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Foreword 
 

This document, designed for experienced users, includes advanced knowledge, features, and skills 
of GSI as well as details of assimilation of specific data types. Users may use as a reference for 
their special research topics. To read this guide, users should already read and understand the 
content in the GSI User’s Guide.  
 
This version of Advanced GSI User’s Guide was released with the community GSI version 3.5 in 
August 2016. Please note, not like the basic GSI user’s guide which is being updated every year 
and closely follows the GSI release code, this advanced user’s guide, as a reference, is only being 
updated as needed and therefore doesn’t pertain to one specific code release.  
 
There are 10 Chapters in this document: 
 

Chapter 1: Overview 
Chapter 2: Software Installation 
Chapter 3: Advanced Topics on Run and Diagnosis  
Chapter 4: GSI Theory  
Chapter 5: GSI Code Structure  
Chapter 6: Static Background Error Covariance  
Chapter 7 Observations  
Chapter 8: Satellite Radiance Data Assimilation  
Chapter 9 Radar Data Assimilation  
Chapter 10 GSI Applications  

 
DTC may update the content of this advanced User’s Guide, if needed, between releasees. For the 
latest version of this document, please visit the GSI User’s Website at 
 

http://www.dtcenter.org/com-GSI/users.v3.5/docs/index.php  
 

Please send questions and comments to: 
 

gsi-help@ucar.edu 
 
For referencing this document, please use: 

 
Developmental Testbed Center, 2016: Gridpoint Statistical Interpolation Advanced User's 
Guide Version 3.5. Available at http://www.dtcenter.org/com-
GSI/users.v3.5/docs/index.php, 119 pp. 

 
For referencing the general aspect of the GSI community effort, please use:  

Shao, H., J. Derber, X.-Y. Huang, M. Hu, K. Newman, D. Stark, M. Lueken, C. Zhou, L. 
Nance, Y.-H. Kuo, B. Brown, 2016:  Bridging Research to Operations Transitions:  Status 
and Plans of Community GSI. Bulletin of the American Meteorological Society, 
doi:10.1175/BAMS-D-13-00245.1, in press 
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Chapter 1: Overview 
 
 
Purpose of the Advanced GSI User’s Guide 
 
This document is the second part of the GSI User’s Guide. For the history of GSI and its 
community efforts, please refer to the Overview of the GSI User’s Guide, released with 
each code version. 
 
While the GSI User’s Guide focuses on basic information for compiling, running, and 
diagnosing GSI, this Advanced GSI User’s Guide is intended to help users who have 
mastered the fundamental portion of the GSI  and would like to apply GSI for specific 
research topics that need more advanced knowledge and skills.  
 
Unlike the GSI User’s Guide, which is released annually with the official release, the 
Advanced User’s Guide will initially release with the official release but may be updated 
after the release based on needs and contributions from users and developers. The latest 
release time and subversion will be indicated on the title page of this document. 
 
Some of the contents of this Advanced User’s Guide are not updated to match the official 
release of the GSI code like the fundamental portion. Therefore, users are advised to refer 
to the relative content with caution, as there may be differences between the content and 
the code. Please contact the GSI help desk with any issues with using this guide. 
 
Some of the sections and chapters have only titles in this release (no content). These are 
place hold for important topics of the GSI. The content will be added in the future as 
knowledge and resources are available to update the topic. Users and developers are very 
welcome to make any contributions to the guide, either with updated content or with new 
additions. 
 
This document is intended to provide useful assistance to experienced GSI users and 
developers for advancing GSI development and research. 
 
Subversion release log: 
 

Version Release time Modifications 
3.3.0.0 06/20/2014 Initial release with official release 3.3 
3.3.0.1 07/07/2014 Fix typos in Equation 1-5 in Chapter 4 
3.3.0.2 08/12/2014 Fix typos in Table in Section 5.5. Add step 5 in 

radar reflectivity analysis in section 9.3 
3.4.0.0 08/09/2015 Update on the use of anavinfo file in section 3.2 

Add section 9.2.1 Data Preprocessing of Radar 
Radial Velocity Assimilation within GSI 
Add section 9.2.2 The Processes of the 
read_radar.f90 code 
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Update in section 10.1 GSI global analysis 
Update in the namelist (Appendix A) based on 
version 3.4 

3.5.0.0 08/08/2016 Remove section 10.1 GSI global analysis to GSI 
User’s Guide Chapter 6. 
Added the introduction to the GSI 4D hybrid EnVar 
as section 10.1. 
Delete Appendix A because it is in GSI User’s 
Guide Appendix C 

 
 
Structure of this User’s Guide: 
 
The User’s Guide is organized as follows:  

Chapter 2 provides detailed information on software installation, including description 
of examples for tailoring the building system on non-standard computing platforms. 

Chapter 3 contains advanced topics related to running and diagnosing GSI 
Chapter 4 illustrates the GSI data assimilation technique and minimization procedure  

Chapter 5 introduces major processes and subroutines associated with GSI I/O, 
observation ingestion, and innovation calculation.  

Chapter 6 illustrates concept of background error covariance, estimation of static 
background error covariance as well as how GSI processes background error 
information. 

Chapter 7 provides information regarding observation processing for GSI. It contains 
basic skills for BUFR/PrepBUFR files, including how to encode, decode, and 
append new data into these types of files. It also provides information on GSI 
BUFR interface, NCEP processes for BUFR/PrepBUFR files, and the observation 
error adjustment procedure inside GSI. 

Chapter 8 discusses radiance data assimilation in GSI, including data ingestion, quality 
control, bias correction, and other associated procedures.  

Chapter 9 discusses radar data assimilation in GSI.  
Chapter 10 describes various GSI operational applications. 
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Chapter 2: Software Installation 
 
 

2.1 Modifying the GSI Build Environment 
 
The GSI build system is designed to compile on most standard Unix/Linux systems. 
Typically, if the WRF model builds on a system, GSI will build there as well. The lack of 
standardization of Linux HPC environments, specifically from big vendors such as SGI and 
IBM, may necessitate minor customization of the GSI build settings for those computing 
environments.  
 
Typical build problems seen can be traced back to issues with the location of libraries, MPI 
wrappers for the compiler, or the support utilities such as cpp. These sorts of issues can 
usually be solved by customizing the default configuration file settings. Unfortunately this 
may involve an iterative process where the build parameters are modified, the compile 
script is run, build errors diagnosed, and the process repeated.  
 

2.2 Understanding the Build System 
 
The GSI build system uses a collection of data files and scripts to create a configuration 
resource file that defines the local build environment.  
 
At the top most level there are four scripts. The clean script removes everything created by 
the build. The configure script takes local system information and queries the user to 
select from a collection of build options. The results of this are saved into a resource file 
called configure.gsi. Once the configure.gsi file is created, the actual build is initiated 
by running the compile script. The compile script then calls the top-level makefile, 
substitutes in settings from the configure file, and builds the source code.   
 

Name Content 
makefile Top-level makefile 
arch/ Build options and machine architecture specifics 
clean Script to clean up the directory structure 
configure Script to configure the build environment for compilation. 

Creates a resource file called configure.gsi 
compile Script for building the GSI system. Requires the existence 

of the configure.gsi prior to running 
 
The compile script uses the resource file configure.gsi to set paths and environment 
variables required by the compile. The configure script generates the resource file 
configure.gsi by calling the Perl script Config.pl, located in the arch/ directory. The 
script Config.pl combines the build information from the files in the arch/ directory with 
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machine specific and user provided build information to construct the configure.gsi 
resource file.  
 
A “clean” script is provided to remove the build objects from the directory structure. 
Running ./clean scrubs the directory structure of the object and module files. Running a 
clean-all  ./clean –a removes everything generated by the build, including the library files, 
executables, and the configure resource file. Should the build fail, it is strongly 
recommended that the user run a ./clean –a prior to rerunning the compile script.  
 
The arch/ directory contains a number of files used to construct the configuration resource 
file configure.gsi. 
 
File name Description 
preamble Uniform requirements for the code. Currently only contains 

shell information and comments. 
configure.defaults Selection of compilers and options. 

Users can edit this file if a change to the compilation 
options or library locations is needed. It can also be 
edited to add a new compilation option if needed. 

postamble Standard compilation (“make”) rules and dependencies 
 
Most users will not need to modify any of these files unless experiencing significant build 
issues. Should a user require a significant customization of the build for their local 
computing environment, those changes would be saved to the configure.defaults file 
only after first testing these new changes in the temporary configure.gsi file.  
 

2.2.1 Configuration Resource File 
 
The configuration resource file configure.gsi contains build information, such as 
compiler flags and paths to system libraries, specific to a particular machine architecture 
and compiler.  
 
To illustrate its contents, lets look at the resource for the Linux Intel/gcc build.  
 

# Settings for Linux x86_64, Intel/gnu compiler (ifort & gcc)    (dmpar,optimize)# 

 
The header describes the overall build environment 

• Linux x86 with 64 bit word size  
• Uses Intel Fortran and GNU C compilers 
 

The link path points to an Intel version of NetCDF and the OpenMP libraries. 
 
LDFLAGS        =  -Wl,-rpath,/usr/local/netcdf3-ifort/lib -openmp  

 

The code directory location and include directory: 
 

COREDIR        =  $HOME/comGSIv3.4_EnKFv1.0  
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INC_DIR        =  $(COREDIR)/include  
 

Compiler definitions 
• Intel ifort Fortran compiler 
• GNU gcc C compiler  

 
SFC            =  ifort  
SF90           =  ifort -free  
SCC            =  gcc  
 

The include paths for GSI source code and NetCDF: 
 

INC_FLAGS      =  -module $(INC_DIR) -I $(INC_DIR) -I /usr/local/netcdf3-ifort/include  
 

The default Fortran compiler flags for the main source code: 
 

FFLAGS_DEFAULT =  -fp-model precise -assume byterecl -convert big_endian 
FFLAGS_FULLOPT =  -O3  
FFLAGS         =  $(FFLAGS_OPT) $(FFLAGS_DEFAULT) $(INC_FLAGS) $(LDFLAGS) –DLINUX 

 

Note that the flag ‘convert big_endian” switches the byte order from the native “little 
endian” to “big endian.” This allows GSI to ingest “big endian” binary files and there by 
maintaining compatibility with legacy NOAA output. 
 

The default Fortran compiler flags for the external libraries: 
 
FFLAGS_BACIO   =  -O3 $(FFLAGS_DEFAULT)  
FFLAGS_BUFR    =  -O3 $(FFLAGS_DEFAULT) $(FFLAGS_i4r8)  
CFLAGS_BUFR    =  -O3 -DUNDERSCORE  
FFLAGS_CLOUD   =  -O3 $(FFLAGS_DEFAULT)  
FFLAGS_CRTM    =  -O2 $(FFLAGS_DEFAULT)  
FFLAGS_GFSIO   =  -O3 $(FFLAGS_DEFAULT) $(FFLAGS_i4r4)  
FFLAGS_SFCIO   =  -O3 $(FFLAGS_DEFAULT) $(FFLAGS_i4r4)  
FFLAGS_SIGIO   =  -O3 $(FFLAGS_DEFAULT) $(FFLAGS_i4r4)  
FFLAGS_SP      =  -O3 $(FFLAGS_DEFAULT) $(FFLAGS_i4r8)  
FFLAGS_W3      =  -O3 $(FFLAGS_DEFAULT)  
#  

 

The default CPP path and flags. If your system has multiple versions of cpp and you do not 
wish to use the version in your path, it may be necessary to specify the specific version 
here  
 

CPP            =  cpp  
CPP_FLAGS      =  -C -P -D$(BYTE_ORDER) -D_REAL8_ -DWRF -DLINUX  
CPP_F90FLAGS   =  -traditional-cpp -lang-fortran  
 

The MPI compiler definitions: 
 
DM_FC          =  mpif90 –f90=$(SFC) 
DM_F90         =  mpif90 –free –f90=$(SFC) 
DM_CC          =  gcc  
 

A few comments should be made here about the use of the mpif90 wrapper to invoke the 
“parallel” compiler build. The default version of the build shown here has the additional 
flag –f90=$(SFC) following the call to mpif90. This flag specifies what compiler is to 
be used for the parallel build. In this example  SFC = ifort there by telling the script to 
use the Intel compiler. This is the standard with the open source versions of MPI such as 
MPICH2 and OPENMPI.  Supercomputer venders such as SGI, CRAY, and IBM no longer 
follow this convention.  Depending on the vendor, including the –f90= flag results in, at 
the least, compiler warnings, and at most, compiler errors. Because of this situation, the 
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release code has an extra build option for each of the compilers ,“Vendor supplied MPI,” 
which removes the –f90= flag from the build rules.  
 
Unfortunately this is not the end of this story. The two vendors SGI MPT and IBM PE have 
done away with the mpif90 wrapper completely and instead prefer to call the Intel 
compiler directory with an additional MPI flag: 
 

DM_FC          =  ifort  
DM_F90         =  ifort –free  

 
 This will be addressed in next section illustrating how to modify the build rules.  
 
 The default C compiler flags: 

 
CFLAGS  =  -O0 -DLINUX -DUNDERSCORE  
CFLAGS2 =  -DLINUX -Dfunder -DFortranByte=char -DFortranInt=int -DFortranLlong='long 
long'  
 

The default library paths and names 
• Variable LAPACK_PATH needs to point to the MKL library location 
• The library names may be different on other systems 

 
MYLIBsys       = -L$(LAPACK_PATH) -mkl=sequential 

 

NetCDF path information 
• Older versions of NetCDF only have the single library –lnetcdf. If you are using an 

older version you may need to remove the first library name. 
 

NETCDFPATH      =  /usr/local/netcdf3-ifort  
NETCDFLIBS      =  -lnetcdff -lnetcdf $(NETCDF_PATH)  

 

It should not be necessary to modify anything below the NetCDF environment variables. 
 
 

2.2.2 Modification Example  
 

To demonstrate how one would go about modifying the configuration resource file, the 
generic Linux/Intel configuration will be ported to build on an SGI MPT Linux cluster 
called Zeus. Zeus comes with a vender-supplied version of MPI, which necessitates 
modification of the MPI paths.   
 
The first change is that Zeus does not use the traditional MPI wrappers such as mpif90 to 
invoke the compiler. Instead the Intel compiler is called directly with an additional –lmpi 
flag to specify an MPI build. Therefore the DM compiler definitions become: 
 

DM_FC          =  ifort  
DM_F90         =  ifort –free  
DM_CC          =  gcc  

 
Next, additional link flags for MPI are needed. These are in bold. 
 
LDFLAGS        =  -Wl,-rpath,/usr/local/netcdf3-ifort/lib -L$MPI_ROOT/lib -lmpi -openmp  
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Then add the path to the MPI include directory, along with the additional Fortran flag.  
 
FFLAGS_DEFAULT =  -msse2 -fp-model precise -assume byterecl  -I$MPI_ROOT/include  

 

An equivalent include path for the C flags are also needed.  
 
CFLAGS         =  -O0 -DLINUX -DUNDERSCORE -I$MPI_ROOT/include 
 

These changes should be saved to the users configure.gsi resource file and tested. Once 
they are confirmed to work, they may be moved into the configure.defaults file located 
in the arch/ directory as a new build target.  
 
To save your new build configuration, open the file configure.defaults, located in the 
arch/ directory. You will notice that it contains a collection of platform/compiler specific 
entries. The first entry is for the IBM platform, using the xlf compiler with 64-bit word 
size. This entry is indicated by a label at the top of the block starting with the tag #ARCH. 
For the 64-bit IBM build, the tag is: 
 
 #ARCH AIX 64-bit   #dmpar 

 
The block for the 64-bit IBM build is immediately followed by the 32-bit IBM build entry, 
which is indicated by the tag: 
 
 #ARCH AIX 32-bit   #dmpar 

 
with each subsequent build specification is delineated by a similar tag.  
 
For our port of the generic Intel build to Zeus, locate the tag for the Linux/Intel build with 
64 bit words. Its header looks like this:  
 

#ARCH Linux x86_64, Intel compiler (ifort & gcc) # (dmpar,optimize) 

 
Duplicate this entry and give it a unique name by modifying the ARCH entry. 
  

#ARCH Linux x86_64, Intel compiler SGI MPT (ifort & gcc) # 
(dmpar,optimize) 

 

Then update the variables to match the settings in the configure.gsi resource file tested 
previously, and save your changes. Now when you run the ./configure script, there will be 
a new build option for an SGI MPT build.   
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Chapter 3: Advanced Topics on Run and Diagnosis 
 
The basic skills of running GSI and diagnosing GSI results are introduced in the Chapter 3 
and Chapter 4 of the GSI User’s Guide. This chapter discusses some complex issues for 
advanced users to further tune and diagnosis GSI runs. 
 
 

3.1 Convergence Information from File fort.220 
 

In file fort.220, users can find more detailed minimization information about each 
iteration. The following example uses the first two iterations to explain the meaning of 
each value: 

 
Minimization iteration           0 

1) 
 J= 0.000000000000000000E+00 0.000000000000000000E+00 0.000000000000000000E+00 
    0.000000000000000000E+00 0.000000000000000000E+00 0.000000000000000000E+00 
    0.000000000000000000E+00 0.000000000000000000E+00 0.118329009942697698E+05 
    0.190285043373867524E+05 0.401338098573457983E+05 0.468178247339593265E+04 
    0.000000000000000000E+00 0.000000000000000000E+00 0.000000000000000000E+00 
    0.000000000000000000E+00 0.000000000000000000E+00 0.000000000000000000E+00 
    0.000000000000000000E+00 0.000000000000000000E+00 0.000000000000000000E+00 
    0.185513606236281089E+05 0.100380070802053093E+06 0.000000000000000000E+00 
    0.000000000000000000E+00 0.000000000000000000E+00 0.000000000000000000E+00 
    0.000000000000000000E+00 0.000000000000000000E+00 0.000000000000000000E+00 
    0.000000000000000000E+00 0.000000000000000000E+00 

2) 
 b=-0.310927744401462716E+04 0.000000000000000000E+00 0.000000000000000000E+00 
    0.000000000000000000E+00 0.000000000000000000E+00 0.000000000000000000E+00 
    0.000000000000000000E+00 0.000000000000000000E+00 0.410038969466198277E+06 
    0.723694789994664703E+06 0.287063341578062015E+06 0.294343224843158402E+05 
    0.000000000000000000E+00 0.000000000000000000E+00 0.000000000000000000E+00 
    0.000000000000000000E+00 0.000000000000000000E+00 0.000000000000000000E+00 
    0.000000000000000000E+00 0.000000000000000000E+00 0.000000000000000000E+00 
    0.357063077297121385E+06 0.259969713154007923E+08 0.000000000000000000E+00 
    0.000000000000000000E+00 0.000000000000000000E+00 0.000000000000000000E+00 
    0.000000000000000000E+00 0.000000000000000000E+00 0.000000000000000000E+00 
    0.000000000000000000E+00 0.000000000000000000E+00 

3) 
 c= 0.310927744401462659E+08 0.000000000000000000E+00 0.000000000000000000E+00 
    0.000000000000000000E+00 0.000000000000000000E+00 0.000000000000000000E+00 
    0.000000000000000000E+00 0.000000000000000000E+00 0.595529299391540965E+08 
    0.968629709661563464E+08 0.320963665012150593E+08 0.207128030095876056E+07 
    0.000000000000000000E+00 0.000000000000000000E+00 0.000000000000000000E+00 
    0.000000000000000000E+00 0.000000000000000000E+00 0.000000000000000000E+00 
    0.000000000000000000E+00 0.000000000000000000E+00 0.000000000000000000E+00 
    0.141290320912310097E+09 0.325532123706306098E+11 0.000000000000000000E+00 
    0.000000000000000000E+00 0.000000000000000000E+00 0.000000000000000000E+00 
    0.000000000000000000E+00 0.000000000000000000E+00 0.000000000000000000E+00 
    0.000000000000000000E+00 0.000000000000000000E+00 

4) 
EJ= 0.277433945264109695E+02 0.000000000000000000E+00 0.000000000000000000E+00 
    0.000000000000000000E+00 0.000000000000000000E+00 0.000000000000000000E+00 
    0.000000000000000000E+00 0.000000000000000000E+00 0.111001385595905754E+05 
    0.177294227112127074E+05 0.396140623480684926E+05 0.462763172936301229E+04 
    0.000000000000000000E+00 0.000000000000000000E+00 0.000000000000000000E+00 
    0.000000000000000000E+00 0.000000000000000000E+00 0.000000000000000000E+00 
    0.000000000000000000E+00 0.000000000000000000E+00 0.000000000000000000E+00 
    0.179761712946645360E+05 0.741628809765858670E+05 0.000000000000000000E+00 
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    0.000000000000000000E+00 0.000000000000000000E+00 0.000000000000000000E+00 
    0.000000000000000000E+00 0.000000000000000000E+00 0.000000000000000000E+00 
    0.000000000000000000E+00 0.000000000000000000E+00 

5) 
 stepsize estimates =  0.100000000000000005E-03  0.944604610006952448E-03  

0.944604610006930960E-03 
 stepsize stprat    =  0.894135600291783517E+00  0.227490031410343044E-13 
 stepsize guesses   =  0.100000E-03  0.900000E-04  0.110000E-03  0.000000E+00  0.944605E-03  

0.935159E-03  0.954051E-03 
 penalties          =  0.000000E+00  0.559315E+03 -0.552732E+03  0.588939E+04 -0.234810E+05 

