members
and the first guess fields, GSI can be run following the same way as the GSI hybrid 3-D
ensemble-variational analysis. And the same procedures could be followed as in the
previous sections to check the run status and diagnose the GSI analysis.

GSI Application

 108

10.2 Introduction to RTMA Analysis

The Real-Time Mesoscale Analysis (RTMA) is a NOAA/NCEP high-spatial and temporal
resolution analysis/assimilation system for near-surface weather conditions. Its main
component is the NCEP/EMC Gridpoint Statistical Interpolation (GSI) system applied in
two-dimensional variational mode to assimilate conventional and satellite-derived
observations. The RTMA produces analyses of 2-m temperature, 2-m specific humidity,
2m-dew point temperature, 10-m winds, 10-m wind gust, surface pressure, and surface
visibility.

The RTMA was developed to support the National Digital Forecast Database (NDFD)
operations and provide field forecasters with high quality analyses for nowcasting,
situational awareness, and forecast verification purposes. Presently, the system produces
hourly, real-time analyses for the 5-km and 2. 5-km resolution CONUS NDFD grids, 6-km
Alaska NDFD grid and 2.5-km Hawaii, Puerto-Rico and Guam NDFD grids.

RTMA fields for the CONUS are displayed at:

http://mag.ncep.noaa.gov/

In this section, we will introduce how to run the RTMA system. The whole RTMA system
includes three components:

1. Prepare first guess file
2. Run GSI in RTMA mode
3. RTMA post-process

10.2.1. Prepare First Guess File

The major function of the RTMA is to create a high- resolution 2D near surface analysis.
The background file of the RTMA GSI is an unformatted binary file that includes a set of 2
dimensional surface fields. There are no forecast files that can be directly used as its
background. For the community RTMA GSI, the background file can be generated using a
tool in the release community GSI package, which includes the code under directory
./util/RTMA/rtma_firstguess and a run script: ./ util/RTMA/ rtma_getguess.sh .

1. Compile the code

The code in the directory ./util/RTMA/rtma_firstguess will produce an executable for
generating RTMA GSI first guess (background). Because the dimension of the analysis
domain, and the needed navigational information (eg., longitude and latitude of the

GSI Application

 109

southwestern most point and grid spacing for Lambert-Conformal grids) are hardwired in
the code, users need to edit the code for the specific domain:

1) get into directory ./util/RTMA/rtma_firstguess;
2) open file “param.incl” ;
3) find the following lines (starts from line 94):

!==>parameter definition for dtc
 integer(4),parameter::nx_dtc=758
 integer(4),parameter::ny_dtc=567

 real(8),parameter::alat1_dtc=21.138000_8
 real(8),parameter::elon1_dtc=237.280000_8
 real(8),parameter::da_dtc=13545.09_8

4) modify the values to fit the user’s specific domain:

nx_dtc: analysis domain dimension in X direction
ny_dtc : analysis domain dimension in Y direction
alat1_dtc : analysis domain latitude of southwestern most point
elon1_dtc : analysis domain longitude of southwestern most point
da_dtc : analysis grid space in meters

After setting the right analysis grid configuration, edit the “makefile” inside the same
directory and put the right location of the GSI root directory in a line:

GSIDIR=comGSI/releaseV33/release_V3.3_intel.12-12.0

Please note that this tool has to be compiled after the compilation of the community GSI.
Users also need to pick the following part for PGI or Intel compiler:

For Intel compiler, pick:

FC=ifort
FFLAGS=-nofixed -convert big_endian

For PGI compiler, pick:

FC=pgf90
FFLAGS= -Mfree -byteswapio

Then, in the same directory, compile the code using the command:

./make

The successful compilation should give a new executable in the directory named:

rtma_firstguess.exe

GSI Application

 110

If user needs to clean the code for recompilation, use command:

./make clean

2. Using run scripts to generate first guess for RTMA GSI

The generation of background (first guess) files for RTMA is controlled by the script
“rtma_getguess.sh” in directory “./util/RTMA”. Users need to setup the following
parameters for “rtma_getguess.sh”:

ROOTDIR= comGSI/releaseV33/release_V3.3_intel.12-12.0/util/RTMA
FGFILE= 2012052811/postprd/wrftwo_rr_01.grib1
work_dir=${ROOTDIR}/rtmagus
CYCLE=2012052811

Where

• ROOTDIR: full directory for ./uitl/RTMA
• FGFILE: background file, which is a two-dimension grib file from uni-post.
• work_dir: work directory
• CYCLE: analysis time

This run script can be run in front node directly using:

./rtma_getguess.sh

In this script, command “wgrib” is used to extract the surface fields out from the 2D grib
file “wrftwo_rr_01.grib1” and save these fields into a file called “slabs.dat”. Then this file
and a binary file called “rtma_dtc_latlon_mpfactor_slmask.data” under directory
util/RTMA/fix are read in and processed. Finally, a set of 2D fields are written into a binary
file called “twodvar_input_bi” to be used as the RTMA background file.