-0.234780E+05 -0.234780E+05 
pcgsoi: gnorm(1:2)  3.109277444014627486E+07  3.109277444014627486E+07 
costterms Jb,Jo,Jc,Jl  =   1   0  0.000000000000000000E+00  1.946084290880794579E+05  

0.000000000000000000E+00  0.000000000000000000E+00 
cost,grad,step,b,step? =   1   0  1.946084290880794579E+05  5.576089529423489694E+03  

9.446046100069309653E-04  0.000000000000000000E+00  good 
estimated penalty reduction this iteration   1   0  2.937037807406784850E+04  

1.509203800251368577E-01% 
penalty and grad reduction WRT outer and initial iter=   1   0  1.000000000000000000E+00  

1.000000000000000000E+00  1.000000000000000000E+00  
1.000000000000000000E+00 

 
Minimization iteration           1 
 J= 0.277433945264109712E+02 0.000000000000000000E+00 0.000000000000000000E+00 
    0.000000000000000000E+00 0.000000000000000000E+00 0.000000000000000000E+00 
    0.000000000000000000E+00 0.000000000000000000E+00 0.111001385595905754E+05 
    0.177294227112127073E+05 0.396140623480684925E+05 0.462763172936301231E+04 
    0.000000000000000000E+00 0.000000000000000000E+00 0.000000000000000000E+00 
    0.000000000000000000E+00 0.000000000000000000E+00 0.000000000000000000E+00 
    0.000000000000000000E+00 0.000000000000000000E+00 0.000000000000000000E+00 
    0.179761712946645356E+05 0.741628809765858657E+05 0.000000000000000000E+00 
    0.000000000000000000E+00 0.000000000000000000E+00 0.000000000000000000E+00 
    0.000000000000000000E+00 0.000000000000000000E+00 0.000000000000000000E+00 
    0.000000000000000000E+00 0.000000000000000000E+00 
 b=-0.103454706240741566E+06 0.000000000000000000E+00 0.000000000000000000E+00 
    0.000000000000000000E+00 0.000000000000000000E+00 0.000000000000000000E+00 
    0.000000000000000000E+00 0.000000000000000000E+00 0.471859414082640217E+06 
    0.836887408435857958E+06 0.444144650683562874E+06 0.493857599036264164E+05 
    0.000000000000000000E+00 0.000000000000000000E+00 0.000000000000000000E+00 
    0.000000000000000000E+00 0.000000000000000000E+00 0.000000000000000000E+00 
    0.000000000000000000E+00 0.000000000000000000E+00 0.000000000000000000E+00 
    0.143436922590024884E+06-0.241501731777713210E+08 0.000000000000000000E+00 
    0.000000000000000000E+00 0.000000000000000000E+00 0.000000000000000000E+00 
    0.000000000000000000E+00 0.000000000000000000E+00 0.000000000000000000E+00 
    0.000000000000000000E+00 0.000000000000000000E+00 
 c= 0.744926644276673220E+08 0.000000000000000000E+00 0.000000000000000000E+00 
    0.000000000000000000E+00 0.000000000000000000E+00 0.000000000000000000E+00 
    0.000000000000000000E+00 0.000000000000000000E+00 0.187038212807235956E+09 
    0.245074032578180438E+09 0.116810874950575594E+09 0.631952836573825778E+07 
    0.000000000000000000E+00 0.000000000000000000E+00 0.000000000000000000E+00 
    0.000000000000000000E+00 0.000000000000000000E+00 0.000000000000000000E+00 
    0.000000000000000000E+00 0.000000000000000000E+00 0.000000000000000000E+00 
    0.327987495483898158E+09 0.597416983300266383E+11 0.000000000000000000E+00 
    0.000000000000000000E+00 0.000000000000000000E+00 0.000000000000000000E+00 
    0.000000000000000000E+00 0.000000000000000000E+00 0.000000000000000000E+00 
    0.000000000000000000E+00 0.000000000000000000E+00 
EJ= 0.907421173071728001E+02 0.000000000000000000E+00 0.000000000000000000E+00 
    0.000000000000000000E+00 0.000000000000000000E+00 0.000000000000000000E+00 
    0.000000000000000000E+00 0.000000000000000000E+00 0.104139003066849756E+05 
    0.165779309617118123E+05 0.390129888433980952E+05 0.456584643970885767E+04 
    0.000000000000000000E+00 0.000000000000000000E+00 0.000000000000000000E+00 
    0.000000000000000000E+00 0.000000000000000000E+00 0.000000000000000000E+00 
    0.000000000000000000E+00 0.000000000000000000E+00 0.000000000000000000E+00 
    0.175622634769410845E+05 0.567994645981838240E+05 0.000000000000000000E+00 
    0.000000000000000000E+00 0.000000000000000000E+00 0.000000000000000000E+00 
    0.000000000000000000E+00 0.000000000000000000E+00 0.000000000000000000E+00 
    0.000000000000000000E+00 0.000000000000000000E+00 
 stepsize estimates =  0.944604610006930965E-03  0.577090170662210155E-03  
0.577090170662210132E-03 
 stepsize stprat    =  0.636840580602851869E+00  0.386854261310281249E-16 
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 stepsize guesses   =  0.944605E-03  0.850144E-03  0.103907E-02  0.000000E+00  0.577090E-03  
0.571319E-03  0.582861E-03 
 penalties          =  0.000000E+00 -0.367282E+04  0.475604E+04  0.120164E+05 -0.819848E+04 
-0.819646E+04 -0.819646E+04 
pcgsoi: gnorm(1:2)  3.502903930399505794E+07  3.502903930399504304E+07 
costterms Jb,Jo,Jc,Jl  =   1   1  2.774339452641097026E+01  1.652103076194851892E+05  
0.000000000000000000E+00  0.000000000000000000E+00 
cost,grad,step,b,step? =   1   1  1.652380510140116094E+05  5.918533543369932886E+03  
5.770901706622101049E-04  1.126597414824659582E+00  good 
estimated penalty reduction this iteration   1   1  2.021491427007579478E+04  
1.038748134641514359E-01% 
penalty and grad reduction WRT outer and initial iter=   1   1  8.490796199748631423E-01  
1.061412933228467859E+00  8.490796199748631423E-01  1.126597414824660026E+00 
 
 

For each inner iteration, there are 5 sections of outputs. The 1st iteration is labeled with 
numbers 1 to 5, with a detailed explanation below:  
 

1 – 4) detailed information on the cost function (J=), b term for estimate stepsize 
(b=), c term for estimate stepsize (c=), estimate terms in penalty (EJ). There are 
32 (8 + number of observation types) items listed in each and the meanings of 
these items are: 

 
1 contribution from background, satellite radiance bias, and 

precipitation bias 
2  place holder for future linear linear term 
3  contribution from dry pressure constraint term (Jc) 
 
4  contribution from negative moisture constraint term (Jl/Jq) 
5  contribution from excess moisture term (Jl/Jq) 
6  contribution from negative gust constraint term 
7  contribution from negative vis constraint term 
8  contribution from negative pblh constraint term 
 
9-32: contributions to Jo from different observation types: 
 
9  contribution from ps observation term 
10 contribution from t observation term 
11 contribution from w observation term 
12 contribution from q observation term 
13 contribution from spd observation term 
14 contribution from srw observation term 
15 contribution from rw observation term 
16 contribution from dw observation term 
17 contribution from sst observation term 
18 contribution from pw observation term 
19 contribution from pcp observation term 
20 contribution from oz observation term 
21 contribution from o3l observation term (not used) 
22 contribution from gps observation term 
23 contribution from rad observation term 
24 contribution from tcp observation term 
25 contribution from lagrangian tracer  
26 contribution from carbon monoxide  
27 contribution from modis aerosol aod 
28 contribution from level modis aero aod 
29 contribution from in-situ pm2_5 obs 
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30 contribution from gust monoxide  
31 contribution from vis aerosol aod 
32 contribution from pb1h modis aero aod 

 
For further understand of these terms, it is suggested that the users check 
stpcalc.f90 for the code including the above information. 
 
 

Some terms in section 5 are explained below:  
 

• stepsize estimates: final step size estimates 
• stepsize stprat: convergence in stepsize estimation 
• gnorm(1:2): 1=(norm of the gradient)2, 2= (norm of the gradient)2 
• Jb,Jo,Jc,Jl: the values of cost function, background term (Jb), observations 

term (Jo), dry pressure constraint term (Jc), and negative and excess moisture term 
(Jl).  

• cost,grad,step,b :  see explanations in the 1st part of this section. 
• estimated penalty reduction this iteration: 

(penalty current solution- estimate of penalty for new solution),  
(penalty current solution- estimate of penalty for new solution)/(original penalty) 

• penalty and grad reduction WRT outer and initial iter=  
Penalty reduction to the 1st inner loop value, Grad reduction to the 1st inner loop  value , 
Penalty reduction to the original (1st outer) value, Grad reduction to the original (1st outer) 
value 

 
 
 

3.2 Use Bundle To Configure Control, State Variables And Background 
Fields  

 
Since the GSI release version 3.0, the control variables, state variables, and background 
fields can be configured through a new info file named “anavinfo”. Different GSI 
applications need a different anavinfo file to setup the control variables, state variables, and 
background fields. In the ./fix directory of the release package, there are many example 
anavinfo files for different GSI applications. Because this is a work in progress, users 
should use one of the sample anavinfo files instead of making a new one. The released GSI 
run script has added the link for this new info file.   
 
Below is an example of an avaninfo file for an ARW (anavinfo_arw_netcdf) case:  
 

met_guess:: 
!var     level    crtm_use    desc              orig_name 
  cw       30      10         cloud_condensate  cw 
#  ql       30      10         cloud_liquid      ql 
#  qi       30      10         cloud_ice         qi 
#  qr       30      10         rain              qr 
#  qs       30      10         snow              qs 
#  qg       30      10         graupel           qg 
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:: 
 
state_vector::   
!var     level  itracer amedge  source     funcof 
 u        30      0      no     met_guess    u 
 v        30      0      no     met_guess    v 
 tv       30      0      no     met_guess    tv 
 tsen     30      0      no     met_guess    tv,q 
 q        30      1      no     met_guess    q 
 oz       30      1      no     met_guess    oz 
 cw       30      1      no     met_guess    cw 
 p3d      31      0      yes    met_guess    p3d 
 ps        1      0      no     met_guess    p3d 
 sst       1      0      no     met_guess    sst 
:: 
control_vector:: 
!var     level  itracer as/tsfc_sdv  an_amp0   source  funcof 
 sf       30      0       1.00        -1.0     state    u,v 
 vp       30      0       1.00        -1.0     state    u,v 
 ps        1      0       0.50        -1.0     state    p3d 
 t        30      0       0.70        -1.0     state    tv 
 q        30      1       0.70        -1.0     state    q 
 oz       30      1       0.50        -1.0     state    oz 
 sst       1      0       1.00        -1.0     state    sst 
 cw       30      1       1.00        -1.0     state    cw 
 stl       1      0       1.00        -1.0     motley   sst 
 sti       1      0       1.00        -1.0     motley   sst 
:: 

 
There are three sections in this file: 

met_guess::   section to configure background fields 
state_vector:: section to configure state variables 
control_vector:: section to configure control variables 

 
In each section, the 1st column sets up the variable name and 2nd column sets up the vertical 
levels. The 4th column in the section control_vector is the normalized scale factor for the 
background error variance. Please be aware that starting from GSI version 3.4, the vertical 
levels (2nd column) in the anavinfo file should exactly match the vertical levels of the GSI 
background field. And the variables might also be different between different versions of 
GSI code and different GSI applications. Users are advised to modify the anavinfo file that 
comes with the release code to suit their own application. 
 
 

3.3 Using Observations Station Uselist And Rejection List In GSI 
 
The GSI tries to use all available observations but has also to make significant efforts to 
avoid bad observations getting into the analysis. The data quality control before GSI and 
the gross check inside GSI are two major ways to find and toss the bad observations. In 
addition, GSI can also use station rejection list and uselist to further control which data 
should be used in the GSI. The rejection list assumes all observations should be used in the 
GSI analysis except ones in the rejection list, while the uselist assumes all observations 
should NOT be used except ones in the uselist. 
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3.3.1 Surface Observation Rejection And Use List 
 
GSI has many kinds of surface rejection list and uselist files. Those files are listed and 
explained in the following table. If those files are not existing in a GSI run, then the 
function of using rejection list and uselist will be turned off automatically.  
 
 
File name used in 
GSI 

Rejection list 
and uselist 
array in GSI 

Content Sample files in fix directory 

mesonetuselist cprovider mesonet provider names 
from the uselist 

nam_mesonet_uselist.txt 

w_rejectlist w_rjlist station names from the 
reject list for wind 

new_rtma_w_rejectlist 

t_rejectlist t_rjlist station names from the 
reject lists for temperature 

new_rtma_t_rejectlist 
t_day_rejectlist t_day_rjlist new_rtma_t_day_rejectlist 
t_night_rejectlist t_night_rjlist new_rtma_t_night_rejectlist 
p_rejectlist p_rjlist station names from the 

reject list for surface 
pressure 

new_rtma_p_rejectlistmore  

q_rejectlist q_rjlist station names from the 
reject lists for specific 
humidity 

new_rtma_q_rejectlist 
q_day_rejectlist q_day_rjlist new_rtma_q_day_rejectlist 
q_night_rejectlist q_night_rjlist new_rtma_q_night_rejectlist 
mesonet_stnuselist csta_winduse 'good' mesonet station 

names from the station 
uselist 

nam_mesonet_stnuselist.txt 

wbinuselist csta_windbin wind direction stratified 
wind accept lists 

new_rtma_wbinuselist 

Note, this table is based on the subroutine init_rjlists in file sfcobsqc.f90. 
 
 
At the beginning of subroutine read_prepbufr, the subroutine init_rjlists is called to read 
station names from the rejection list and uselist files. When a surface observation is read in, 
subroutine get_usagerj is called to compare the station name with the rejection list and 
uselist to reset the usage flag of the observation.  
 
For rejection list of temperature, moisture, surface pressure, and wind observation other 
than mesonet wind:  

• if incoming usage value is >=6. then do nothing since read_prepbufr has already 
flagged this observation and assigned a specific usage value to it; 

• if usage value is < 6 and those observations are found in the rejection list, set 
usage=5000.  

• if usage value is < 6 and those observations are not found in the rejection list, keep 
the original usage value. 
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Now, only mesonet wind observation has both uselist and rejection list, the details of apply 
those lists are if usage value is < 6, then: 

• set usage = 6000 and check if this wind observation is found in one of the three 
uselist: 

o mesonet provider names uselist 
o 'good' mesonet station names uselist 
o wind direction stratified wind accept lists 

if found this station in uselist, then set original usage value, otherwise, the usage 
flag of this station is 6000. 

• After uselist check, all mesonet observations then go through the rejection list just 
as other surface wind observations to check if toss this station. So, the stations 
flagged to use in uselist check may be flagged to large value again in the rejection 
list. 

As a background knowledge, the observation with usage flag larger than outer loop number 
will not be used in the GSI analysis. The above check of the rejection list and uselist are 
summarized in the following table: 
 

Observation type List type Rejection list and 
uselist array in GSI 

If station name match, 
Usage flag change to  

Temperature: 
 

Reject list t_rjlist 
t_day_rjlist 
t_night_rjlist 

r5000 
r5100 
r5100 

Moisture 
 

Reject list q_rjlist 
q_day_rjlist 
q_night_rjlist 

 
r5100 
r5100 

Ps Reject list p_rjlist r5000 
surface wind  
other than mesonet 

Reject list w_rjlist r5000 

 
 
 
Mesonet wind 
 

Uselist  
 

Set all mesonet obs to 
usage_rj=r6000, then 
• cprovider 
• csta_winduse 
• csta_windbin 

 
 
usage_rj0 
usage_rj0 
usage_rj0 
 

Reject list w_rjlist r6100 
r6200 

 
 

3.3.2 Aircraft Observation Rejection 
 
GSI also has rejection list for aircraft observations ( PrepBUFR type 129 to 140 and 229 to 
240), which are listed and explained in the following table. Again, if those files are not 
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existing in a GSI run, then the function of using rejection list and uselist will be turned off 
automatically.  
 
File name used in 
GSI 

Array in GSI Content Sample files in fix directory 

current_bad_aircraft t_aircraft_rjlist Aircraft tag number from 
the reject list for 
temperature 

rap_current_bad_aircraft.txt 

w_aircraft_rjlist Aircraft tag number from 
the reject list for wind 

q_aircraft_rjlist Aircraft tag number from 
the reject list for moisture 

 
 
The rejection lists for aircraft are used in the same way just like the rejection list for surface 
data. But the rejection list for temperature, wind, and moisture are save in the same file.  
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Chapter 4: GSI Theory  
 
 
The GSI was developed originally as a three-dimensional variational (3DVAR) data 
assimilation system.  It has been evolving to an Ensemble-Var hybrid system in recent 
years.  
 
As a reference for users to understand the basic GSI analysis procedure, a brief summary of 
the 3DVAR mathematical theory and the minimization steps used in the GSI is given in 
this Chapter.  
 
 

4.1 3DVAR Equations: 
 
The basic 3DVAR equation is: 
 

𝐽 = !
! 𝑥𝑎 − 𝑥𝑏

𝑇𝐵!! 𝑥𝑎 − 𝑥𝑏 + !
! 𝐻𝑥𝑎 − 𝑜𝑜

𝑇𝑂!! 𝐻𝑥𝑎 − 𝑜𝑜 + 𝐽𝑐 (1) 
where: 

: Analysis fields 
: Background fields 
: Background error covariance matrix 
: Observation operator 
: Observations 
: Observation error covariance  

Jc:  Constraint terms (e.g., dynamical constraint, moisture constraint) 
 

Define an analysis increment (Δx=) , then equation (1) becomes: 
 
 𝐽 = !

!𝑥
𝑇𝐵!!𝑥+ !

! 𝐻(𝑥𝑏 + 𝑥)− 𝑜𝑜
𝑇𝑂!! 𝐻(𝑥𝑏 + 𝑥)− 𝑜𝑜 + 𝐽𝑐  (2) 

 
By assuming the linearity of the observation operator H, equation (2) can be written as: 
 
 𝐽 = !

!𝑥
𝑇𝐵!!𝑥+ !

! 𝐻𝑥− (𝑜𝑜 −𝐻𝑥𝑏)
𝑇
𝑂!! 𝐻𝑥− (𝑜𝑜 −𝐻𝑥𝑏) + 𝐽𝑐 (3) 

 
Next, define the observation innovation as , equation (3) becomes: 
 
 𝐽 = !

!𝑥
𝑇𝐵!!𝑥+ !

! 𝐻𝑥− 𝑜 𝑇𝑂!! 𝐻𝑥− 𝑜 + 𝐽𝑐    (4) 
 
 
 
 

ax

bx
B
H
oo
O

a bx x x= −

o bo o Hx= −
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4.2 Iterations To Find The Optimal Results 
 
To improve convergence ,GSI preconditions its cost function by defining a new variable 

. Equation (4), in terms of the new variable y,  becomes: 
 
 𝐽 = !

!𝑦
𝑇𝐵𝑦+ !

! 𝐻𝐵𝑦− 𝑜 𝑇𝑂!! 𝐻𝐵𝑦− 𝑜 + 𝐽𝑐    (5) 
 
Using the chain rule, the gradients of background and observation parts of the cost function 
(4) with respect to x and cost function (5) with respect to y have the form: 
 
        (6) 
      (7) 
 
Equations (6) and (7) are simultaneously minimized by employing an iterative Conjugate 
Gradient process.  
 
Start by assuming: 
 
  
 
Then iterate over n: 
 

 
∇𝑥𝐽𝑛 = 𝐵!!𝑥𝑛!! +𝐻𝑇𝑂!! 𝐻𝑥𝑛!! − 𝑜 = 𝑦𝑛!! +𝐻𝑇𝑂!! 𝐻𝑥𝑛!! − 𝑜  

∇𝑦𝐽𝑛 = 𝐵∇𝑥𝐽𝑛 
 
Dir· xn = ∇yJn + βDir· xn-1  
Dir· yn = ∇xJn + βDir· yn-1  

 
xn = xn-1 + αDir·xn 
yn = yn-1 + αDir·yn 

 
Until either the maximum number of iterations has been reached or the gradient is 
sufficiently minimized. 
 
During the above iteration, the  is calculated in subroutine pcgsoi and the stepsize ( ) is 
calculated in subroutine stpcalc. 
 
Please note that the current version GSI has more minimization options in addition to the 
one described above. Such as: 

• Minimize cost function using sqrt(B) preconditioner when namelist variable lsqrtb 
is set to true. 

• Minimization using Bi-conjugate gradient for minimization when namelist variable 
lbicg is set to true 

1y B x−=

1 1( )T
x J B x H O Hx o− −∇ = + −

1( )T T T
y J B y B H O HBy o−∇ = + − xB J= ∇

0 0 0x y= =

β α
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4.3 Analysis Variables 
 
Typically, there are seven analysis variables used in GSI analysis:  
 

Stream function (ψ) 
Unbalanced velocity potential (χ)  
Unbalanced virtual temperature (T)  
Unbalanced surface pressure (P)  
Pseudo relative humidity [qoption =1] or normalized relative humidity [qoption=2]  
Ozone mixing ratio (only for global GSI)  
Cloud condensate mixing ratio (only for global GSI) 
 

With broader application of GSI for chemical data assimilation, some new variables, such 
as trace gases, aerosols, and chemistry are added as analysis variables. Also, gust and 
visibility were added as analysis variables for RTMA application.  
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Chapter 5: GSI Code Structure 
 
 
This Chapter introduces the basic code structure of the GSI. Section 5.1 describes the main 
processes of the GSI consisting of the three main routines. Sections 5.2 to 5.5 introduce the 
code related to four important parts of GSI: background IO, observation ingestion, 
observation innovation calculation, and minimization iteration. 
 
 

5.1 Main Process 
 
At the top most level of abstraction, the GSI code is divided into three phases; the 
initialization, the run, and the finalize phase. The philosophy behind this division is to 
create a modular program structure with tasks that are independent of one another.  
 
The main top-level driver routine is called gsimain and is located in the file gsimain.f90. 
Ninety percent of gsimain.f90 is a variety of useful Meta data. 
 

• Major change history 
• List of input and output files  
• List of subroutines and modules 
• List of external libraries  
• Complete list of exit states 
• A discussion of important namelist options 
 

Possibly the most important of these is the list of exit codes. Should the GSI run fail from 
an internal error, the exit code may provide sufficient insight to resolve the issue. The final 
lines of gsimain.f90 consist of the three main calls to initialize, run and finalize. The 
table below summarizes each of these phases. 
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gsimain.f90 main steps in each call 
 
 
 
 
 
 

call gsimain_initialize 
(gsimod.F90) 

 
• gsi_4dcoupler_parallel_init 
• MPI initialize 
• Initialize defaults of variables in modules 
• Read in user input from namelist 
• 4DVAR setup if it is true (not supported) 
• Check user input for consistency among 

parameters for given setups 
• Optional read in namelist for single observation 

run 
• Write namelist to standard out 
• If this is a wrf regional run, the run interface 

with wrf:   
call convert_regional_guess (details in section 6.2.2) 

• Initialize variables, create/initialize arrays 
• Initialize values in radinfo and aeroinfo 
 

 
call gsimain_run 

(gsimod.F90) 

 
• Call the main GSI driver routine 
      call gsisub(mype) 
      (check next page for steps in gsisub) 
 

If 4DVAR, then: 
call gsi_4dcoupler_final_traj 

 

 
call gsimain_finalize 

(gsimod.F90) 

 
• Deallocate arrays 
• MPI finalize  
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GSI main process (continue) 
 
subroutine gsisub (gsisub.F90) 
         high level driver for GSI 
If not ESMF 
• Allocate grid arrays 
• Get date, grid, and other information 

from background files 
End if not ESMF 
• If single observation test: 

Create prep.bufr file with single obs 
in it 

• If regional analysis: 
Read in Level 2 land radar winds 
and create radar wind superob file 

call radar_bufr_read_all 
• If initial pass: 

Read info files for assimilation of 
various observations 

• If initial pass: 
Computer random number for 
precipitation forward model 
 

• Complete setup and execute external 
and internal minimization loops  
if (lobserver) then 

if initial pass: call observer_init 
           call observer_run 

if last pass: call observer_finalize 
else 

call glbsoi(mype) 
endif 

 
• If last pass: 

Deallocate arrays 
 

 
Note:  lobserver = if true, calculate 

observation departure 
vectors only. 

 
 
 
 
 

subroutine glbsoi (glbsoi.f90) 
driver for GSI 

• Initialize timer for this procedure  
• If l_hyb_ens is true, then initialize 

machinery for hybrid ensemble 3dvar 
• Check for alternative minimizations 
• Initialize observer 
• Check GSI options against available 

number of guess time levels 
• Read observations and scatter 
• Create/setup background error and 

background error balance 
• If l_hyb_ens is true, then read in 

ensemble perturbations 
• If 4d-var and not 1st outer loop, then 

read output from previous 
minimization. 

• Set error (variance) for predictors 
(only use guess) 

• Set errors and create variables for 
dynamical constraint 

• Main outer analysis loop 
 
do jiter=jiterstart,jiterlast 
Ø Set up right hand side of analysis equation 

call setuprhsall (details in section 6.2.4) 
Ø Set up right hand side of adjoint of analysis 

equation if forecast sensitivity to observations 
Ø Inner minimization loop 

if (laltmin) then 
if (lsqrtb) call sqrtmin 
if (lbicg)  call bicg 

else 
call pcinfo 
call pcgsoi (details in section 6.2.5) 

endif 
Ø Save information for next minimization 
Ø Save output of adjoint of analysis equation 
end do ! jiter 
 

• Calculate and write O-A information 
• Deallocate arrays 
• Write updated bias correction 

coefficients 
• Finalize observer 
• Finalize timer for this procedure 
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5.2 GSI Background IO (for 3DVAR) 
 Read background  
Background files Convert to internal format     Read in and distribution 
 
 
 
NMM NetCDF 

 
NMM binary 

 
ARW NetCDF 

 
ARW binary 

 
RTMA(twodvar) 

 
nems_nmmb 

 
CMAQ 

 
 
global GFS  

 

         (regional_io.f90) 
convert_regional_guess 

convert_netcdf_nmm 

convert_binary_nmm 

convert_netcdf_mass 

convert_binary_mass 

convert_binary_2d 

convert_nems_nmmb 

 
 
 
 
 
 
 
 

 
read_guess (read_guess.F90) 

read_wrf_nmm_netcdf_guess 

read_wrf_nmm_binary_guess 

read_wrf_mass_netcdf_guess 

read_wrf_mass_binary_guess 

read_2d_guess 

read_nems_nmmb_guess 

read_cmaq_guess 

read_bias (bias correction fields) 
if ( use_gfs_nemsio ) then 

read_nems 
read_nems_chem 

else 
read_gfs 
read_gfs_chem 

 

   
 Output analysis result  
 
write_all (write_all.F90) 

 
 
 
 
 
write_regional_analysis 
 
 
 
 
 
if ( use_gfs_nemsio )  

write_nems 
else 

write_gfs 
write_bias (bias correction) 

 

               (regional_io.f90) 
write_regional_analysis  

wrwrfnmma_netcdf 
update_netcdf_nmm 
wrwrfnmma_binary 

wrwrfmassa_netcdf 
update_netcdf_mass 
wrwrfmassa_binary 

wr2d_binary 

wrnemsnmma_binary 

write_cmaq 

 

Analysis results file 
 
 

NMM NetCDF 
 
NMM binary 

 
ARW NetCDF 

 
ARW binary 

 
RTMA(twodvar) 

 
nems_nmmb 

 
CMAQ 

 
global GFS  

 
 

Note: this chart doesn’t include ensemble member ingest 
for hybrid 
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5.3 Observation Ingestion   
Data type 
(ditype) 

Observation type 
(obstype) 

Subroutine that reads 
data 

 
 
 
 
 
 
conv 
 

t, q, ps, pw, spd, mta_cld, 
gos_ctp, gust, vis 

read_prepbufr 

uv from satwnd read_satwnd 
Not from satwnd read_prepbufr 

sst  
 

from mods read_modsbufr 
not from mods read_prepbufr 

srw read_superwinds 
tcp read_tcps 
lag read_lag 
rw (radar winds Level-2) read_radar 
dw (lidar winds) read_lidar 
rad_ref read_RadarRef_mosaic 
lghtn read_lightning 
larccld read_NASA_LaRC 
pm2_5 read_anowbufr 
pblh read_pblb 

  
 
 
 
 
 
 
 
 
rad 
(satellite 
radiances) 

 
 
(platform) 
not AQUA  

amsua  
 
 
read_bufrtovs 
 
(TOVS 1b data) 

amsub 
msu 
mhs 
hirs4,3,2 
ssu 

(platform) 
AQUA 

airs  
read_airs 
(airs data) 

amsua 
hsb 

atms read_atms 
iasi read_iasi 
cris read_cris 
sndr, sndrd1/2/3/4 read_goesndr 

(GOES sounder data) 
ssmi read_ssmi 
amsre_low/mid/hig  read_amsre 

ssmis, 
ssmis_las/uas/img/env 

read_ssmis 

goes_img read_goesimg 
seviri read_seviri 
avhrr_navy read_avhrr_navy 
avhrr read_avhrr 

ozone subuv2, omi, gome, 
o3lev, mls 

read_ozone 

co mopitt read_co 
pcp pcp_ssmi, pcp_tmi, 

pcp_amsu,pcp_stage3 
read_pcp 

gps gps_ref, gps_bnd read_gps 
aero aod read_aerosol 

Note: This table is based on 
subroutine read_obs in 
read_obs.F90: 
 
• Data type is saved in 

array ditype 
• Observation type is save 

in array obstype. In 
namelist, the observation 
type is dtype 

 

Then in subroutine obs_para 
(obs_para.f90), each 
processor reads through all 
obs_input.* files, pick 
observations within its sub-
domain, and save them into a 
file called: 
pe*.obs-type_outer-loop, 
where * is 4 digital processor 
ID. 

Each observation type uses one or 
more processors to read in the 
data and then write the data into a 
intermediate file called 
obs_input.*, where * is a 
processor ID that is used to read 
in certain observation type. 
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5.4 Observation Innovation Calculation 
Data type 
(ditype) 

Observation type 
(obstype) 

Subroutine 
calculate 

innovation 
 
 
 
 
 
 
conv 
 

t setupt 
uv setupw 
q setupq 
ps setupps 
pw setuppw 
spd setupspd 
sst  setupsst 
srw setupsrw 
tcp setuptcp 
lag setuplag 
rw (radar winds Level-2) setuprw 
dw (lidar winds) setupdw 
pm2_5 setuppm2_5 
gust setupgust 
vis setupvis 
pblh setuppb1h 

  
 
 
 
 
 
 
 
 
 
 
rad 
(satellite 
radiances) 

 
 
 
(platform) 
not AQUA  

amsua  
 
 
 
 
 
 
 
 
 
 
 
setuprad 
 

amsub 
msu 
mhs 
hirs4,3,2 
ssu 

(platform) 
AQUA 

airs 
amsua 
hsb 

atms 
iasi 
cris 
sndr, sndrd1, sndrd2 
sndrd3, sndrd4 
ssmi 
amsre_low/mid/hig 
 ssmis ssmis_* 
goes_img 
seviri 
avhrr_navy 
avhrr 

ozone subuv2, omi, gome,  setupozlay 
o3lev, mls setupozlev 

pcp pcp_ssmi, pcp_tmi, 
pcp_amsu,pcp_stage3 

setuppcp 

co mopitt, subuv2 setupco 
gps gps_ref setupref 

gps_bnd setupbend 

Note: this table is based on subroutine 
setuprhsall in setuprhsall.f90: 
• Data type is saved in array ditype 
• Observation type is in array obstype 
 

• The observation departure from the 
background of each outer loop is 
calculated in subroutine setuprhsall.  

• A array (rdiagbuf) that holds 
observation innovation for diagnosis is 
generated in each setup routine. (Also 
see A.2) 

• The index of the data array for 
temperature in setupt is list below: 

index content 
1 ier obs error 
2 ilon grid relative obs location 

(x) 
3 ilat grid relative obs location 

(y) 
4 ipres pressure 
5 itob t observation 
6 id station id 
7 itime observation time in data 

array 
8 ikxx observation type 
9 iqt flag indicating if 

moisture obs available 
10 iqc quality mark 
11 ier2 original-original obs 

error ratio 
12 iuse use parameter 
13 idomsfc dominant surface type 
14 iskint surface skin temperature 
15 iff10 10 meter wind factor 
16 isfcr surface roughness 
17 ilone longitude (degrees) 
18 ilate latitude (degrees) 
19 istnelv station elevation (m) 
20 iobshgt observation height (m) 
21 izz surface height 
22 iprvd observation provider 
23 isprvd observation subprovider 
24 icat data level category 
25 iptrb t perturbation 
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5.5 Inner Iteration  
 
The inner iteration loop of GSI is where the cost function minimization is computed. GSI 
provides several minimization options, but here we will focus on the preconditioned 
conjugate gradient method.  The inner iteration of the GSI variational analysis is performed 
in subroutine pcgsoi (pcgsoi.f90). inside the following loop: 

 
 
  inner_iteration: do iter=0,niter(jiter) 
 
 … 
 
  end do inner_iteration 
 

The main steps inside the loop are listed as a table below with the corresponding code and 
the terms of equation in Section 6.1. 
 
Steps in inner 
iteration 

Code in pcgsoi.f90 Corresponding equations in 
Chapter 4 (variables are 
defined in Chapter 4) 

Gradient of 
observation term 

call intall 𝐻𝑇𝑂!! 𝐻𝑥𝑛!! − 𝑜  

Add gradient of 
background term 

gradx(i)=gradx(i)+yhatsave(i)  
∇𝑥𝐽𝑛 = 𝐻𝑇𝑂!! 𝐻𝑥𝑛!! − 𝑜 + 𝑦𝑛!! 
 

Apply background 
error covariance 

call bkerror(gradx,grady) ∇𝑦𝐽𝑛 = 𝐵∇𝑥𝐽𝑛 

Calculate norm of 
gradients 

 b=β  

𝛽 =
∇𝑥𝐽𝑛 − ∇𝑥𝐽𝑛!! 𝑇∇𝑦𝐽𝑛

∇𝑥𝐽𝑛 − ∇𝑥𝐽𝑛!! 𝑇
𝐷𝑖𝑟 ∙ 𝑥𝑛

 

 
Calculate new 
search direction 

dirx(i)=-grady(i)+b*dirx(i) 
diry(i)=-gradx(i)+b*diry(i) 

Dir· xn = ∇yJn + βDir· xn-1  
Dir· yn = ∇xJn + βDir· yn-1  

Calculate stepsize call stpcalc stp=𝛼 = 𝑎
𝑏
 Update solution 

inside stpcalc 
xhatsave(i)=xhatsave(i)+stp*dirx(i) 
yhatsave(i)=yhatsave(i)+stp*diry(i) 

xn = xn-1 + αDir·xn 
yn = yn-1 + αDir·yn 

 
 
For detailed steps, advanced developers are suggested to read through the code and send 
questions to gsi_help@ucar.edu. 
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Chapter 6: Static Background Error Covariance 
 
The background error covariance is most important part of variational analysis method to 
determine the impact ratio, distribution, and relations of the analysis increments. In this 
Chapter, we will discuss the issues related  to static background error covariance used in 
the GSI analysis. 
 

6.1 What Is Background Error Covariance 
 
Background error covariance plays a very important role in determining the quality of 
variational analysis for NWP models. It controls what percentage of the innovation 
becomes the analysis increment, how each observation impacts a broad area, and the 
balance among different analysis variables.  
 
Since most of the data assimilation background is model forecasts from a prior time step, 
the background error covariance matrix (B) can be defined as the error covariance of model 
forecasts:  

[Forecast (x) – Truth (xtruth)] 
 

Since the actual state of atmosphere (truth) is not known, the forecast errors need to be 
estimated. When estimating forecast errors, the most common methods are the “NMC 
method” and “ensemble method”. In the “NMC method”, forecast errors are estimated with 
the difference of two (typically 12 and 24 hours) forecasts valid for the same time. In the 
“ensemble method”, the forecast errors are estimated with ensemble perturbations 
(ensemble - ensemble mean).  
 
Because of the size of the model variables, the full size of a B matrix is extremely large. It 
is typically on the order of 106x106, which in its present form cannot be stored in any 
computer. This problem is simplified by using an ideal set of analysis variables for which 
the analysis is performed. These are generally referred to as “analysis control variables”. 
The analysis control variables are selected such that the cross-correlations between these 
variables are minimum, which means less off-diagonal terms in B. The cross dependency 
among these analysis control variables is removed. The balance between analysis variables 
(such as mass and wind fields) are achieved with pre-computed “regression coefficients”. 
Further, the forecast errors are modeled as a Gaussian distribution with pre-computed 
variances and “lengthscale” parameters for each of the analysis control variables. We will 
use the following sub-sections to briefly introduce how GSI processes these pre-computed 
background error statistics and applies them in a GSI analysis. 
 
To achieve desired regression coefficients, variance, and lengthscale parameters, offline 
computation should be conducted with a sufficiently large data set for a period of time, 
typically, more than one month. For this purpose, a separate utility called “gen_be” can be 
used. It is released as a stand-alone tool for the generation of the background error 
covariance matrix based on the forecasts from a user defined forecast system. Details about 
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this utility can be found in the 2012 GSI residential tutorial lecture by Rizvi et al. (the 
lecture slides are available on-line at the GSI User’s Page).  

6.2 Processing Of Background Error Matrix 
 
The GSI package has several files in ~/comGSI_v3.2/fix/ to hold the pre-computed 
background error statistics for different GSI applications with different grid configurations. 
Since the GSI code has a build-in mechanism to interpolate the input background error 
matrix to any desired analysis grid, the following two background error files can be used to 
specify the B matrix for any GSI regional application. 
 

• nam_nmmstat_na.gcv : contains the regional background error statistics, 
computed using forecasts from the NCEP’s NAM model covering North 
America. The values of this B matrix cover the northern hemisphere with 93 
latitude lines from -2.5 degree to 89.5 degree with 60 vertical sigma levels from 
0.9975289 to 0.01364.  

• nam_glb_berror.f77.gcv : contains the global background errors based on the 
NCEP’s GFS model, a global forecast model. The values of this B matrix covers 
global with 192 latitude lines from -90 degree to 90 degree and with  42 vertical 
sigma levels from 0.99597 to 0.013831. 

 
Also included in this release package is the background error matrix for RTMA GSI: 

• new_rtma_regional_nmm_berror.f77.gcv 
 
These background error matrix files listed above are Big Endian binary files. In the same 
directory, nam_nmmstat_na.gcv_Little_Endian and nam_glb_berror.f77.gcv_Little_Endian 
are their Little Endian versions for certain computer platforms that cannot compile GSI 
with the Big Endian option. In this release version, GSI can be compiled with the Big 
Endian option with PGI and Intel, but not with gfortran compiler. 
 
All the parameters for the global background error statistics are latitude dependent. In the 
case of the regional background error statistics, regression coefficients of velocity potential 
as well as variances and horizontal lengthscales for all the control variables are latitude 
dependent. The remaining parameters such as regression coefficients for unbalanced 
“surface pressure”, “temperature” and vertical lengthscales for all the fields do not vary 
with latitude.  
 
In the GSI code, the background error statistics are initially read in at their original sigma 
levels and interpolated vertically in log (sigma) coordinates on the analysis vertical sigma 
levels. In subroutines “prewgt” and “prewgt_reg”, lengthscales (both horizontal and 
vertical) and variance information are read in and then vertically interpolated to analysis 
grids by calling “berror_read_wgt” and “berror_read_wgt_reg”, while the balance 
information is read in and vertically interpolated to analysis grids by calling 
“berror_read_bal” and “berror_read_bal_reg”, respectively for global and regional 
applications. 
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Table 6.1 shows the list of arrays in which the original background error statistics are read 
by the various subroutines discussed above. 
 

Table 6.1 The information on arrays used by GSI background error matrix 
Category Array 

name 
Dimension Content 

 
Balance 
(Horizontal 
regression 
coefficients) 

agvi 0:mlat+1,1:nsig,1:nsig Regression coefficients for stream 
function and temperature  

wgvi 0:mlat+1,1:nsig Regression coefficients for stream 
function and surface pressure 

bvi 0:mlat+1,1:nsig Regression coefficients for stream 
function and velocity potential 

 
 
Horizontal 
and vertical 
influence 
scale 

hwll 0:mlat+1,1:nsig,1:nc3d horizontal lengthscales for stream 
function, unbalanced velocity potential, 
unbalanced temperature, and relative 
humidity 

hwllp 0:mlat+1, nc2d horizontal lengthscale for unbalanced 
surface pressure 

vz 1:nsig, 0:mlat+1, 1:nc3d Vertical lengthscale for stream function, 
unbalanced velocity potential, unbalanced 
temperature, and relative humidity  

 
 
variance 

corz 1:mlat,1:nsig,1:nc3d Square root of variance for stream 
function, unbalanced velocity potential, 
unbalanced temperature, and relative 
humidity 

corp 1:mlat,nc2d Square root of variance for unbalanced 
surface pressure 

Note:  mlat  = number of latitude in original background error coefficient domain, 
nsig  = number of vertical levels in analysis grid 

 nc3d = number of 3 dimensional analysis variables 
 nc2d = number of 2 dimensional analysis variables 
 
Horizontal interpolation of regression coefficients to the desired grid is done for global and 
regional applications respectively in subroutines “prebal” and “prebal_reg”, residing in the 
“balmod.f90” module. Horizontally interpolated regression coefficients on the desired grid 
are stored in “bvz”, “agvz”,“wgvz” and “bvk”, “agvk”, “wgvk” arrays for global and 
regional applications, respectively. These regression coefficients are used in subroutine 
balance to build the respective balance part of velocity potential, temperature, and surface 
pressure fields.  
 