Users should be aware that running a domain other than the Rapid Refresh (RAP) case in
the example may require additional modifications to be sure the appropriate surface fields
are present in the 2D grib file and the binary files are appropriate for the domain of interest.
See the following section (3. Binary file structure) for more information.

After running the script, the run directory (./RTMA/rtmagus) for first guess generation
should look like:

bigrjlist.txt mass_rjlist.txt_static slabs2_nobiasc.dat
cycledate parm_ndfd_time_namelist slabs.dat
first_guess.grib1 p_rejectlist stdout.rtma_getguess
fort.20 p_rjlist.txt_static t_rejectlist
fort.30 q_rejectlist t_rjlist.txt_static
fort.88 q_rjlist.txt_static twodvar_input_bi

GSI Application

 111

fort.9 rtma_slmask.dat w_rejectlist
gridname_input rtma_terrain.dat w_rjlist.txt_static
mass_rejectlist slabs2.dat

The following is a list of important files in this run directory:

• first_guess.grib1: 2D grib file from uni-post
• slabs.dat: binary file including 2D fields extracted from first_guess.grib1 using

wgrib command.
• parm_ndfd_time_namelist: namelist holding analysis time
• gridname_input: namelist holding analysis grid configuration
• twodvar_input_bi: RTMA first guess, binary file.
• stdout.rtma_getguess: standard output

3. Binary file structure

The binary file “rtma_dtc_latlon_mpfactor_slmask.data” is a fix file that includes map
factor, grid latitude, grid longitude, and land mask information from the goegrid file. They
are 2D real arrays arranged in the following order:

 mapfac(nx,ny)
 glat(nx,ny)
 glon(nx,ny)
 landmask(nx,ny)

Users have to generate “rtma_dtc_latlon_mpfactor_slmask.data” for their own analysis
domain and save this file in the same location.

If users want to write their own first guess generation code, they can find the content of the
binary file “twodvar_input_bi” from file “firstguess.f” by searching “write(88)”. Here is a
list of these lines. Please check the code for details of each line:

 write(88) ihdrbuf
 write(88) iyear,imonth,iday,ihour,iminute,isecond,nx,ny,nsig
 write(88) dx,dy
 write(88) glat
 write(88) glon
 write(88) psfcgrid ! psfc0
 write(88) phbgrid ! PHB (zsfc*g)
 write(88) tgrid ! T(k) ! TEMP (sensible)
 write(88) qgrid ! Q(k)
 write(88) ugrid ! U(K)
 write(88) vgrid ! V(K)
 write(88) landmask ! LANDMASK (0=water and >0.5 for land)
 write(88) field ! XICE
 write(88) sst ! SST
 write(88) ifield ! IVGTYP
 write(88) ifield ! ISLTYP
 write(88) field ! VEGFRA

GSI Application

 112

 write(88) field ! SNOW
 write(88) ugrid ! U10
 write(88) vgrid ! V10
 write(88) field ! SMOIS
 write(88) tslb ! TSLB
 write(88) tsk ! TSK
 write(88) gust ! GUST
 write(88) vis ! VIS
 write(88) pblh ! PBLH

10.2.2. Run GSI RTMA Analysis

The code for GSI RTMA analysis is the same as for other GSI applications, but with
different namelist options and environmental setups. In this release, a run script named
“run_gsi_rtma.ksh” in directory “./util/RTMA” is provided to help users set up the RTMA
GSI run environments and namelist.

1. Code change for user specific domain

The GSI code also includes hardwired information on the analysis grid. Therefore, users
need to add analysis grid information to GSI code for their specific RTMA analysis. This is
done by editing the file “support_2dvar.f90” in src/main to change the following lines:

 elseif (trim(cgrid) == 'dtc') then
 nx=758
 ny=567
 alat18=21.138_r_kind
 elon18=237.280_r_kind
 da8=13545.09_r_kind

After adding this domain configuration, users can compile the GSI the same way as the
general community GSI (details see Chapter 2 of the fndamental User’s Guide).