In subroutines “prewgt_reg” and “prewgt”, horizontal and vertical lengthscales (hwll, 
hwllp, vz) and variance (corz, corp) information are horizontally interpolated and adjusted 
with the corresponding input tuning parameters (“vs”,”hzscl”, “as3d” and “as2d”) supplied 
through gsiparm.anl and anavinfo.txt. Desired information is finally processed and 
transformed to new arrays such as “slw”, “sli”, “dssv” and “dssvs”, which are subsequently 
used for recursive filter applications both in the horizontal and vertical directions. The 
variance array: dssv is an allocated array for 3D variables with dimensions “lat”, “lon”, 
“nsig”, “variables”. The dssvs is an allocated array for 2D variables with dimensions 
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“lat”, “lon”, “variables”. For both of these arrays, allocation of variables is decided by the 
input parameters supplied via “anavinfo” and from the background grid configuration. 
 
 

6.3 Apply Background Error Covariance 
 
According to the variational equations used in the GSI, the background error covariance is 
used to calculate the gradient of the cost function with respect to y based on the gradient of 
the cost function with respect to x, which can be represented below following Section 
6.1.2: 
 
   (subroutine bkerror(gradx,grady)) 
 
Because B is very complex and has a very large dimension in most data analysis domains, 
in reality, it must be decomposed into several sub-matrices to fulfill its function step by 
step. In GSI, the B matrix is decomposed into the following form: 
 
    B  =  B balanceV B Z ( B x B y B y B x ) B Z V B T

balance 
 
The function of each sub-matrix is explained in table 6.2: 
 

Table 6.2 the function of sub-B matrix 
Sub-matrix of B Function Subroutine GSI files 

 balance among different variables balance balmod.f90 

 adjoint of balance equation tbalance  balmod.f90 

 Square root of variance bkgvar  bkgvar.f90 
 vertical smoother frfhvo smoothzrf.f90 

 Self-adjoint smoothers in West-East 
(Bx) and South-North (By) direction 

smoothrf smoothzrf.f90 

 
The composition of B is achieved by calling bkerror in following three steps:  
 
Step 1. Adjoint of balance equation ( ) is done by calling tbalance 
 
Step 2. Apply square root of variances, vertical and horizontal parts of background error 
correlation by calling subroutine bkgcov  
 

• Multiply by square root of background error variances ( ) by calling bkgvar; 

• Apply vertical smoother ( ) by calling frfhvo; 

• Convert from subdomain to the full horizontal field distributed among 
processors by calling general_sub2grid; 

JBJ xy ∇=∇

balanceB
T
balanceB
V
ZB

xyyx BBBB

T
balanceB

V

ZB
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• Apply self-adjoint smoothers in West-East (Bx) and South-North (By) direction 
by calling smoothrf. Smoothing in the horizontal is achieved by calling ryxyyx 
at each vertical sigma level in a loop over number of vertical sigma levels 
(nlevs). Smoothing for three horizontal scales is done with the corresponding 
weighting factors (hswgt) and horizontal lengthscale tuning factors (hzscl);  

• The horizontal field is transformed back to respective subdomains by calling 
general_grid2sub; 

• Apply vertical smoother ( ) by calling frfhvo; 

• Multiply by the square root of background error variances ( ) by calling 
bkgvar. 

 
Step 3. Application of balance equation ( ) is done by calling balance 

In this step the balance part of velocity potential, temperature and surface pressure is 
computed from the stream function filled by using the corresponding regression 
coefficients as follows: 

 
velocity potential = unbalanced velocity potential +  stream function  

temperature        = unbalanced temperature        +  stream function  

surface pressure   = unbalanced surface pressure   +  stream function  

 
 
 

ZB

V

balanceB

( )Balance st vpB →

( )Balance st tB →

( )Balance st pB →
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Chapter 7 Observations 
 
The observation types that can be used by GSI and how to add or remove certain 
observation have been discussed in detail in the GSI User’s Guide. But there are more 
issues related to observations that users should know when they apply their own data with 
GSI or want o improve the use of data. As an operation system, GSI development team has 
invested  significant effort to improve the data process inside and outside GSI.  
 
In this chapter, we will discuss several important observation issues for better application 
of the GSI, including: 

• Process BUFR/PrepBUFR files 
• Understand GSI interface to the observations 
• The basic knowledge on NCEP observation files 
• Observation error inflation inside the GSI 

 
The first three topics are tailored from the “BUFR/PrepBUFR User’s Guide” to help users 
process observations for GSI more quickly. If users have problem to understand the 
BUFR/PrepBUFR process or want to learn more details of the DC BUFR table and more 
examples on PrepBUFR process, please check BUFR User’s Page and the BUFR User’s 
Guide: 
 

http://www.dtcenter.org/com-GSI/BUFR/index.php 
 

 

7.1 Process BUFR/PrepBUFR Files 
 

7.1.1 introduction 
 
BUFR (Binary Universal Form for the Representation of meteorological data) is Table 
Driven Data Representation Forms approved by the World Meteorological Organization 
(WMO) for operational use since 1988. Since then, it has been used for the representation 
and exchange of observational data, as well as for archiving of all types of observational 
data in operation centers, including National Center for Environmental Prediction (NCEP). 
 
BUFR is a self-descriptive table driven code form that offers great advantages of flexibility 
and expandability compared with the traditional alphanumeric code form as well as 
packing to reduce message sizes.  
 
As one of the operation centers, NCEP converts and archives all observational data 
received into a BUFR tank and provides several kinds of BUFR files for its global and 
regional numerical weather forecast systems. These BUFR files are used by the NCEP 
operational data analysis system, Gridpoint Statistical Interpolation (GSI), as the standard 
data sources. Therefore, it is one of DTC’s GSI user support tasks to provide suitable 
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documentation for community GSI users to acquire basic knowledge and skills to use 
BUFR form.  
 
In this Section, a set of simple example programs is employed to explain how to process 
BUFR/PrepBUFR files. The PrepBUFR is the NCEP term for “prepared” or QC’d data in 
BUFR format (NCEP convention/standard). These examples are Fortran codes and are 
available in the community GSI release version 3 and later package under directory 
./util/bufr_tools/.  Through these examples, users can easily understand the usage of several  
commonly used BUFRLIB subroutines, and how these subroutines, together with DX 
BUFR table, are worked together to encode, decode, append BUFR/PrepBUFR files. These 
examples can also serve as a starting point for users to solve their specific BUFR file 
processing problems. 
 
The examples studied in this section include:  
 

bufr_encode_sample.f90: Write one temperature observation with location and time 
into a BUFR file. 

bufr_decode_sample.f90: Read	  one	  temperature	  observation	  with location and time 
out	  from	  the	  BUFR	  file. 

bufr_append_sample.f90: Append	  one	  temperature	  observation	  with location and 
time	  into	  an	  existing	  BUFR	  file. 

 
Please note that these examples are based on the NCEP BUFRLIB. We will use examples 
to introduce commonly used BUFRLIB subroutines and functions and the code structure of 
BUFR processing. 
	  
BUFR/PrepBUFR	  file	  structure	  

	  
BUFR	  file	  structure	  should	  be	  described	  as:	  “A	  BUFR	  message	  contains	  one	  or	  more	  
BUFR	  data	  subsets.	  Each	  data	  subset	  contains	  the	  data	  for	  a	  single	  report	  from	  a	  
particular	  observing	  site	  at	  a	  particular	  time	  and	  location,	  in	  addition	  to	  time	  and	  
location	  information.	  Typically	  each	  data	  subset	  contains	  data	  values	  such	  as	  
pressure,	  temperature,	  wind	  direction	  and	  speed,	  humidity,	  etc.	  for	  that	  particular	  
observation.	  Finally,	  BUFR	  messages	  themselves	  are	  typically	  stored	  in	  files	  
containing	  many	  other	  BUFR	  messages	  of	  similar	  content.”	  Therefore,	  if	  we	  
summarize	  in	  a	  top-‐down	  fashion,	  we	  would	  say:	  
	  

“A	  BUFR	  file	  contains	  one	  or	  more	  BUFR	  messages,	  	  
each	  message	  containing	  one	  or	  more	  BUFR	  data	  subsets,	  	  
each	  subset	  containing	  one	  or	  more	  BUFR	  data	  values.	  “	  

	  
We	  can	  also	  represent	  the	  BUFR/PrepBUFR	  file	  structure	  using	  the	  following	  figure.	  
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7.1.2 Encode, Decode, Append A Simple BUFR File 

7.1.2.1 Decoding/Reading Data From A Simple BUFR File 
 
The following is from the code bufr_decode_sample.f90, which shows how to read specific 
observation values (among a large variety) out from a BUFR file. 
 
 

program bufr_decode_sample 
! 
! example of reading observations from bufr 
! 
 implicit none 
 
 character(80):: hdstr='XOB YOB DHR' 
 character(80):: obstr='TOB' 
 real(8) :: hdr(3),obs(1,10) 
 
 integer :: ireadmg,ireadsb 
 character(8) subset 
 integer :: unit_in=10 
 integer :: idate,iret,num_message,num_subset 
 
! decode 
 open(unit_in,file='sample.bufr',action='read',form='unformatted') 
 call openbf(unit_in,'IN',unit_in) 
 call datelen(10) 
   num_message=0 
   msg_report: do while (ireadmg(unit_in,subset,idate) == 0) 
  num_message=num_message+1 
  num_subset = 0 
  write(*,'(I10,I4,a10)') idate,num_message,subset 
  sb_report: do while (ireadsb(unit_in) == 0) 
    num_subset = num_subset+1 
    call ufbint(unit_in,hdr,3,1 ,iret,hdstr) 
    call ufbint(unit_in,obs,1,10,iret,obstr) 
    write(*,'(2I5,4f8.1)') num_subset,iret,hdr,obs(1,1) 
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  enddo sb_report 
   enddo msg_report 
 call closbf(unit_in) 
 
end program 

 
 
Specifically, this example will read all temperature observation values with observation 
location and time from a BUFR file named sample.bufr. 
 
The structure of the above FORTRAN BUFR decoding code matches the top-down 
hierarchy of a BUFR file. To better illustrate this structure, the code is divided into four 
different levels:  
 

 
open(unit_in,file='sample.bufr',action='read',form='unformatted') 
call openbf(unit_in,'IN',unit_in) 
 
     msg_report: do while (ireadmg(unit_in,subset,idate) == 0) 
  
     sb_report: do while (ireadsb(unit_in) == 0) 
    
        call ufbint(unit_in,hdr,3,1 ,iret,hdstr) 
           call ufbint(unit_in,obs,1,10,iret,obstr) 
    
    enddo sb_report 
 
     enddo msg_report 

 
call closbf(unit_in) 

 
 
● The 1st Level: the three RED lines are the first level (file level) statements, which 

open/close a BUFR file for decoding.  
● The 2nd Level: the two BLUE lines are the second level (message level) 

statements, which read in BUFR messages from the BUFR file. Each loop reads 
in one message until the last message in the file is reached. 

● The 3rd Level: the two GREEN lines are the third level (subset level) statements, 
which read in BUFR data subsets from a BUFR message. Each loop reads in 
one subset until the last subset in the message is reached. 

● The 4th Level: The BLACK lines are the fourth level (data level) statements, 
which read in user picked data values into user defined arrays from each BUFR 
subset. 

 
All BUFR encode, decode, and append programs have the same structure as listed here. 
The message loop (msg_report) and subset loop (sb_report) are needed only if there 
are multiple messages in a file and multiple subsets in a message, which is the case for 
most types of observations. 
 

1 2 3 4 
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There are several commonly used BUFRLIB subroutines/functions in the code. We will 
explain the usage of each of them in detail based on the NCO BUFRLIB document. Users 
are encouraged to read the explanations carefully in parallel to the example code to 
understand the usage of each function. Understanding the usage of these functions and 
BUFR file structure are key to successfully processing all NCEP BUFR files. 
 
 
1st level (file level): open a BUFR file 
 

 open(unit_in,file='sample.bufr',action='read',form='unformatted') 
 call openbf(unit_in,'IN',unit_in) 

  … 
 call closbf(unit_in) 

 
• The open command:  Fortran command to link a BUFR file with a logical unit. 

Here the action is ‘read’ because we want to decode (read) only. The form is 
always “unformatted” because the BUFR file is a binary stream. 
 

• openbf: 
  

CALL OPENBF  ( LUBFR, CIO, LUNDX ) 
 
Input arguments: 
    LUBFR  INTEGER Logical unit for BUFR file 

 CIO  CHAR*(*)     'IN' or 'OUT' or 'APX' (or NUL', 'NODX', 
                                             'SEC3' or 'QUIET')  

    LUNDX  INTEGER Logical unit for BUFR tables 

  
This subroutine identifies to the BUFRLIB software a BUFR file that is connected 
to logical unit LUBFR. The argument CIO is a character string describing how the 
file will be used, e.g. 'IN' is used to access an existing file of BUFR messages for 
reading/decoding BUFR, and 'OUT' is used to access a new file for 
writing/encoding BUFR. An option 'APX' behaves like 'OUT', except that output is 
then appended to an existing BUFR file rather than creating a new one from 
scratch, and there are also some additional options 'NUL', 'NODX',  'SEC3', 
'QUIET'. It will be sufficient to further consider only the 'IN', 'OUT', 'APX' cases 
for the purposes of this discussion. The third argument LUNDX identifies the 
logical unit of DX BUFR table. Except when CIO='SEC3', every BUFR file that is 
presented to the BUFRLIB software must have a DX BUFR tables file associated 
with it, and these tables may be defined within a separate ASCII text file or, in the 
case of an existing BUFR file, may be embedded within the first few BUFR 
messages of the file itself, and in which case the user needs to set LUNDX to the 
same value as LUBFR. In any case, note that LUBFR and LUNDX are logical unit 
numbers; therefore, the user must have already associated these logical unit 
numbers with actual filenames on the local system, typically via a FORTRAN 
"OPEN" statement. 
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Currently, as many as 32 BUFR files can be simultaneously connected to the 
BUFRLIB software for processing. Of course, each one must have a unique LUBFR 
number and be defined to the software via a separate call to subroutine OPENBF.  
  
In this example, LUBFR=LUNDX= unit_in  since BUFR table is already embedded 
within the BUFR messages of the file itself. CIO uses ‘IN’ for reading BUFR file.  
 

● closbf: 
Since OPENBF is used to initiate access to a BUFR file, CLOSBF would be used to 
terminate this access: 
 

 CALL CLOSBF  ( LUBFR ) 
 
 Input argument: 
    LUBFR INTEGER Logical unit for BUFR file 

 
This subroutine severs the connection between logical unit LUBFR and the 
BUFRLIB software. It is always good to call CLOSBF for every LUBFR that was 
identified via OPENBF; CLOSBF will actually execute a FORTRAN "CLOSE" on 
logical unit LUBFR before returning, whereas OPENBF did not itself handle the 
FORTRAN "OPEN" of the same LUBFR.  
 

Now that we have covered the library subroutines that operate on the BUFR file level, and 
recalling the BUFR file structure that was previously discussed, it is now time to continue 
on to the BUFR message level: 

 
2nd level (message level): read in messages 
 

   msg_report: do while (ireadmg(unit_in,subset,idate) == 0) 
  … 
   enddo msg_report 

 
● Function ireadmg: 

 
IRET = IREADMG  (LUBFR, CSUBSET, IDATE) 

 
 Input argument: 
    LUBFR INTEGER Logical unit for BUFR file 
 
 Output arguments: 
    CSUBSET CHAR*(*) Table A mnemonic (name/type) for BUFR message 
    IDATE INTEGER Section 1 date-time for BUFR message 
    IRET INTEGER Return code: 
       0 = normal return 
      -1 = no more BUFR messages in LUBFR 

 
Subroutine IREADMG reads the next BUFR message from the given BUFR file 
pointed to by LUBFR, returns IRET as its function value. It reads the next BUFR 
message into internal arrays within the BUFRLIB software (from where it can be 
easily manipulated or further parsed) rather than passed back to the application 
program directly. If the return code IRET contains the value -1, then there are no 
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more BUFR messages within the given BUFR file, and the file will be automatically 
disconnected from the BUFRLIB software via an internal call to subroutine CLOSBF. 
Otherwise, if IRET returns with the value 0, then the character argument CSUBSET 
will contain the Table A mnemonic, which describes a type of data subset, and the 
integer argument IDATE will contain the date-time in format of YYMMDDHH or 
YYYYMMDDHH determined by subroutine DATELEN. 

  
In this example, the loop meg_report will use ireadmg function to read all message 
in from the BUFR file until getting a none-zero return value (IRET=-1). 

 
After IREADMG reads a BUFR message into the internal arrays, we can get into the 3rd 
level of the code to read a data subset from that internal message: 

 
3rd level (subset level): read in data subsets 
 
 sb_report: do while (ireadsb(unit_in) == 0) 
  … 
 enddo sb_report 
 

● Function ireadsb: 
  
IRET = IREADSB  ( LUBFR ) 
 
Input argument: 
   LUBFR INTEGER Logical unit for BUFR file 
Output arguments: 
   IRET INTEGER Return code: 
        0 = normal return 
     -1 = no more BUFR data subsets in 
          current BUFR message 

 

Function IREADSB reads a data subset from the internal arrays. A return code value 
of -1 within IRET indicates that there are no more data subsets within the given 
BUFR message.  
 
Again, in this example, the loop sb_report will use ireadsb function to read all 
subset in from the internal array until getting a none-zero return value (IRET=-1). 
 

Once a subset has been successfully read with IRET=0, then we are ready to call the data-
level subroutines in order to retrieve actual data values from this subset: 
 

4th level (data level): read in picked data values  
 
This is the level where observation values are read into user-defined arrays. To understand 
how to read in observations from a BUFR subset, the following two questions need to be 
addressed: 
 

1) How do I know what kind of data are included in the subset (or a BUFR file)? 
 
This question can be answered by checking the content of a BUFR table and mnemonics. 
Chapter 3 of the BUFR User’s Guide discusses the BUFR table and mnemonics in detail. 
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Here we illustrate how to use the BUFR table to solve the problem directly. As an example, 
an excerpt from the BUFR table in sample.bufr for the message type ADPUPA is shown 
below. We will use this table information to illustrate how to track observation variables in 
ADPUPA (the upper level data type): 
 
 

|--------------------------------------------------------------------------| 
| MNEMONIC | NUMBER | DESCRIPTION                                          | 
|----------|--------|------------------------------------------------------| 
| ADPUPA   | A48102 | UPPER-AIR (RAOB, PIBAL, RECCO, DROPS) REPORTS        | 
| AIRCAR   | A48103 | MDCRS ACARS AIRCRAFT REPORTS                         | 

 
| MNEMONIC | SEQUENCE                                                      | 
|----------|---------------------------------------------------------------| 
| ADPUPA   | HEADR  SIRC  {PRSLEVEL}  <SST_INFO>  <PREWXSEQ>  {CLOUDSEQ}   | 
| ADPUPA   | <CLOU2SEQ>  <SWINDSEQ>  <AFIC_SEQ>  <TURB3SEQ>                | 
 
| HEADR    | SID  XOB  YOB  DHR  ELV  TYP  T29  TSB  ITP  SQN  PROCN  RPT  | 
| HEADR    | TCOR  <RSRD_SEQ>                                              | 
 
|--------------------------------------------------------------------------| 
| MNEMONIC | NUMBER | DESCRIPTION                                          | 
|----------|--------|------------------------------------------------------| 
| SID      | 001194 | STATION IDENTIFICATI                                  
| XOB      | 006240 | LONGITUDE                                            | 
| YOB      | 005002 | LATITUDE                                             | 
| DHR      | 004215 | OBSERVATION TIME MINUS CYCLE TI                      | 
| ELV      | 010199 | STATION ELEVATION                                    | 
| TYP      | 055007 | PREPBUFR REPORT TYP                                  | 
 
|--------------------------------------------------------------------------| 
| MNEMONIC | SCAL | REFERENCE   | BIT | UNITS                |-------------| 
|----------|------|-------------|-----|----------------------|-------------|  
|          |      |             |     |                      |-------------|  
| SID      |    0 |           0 |  64 | CCITT IA5            |-------------| 
| XOB      |    2 |      -18000 |  16 | DEG E                |-------------|  
| YOB      |    2 |       -9000 |  15 | DEG N                |-------------|  
| DHR      |    3 |      -24000 |  16 | HOURS                |-------------|  
| ELV      |    0 |       -1000 |  17 | METER                |-------------|  
| TYP      |    0 |           0 |   9 | CODE TABL            |-------------|  

 
 
 
The four color boxes here are used to separate the different parts of the BUFR table, which 
can also be marked as Part 1 (red), Part 2 (blue), Part 3 (yellow), and Part 4 (green) in the 
order they are listed above. 
 
As discussed before, IREADMG reads in a message with three output arguments. The first 
output argument is: 
 

CSUBSET Table A mnemonic for BUFR message 
 

It returns the message type (also called data type). This message type is the starting point to 
learn what types of observations are included in this message. The description of message 
types can be found in the first section of a BUFR table, that is the Part 1 (red) in the sample 
BUFR table. 
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Here, if CSUBSET has the value of ADPUPA, the contents of this message or all subsets (third 
level) are upper air reports (like rawinsonde). A search of ADPUPA in the BUFR table returns 
the first two lines of Part 2 (blue), in which ADPUPA is followed by a sequence of items like: 
HEADR SIRC {PRSLEVEL}…. If we then search for HEADR in the same file, we can find the 
last two lines in Part 2 (blue), in which HEADR leads the sequence containing SID  XOB  YOB  
DHR  ELV  TYP  … .  
 
If we then search for SID  XOB  YOB  DHR  ELV  TYP in the same file, we can find the 
definition of these items in Part 3 (yellow). Clearly, the message type ADPUPA includes 
variables like station ID, observation location (longitude, latitude), observation time, etc. 
These are important variables to describe an observation. If we keep searching for other 
items under ADPUPA, we can also find lots of observation variables are included in ADPUPA. 
Please note that a complete list of all variables in a message type could be very long and 
complex, but we don’t need to learn about all of them - we only need to know what we 
need for our specific application.  
 
The last part of the BUFR table (Part 4, green) includes useful unit information for a 
variable; for example, the unit of XOB is DEG (degree) and the unit of DHR is HOURS (hours). 
Users will not likely need to make use of the scale, reference, and bit information. 
 
There are lots of other details on BUFR tables, but the above information should be 
sufficient for now to learn about BUFR file processing applications using the NCEP 
BUFRLIB software with the examples in this Chapter. 
 
 
2). How Do I Tell BUFRLIB To Only Read In Specific Data Information? 
 
From the BUFR table discussion above, we can see a message or a subset could include 
lots of information. In this example, we only wants to read in temperature observation, 
along with its longitude, latitude, and observation time. Here we will use this example to 
illustrate how to solve this question. From the BUFR table, for the message type ADPUPA, 
the name of longitude, latitude, and time in the BUFR table are 'XOB YOB DHR' within the 
sequence HEADER. Similarly, the name of the temperature observation can be found as 
'TOB' in the sequence {PRSLEVEL} (not shown in the example BUFR table). Actually, most 
conventional message types contain such observation information. 
 
In the example code, the first several lines define the information we want to read: 
 

 character(80):: hdstr='XOB YOB DHR' 
 character(80):: obstr='TOB' 
 real(8) :: hdr(3),obs(1,10) 

 
hdstr is a string of blank-separated names (mnemonics) associated with array hdr, while 
obstr is another string associated with array obs. Please note that arrays (hdr and obs) 
have to be defined as REAL*8 arrays. Now let’s first learn the usage of subroutine ufbint 
which is called in the following two lines.  
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call ufbint(unit_in,hdr,3,1 ,iret,hdstr) 
call ufbint(unit_in,obs,1,10,iret,obstr) 
 
 

● ufbint 
CALL UFBINT  ( LUBFR, R8ARR, MXMN, MXLV, NLV, CMNSTR ) 
 
Input arguments: 
    LUBFR INTEGER Logical unit for BUFR file 
    CMNSTR CHAR*(*) String of blank-separated mnemonics 
    associated with R8ARR 
    MXMN INTEGER Size of first dimension of R8ARR 
    MXLV INTEGER Size of second dimension of R8ARR 
    OR number of levels of data values 
    to be written to data subset 
 
Input or output argument (depending on context of LUBFR): 
    R8ARR(*,*) REAL*8 Data values written/read to/from 
    data subset 
 
Output argument: 
    NLV INTEGER Number of levels of data values 
    written/read to/from data subset 

 
Subroutine UFBINT writes or reads specified values to or from the current BUFR 
data subset within the internal arrays, with the direction of the data transfer being 
determined by the context of LUBFR, if LUBFR points to a BUFR file that is open 
for input (i.e. reading/decoding BUFR), then data values are read from the internal 
data subset; otherwise, data values are written to the internal data subset. The actual 
data transfer occurs through the use of the two-dimensional REAL*8 array R8ARR 
whose actual first dimension MXMN must always be passed in. The call argument 
MXLV, on the other hand, contains the actual second dimension of R8ARR only 
when LUBFR points to a BUFR file that is open for input (i.e. reading/decoding 
BUFR); otherwise, whenever LUBFR points to a BUFR file that is open for output 
(i.e. writing/encoding BUFR), MXLV instead contains the actual number of levels 
of data values that are to be written to the data subset (and where this number must 
be less than or equal to the actual second dimension of R8ARR). In either case, the 
input character string CMNSTR always contains a blank-separated list of 
"mnemonics" which correspond to the REAL*8 values contained within the first 
dimension of R8ARR, and the output argument NLV always denotes the actual 
number of levels of those values that were written/read to/from the second 
dimension of R8ARR, where each such level represents a repetition of the 
mnemonics within CMNSTR. Note that, when LUBFR points to a BUFR file that is 
open for output (i.e. writing/encoding BUFR), we would certainly expect that the 
output value NLV is equal to the value of MXLV that was input, and indeed this is 
the case unless some type of error occurred in storing one or more of the data 
levels. 
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In this case, after we run the two BUFRLIB subroutines, longitude (XOB), latitude (YOB), and 
observation time (DHR) will be read into array hdr and temperature observations (TOB) is 
read into array obs. The array contents should be: 
 

● hdr(1)  - longitude 
● hdr(2)  - latitude 
● hdr(3)  - time 
● obs(1,1)  - temperature observation in 1st level (single level) 
● obs(1,2)  - temperature observation in 2nd level for multi-level observation 
● obs(1,3)  - temperature observation in 3rd level for multi-level observation 
● ... 

 
Because these two lines are inside the message and subset loops, we can get temperature 
observation with location and time from all observations in the BUFR file. If data subsets 
contain some missing data, the data values in the array are assigned as 10.0E10.  
 
Now, only one BUFRLIB subroutine datelen left in the code needs to be explained: 
 
● datelen: 

 
 CALL DATELEN  ( LEN ) 
 Input argument: 
     LEN INTEGER Length of Section 1 date-time values to 
     be output by message-reading subroutines 
     such as READMG, READERME, etc. 
       8 =   YYMMDDHH (i.e. 2-digit year) 
      10 = YYYYMMDDHH (i.e. 4-digit year) 
 

This subroutine allows the user to specify the format for the IDATE output argument that is 
returned by READMG. 
 

 

7.1.2.2 Encoding/Writing Data Into A Simple BUFR File 
 
The following is from the program bufr_encode_sample.f90, which shows how to write a 
few observation variables into a new BUFR file. 
 
 

program bufr_encode_sample 
! 
!  example of writing one value into a bufr file 
! 
 implicit none 
 
 character(80):: hdstr='XOB YOB DHR' 
 character(80):: obstr='TOB' 
 real(8) :: hdr(3),obs(1,1) 
 



Observations 

 42 

 character(8) subset 
 integer :: unit_out=10,unit_table=20 
 integer :: idate,iret 
 
! set data values 
 hdr(1)=75.;hdr(2)=30.;hdr(3)=-0.1 
 obs(1,1)=287.15 
 idate=2008120100  ! YYYYMMDDHH 
 subset='ADPUPA'   ! upper-air reports 
 
! encode 
 open(unit_table,file='table_prepbufr.txt') 
 open(unit_out,file='sample.bufr',action='write' & 
            ,form='unformatted') 
 call datelen(10) 
 call openbf(unit_out,'OUT',unit_table) 
   call openmb(unit_out,subset,idate) 
   call ufbint(unit_out,hdr,3,1,iret,hdstr) 
   call ufbint(unit_out,obs,1,1,iret,obstr) 
   call writsb(unit_out) 
   call closmg(unit_out) 
 call closbf(unit_out) 
 
end program 

 
 
Specifically, this example will write one temperature observation value with observation 
location and time to a BUFR file named as sample.bufr. 
 
Here, we can see the BUFR encode procedure has the same structure as the decode 
procedure: file level, message level, subset level, which are marked in the same color as the 
decode example in Section 7.1.2.1. The major difference between encode and decode are 
highlighted in bold in the code and explained below:   
 

● open(unit_table,file='table_prepbufr.txt') 

To encode some observation values into a new BUFR file, a pre-existing BUFR 
table file is necessary and needs to be opened.  
 

● open(unit_out,file='sample.bufr',action='write',form='unformatted') 

The action in Fortran open command has to be “write”. 
 

● call openbf(unit_out,'OUT',unit_table) 

The second input parameter is set to “OUT” to access a new file for writing. The 
third parameter is the logical unit of BUFR table file so that BUFR table will be 
written into BUFR file. Please check the detailed explanation for openbf in section 
7.1.2.1. 
 

● call openmb(unit_out,subset,idate) 
 

CALL OPENMB  ( LUBFR, CSUBSET, IDATE ) 
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Input arguments: 
    LUBFR INTEGER Logical unit for BUFR file 
    CSUBSET CHAR*(*) Table A mnemonic for type of BUFR 
    message to be opened 
    IDATE INTEGER Date-time to be stored within 
    Section 1 of BUFR message 

 
This function opens and initializes a new BUFR message for eventual output to 
LUBFR, using the arguments CSUBSET and IDATE to indicate the type and time of 
message to be encoded. It only opens a new message if either CSUBSET or IDATE 
has changed, and otherwise will simply return while leaving the existing internal 
message unchanged, so that subsequent data subsets can be stored within the same 
internal message. For this reason, OPENMB allows for the storage of an increased 
number of data subsets within each BUFR message and therefore improves overall 
encoding efficiency. Regardless, whenever a new BUFR message is opened and 
initialized, the existing internal BUFR message (if any) will be automatically closed 
and written to output via an internal call to the following subroutine: 
 

● call closmg(unit_out) 
 

CALL CLOSEMG ( LUBFR )  
Input arguments:  
    LUBFR INTEGER Logical unit for BUFR file  

 

Furthermore, since, in the case of a BUFR file that was opened for input, each 
subsequent call to subroutine IREADMG will likewise automatically clear an 
existing message from the internal arrays before reading in the new one, for this 
reason, it is rare to ever see subroutine CLOSMG called directly from within an 
application program!  
 
 

● call writsb(unit_out) 
  
CALL WRITSB  ( LUBFR ) 
 
Input argument: 
    LUBFR INTEGER Logical unit for BUFR file 

	  
This	  subroutine	  is	  called	  to	  indicate	  to	  the	  BUFRLIB	  software	  that	  all	  necessary	  
data	  values	  for	  this	  subset	  have	  been	  stored	  and	  thus	  that	  the	  subset	  is	  ready	  
to	  be	  encoded	  and	  packed	  into	  the	  current	  message	  for	  the	  BUFR	  file	  
associated	  with	  logical	  unit	  LUBFR.	  However,	  we	  should	  note	  that	  the	  BUFRLIB	  
software	  will	  not	  allow	  any	  single	  BUFR	  message	  to	  grow	  larger	  than	  a	  certain	  
size	  (usually	  10000	  bytes,	  although	  this	  can	  be	  increased	  via	  a	  call	  to	  
subroutine	  MAXOUT);	  	  
 
Before this subroutine, we can see two consecutive calls to the subroutine ufbint, 
which is the same as in the decode example. However, this time, the strings hdstr 
tells the BUFR subroutine ufbint that the array hdr holds longitude, latitude and 
observation time, the string obstr tells ufbint that the array obs holds 
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temperature observations. The data subset is ready and written into the BUFR file 
via call writsb. 
 

7.1.2.3 Appending Data To A Simple BUFR File 
 
The following is from the program bufr_append_sample.f90, which shows how to append a 
new observation variable into an existing BUFR file. 
 
 

program 
! sample of appending one observation into bufr file 
 implicit none 
 
 character(80):: hdstr='XOB YOB DHR' 
 character(80):: obstr='TOB' 
 real(8) :: hdr(3),obs(1,1) 
 
 character(8) subset 
 integer :: unit_out=10,unit_table=20 
 integer :: idate,iret 
 
! set data values 
 hdr(1)=85.0;hdr(2)=50.0;hdr(3)=0.2 
 obs(1,1)=300.0 
 idate=2008120101  ! YYYYMMDDHH 
 subset='ADPSFC'   ! surface land reports 
 
! get bufr table from existing bufr file 
 open(unit_table,file='table_prepbufr_app.txt') 
 open(unit_out,file='sample.bufr',status='old',form='unformatted') 
 call openbf(unit_out,'IN',unit_out) 
 call dxdump(unit_out,unit_table) 
 call closbf(unit_out) 
 
! append 
 open(unit_out,file='sample.bufr',status='old',form='unformatted') 
 call datelen(10) 
 call openbf(unit_out,'APN',unit_table) 
   call openmb(unit_out,subset,idate) 
   call ufbint(unit_out,hdr,3,1,iret,hdstr) 
   call ufbint(unit_out,obs,1,1,iret,obstr) 
   call writsb(unit_out) 
   call closmg(unit_out) 
 call closbf(unit_out) 
 
end program 

 
 
 
Specifically, this example will append one temperature observation value with observation 
location and time to an existing BUFR file named as sample.bufr. 
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If we compare this code with the example code for encoding, we can find the code 
structure and BUFRLIB functions used are very similar in two codes. But there is a key 
point that needs special attention for appending: 
 
● Appending has to use the exact same BUFR table as the existing BUFR file.  

To ensure this, we add the following three lines to the code in order to extract the 
BUFR table from the existing BUFR file: 

 
 call openbf(unit_out,'IN',unit_out) 
 call dxdump(unit_out,unit_table) 
 call closbf(unit_out) 

 
   Let’s learn subroutine dxdump. 
 

   CALL DXDUMP  ( LUBFR, LDXOT )    
   
  Input arguments:     
          LUBFR INTEGER Logical unit for BUFR file 
         LDXOT INTEGER  Logical unit for output BUFR tables file  

 
This	  subroutine	  provides	  a	  handy	  way	  to	  view	  the	  BUFR	  table	  information	  that	  
is	  embedded	  in	  the	  first	  few	  messages	  of	  a	  BUFR	  file.	  The	  user	  needs	  only	  to	  
have	  identified	  the	  file	  to	  the	  BUFRLIB	  software	  via	  a	  prior	  call	  to	  subroutine	  
OPENBF,	  and	  then	  a	  subsequent	  call	  to	  subroutine	  DXDUMP	  will	  unpack	  the	  
embedded	  tables	  information	  and	  write	  it	  out	  to	  the	  file	  pointed	  to	  by	  logical	  
unit	  LDXOT.	  The	  output	  file	  is	  written	  with	  ASCII-‐text	  table	  format.	  Subroutine	  
DXDUMP	  can	  be	  most	  useful	  for	  learning	  the	  contents	  of	  archive	  BUFR	  files.	  	  

 
In this example, the BUFR table embedded in the BUFR file sample.bufr will be read 
in and written into a text file called table_prepbufr_app.txt. 
 

Comparing with the encode example again, there are two more slight differences in setups, 
which are highlighted in the code as Bold and explained below: 
 
● In the Fortran open command, the status has to be set as ‘old’ because appending 

requires an existing BUFR file. 
● In the subroutine openbf, the existing BUFR file and dumped BUFR table are 

connected to BUFRLIB, the second input parameter has to be set as ‘APN’. 
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7.1.3 Encode, Decode, Append The PrepBUFR File 
 
In last section, we use three simplified examples to illustrate the code structure of the 
BUFR file process (read, write and append) and explained commonly used BUFRLIB 
functions in the example code. In this section, we will learn how to use the skills we 
learned in previous sections to process a PrepBUFR file, which is one of major BUFR files 
used in GSI for all conventional observations and retrieved standard observations. 

7.1.3.1 Decoding/Reading Data From A PrepBUFR File 
 
The following is from the code prepbufr_decode_all.f90, which reads all major 
conventional observations and BUFR table out from a PrepBUFR file. 
 
 

program prepbufr_decode_all 
! 
! read all observations out from prepbufr. 
! read bufr table from prepbufr file 
! 
 implicit none 
 
 integer, parameter :: mxmn=35, mxlv=250 
 character(80):: hdstr='SID XOB YOB DHR TYP ELV SAID T29' 
 character(80):: obstr='POB QOB TOB ZOB UOB VOB PWO CAT PRSS' 
 character(80):: qcstr='PQM QQM TQM ZQM WQM NUL PWQ     ' 
 character(80):: oestr='POE QOE TOE NUL WOE NUL PWE     ' 

  
Compared to the mnemonic list used in the examples in 7.1.2.1, a clear difference here is 
that more BUFR table mnemonics are involved because we want to read all major 
observations, such as temperature (TOB), moisture (QOB), Pressure( POB), Height (ZOB), 
wind (UOB and VOB). Also, we want to read the quality flags and observation errors with 
these observations at the same time. Here is a list of content in these mnemonics strings:  
 

• hdstr: defines report header information including the station ID, longitude, latitude, 
time, report type, elevation, satellite ID, data dump report type. 

• obstr: defines observation for pressure, specific humidity, temperature, height, u 
and v component of wind, total precipitable water, data level category, surface 
pressure. 

• qcstr: defines the quality markers for each of observation variables listed in the 
string obstr. 

• oestr: defines the observation error for each of observation variables listed in the 
string obstr.  

 
More detailed information on these mnemonics can be found from the BUFR table named 
with “prepobs_prep.bufrtable”, which is a text file dumped out during the decoding 
process. 
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real(8) :: hdr(mxmn),obs(mxmn,mxlv),qcf(mxmn,mxlv),oer(mxmn,mxlv) 

 
The associated arrays are defined to hold the data values of mnemonics specified in hdstr, 
obstr, qcstr, oestr. Note, mxmn=35, mxlv=250, which make the array can hold up to 
250 levels of observations with up to 35 mnemonics in each level.  
 
 

 INTEGER        :: ireadmg,ireadsb 
 character(8)   :: subset 
 integer        :: unit_in=10,unit_table=24,idate,nmsg,ntb 
 
 
 character(8)   :: c_sid 
 real(8)        :: rstation_id 
 equivalence(rstation_id,c_sid) 

 
From our earlier discussions, it was noted that data values are normally read from or 
written to BUFR subsets using REAL*8 arrays via subroutine. The character values are 
read and written in the same way using a REAL*8 variable. Here, rstation_id is real(8); 
c_sid is character(8); then FORTRAN EQUIVALENCE is used to covert the station ID 
from REAL*8 to string that can be easily read by humans. 
 
 

 integer        :: i,k,iret 
 
 

open(unit_table,file='prepobs_prep.bufrtable') 

Fortran open command to link BUFR table with a logical unit, unit_table.  
 
 

open(unit_in,file='prepbufr',form='unformatted',status='old') 

Fortran open command to link a PrepBUFR file with a logical unit, unit_in.  
 
 

call openbf(unit_in,'IN',unit_in) 

Connect the PrepBUFR file to BUFRLIB. Since BUFR table is embedded in the 
PrepBUFR file, the third argument is the same as first argument in this call. 
 
 

call dxdump(unit_in,unit_table) 

Dump BUFR table out from the existing PrepBUFR file and write to a ASCII file named 
“prepobs_prep.bufrtable” through unit unit_table. 
 
 

call datelen(10) 

Specifies the date format as YYYYMMDDHH. 
 

    
nmsg=0 
   msg_report: do while (ireadmg(unit_in,subset,idate) == 0) 
     nmsg=nmsg+1 
              ntb = 0 
     write(*,*) 
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     write(*,'(3a,i10)') 'subset=',subset,' cycle time =',idate 
     sb_report: do while (ireadsb(unit_in) == 0) 
 

The msg_report loop reads each of messages until reaching the end of file. The 
sb_report loop reads each of data subsets within the current message until the end of the 
message.  

 
 
       ntb = ntb+1 
       call ufbint(unit_in,hdr,mxmn,1   ,iret,hdstr) 
       call ufbint(unit_in,obs,mxmn,mxlv,iret,obstr) 
       call ufbint(unit_in,oer,mxmn,mxlv,iret,oestr) 
       call ufbint(unit_in,qcf,mxmn,mxlv,iret,qcstr) 

 
Calling subroutine ufbint to read data based on mnemonics defined in hdstr, obstr, 
oestr, qcstr  from a subset and write to corresponding arrays hdr,obs, oer, qcf.  The 
iret is the actual returned number of pressure levels which have be read in even though 
mxlv=250.  
 

 
       rstation_id=hdr(1) 
       write(*,*) 
       write(*,'(2I10,a14,8f14.1)') ntb,iret,c_sid,(hdr(i),i=2,8) 
 
      DO k=1,iret 
         write(*,'(i3,a10,9f14.1)') k,'obs=',(obs(i,k),i=1,9) 
         write(*,'(i3,a10,9f14.1)') k,'oer=',(oer(i,k),i=1,7) 
         write(*,'(i3,a10,9f14.1)') k,'qcf=',(qcf(i,k),i=1,7) 
       ENDDO 
 
     enddo sb_report 
   enddo msg_report 
 
call closbf(unit_in) 
end program 

 
 

From this PrepBUFR decoding example, we can see that the code structure and functions 
used are the same as the simple decoding example in section 7.1.2.1. But this example 
defines more mnemonics and larger dimensions of the REAL*8 arrays to read all major 
observation elements from the PrepBUFR file, including observation values, quality 
markers, and observation errors. 
 
 

7.1.3.2 More Examples On Processing Prepbufr Files 
 
In BUFR/PrepBUFR User’s Guider, there are more examples on how to processing the 
PrepBUFR files used by GSI. Please read that document if needed: 
 

prepbufr_encode_surface.f90: Write	  a	  surface	  observation	  into	  a	  PrepBUFR	  file. 
prepbufr_encode_upperair.f90: Write	  an	  upper	  air	  observation	  into	  the	  PrepBUFR	  file. 
prepbufr_append_surface.f90: Append	  a	  surface	  observation	  into	  an	  existing	  
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PrepBUFR	  file. 
prepbufr_append_upperair.f90: Append	  an	  upper	  air	  observation	  into	  an	  existing	  

PrepBUFR	  file. 
prepbufr_append_retrieve.f90: Append	  a	  retrieved	  data	  into	  an	  existing	  PrepBUFR	  file. 
bufr_decode_radiance.f90: Read	  	  TOVS	  1B	  radiance	  observations	  and	  BUFR	  table	  

out	  from	  the	  radiance	  BUFR	  file. 
 