2. Run script for RTMA

The sample script “./ util/RTMA/run_gsi_rtma.ksh” has a similar structure as the general
GSI run script “./run/run_gsi.ksh” and needs similar information to set up and run. Here,
we only introduce the settings that are different from those in the run_gsi.ksh. Please read
Chapter 3 of the fundamental User’s Guide for instruction on how to set up run_gsi.ksh.

BK_DIR=comGSI/releaseV33/util/RTMA/rtmagus
ROOTDIR= comGSI/releaseV33/util/RTMA

• BK_DIR = path of first guess generation directory
• ROOTDIR = RTMA root directory: ./util/RTMA

GSI Application

 113

In RTMA GSI, there is no need to set up CRTM and satellite radiance related parameters
because RTMA doesn’t use satellite radiance observations.

There are two binary files holding geogrid information under: ${ROOTDIR}/fix:

• rtma_dtc_slmask.dat : Sea Land mask field
• rtma_dtc_terrain.dat : terrain of analysis domain

Users can easily generate these two files from geogrid files based on the following read in
code information from GSI:

 allocate(slmask(nx,ny))
 open (55,file='rtma_slmask.dat',form='unformatted')
 read(55) slmask
 close(55)

 allocate(terrain(nx,ny))
 open (55,file='rtma_terrain.dat',form='unformatted')
 read(55) terrain
 close(55)

After setting up the run script, users can run the RTMA GSI using the same procedure as
that used for the general GSI. Please check Chapter 3 of the fundamental User’s Guide for
more details.

An important aspect to remember is that the RTMA GSI uses anisotropic recursive filters
to model the action of its background error covariances. Therefore, in run_gsi.ksh, the
namelist variable "anisotropic" under "&ANBKGERR" must be set to ".true." For this
tutorial, the background error covariances are mapped to the underlying terrain field to a
controlled degree (please see section 4th part of this section for more details).

3. Sample results

The run directory of a successful GSI RTMA run with clean option turned on should look
like:

anavinfo fort.205 sm_theta.des
bckg_dxdy.dat fort.209 sm_z.dat
bckg_psfc.dat fort.210 sm_z.des
bckg_qsat.dat fort.211 stdout
bckgvar.dat_chi fort.212 stdout.anl.2012052811
bckgvar.dat_gust fort.213 sub_ps.dat
bckgvar.dat_ps fort.214 sub_ps.des
bckgvar.dat_pseudorh fort.215 sub_q.dat
bckgvar.dat_psi fort.218 sub_q.des
bckgvar.dat_t fort.219 sub_sf.dat
bckgvar.dat_vis fort.220 sub_sf.des
bckg_z.dat fort.221 sub_t.dat
berror_stats gsi.exe sub_t.des

GSI Application

 114

convinfo gsiparm.anl sub_vp.dat
diag_conv_anl.2012052811 mesonet_stnuselist sub_vp.des
diag_conv_ges.2012052811 mesonetuselist theta.dat
errtable parmcard_input theta.des
fit_p1.2012052811 p_rejectlist t_rejectlist
fit_q1.2012052811 prepbufr w_rejectlist
fit_t1.2012052811 prepobs_prep.bufrtable wrfanl.2012052811
fit_w1.2012052811 q_rejectlist wrf_inou2
fltnorm.dat_chi random_flips wrf_inou3
fltnorm.dat_gust rtma_slmask.dat wrf_inou4
fltnorm.dat_ps rtma_terrain.dat wrf_inou5
fltnorm.dat_pseudorh shoreline_obrelocation.dat_000 wrf_inou6
fltnorm.dat_psi shoreline_obrelocation.dat_001 wrf_inou7
fltnorm.dat_t shoreline_obrelocation.dat_002 wrf_inou8
fltnorm.dat_vis shoreline_obrelocation.dat_003 wrf_inou9
fort.201 shoreline_obrelocation.dat_004 wrf_inout
fort.202 shoreline_obrelocation.dat_005 z.dat
fort.203 sigfupdate02 z.des
fort.204 sm_theta.dat

Some files, such as fort.* file (fit files), diag files, stdout, and wrf_inout, are similar to
those from the general GSI analysis. Others are specific to the RTMA. Here we introduce
some of these specific RTMA files:

wrf_inou2, …, wrf_inou9 are empty and used only when the so-called FGAT
option is turned on. FGAT stands for “First guess at the Appropriate Time”. It’s a
technique that uses auxiliary first guess files with distinct valid times to improve the
time interpolation in the GSI.

random_flips is an input file storing random numbers. It is needed to generate the
anisotropic background error covariances.

bckgvar_* contain the square-root of the background error covariances for the
various analysis variables. They are used in the RTMA post to aid with the
evaluation of the analysis error.