 

7.3 GSI BUFR Interface 
 
GSI has a set of code to ingest and process observation data from BUFR/PrepBUFR files 
for the analysis. This section will first explain the procedure of observation ingest and 
process within the GSI system. Then, we provide 4 examples from GSI observation 
ingesting subroutines to illustrate how GSI interfaces with the BUFR files. 
 

7.3. 1 GSI Observation Data Ingest And Process Procedure 
 
As an important component of any data analysis system, observation data ingesting and 
processing is a key part of the GSI system. The data types that can be used in the GSI 
analysis and the corresponding subroutines that read in these data types are listed in the 
section 5.3 of the Advanced GSI User’s Guide. But there are more details that users should 
know to be able to handle the observation data in GSI with confidence and flexibility. This 
section introduces the complete structure of GSI observation data ingesting and processing 
step-by step, including run scripts and namelist setup, data ingesting driver routine, read 
subroutines, observation data partition, and innovation calculation. 
 
• Step 1: Link BUFR/PrepBUFR file to GSI recognized names in GSI run scripts  

In the GSI run script, there is a section to link the BUFR/PrepBUFR files to GSI 
recognized file names in the GSI run directory. The script looks like: 
 

# Link to the prepbufr data 
ln -s ${PREPBUFR} ./prepbufr 
  
# Link to the radiance data 
# ln -s ${OBS_ROOT}/gdas1.t12z.1bamua.tm00.bufr_d amsuabufr 
# ln -s ${OBS_ROOT}/gdas1.t12z.1bhrs4.tm00.bufr_d hirs4bufr 
# ln -s ${OBS_ROOT}/gdas1.t12z.1bmhs.tm00.bufr_d  mhsbufr 

 
Clearly, the PrepBUFR file: gdas1.t12z.prepbufr.nr, which is the file pointed by 
${PREPBUFR}, and the BUFR files: gdas1.t12z.1bamua.tm00.bufr_d and 
gdas1.t12z.1bhrs4.tm00.bufr_d are the files we downloaded from NCEP data hub. The 
names of these files are determined by NCEP based on the operation systems that use the 
files. The BUFR files used in GSI can also be the observation files generated by users and 
named by users. But GSI itself doesn’t recognize the names of these files. So, in the GSI 
run scripts, these files must be linked to the GSI run directory with a name that GSI knows. 
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In the section 3.1 of the GSI User’s Guider has a table that lists all the GSI recognized data 
file names at the left column, the contents of the data files at the middle column, and the 
sample GDAS BUFR/PrepBUFR file names at the left column. The following is a sample 
of the table.  
 
GSI	  Name	  	   Content	   Example	  file	  names	  
prepbufr	   Conventional	  observations,	  including	  ps,	  t,	  q,	  pw,	  

uv,	  spd,	  dw,	  sst,	  from	  observation	  platforms	  such	  
as	  METAR,	  sounding,	  et	  al.	  

gdas1.t12z.prepbufr	  

amsuabufr	   AMSU-‐A	  1b	  radiance	  (brightness	  temperatures)	  from	  
satellites	  NOAA-‐15,	  16,	  17,18,	  19	  and	  METOP-‐A	  

gdas1.t12z.1bamua.tm00.bufr_d	  

amsubbufr	   AMSU-‐B	  1b	  radiance	  (brightness	  temperatures)	  
from	  satellites	  NOAA15,	  16,17	  

gdas1.t12z.1bamub.tm00.bufr_d	  

radarbufr	   Radar	  radial	  velocity	  Level	  2.5	  data	   ndas.t12z.	  radwnd.	  tm12.bufr_d	  
gpsrobufr	   GPS	  radio	  occultation	  observation	   gdas1.t12z.gpsro.tm00.bufr_d	  
ssmirrbufr	   Precipitation	  rate	  observations	  fromSSM/I	   gdas1.t12z.spssmi.tm00.bufr_d	  
hirs4bufr	   HIRS4	  1b	  radiance	  observation	  from	  satellite	  

NOAA	  18,	  19	  and	  METOP-‐A	  
gdas1.t12z.1bhrs4.tm00.bufr_d	  

msubufr	   MSU	  observation	  from	  satgellite	  NOAA	  14	  	   gdas1.t12z.1bmsu.tm00.bufr_d	  
 
So, in the GSI run script, the files in the right column are linked to the run directory with a 
new name at the left column. As a matter of fact, the file names in the left column can be 
changed if users prefer to do so and know how to change them in the GSI namelist data file 
setup section. But we recommend to leave the file names as is because the current names in 
the left column are a good indication of the contents of the corresponding BUFR 
observation files and are used by many the GSI applications.  
 
• Step 2: GSI Namelist data configuration section: &OBS_INPUT 
 
In the GSI namelist, section &OBS_INOUT is used to setup data usage such as the links 
between data types and data files, data time window, and satellite data thinning. The 
following is a sample of the namelist section &OBS_INOUT: 
 

&OBS_INPUT 
 dmesh(1)=120.0,dmesh(2)=60.0,dmesh(3)=60.0,dmesh(4)=60.0,dmesh(5)=120,time_window_max=1.5, 
 dfile(01)='prepbufr’,  dtype(01)='ps',    dplat(01)=' ',    dsis(01)='ps',        dval(01)=1.0,  dthin(01)=0, 
 dfile(02)='prepbufr'   dtype(02)='t',     dplat(02)=' ',    dsis(02)='t',         dval(02)=1.0,  dthin(02)=0, 
 dfile(03)='prepbufr',  dtype(03)='q',     dplat(03)=' ',    dsis(03)='q',         dval(03)=1.0,  dthin(03)=0, 
 dfile(04)='prepbufr',  dtype(04)='uv',    dplat(04)=' ',    dsis(04)='uv',        dval(04)=1.0,  dthin(04)=0, 
…… 
 dfile(27)='msubufr',   dtype(27)='msu',   dplat(27)='n14',  dsis(27)='msu_n14',   dval(27)=2.0,  dthin(27)=2, 
 dfile(28)='amsuabufr', dtype(28)='amsua', dplat(28)='n15',  dsis(28)='amsua_n15’, dval(28)=10.0, dthin(28)=2, 
 dfile(29)='amsuabufr’, dtype(29)='amsua', dplat(29)='n16',  dsis(29)='amsua_n16’, dval(29)=0.0,  dthin(29)=2, 

 
Users may notice that the first column, dfile, is the GSI recognized file names listed in the 
section 3.1 of the GSI User’s Guider . The 2nd column, dtype, is the observation type. The 
3rd column, dplat, is satellite platform ID. And the 4th column, dsis, is the data type from 
convinfo file or Sensor/instrument/satellite flag from satinfo file.  
 
In the GSI data ingesting driver, it is the data type, dtype, that is used to decide which 
routine to call for reading the data from the corresponding input file defined by dfile.  For 
example, when the GSI reaches the code to read “t”, it will open file 'prepbufr' 
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(dfile(02)) to read temperature in. Or when the GSI reaches the point to read in AMSU-
A from NOAA 16, it will open file 'amsuabufr’ (dfile(29)) to read in the data. From 
the namelist setup, it is possible that GSI reads in “t” from one PrepBUFR file 
(dfile(02)) but reads in ‘q’ from another PrepBUFR file (dfile(03)), which gives more 
flexibility to control the data used in the GSI analysis. 
 
• Step 3: GSI data ingest driver 
 
In GSI, subroutine read_obs (inside file read_obs.F90) is used to read, select, and reformat 
observation data. It is the driver for routines that read different types of the observational 
data. This routine loops through all data types listed in dtype and checks the data usage and 
file availability. If the data file exists and the info files indicate the use of the data type, one 
or several processors will be assigned to read the data from the corresponding file setup in 
dfile. Please refer to the section 4.3 of the GSI User’s Guide for more information on 
using the info file to control data usage. Here we give two chunks of the code from 
subroutine read_obs as examples to illustrate how to find routines that read different 
observation data types.   
 
Example 1: Process conventional (prepbufr) data 
 
!          
  if(ditype(i) == 'conv')then 
     if (obstype == 't'  .or. obstype == 'uv' .or. & 
         obstype == 'q'  .or. obstype == 'ps' .or. & 
         obstype == 'pw' .or. obstype == 'spd'.or. & 
         obstype == 'mta_cld' .or. obstype == 'gos_ctp'  ) then 
         call read_prepbufr(nread,npuse,nouse,infile,obstype,lunout,twind,sis,& 
             prsl_full) 
         string='READ_PREPBUFR' 

 
From this chunk of the code, we can see the subroutine read_prepbufr will be used to read 
the data type ‘t’, ‘uv’, ‘q’, ‘ps’, ‘pw’, ‘spd’, ‘mta_cld’, ‘gos_ctp’ from PrepBUFR file saved 
in “infile”. 
 
Example 2: Process TOVS 1b data 
 
!             
      if (platid /= 'aqua' .and. (obstype == 'amsua' .or. & 
           obstype == 'amsub' .or. obstype == 'msu'   .or.  & 
           obstype == 'mhs'   .or. obstype == 'hirs4' .or.  & 
           obstype == 'hirs3' .or. obstype == 'hirs2' .or.  & 
           obstype == 'ssu')) then 
         llb=1 
         lll=1 
         if((obstype == 'amsua' .or. obstype == 'amsub' .or. obstype == 'mhs') .and. & 
            (platid /= 'metop-a' .or. platid /='metop-b' .or. platid /= 'metop-c'))lll=2 
         call read_bufrtovs(mype,val_dat,ithin,isfcalc,rmesh,platid,gstime,& 
              infile,lunout,obstype,nread,npuse,nouse,twind,sis, & 
              mype_root,mype_sub(mm1,i),npe_sub(i),mpi_comm_sub(i),llb,lll) 
         string='READ_BUFRTOVS' 
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From this chunk of the code, we can see the subroutine read_bufrtovs will be used to read 
many kinds of radiance data such as ‘amsua’, ‘amsub’, ‘msu’, ‘mhs’, ‘hirs’, ‘ssu’ from 
radiance BUFR file saved in “infile”. But these radiance data are not observed by AQUA. 
 
In the subroutine read_obs, users can find similar portion of the code deciding which 
subroutine is used to read in the data for certain data type. For each subroutine, the input 
variables always includes parameters like: 
 

infile = dfile of the namelist section &OBS_INOUT 
obstype = dtype of the namelist section &OBS_INOUT 
sis    = dsis of the namelist section &OBS_INOUT 

 
• Step 4: Read in observations and initial check of the observations 
 
The data types and the corresponding GSI subroutines that read in these data types are 
listed in the table of section 5.3. From the table, we can see there are 28 subroutines 
employed by GSI to read in different kinds of BUFR/PrepBUFR files.  Also from the table, 
we can easily find the GSI subroutine that actually reads in the certain observations from 
the BUFR/PrepBUFR files. The same subroutines also do the quality control to the 
observation data, data thinning, and checks to insure that the data are in the analysis 
domain and time window. 
 
These read_* subroutines listed in the table of section 5.3 are the GSI interface to the 
BUFR/PrepBUFR that users should check when trying to analyze their own data using the 
GSI system. We will discuss how to check the structure of these read_* subroutines in 
section 7.3.2 of this Chapter. 
 
After we read in the observations for each element, such as “t”, “q”, “wind”, GSI will write 
out observations for certain element in the analysis domain and time to one binary file, 
which will be read in again by the next step for data partitioning into sub-domains (if run 
with multiple processors).  
 
• Step 5: sub-domain partition  
 
When GSI runs in parallel mode, both the background and the observation data need to be 
partitioned into sub-domains.  This step is done after the observation data have been read in 
and saved in the internal format. The code to assign and distribute observations to sub-
domains is call “obs_para”, which is a subroutine inside the file “obs_para.f90”. Please 
note that after this step, the observations from all observation elements are saved in the 
same binary file for each processor. 
 
• Step 6: innovation calculation 
 
As an important step of the data analysis system, observation innovation calculation also 
involves lots of code. The section 5.4 of the Advanced GSI User’s Guide provides a table 
to list innovation calculations for the different kinds of observation elements. We will not 
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introduce these calculations in this document but would like to remind users that 
innovation calculation is also a key component in the use of observation data in the 
analysis. 
 

7.3.2 The BUFR Decoding In GSI Read Files 
 
From the previous section, we can see that there are many steps involved in the GSI system 
to ingest and process the observation data from BUFR/PrepBUFR files for the final 
analysis. To encode new data for the GSI, the best way to start is reading the related GSI 
code for BUFR/PrepBUFR data ingesting and checking the mnemonics used in the code to 
figure out the data needed in the GSI. In the table of section 5.3, we have provided a 
complete list of GSI subroutines for the observation data ingesting. Here we will give 2 
examples to illustrate how to extract the GSI BUFR interface from the GSI read_* 
subroutines and delete other functions that are not related to the BUFR decoding from the 
subroutine, such as observation location and time checking, data thinning, and quality 
control checking, etc.   
 
Example 1: read_prebufr.f90 
 
The file read_prepbufr.f90 is in GSI source code directory (./src/main) and it reads 
conventional data from the PrepBUFR file.  Specific observation types read by this routine 
include surface pressure, temperature, winds (components and speeds), moisture, total 
precipitable water, and cloud and weather.  This file has over one thousand lines and most 
of the code are not related to the PrepBUFR decoding. Here, as an example, we deleted all 
the code that are not for PrepBUFR decoding and shortened the file down to 197 lines. The 
full code is listed in the Appendix B and can be downloaded from the Examples Page of 
the BUFR website. Here we will only show the mnemonics used by the GSI PrepBUFR 
decoding to get an idea what are the GSI expected variables from the PrepBUFR file.  
 

  data hdstr  /'SID XOB YOB DHR TYP ELV SAID T29'/ 
  data hdstr2 /'TYP SAID T29 SID'/ 
  data obstr  /'POB QOB TOB ZOB UOB VOB PWO CAT PRSS' / 
  data drift  /'XDR YDR HRDR                    '/ 
  data sststr /'MSST DBSS SST1 SSTQM SSTOE           '/ 
  data qcstr  /'PQM QQM TQM ZQM WQM NUL PWQ     '/ 
  data oestr  /'POE QOE TOE NUL WOE NUL PWE     '/ 
  data satqcstr  /'QIFN'/ 
  data prvstr /'PRVSTG'/ 
  data sprvstr /'SPRVSTG'/ 
  data levstr  /'POB'/ 
  data metarcldstr /'CLAM HOCB'/      ! cloud amount and cloud base height 
  data metarwthstr /'PRWE'/           ! present weather 
  data metarvisstr /'HOVI'/           ! visibility 
  data geoscldstr /'CDTP TOCC GCDTT CDTP_QM'/    

 

Compared to the PrepBUFR processing examples we provided, we can see that there is 
more information expected by the GSI PrepBUFR interface. Please note that not all the 
variables listed in the above mnemonics are needed for a GSI run. Some are for certain 
special GSI applications only, such as the cloud observations, which are used in the Rapid 
Refresh system only. So, if users only want to generate a PrepBUFR file that contains a 
part of the observations expected by these mnemonics, the GSI still can run successfully 
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and use the observation data to get a final analysis. But from the previous introduction to 
the GSI observation data processing procedure, users can see that there are many steps 
involved in the data usage in the GSI analysis. A complete picture of the data flow in GSI 
system will be very helpful for users who work on data impact studies with GSI, especially 
when they need to generate the new PrepBUFR file for their new data. 
 
Example 2: read_airs.f90: 
 
The file read_airs.f90 is in GSI source code directory (./src/main) and it reads BUFR 
format AQUA radiance (brightness temperature) observations. This file has 768 lines. To 
simplify this example, we deleted all the code that is not related to the BUFR decoding and 
shortened the file down to 82 lines. The full code is listed in the Appendix and can be 
download from the Examples Page of the BUFR website. Again, we will only show the 
lines that include mnemonics used by decoding to get an idea what variables are expected 
by GSI from the AIRS BUFR file.  
 
allspotlist='SIID YEAR MNTH DAYS HOUR MINU SECO CLATH CLONH SAZA BEARAZ FOVN' 
 
 call ufbrep(lnbufr,allchan,1,n_totchan,iret,'TMBR') 
 
 call ufbint(lnbufr,aquaspot,2,1,iret,'SOZA SOLAZI') 

 
Here, we highlight the mnemonics and we will leave then for users to find out the exactly 
meaning of these mnemonics by checking the BUFR table. 
 
Summary: 
 
In the course of preparing this document and extending the BUFR/PrepBUFR support for 
GSI, we outline portions of 4 GSI BUFR ingest interface files for users to reference: 
 

read_prepbufr.f90 
read_airs.f90 
read_bufrtovs.f90 
read_gps.f90 

 
Users can find these files in the Examples Page of the BUFR user’s website. There is 
makefile provided with these files to help users properly compile the code. These files can 
also be used to decode the corresponding NCEP operation PrepBUFR/BUFR files. 
 
 

7.4 NCEP Generated BUFR Files 
 

7.4.1 Knowledge on NCEP BUFR/PrepBUFR Files 
	  
	  NCEP	  saves	  most	  of	  the	  observation	  data	  in WMO	  BUFR	  format.	  PrepBUFR	  is	  the	  final	  
step	  in	  preparing	  most	  of	  the	  observations	  for	  data	  assimilation,	  the	  NCEP	  term	  for	  
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“prepared”	  or	  QC’d	  data	  in	  BUFR	  format	  (NCEP	  convention/standard).	  Please	  note	  
that	  a	  PrepBUFR	  file	  is	  still	  a	  BUFR	  file,	  but	  has	  more	  QC	  information.	  NCEP	  uses	  
PrepBUFR	  files	  to	  organize	  conventional	  observations	  and	  satellite	  retrievals	  as	  well	  
as	  other	  related	  information	  (such	  as	  quality	  marks)	  into	  single	  files.	  The	  BUFRLIB	  
software	  and	  BUFR	  table	  are	  needed	  for	  processing	  BUFR/PrepBUFR	  files.	  
	  	  
NCEP generates different BUFR/PrepBUFR files for each of its operation systems. The 
“PrepBUFR” includes the major conventional observations for assimilation into the various 
NCEP analyses, including the North American Model (NAM) and NAM Data Assimilation 
System (NDAS), unified grid-point statistical interpolation analysis (GSI) (the "NAM" and 
"NDAS" networks), the Global Forecast System and Global Data Assimilation System 
unified GSI  (the "GFS" and "GDAS" networks), the Climate Data Assimilation System 
SSI (the "CDAS" network), the Rapid Update Cycle (the "RUC" network) and the Real 
Time Mesoscale Analysis (the "RTMA" network). 
 
 In this section, we will briefly introduce several types of BUFR/ PrepBUFR files mostly 
accessed by the research community to help users decide which one is the best for their 
GSI applications. Each type of BUFR/PrepBUFR file has its own coverage, data cut-off 
time, and quality control procedures, which result in different quality marker values for the 
same observation in different files. 

 
● File name convention: 

 
The following is a list of example file names we collected from NCEP FTP site: 
 

gdas1.t00z.prepbufr.nr 
gfs.t00z.gpsro.tm00.bufr_d 
ndas.t18z.1bamub.tm03.bufr_d 
nam.t00z.aircar.tm00.bufr_d.nr 
ndas.t18z.prepbufr.tm03.nr 

 
These file names reflect information of the observations within the file. Let us 
explain the meaning of the filenames, segment by segment, separated by dots: 
 
○ The 1st section is the operation system name, indicating which operation 

system this file is created/used for. For example: gdas1 is for the Global 
Data Assimilation System (GDAS), gfs for the Global Forecast System 
(GFS), ndas for the North American Data Assimilation System (NDAS), 
nam for the North American Mesoscale (NAM) forecast system. 

○ The second section is analysis hour, indicating which analysis hour this file 
is used for. For example: t00z is for 00Z analysis, t18z for 18Z analysis. 

○ The third section is data type, indicating what kinds of data are included in 
the file. For example: prepbufr is for conventional observations, gpsro for 
GSPRO, 1bamub for AMSU-B, and aircar for aircraft observations. 
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○ From fourth section, there is different information for different operational 
files: 

■ bufr_d tells us it is a BUFR format file. We may think prepbufr as a 
special data “format” here. 

■ nr tells us that the file only includes non-restricted data (we can only 
access non-restricted data).  

■ tm00 and tm03, where the two digital number is hours. They also 
indicate the time of the file used in the analysis. When the number is 
00, the file analysis time is the same as showed in the second 
segment. When it is a number larger than 0, it indicates the analysis 
time of the file is the time in the second segment minus this number. 
For example: the analysis time for ndas.t18z.1bamub.tm03.bufr_d is 
15Z (18Z - 03h = 15Z). This file is used in the catch up cycles 
during NDAS that have a delayed analysis start time to wait for more 
observations. 

 
● Data coverage and cut off time: 

 
Each operational system requires different data types, data coverage, cut off time, 
and quality control procedures. The details of these setups need a long technical 
note to describe but here we can briefly introduce some major features of each file: 
 
○ GDAS (gdas1) covers the global and has the latest cut off time (6 hours), 

which means it includes most of the available real-time observation data. 
○ GFS (gfs) covers the global but has a shorter cut off time (2:45 hours) 

compared to GDAS. 
○ NDAS(ndas) covers the North America and has a longer cut off time than 

NAM, which means it includes more real-time data than NAM. 
○ NAM(nam)  covers the North America but has a shorter cut off time 

comparing to others. 
○ Data quality control processes for PrepBUFR files in each observation 

system are different but their results are reflected as quality markers, which 
can be easily checked by decoding the specific PrepBUFR file. 

○ For data types in each PrepBUFR file, please check the following section. 
 
● Code table for PrepBUFR report types 

 
The complete list of the conventional observation types (and their BUFR codes) 
used by each NCEP operation system are documented at the following links: 
  
Global GFS and GDAS GSI analyses: 
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http://www.emc.ncep.noaa.gov/mmb/data_processing/prepbufr.doc/table_2.htm 
 
Global CDAS/reanalysis systems: 
 
http://www.emc.ncep.noaa.gov/mmb/data_processing/prepbufr.doc/table_3.htm 

 
Regional NAM and NDAS GSI analyses: 
 
http://www.emc.ncep.noaa.gov/mmb/data_processing/prepbufr.doc/table_4.htm 
 
Rapid Update Cycle (RUC) 3DVAR analysis: 
 
http://www.emc.ncep.noaa.gov/mmb/data_processing/prepbufr.doc/table_5.htm 
 
Here we give a simplified table for the most commonly used data types: 
 
 

7.4.2 BUFR/PrepBUFR Data Resources for Community Users   
 
There are several sources to get real-time and archived atmospheric observations and 
model forecasts. Some of them provide NCEP operation BUFR/PrepBUFR files for 
community. Below is a list we are aware of. Users are welcome to send us new data source 
links to share with the community. 
 
Data in BUFR format 
 

● NCEP NOMADS Site: 
○ PrepBufr for GDAS (Global) - 1 month buffer: 

http://nomads.ncep.noaa.gov/pub/data/nccf/com/gfs/prod/ 
○ PrepBufr for NDAS (North America) - 1 month buffer: 

http://nomads.ncep.noaa.gov/pub/data/nccf/com/nam/prod/ 
 

● NCEP FTP Site: 
○ PrepBufr for GDAS (Global) - 3 day buffer: 

ftp://ftpprd.ncep.noaa.gov/pub/data/nccf/com/gfs/prod/ 
○ PrepBufr for NDAS (North America) - 3 day buffer: 

ftp://ftpprd.ncep.noaa.gov/pub/data/nccf/com/nam/prod/ 
 
 

● NCDC NOMADS Site: 
○ PrepBufr for GDAS (Global) - archive starting May 2007: 

http://nomads.ncdc.noaa.gov/data/gdas/ 
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● NCAR Computational and Information Systems Laboratory (CISL) Research Data 
Archive (RDA) Site: 

○ DS337.0: NCEP ADP Global Upper Air and Surface Observations 
(PREPBUFR and NetCDF PB2NC Output) - archive starting May 1997: 

http://dss.ucar.edu/datasets/ds337.0/ 
○ DS337.0 Subset: Interactive tool for running PB2NC over a specified time 

period and geographic region: 
http://dss.ucar.edu/datasets/ds337.0/forms/337_subset.php 

 
 

7.5 Observation Error Adjustment  
 
The actual observation errors used in GSI analysis start with the “external” (either from 
PrepBUFR files or an error table file) observation errors in the obserr array and go through 
multiple adjustments based on observation quality, vertical sigma location, observation 
density, time of the observations, etc. The major adjustments occur in read_prepbufr.f90 
and some are listed as follows: 
 

1. Observation errors for each variable are bonded by their corresponding lower limits. 
Currently, these lower limits are hard coded and prescribed in read_prepbufr. The 
observation error limits for temperature, moisture, wind, surface pressure and total 
precipitable water are: terrmin=0.5, qerrmin=0.1, werrmin=1.0, perrmin=0.5, 
pwerrmin=1.0, respectively. 

2. Observation errors are adjusted based on the quality markers from the prepbufr data 
files. If the quality markers from prepbufr are larger than a threshold value (lim_qm 
in read_prepbuf.f90r), the corresponding observation errors are adjusted to a very 
large number (1.0x106, which indicates a bad observation and will not make any 
impact on the analysis results). If the quality markers are smaller than lim_qm, the 
observation errors are adjusted based on the vertical location and vertical 
distribution of the observations. Please refer to the BUFR/PrepBUFR User’s Guide 
for more details on the quality markers and the values of lim_qm.  

3. If an observation quality marker is either 3 or 7, the observation error can be 
inflated by setting inflate_error as true. The value of the inflation factor may be set 
based on observation types. However, currently it is fixed as 1.2. 

4. For certain observation types (e.g., T), their observation errors are amplified by a 
factor of 1.2 if the observation locations are above 100 hPa.  

 
Besides the above-mentioned adjustments, observation errors are further inflated during the 
observation innovation calculation (e.g., in the subroutines listed in section 3.2.4 of the 
Advanced User’s Guide) when the observation is located either lower than the lowest 
analysis level or higher than the highest analysis level. In the same routine, GSI performs 
gross error checks and, if oberror_tune is set to true, observation error tuning (this function 
is not discussed in this document).  
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Chapter 8: Satellite Radiance Data Assimilation 
 
Satellite radiance data analysis is one of the most advanced and important features in the 
GSI system. GSI has developed complex functions and code components to ingest, 
analyze, bias correct, and monitor radiance observations from various satellite instruments. 
In this chapter, we will discuss these satellite radiance analysis related aspects from the 
users point of view, including how to correctly setup and run GSI with radiance 
observations, how to check and understand the radiance analysis results, bias correction, 
and monitoring radiance observations. Related code structure will also be described to help 
advanced users to further investigate and apply radiance data analysis with GSI. 
 

8.1. Satellite Radiance Data Ingest And Distribution 
 

8.1.1 Link Radiance BUFR Files To GSI Recognized Names 
 
All radiance observations used by the GSI are saved in the BUFR format. For detailed 
information on the BUFR format and its processing techniques, please see the 
BUFR/PrepBUFR User’s Guide, which is available on line: 
 

http://www.dtcenter.org/com-GSI/BUFR/docs/index.php 
 

In the Section 3.1 of this user’s guide, we introduced all GSI BUFR/PrepBUFR 
observation files and the GSI recognized observation file names in table 3.1. From this 
table, we can see most of the BUFR files are used for satellite radiance data. Here, we will 
use a small part of the table to explain the link between the GSI name and the file name: 
 

GSI Name  Content Example file names 
amsuabufr AMSU-A 1b radiance (brightness 

temperatures) from satellites NOAA-15, 
16, 17,18, 19 and METOP-A 

gdas1.t12z.1bamua.tm00.bufr_d 

amsubbufr AMSU-B 1b radiance (brightness 
temperatures) from satellites NOAA15, 
16,17 

gdas1.t12z.1bamub.tm00.bufr_d 

 
The right column of the table gives example radiance BUFR files that can be downloaded 
from the NCEP data servers (please see BUFR/PrepBUFR user’s guide for the naming 
convention for these files), while the left column is the data file name that GSI expects 
during observation data ingestion. The middle column is a brief explanation of the data 
content in each file.  
 
As explained in section 5.2.1, running radiance data analysis with GSI could be as simple 
as linking the radiance BUFR files to the GSI run directory with the GSI recognized name 
in the run script. For example, if we add the following two lines to the GSI run script: 
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# Link to the radiance data 
ln -s ${OBS_ROOT}/gdas1.t12z.1bamua.tm00.bufr_d amsuabufr 
ln -s ${OBS_ROOT}/gdas1.t12z.1bamub.tm00.bufr_d amsubbufr 

 
we should see that AMSU-A and AMSU-B observations are analyzed in the GSI analysis, 
as illustrated in the rest of Section 5.2. Here, we will give more detail on the setup and 
usage of the GSI recognized observation file name (GSI name) in the left column of the 
table 3.1.  
 
The GSI names, amsuabufr and amsubbufr, are actually decided by the parameters in 
the GSI namelist section OBS_INPUT. As an example, the relevant part of OBS_INPUT 
is: 
 
 dfile(28)='amsuabufr', dtype(28)='amsua', dplat(28)='n15',     dsis(28)='amsua_n15', 
 dfile(29)='amsuabufr', dtype(29)='amsua', dplat(29)='n16',     dsis(29)='amsua_n16', 
 dfile(30)='amsuabufr', dtype(30)='amsua', dplat(30)='n17',     dsis(30)='amsua_n17', 
 dfile(31)='amsuabufr', dtype(31)='amsua', dplat(31)='n18',     dsis(31)='amsua_n18', 
 dfile(32)='amsuabufr', dtype(32)='amsua', dplat(32)='metop-a', dsis(32)='amsua_metop-a', 
 dfile(33)='airsbufr',  dtype(33)='amsua', dplat(33)='aqua',    dsis(33)='amsua_aqua', 
 dfile(34)='amsubbufr', dtype(34)='amsub', dplat(34)='n15',     dsis(34)='amsub_n15', 
 dfile(35)='amsubbufr', dtype(35)='amsub', dplat(35)='n16'      dsis(35)='amsub_n16', 
 dfile(36)='amsubbufr', dtype(36)='amsub', dplat(36)='n17',     dsis(36)='amsub_n17', 

 
Please note that the last two columns of the OBS_INPUT have been excluded for 
conciseness. From this list, we can see the content of dfile is the GSI name, which is the 
observation file name recognized by GSI, while dtype and dplat indicate the radiance 
instruments and the satellite name associated with the GSI name in dfile. The dsis is the 
radiance observation type that is the combination of the instruments and satellite names. 
This list tells us that the GSI expects NOAA-15 AMSU-A radiance observations from a 
BUFR file with name amsuabufr. It also reads in the NOAA-18 AMSU-A observations 
from the same file. For NOAA-17 AMSU-B observations, GSI will read them in from a 
file named amsubbufr. 
 
It is possible to change the GSI name in dfile to a user specified name (for example, 
‘amsuagsi’ rather than 'amsuabufr') as long as the GSI name (amsuabufr)in the link from 
the BUFR file (gdas1.t12z.1bamua.tm00.bufr_d) to the GSI name has also been 
changed. The following demonstrates the process required to change the name in dfile.  
 
Set new name in namelist section OBS_NPUT: 
 
 dfile(28)='amsuagsi',  dtype(28)='amsua', dplat(28)='n15',     dsis(28)='amsua_n15', 
 dfile(29)='amsuagsi',  dtype(29)='amsua', dplat(29)='n16',     dsis(29)='amsua_n16', 

 
Then change the GSI name in the run script: 

 
ln -s ${OBS_ROOT}/gdas1.t12z.1bamua.tm00.bufr_d amsuagsi 

 
It is advised to use the GSI names provided in the released run script because they describe 
the contents of the file well and are used by many users. However, the flexibility to setup a 
different GSI name does give GSI more ability to analyze radiance observations from 
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different resources. For example, if we want GSI to assimilate NOAA-15 AMSU-A 
observations from a BUFR file named gdas1.t12z.1bamua.tm00.bufr_d and 
NOAA-16 AMSU-A observations from another BUFR file named 
gdas2.t12z.1bamua.tm00.bufr_d, we can setup the run script and namelist as 
follows: 
 
Set the GSI names in the namelist section OBS_INPUT: 
 
 dfile(28)='amsuabufr',  dtype(28)='amsua', dplat(28)='n15',     dsis(28)='amsua_n15', 
 dfile(29)='amsuagsi',   dtype(29)='amsua', dplat(29)='n16',     dsis(29)='amsua_n16', 

 
And then, link them in the run script: 

 
ln -s ${OBS_ROOT}/gdas1.t12z.1bamua.tm00.bufr_d amsuabufr 
ln -s ${OBS_ROOT}/gdas2.t12z.1bamua.tm00.bufr_d amsuagsi 

 
Now, GSI will read in NOAA-15 AMSU-A observations from the GSI file amsuabufr, 
which is the BUFR file gdas1.t12z.1bamua.tm00.bufr, and read in NOAA-16 
AMSU-A observations from another GSI file amsuagsi, which is the BUFR file 
gdas2.t12z.1bamua.tm00.bufr. 
 
A common user mistake in the setup of the radiance data analysis is forgetting to add the 
radiance observation type the user wants to use into the OBS_INPUT. Some users may 
notice that NOAA-19 AMSU-A is not on the list of the OBS_INPUT setups in release 
version 3.0. To use GSI to analyze NOAA-19 AMSU-A observations with the run script 
and name list from release version 3.0, users need to add one more line in OBS_INPUT, 
for example: 
 
 dfile(79)='amsuabufr', dtype(79)='amsua', dplat(79)='n19',     dsis(79)='amsua_n19', 

 
Where index 79 for this new line is from the existing number of parameter “ndat” in 
namelist section SETUP plus 1. The “ndat” should also be set to 79. 
 
In this case, NOAA-19 AMSU-A observations should be included in the BUFR file that 
amsuabufr is linked to. The released run script will be continually updated to include new 
satellite platforms, however users are suggested to double-check the content of the BUFR 
file and the setup of the namelist if desired data types are missing from the analysis.  
 
The radiance data normally need to be thinned in the analysis, the last column (dthin(26)=1,) 
in the namelist section OBS_INPUT is used to setup radiance data thinning. The details of 
radiance data thinning are described in section 3.3 under item 7. 
 
More detailed control on how to use each channel of certain radiance observation types in 
the GSI analysis can be achieved by setting up the satinfo file. The use of the satinfo file 
was previously introduced in section 4.3. Please note the satinfo file may be structured 
differently in different released versions.  
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8.1.2 GSI Code To Ingest Radiance Data  
 
GSI has a set of files (subroutines) named read_*.f90 to read in different types of 
observations, including satellite radiance. The table in Section 6.2.3 gives a complete list of 
such subroutines. Below is an excerpt of the table that applies to radiance data: 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
From this table, we can see TOVS 1b observations from the NOAA and METOP satellites 
are read in by subroutine read_bufrtovs and the GEOS sounder and SSMI observations are 
read in by subroutine read_goesndr and read_ssmi.  
 
In general, GSI reads in radiance observations from external BUFR files, picks the 
observations within the analysis domain and time window, performs thinning based on the 
coarse grid setup in OBS_INPUT, and saves them into an intermediate binary file using a 
general data format across all observation types. 
 
In this user’s guide, we will use subroutine read_bufrtovs (read_bufrtovs.f90) as an 
example to introduce some important aspects of GSI radiance observation ingesting. All 
these aspects can be extended to other radiance ingesting subroutines because they share 
the same code structure and BUFR techniques. We hope these points can help advanced 
users learn the detailed content inside the GSI radiance observation process and add new 
observations for their GSI application.  
 
 
• BUFR file ingesting 

 
The basic structure of BUFR file ingesting has two loops to read in every message 
(read_subset) from the BUFR file and then read in all observations (read_loop) from 
each message.  In the subroutine read_bufrtovs, the two loops are marked by the following 
code: 

 

Data type 
(ditype) 

Observation type 
(obstype) 

Subroutine that reads data 

 
 
 
 
rad 
(satellite 
radiances) 

 
 
(platform) 
not AQUA  

amsub  
 
read_bufrtovs 
 
(TOVS 1b data) 

amsua 
msu 
mhs 
hirs4,3,2 
ssu 

sndr, sndrd1, sndrd2 
sndrd3, sndrd4 

read_goesndr 
(GOES sounder data) 

ssmi read_ssmi 



Satellite Radiance Data Assimilation 

 63 

!    Loop to read bufr file 
     next=0 
     read_subset: do while(ireadmg(lnbufr,subset,idate)>=0) 
  ... 
        read_loop: do while (ireadsb(lnbufr)==0) 
 
  ... 
 
!       End of bufr read loops 
     enddo read_loop 
  enddo read_subset 
  call closbf(lnbufr) 

 
The content of each observation needed by GSI can be found by searching the BUFR 
mnemonics (bold in following code sample), for example, the following lines of the code 
give a list of mnemonics included in the subroutine: 
 
    hdr1b ='SAID FOVN YEAR MNTH DAYS HOUR MINU SECO CLAT CLON CLATH CLONH HOLS' 
    if (atms) hdr1b ='SAID FOVN YEAR MNTH DAYS HOUR MINU SECO CLAT CLON CLATH CLONH HMSL' 
 
    hdr2b ='SAZA SOZA BEARAZ SOLAZI' 
 
     call ufbrep(lnbufr,data1b8,1,nchanl,iret,'TMBR') 
     call ufbrep(lnbufr,data1b8,1,nchanl,iret,'TMBRST') 

 
An explanation of each mnemonic can be easily found from the BUFR table used to 
generate this BUFR file. Users can get this BUFR table on-line, from decoding the BUFR 
file, or checking the BUFR file bufrtab.012 in the fix directory of the release package. For 
example, a search for SAZA SOZA in bufrtab.012, we found the following two lines:  
 
| SAZA     | 007024 | SATELLITE ZENITH ANGLE                                | 
| SOZA     | 007025 | SOLAR ZENITH ANGLE                                    | 

 
These lines tell us that GSI needs to read in satellite zenith angle and solar zenith angle for 
each observation profile. 
 
• Data selection in reading process 
 
In the data ingesting subroutine, only observations within the analysis domain (for regional 
applications) and time window are processed for the thinning. After establishing a coarse 
grid based on the setups in the parameters from OBS_INPUT, GSI starts a smart selection 
of radiance fields of view for the coarse grid. This processing of radiance data thinning not 
only selects the nearest radiance observation in a coarse grid, but also considers the quality 
of the radiance observations. The observation for each grid box is chosen based on its 
quality through a combined penalty value that considers the following criteria: 
 

1. Remove observations where the key channels are bad  
2. Prefer observations that have a larger number of good channels 
3. Skip observations that the Field of View (FOV) are out of range 
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4. Prefer profiles that are over better surface fields. For many observation types, 
the order is (best to worst): sea, sea ice, snow/ land, mixed but this may vary by 
instrument. 

5. Prefer observations based on available data quality predictors  
 
• Internal observation data format  
 
After data thinning, the best quality radiance observation for each coarse grid is then saved 
with surface status (calculated from the background) in a two-dimensional array called 
“data_all”. The 1st dimension of the array saves all information about one observation and 
the 2nd one loops through the observations. The code that assigns the content of the array 
starts like: 
 
           data_all(1 ,itx)= rsat                    ! satellite ID 
           data_all(2 ,itx)= t4dv                    ! time 
           data_all(3 ,itx)= dlon                    ! grid relative longitude 
           data_all(4 ,itx)= dlat                    ! grid relative latitude 

 
and ends like: 
 
           do i=1,nchanl 
              data_all(i+nreal,itx)=data1b8(i) 
           end do 

 
The code itself gives clear notation on the content of the 1st dimension of the array except 
for the last three lines. For example, it clearly tells us the first 4 items in the array are 
satellite ID (rsat), observation time (t4dv), and grid relative longitude (dlon) and latitude 
(dlat). However, there is no clear notation for data_all(i+nreal,itx), a little search for 
the array data1b8 indicates it contains the brightness temperature from all channels in an 
observation profile.  
 
After reading and processing all observations in the BUFR file and saving them in the data 
array “data_all”, this array is written to an intermediate binary file at the end of the 
subroutine read_bufrtovs.  
 
• Observation count in stdout file  
 
From the stdout file, we can see the following information counting the data during the data 
ingesting stage, an example from the case in Chapter 5: 
 
READ_BUFRTOVS: file=amsuabufr  type=amsua      sis=amsua_n15            nread=    128055 
ithin= 2 rmesh= 60.000000 isfcalc= 0 ndata=     53932 ntask=  1 

 
This tells us that the subroutine read_bufrtovs is reading NOAA-15 AMSU-A observations 
from file amsuabufr. There are 128055 observations (profile number * channels number) 
read in from the BUFR file and 53932 observations kept for further processing after data 
selection and thinning. 
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8.1.3 Information On Ingesting And Distribution 
 
The analysis in GSI is done in each subdomain for MPI runs. The observation number in 
each sub-domain can be found in the stdout file. All data types are listed in the stdout file 
as shown in the following example, using the same example as section 5.2.2: 
 

OBS_PARA: ps                        2352      2572      8367      2673 
OBS_PARA: t                         4617      4331     12418      4852 
OBS_PARA: q                         3828      3908     11096      3632 
OBS_PARA: pw                          89        31       141        23 
OBS_PARA: uv                        5704      4835     15025      4900 
OBS_PARA: sst                          0         0         2         0 
OBS_PARA: hirs4     metop-a            0         0       416       731 
OBS_PARA: amsua     n15             2563      1323      1048      1669 
OBS_PARA: amsua     n18             1002      2119         0       390 
OBS_PARA: amsua     metop-a            0         0      1268      2279 
OBS_PARA: amsub     n17                0         0      1717      2891 
OBS_PARA: hirs4     n19              244      1093         0       235 
OBS_PARA: amsua     n19              651      3486         0       469 

 
Please note the number in each subdomain is the number of the radiance profiles, not the 
number of observed channels. Each profile includes many channels. For example, each 
HIRS observation has 19 channels, each MSU has 4 channels, each AMSU-A has 15 and 
AMSU-B has 5, each MHS has 5 and SSU has 3. 
 