4. Namelist for RTMA

RTMA GSI uses the same namelist as the general GSI, and one additional namelist file:

parmcard_input

The namelist parameters in parmcard_input are as follows:

• afact0=1 activates the anisotropic component of the background error covariance
model. Use afact0=0 instead to have the anisotropic recursive filter simulate an
isotropic analysis.

• hsteep=500.: sets an artificial elevation difference of 500m between land and

water along the coastlines. The resulting escarpment in the terrain-following

GSI Application

 115

covariances serves to confine the influence of the land (water) observations to the
land (water) bodies.

• lsmoothterrain=.true. : induces a smoothing of the terrain field before the

background error covariances are computed

• hsmooth_len=1.0 : is the correlation length in grid units used to smooth the
terrain field.

• rltop_wind : is the function correlation length for streamfunction and velocity

potential, and rltop_temp, rltop_q, rltop_psfc, rltop_gust, and
rltop_vis are those for temperature, specific humidity, surface pressure, wind
gust, and visibility, respectively. Smaller (larger) values of the function correlation
lengths lead to stronger (weaker) anisotropies.

• svpsi, svchi, svpsfc, svtemp, and svshum are used to adjust the

background error variances for streamfunction, velocity potential, surface pressure,
temperture, and specific humidity, respectively.

• sclpsi, sclchi, sclpsfc, scltemp, sclhum, sclgust, and sclvis

are used to adjust the spatial correlation lengths for streamfunction, velocity
potential, surface pressure, temperature, specific humidity, wind gust, and visibility,
respectively.

10.2.3. Post-Process

The analysis result from GSI RTMA is a binary file. It needs to be post-processed to
generate GRIB files for easy use. In addition to format conversion, the RTMA post-process
also:

• computes an estimate of the analysis error by finding a representation of the inverse
of the Hessian matrix of the 2DVar. The analysis error is also made available in
GRIB format.

• reads in from the original unformatted gsi observation stats files and writes out
formatted, streamlined versions for each observation type.

1. Compile the code

The RTMA post-process code is in directory ./util/RTMA/rtma_post. Just as with the other
components of the RTMA code, the dimensions of the analysis domain, analysis grid
spacing, and lat/lon information for the southwestern most point are hardwired in the code.
Users need to edit the code for the specific domain:

GSI Application

 116

1) get into directory ./util/RTMA/rtma_post;
2) open file “param.incl” ;
3) find the following lines (starts from line 94):

!==>parameter definition for dtc
 integer(4),parameter::nx_dtc=758
 integer(4),parameter::ny_dtc=567

 real(8),parameter::alat1_dtc=47.49000_8
 real(8),parameter::elon1_dtc=256.000000_8
 real(8),parameter::da_dtc=13545.09_8
 real(8),parameter::elonv_dtc=256.000000_8
 real(8),parameter::alatan_dtc=47.490000_8

4) modify the values to fit the user’s specific domain. For this tutorial, the (Conic
Lambert Conformal) navigation parameters are:

nx_dtc: analysis domain dimension in X direction
ny_dtc : analysis domain dimension in Y direction
alat1_dtc : analysis domain latitude of point (1,1)
elon1_dtc : analysis domain longitude of point (1,1)
da_dtc : analysis grid spacing in meters
elonv_dtc: Y-axis is parallel to longitude circle at this longitude
alatan_dtc: Latitude at which the projection intersects the earth

5) open file “post.f90” and edit the following two lines

line 955 if (trim(cgrid)=='dtc') xn=sin(47.49*dg2rad)
line 964 if (trim(cgrid)=='dtc') elonv=256.0

Here, elonv is the same as elonv_dtc, and xn is sin(alatan_dtc *dg2rad).

After setting the right analysis grid configuration, edit the “makfile” inside the same
directory and put the right location of the UPP root directory in a line:

UPPDIR= /glade/p/work/mhu/UPP/UPPV2.1

Please note that this tool has to be compiled after the compilation of the community UPP
because this application needs some UPP libraries.

The location of libraries for grib2 compression also needs to be set in the following line:

SRCDIRLIB= /glade/u/home/duda/grib2/lib

Please note the that makefile only works for Intel compiler for now.

Then, in the same directory, compile the code using the command:

GSI Application

 117

./make all

The successful compilation should give a new executable in the directory named:

rtma_post.exe

If user needs to clean the code for recompilation, use command:

./make clean

2. Run scripts

The running of the RTMA post process is not straightforward. There are many files from
first guess generation, RTMA GSI, and fix directory that need to be copied or linked to the
run directory. Here, we provide a sample script “./ util/RTMA/rtma_post.sh” to help users
run the RTMA post process.

As with all other MPI job scripts, a job control head needs to be at the top of the run script
to ask for computer resources to run MPI job. This part can be set in the same way as
run_gsi.ksh (check Chapter 3 of the Basic User’s Guide for more details). Then, the
parameters in following section need to be set:

ROOTDIR=/glade/p/work/mhu/gsi/rtma/rtma/RTMA
work_dir=/glade/p/work/mhu/gsi/rtma/rtma/RTMA/rpostprd
fixparm=${ROOTDIR}/fix
rtmagsidir=$ROOTDIR/rtmaprd
rtmafgdir=$ROOTDIR/rtmagus

CYCLE=2012052811
RUN_COMMAND="mpirun.lsf"

Where:

• ROOTDIR = RTMA root directory: (util/RTMA)
• work_dir = working directory for RTMA post
• fixparm = path of RTMA local directory ./fix
• rtmagsidir = run directory of RTMA GSI
• rtmafgdir = run directory of first guess generation directory
• CYCLE = analysis time in YYYYMMDDHH
• RUN_COMMAND = setup MPI run command based on job control system. This is

the same as the GSI run command.

After setting up the run script, users can run the RTMA post using the same procedure used
for the general GSI. Please check Chapter 3 of the fundamental User’s Guide for more
details.

GSI Application

 118

3 Results

Although there are many files in the RTMA post run directory, the ones that are most
relevant to users are the following:

• anlerr.grib2, anl.grib2, bckg.grib2: analysis error, analysis, and background in
GRIB2 fromat.

• t_obs.*, u_obs.*, v_obs.*, q_obs.*, ps_obs.*, spd_obs.*, vis_obs.*, gust_obs.* :
lists of observation statistics for each outer loop. Specifically, files carrying the
string “iter_01” and “iter_02” display observation statistics for the beginning of the
first outer-loop and second outer-loop, respectively. Files carrying the string
“iter_anl” contain observation statistics valid at the end of the analysis.

10.2.4. Notes on This RTMA Section

In this section, we only briefly introduce how to compile and run each component of the
RTMA. This information and code should help users build an initial RTMA system for
their own grid configuration. We did not touch some of the other features that the RTMA
possesses, such as:

1) Running the RTMA with FGAT activated
2) Using bias correction for the background fields
3) Using the Hilbert-Curve based Cross-validation capability

GSI Namelist

 119

References

1. Wan-Shu Wu, R. James Purser, and David F. Parrish, 2002: Three-Dimensional

Variational Analysis with Spatially Inhomogeneous Covariances. Monthly Weather
Review, 130, 2905–2916.

2. R. James Purser, Wan-Shu Wu, David F. Parrish, and Nigel M. Roberts, 2003:

Numerical Aspects of the Application of Recursive Filters to Variational Statistical
Analysis. Part I: Spatially Homogeneous and Isotropic Gaussian Covariances.
Monthly Weather Review, 131, 1524–1535.

3. R. James Purser, Wan-Shu Wu, David F. Parrish, and Nigel M. Roberts, 2003:

Numerical Aspects of the Application of Recursive Filters to Variational Statistical
Analysis. Part II: Spatially Inhomogeneous and Anisotropic General Covariances.
Monthly Weather Review, 131, 1536–1548.

4. David F. Parrish and John C. Derber, 1992: The National Meteorological Center's

Spectral Statistical-Interpolation Analysis System. Monthly Weather Review, 120,
1747–1763.

5. R. James Purser, 2005: Recursive Filter Basics. 1st GSI User Orientation. 4th-5th

January 2005. Camp Springs, MD

6. Russ Treadon, 2005: GSI Compilation, Coding, and Updates. 1st GSI User
Orientation. 4th-5th January 2005. Camp Springs, MD

7. John Derber, 2005: minimization and Preconditioning. 1st GSI User Orientation. 4th-

5th January 2005. Camp Springs, MD

8. Wu, Wan-Shu, 2005: Background error for NCEP’s GSI analysis in regional mode.
Fourth WMO International Symposium on Assimilation of Observations in
Meteorology and Oceanography, 18-22 April 2005, Prague, Czech Republic

9. Seung-Jae Lee, David F. Parrish, and Wan-Shu Wu, 2005: Near-Surface Data
Assimilation in the NCEP Gridpoint Statistical Interpolation System: Use of Land
Temperature Data and a Comprehensive Forward Model. NOAA/NCEP Office Note
446, 46