 

8.2. Radiance Observation Operator  
 
The observation operator for radiance observations is very complex and out of the scope of 
this user’s guide. Here, we only briefly introduce some features of the radiance observation 
operator. The Community Radiative Transfer Model (CRTM) developed by JCSDA is 
employed by the GSI system to transform control variables into simulated radiance or 
brightness temperatures. This operator can be illustrated by the following equation: 
 
  y=K(x,z) 
 where:  

y are simulated radiance observations; 
x are profiles of temperature, moisture, and ozone; 
K is the radiative transfer equation (CRTM); 
z are unknown parameters such as the surface emissivity, CO2 profile, methane 

profile, etc. 
 
In GSI, x (including surface conditions) are calculated based on the background fields and 
then are put into the CRTM functions (K) to calculate the simulated radiance observations 
y. When unknowns in K(x, z) are too large, which may be from the formulation of K or 
unknown variables (z), observed radiance data cannot be reliably used and must be 
removed during quality control. Examples of this include when clouds, trace gases, or 
aerosols exist in the observed column. The description of radiance data quality control can 
be found in the next section. For advanced users needing to learn the details of the radiance 
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observation operator in GSI, please check the corresponding subroutine listed in the right 
column of the section 6.2.4 table.  
 
Because GSI uses the CRTM functions as part of the radiance observation operator, the 
CRTM coefficients have to be available during the radiance data analysis. In the GSI 
release package, these CRTM coefficients are linked to the running directory by the run 
script before the GSI starts to run. The details of linking CRTM coefficients can be found 
in Chapter 3 in the introduction of the GSI run scripts. Please note that the GSI run script 
does not know which kind of radiance observations will be used in the analysis. The script 
links all the CRTM coefficients for the radiance observation types listed in the satinfo file. 
After reading in radiance observations from BUFR files, GSI recognizes which kind of 
radiance observations to be used and only reads in the corresponding coefficients needed. 
Therefore, users only need to check whether the CRTM coefficients of the user interested 
radiance data types are linked correctly. At the same time, users can ignore the warning 
information on the missing CRTM coefficients if those coefficients are for the radiance 
data types that are not used in the application. 
 
 
 
8.3.  Radiance Observation Quality Control 
 
The quality control (QC) may be the most important aspect of satellite data assimilation. 
Unlike conventional observations from a prepbufr file, which includes the quality markers 
from the NCEP quality control process, the satellite radiance BUFR file does not include 
observation quality information. Instead, the quality control for radiance observations is 
inside the GSI.  
 
The GSI radiance data quality control starts right after the radiance observations are read in 
(such as in read_bufrtovs.f90). We can think of the processing of radiance data thinning as 
a part of the quality control because the thinning process selects the best quality 
observations. The major radiance data quality control step is after the calculation of the 
radiance observation departure in file setuprad.f90. Many QC steps are employed to 
capture problematic satellite data, which mainly come from the following 4 sources: 
 

• Instrument problems 
• Clouds and precipitation simulation errors 
• Surface emissivity simulation errors. 
• Processing errors (e.g., wrong height assignment, incorrect tracking, etc.) 

 
 
In GSI, each instrument has its own quality control subroutine. All these subroutines are in 
the file qcmod.f90 and are listed as follows for reference: 
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subroutine name Quality Control for 
qc_ssmi ssmi, amsre, and ssmis 
qc_seviri seviri data 
qc_ssu ssu data 
qc_goesimg GOES image 
qc_msu msu data 
qc_irsnd ir sounder data(hirs, goessndr, airs, iasi, cris) 
qc_avhrr avhrr and avhrr_navy 
qc_amsua amsua data 
qc_mhs amsub, mhs and hsb data 
qc_atms atms data 

 
After calculating the radiance observation departure from the background and bias 
correction, these QC functions are called for each instrument to either toss the bad 
(questionable) observations or inflate the low confidence observations. The number of 
filtered observations by these QC functions is summarized in the radiance fit file (fort.207) 
as 7 QC categories (steps). To help users understand the meanings of these numbers in the 
radiance fit file, we will briefly introduce these QC steps in subroutine qc_amusa in the 
following table. Please note these QC categories may have different meaning for different 
instruments: 
 

Category  Quality Control steps Action to observations 
QC1 Cloud affected profile, (factch4 > 0.5)  Toss channel 1-6, 16 
QC2 Inaccurate emissivity /surface temperature 

estimate over sea 
Toss channel 1-6, 16 

QC3 Cloud affected profile (Scattering index 
factch6 > 1.0) 

Toss channel 1-7, 16 

QC4 Inflate observation error over high terrain 
(>2000m) 

Inflate channel 7 
observation error 

QC5 Inflate observation error over high terrain 
(>4000m) 

Inflate channel 8 
observation error 

QC6 Retrieved could liquid water path > 1.0 Part of QC1 
QC7 Part of Scattering index > 1.0  Part of QC3 

 
 
Using the same example as section 4.5.2: 
 
 sat    type       penalty        nobs   iland  isnoice  icoast ireduce   ivarl nlgross 
 n15    amsua      19769.16042371 4149     673     1475    268     1311   30453       0 
                   qcpenalty       qc1     qc2      qc3    qc4      qc5     qc6     qc7 
                   19769.16042371  883      63     2127    183        0      20      46 

 
Using the above table, we can understand numbers listed under qc1 to qc7. Listed below 
also includes the explanation of the numbers not in the above table, for a complete 
understanding of this part of the radiance fit file. For other portions of the fit file, please see 
the introduction in section 4.5.2.  
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From the above example, we see there are 4149 NOAA-15 AMSU-A profiles after 
thinning, among which there are: 
 

673 profiles over land (iland) 
1475 profiles over snow or ice (isnoice) 
268 profiles over coast (icoast) 
1311 profiles within tropics that has reduced qc bounds (ireduce) 
30453 channels that failed in the general gross check (ivarl) 
0 channels that passed the general gross check but failed the nonlinear gross check (nlgross)  
 
883 profiles were tossed because of cloud affect based on factch4  
63 profiles were tossed because of inaccurate emissivity /surface temperature estimate over sea 
2127 profiles were tossed because of cloud affect based on factch6  
183 profiles have inflated observation error because of high terrain (>2000m) 
0 profiles have inflated observation error because of high terrain (>4000m) 
20 profiles meet criterion QC6 (part of qc 1)  
46 profiles meet criterion QC7 (part of qc 3) 

 
So, nearly ¾ of the observations were tossed because of cloud effects. 
 
 
8.4. Bias Correction For Radiance Observations 
 
Using bias correction to correct the system bias in the satellite radiance observations is one 
of the key steps to get a successful satellite radiance data assimilation. This section will 
introduce the basic theory of the GSI bias correction, the procedures and configurations of 
the bias correction in the GSI system, an explanation of the namelist, satinfo, and 
coefficients for bias correction, the use of the angle bias correction utility, and discussions 
of some common issues users encounter in the application of the GSI bias correction. 
 
 
8.4.1. Bias Correction For Satellite Observations  
 
Observation bias can systematically damage the data assimilation results and, 
consequently, the quality of the forecasting system. Biases in satellite observations are of 
particular concern because they may larger than the signal and damage the numerical 
weather prediction system in a very short period of time. 
 
Biases between the satellite observations and the model may come from the following 
sources:  

• satellite instrument itself (e.g. poor calibration or characterization, or adverse 
environmental effects);  

• radiative transfer model (RTM) linking the atmospheric state to the radiation 
measured by the satellite (e.g. errors in the physics or spectroscopy, or from non-
modeled atmospheric processes);  

• systematic errors in the background atmospheric state provided by the NWP model 
used for monitoring. 
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In GSI, satellite observation bias is represented as a linear regression based on N state-
dependent predictors Pi(x), with associated coefficients βi : 
 

 
 
Since the bias correction is applied to the radiance departures, this is equivalent to using the 
modified definition of the observation operator: 
 

H̃(x, β)=H(x)+BC(β, x) 
 

The training of the bias correction consists in finding the vector β that allows the best fit 
between the NWP fields x and the observations. This is obtained by minimizing the 
following cost function: 

 
 
For more details on the bias correction, please see the references listed below: 
 
1. Auligne T., A. P. McNally and D. P. Dee. 2007. Adaptive bias correction for satellite data in a numerical 

weather prediction system. Q. J. R. Meteorol. Soc. 133: 631-642. 
2. Derber JC, Wu W-S. 1998. The use of TOVS cloud-cleared radiances in the NCEP SSI analysis system. 

Mon. Weather Rev. 126: 2287–2299. 
3. Harris BA, Kelly G. 2001. A satellite radiance-bias correction scheme for data assimilation. Q. J. R. 

Meteorol. Soc. 127: 1453–1468. 
4. Dee, D. P., 2004: Variational bias correction of radiance data in the ECMWF system. Pp. 97–112 in 

Proceedings of the workshop on assimilation of high-spectral-resolution sounders in NWP. 28 June–1 
July 2004, ECMWF, Reading, UK.  

5. Dee, D. P. and S. M. Uppala, 2009, Variational bias correction of satellite radiance data in the ERA-
Interim reanalysis. Q. J. R. Meteorol. Soc. 135, 1830–1841.  

 
 
8.4.2. The GSI Bias Correction Procedure And Configurations 
 
In GSI, the bias correction for satellite radiance has two parts: one part is air mass bias 
correction, also called the variational part of the bias correction; another part is angle 
dependent bias correction. Each part of bias correction has its own bias correction 
coefficient file: 
 

● The satbias_angle file contains the angle dependent part of the brightness 
temperature bias for each channel/instrument/satellite.  Also included in this file is 
the mean temperature lapse rate for each channel weighted by the weighting 
function for the given channel/instrument. 

● The satbias_in file contains the coefficients for the variational part of the bias 
correction. 
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GSI will read in the coefficients from both satbias_angle and satbias_in files, combine 
them together with predictors to generate a system bias value for each channel, and then 
subtract this system bias from the observation innovation during the radiance observation 
operator calculation. During the minimization process, GSI will calculate the updated 
coefficients for the predictive part of the bias correction and save the updated coefficients 
in another file called “satbias_out”. The angle dependent bias coefficients are updated 
outside of GSI using a utility named gsi_angleupdate in the release package. These new 
mass and angle dependent bias coefficients should be used for the bias correction in the 
next cycle of the GSI analysis.  
 
To set up the bias correction for satellite radiance in the GSI system, users need to link the 
right coefficient files in the run directory and keep the coefficient files updated in cycles: 
 
Step 1, Link coefficient files for both air bias correction and angle dependent bias into the 
GSI run directory before running the GSI executable.  
 
The coefficient files should come from the previous data assimilation cycle. However, if 
there is no previous data analysis cycle, the sample coefficient files can be copied from the 
directory ./fix within the community release version as a cold start. When using the run 
script with the released version, the following lines in the run script copy the coefficient 
files: 
 

SATANGL=${FIX_ROOT}/global_satangbias.txt 
SATINFO=${FIX_ROOT}/global_satinfo.txt 
... 
 cp $SATANGL  satbias_angle 
 cp $SATINFO  satinfo 
 
# for satellite bias correction 
cp ${FIX_ROOT}/sample.satbias ./satbias_in 

 

Within the directory ./fix, the sample angle dependent bias correction coefficients file is 
called global_satangbias.txt, and the file for mass bias correction coefficients is 
sample.satbias. Here, we also include the copy to the satinfo file because the bias 
correction needs information from the satinfo file. 
  
Step 2, Run GSI and save the output from the mass bias correction for next cycle 
 
After running the GSI, an updated coefficient file for the mass bias correction is generated 
in the run directory. This file is called “satbias_out”, which should be saved for the next 
cycle of the GSI analysis. There is a line commented out in the released GSI run script 
reserved for this purpose. The user should choose how to save the file for the next cycle: 
 
#   GSI updating satbias_in 
# 
# cp ./satbias_out ${FIX_ROOT}/sample.satbias 

 
Step 3, Run the angle dependent bias correction utility after GSI runs and save updated 
coefficients of angle dependent bias correction for use in the next cycle 
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The update of the coefficients for angle dependent bias correction is done by a stand-alone 
application named gsi_angleupdate located under the directory ./util, but outside the GSI 
itself. This application reads in the diag files from the GSI analysis results and the old 
angle dependent bias coefficients, updates the coefficients and saves them as a new file 
called “satbias_ang.out”. We will introduce how to apply this utility in the next section. 
 
Please note the cycling of the coefficients to let the bias information accumulate during the 
data assimilation cycle is the key to getting the right bias correction.  
 
 

8.4.3 Namelist, Satinfo, And Coefficients For Bias Correction 
 
To conduct the bias correction, GSI needs several pieces of information from different 
files:   
 
● The satellite platform information from the GSI namelist  
● The usage information for each channel from the satinfo file 
● The coefficients from both mass and angle dependent bias correction coefficient 

files 
 
The following is a brief introduction to these files to help the user to understand the 
contents of each file and know how to check if the user interested satellite channels are 
correctly configured in these files. 
 
● The satellite platform information from the GSI namelist  

 
The complete explanation of the GSI run script and most often used namelist options can 
be found in Chapter 3 of this guide. More details of setting up radiance data analysis in the 
run script are described in section 1 of this chapter. Users should make sure that required 
satellite instruments and platforms are in the list in &OBS_INPUT and have been correctly 
linked to the BUFR files.  
 
Also, the following is a list of GSI namelist options related to the bias correction: 
 

Variable name Default value Description 
diag_rad .true. logical to turn off or on the diagnostic radiance file 

(true=on) 
passive_bc .false. logical to turn off or on radiance bias correction for 

monitored channels 
adp_anglebc .false. option to perform variational angle bias correction 
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● The usage information for each channel from the satinfo file 
 
The GSI uses an information file called “satinfo” to control how to use each radiance 
channel. Detailed information about satinfo can be found in the GSI User’s Guide Section 
4.3. The following is an example: 
 

!sensor/instr/sat      chan iuse  error  error_cld  ermax   var_b    var_pg  icld_det 
 amsua_n15               1   1    3.000    9.100    4.500   10.000    0.000      1 
 amsua_n15               2   1    2.000   13.500    4.500   10.000    0.000      1 
 amsua_n15               3   1    2.000    7.100    4.500   10.000    0.000      1 
 amsua_n15               4   1    0.600    1.300    2.500   10.000    0.000      1 

 
 amsua_n15              14  -1    2.000    1.400    4.500   10.000    0.000     -1 
 amsua_n15              15   1    3.000   10.000    4.500   10.000    0.000      1 
 hirs3_n17               1  -1    2.000    0.000    4.500   10.000    0.000     -1 
 hirs3_n17               2  -1    0.600    0.000    2.500   10.000    0.000     -1 
 hirs3_n17               3  -1    0.530    0.000    2.500   10.000    0.000     -1 

 
 
Users can easily understand the first 2 columns are sensor/instrument/satellite and channel 
number information. The 3rd column is the usage information, which has the following 
meanings:  
 
 

iuse Channel usage in GSI 
-2 do not use 
-1 monitor if diagnostics produced 
0 monitor and use in QC only 
1 use data with complete bias correction 
2 use data with no air mass bias correction 
3 use data with no angle dependent bias correction 
4 use data with no bias correction 

 
 
For bias correction purposes, please make sure user interested channels are listed in the 
satinfo file and have been set to the correct usage flag. 
 
 
● The coefficients from both mass and angle dependent bias correction coefficient 

files 
 
As previously introduced in this section, there are two bias correction coefficient files. 
These files include the bias correction coefficients for each channel:  
 
1) satbias_in 
 
This file contains the coefficients for the predictive part of the bias correction (air mass 
bias correction coefficients). There is a sample for this file named “sample.satbias” in the 
GSI release package under the directory ./fix. All coefficients in this sample file are 0. 
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Here, we use NOAA-15 AMSU-A from the satbias_out file from the radiance application 
case in Chapter 5 as example:  
 
    1 amsua_n15                1    0.472353   -0.231512    0.291223    0.000634   -0.148959 
    2 amsua_n15                2   -0.677697    0.382025    1.424922   -0.000061    0.016514 
    3 amsua_n15                3   -2.631062    0.134578    2.968469   -0.004946    1.213581 
    4 amsua_n15                4   -0.470401    2.121855    5.764014    0.006496    1.333609 
    5 amsua_n15                5   10.996354   -0.762965    1.787372    0.082404   -1.661531 
    6 amsua_n15                6  -22.026905   -1.543174   -1.397403    0.175626  -11.384948 
    7 amsua_n15                7   -1.954080   -0.293421    0.029899   -0.064129    3.039958 
    8 amsua_n15                8   -9.468913   -1.490995   -0.856006   -0.013090   -0.945916 
    9 amsua_n15                9  -22.737061   -2.195735    0.247890   -0.357354  -15.298422 
   10 amsua_n15               10   -0.875332    2.212551   -0.392323   -0.337414   -8.785395 
   11 amsua_n15               11    0.000000    0.000000    0.000000    0.000000    0.000000 
   12 amsua_n15               12    2.800800   -4.042608    0.060067    0.913834   15.980004 
   13 amsua_n15               13    0.000000    0.000000    0.000000    0.000000    0.000000 
   14 amsua_n15               14    0.000000    0.000000    0.000000    0.000000    0.000000 
   15 amsua_n15               15   -0.439501    0.539856    0.412582   -0.001741    0.158646 

 
The first 3 columns are series number, the sensor/instrument/satellite, and channel number 
of each instrument. Columns 4 through 8 are 5 coefficients for the predictive (air mass) part 
of the bias correction, which has 5 predictors. 
 
 
2) satbias_angle 
 
The satbias_angle contains the angle dependent part of the brightness temperature bias. 
There are two sample files for this in the GSI release package under the directory ./fix: 
global_satangbias.txt and nam_global_satangbias.txt. Here we only give two channels as 
examples from the file global_satangbias.txt:  
 
1 amsua_n15                1   0.528768E-02 
      0.063 -0.200 -0.411 -0.588 -0.638 -0.523 -0.493 -0.466 -0.482 -0.475 
     -0.666 -0.587 -0.593 -0.602 -0.766 -0.955 -1.080 -1.218 -1.149 -1.374 
     -1.553 -1.635 -1.715 -1.783 -1.689 -1.507 -1.473 -1.244 -1.233 -1.259 
      0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000 
      0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000 
      0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000 
      0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000 
      0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000 
      0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000 
2 amsua_n15                2   0.290661E-02 
     -2.769 -2.880 -2.583 -2.449 -2.218 -1.810 -1.536 -1.242 -0.882 -0.788 
     -0.676 -0.697 -0.508 -0.464 -0.544 -0.790 -0.945 -1.108 -1.002 -1.364 
     -1.404 -1.315 -1.318 -1.151 -0.826 -0.219  0.086  0.631  1.121  1.807 
      0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000 
      0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000 
      0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000 
      0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000 
      0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000 
      0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000 

 
The first line for each channel looks like: 
 

1 amsua_n15                1   0.528768E-02 
2 amsua_n15                2   0.290661E-02 
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The columns are series number, the sensor/instrument/satellite, channel number of each 
instrument, and “T lap mean”, respectively.  The next 90 numbers are coefficients for angle 
dependent bias correction. These numbers correspond to the number of the FOV per scan. 
For example, AMSU-A has 30 FOV per scan, which is using the first 30 numbers to 
represents the bias correction coefficients for each FOV position, while the AMSU-B has 
90 FOV per scan, all 90 numbers are used to do bias correction. 
 
If there are some instruments in satinfo but not in satbias_in and satbias_angle, GSI will 
set 0 as the initial value for these instruments and write out updated coefficients for these 
new instruments in coefficient results files. 
 

8.4.4 Enhanced Radiance Bias Correction 
 
Since comGSIv3.3, the enhanced radiance bias correction is available to improve the 
radiance bias correction and simplify the bias corrections cycles. In the enhanced radiance 
bias correction, the angle bias is also calculated inside GSI instead of outside GSI like 
previous versions. This section is tailor based on an email from Yunqiu Zhu on how to 
setup the enhance bias correction in GSI , for more details on this enhanced radiance bias 
correction, please check the following published paper: 
 

Zhu, Y., Derber, J., Collard, A., Dee, D., Treadon, R., Gayno, G. and Jung, J. A. (2013), 
Enhanced radiance bias correction in the National Centers for Environmental Prediction's 
Gridpoint Statistical Interpolation data assimilation system. Q.J.R. Meteorol. Soc.. 
doi: 10.1002/qj.2233 
 

 
The steps to get the enhanced radiance bias correction running are summarized as follows.  
 
1. Add namelist options to turn on in the SETUP: 
 

In ./run/ run_gsi.ksh, add the following namelist options in section SETUP 
 

  newpc4pred=.true.,adp_anglebc=.true.,angord=4, 
  passive_bc=.true.,use_edges=.false.,emiss_bc=.true., 
  diag_precon=.true.,step_start=1.e-3, 

 
You may set the option passive_be=.true. if you want to do bias correction for the 
passive channels as well.  

 
2. Link bias files and diag files from previous cycle  
 

Angle bias satbias_angle file and the separate angle bias correction step are no 
longer needed. The files required at each analysis cycle are satbias_in, satbias_pc, 
and diag files from previous analysis cycle. User can copy satbias_out , 
satbias_pc.out. in prevous cycle to current GSI run directory and rename the files as 
satbias_in and satbias_pc. Please make sure that diag files is available to be used 
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for the first analysis cycle. The diag file for guess are used here and the time tag is 
removed when used in the bias correction, for example, previous cycle has diag file 
called: diag_amsua_n18_ges.2014061915 In this cycle for bias correction, this file 
should be called: diag_amsua_n18. 

 
Since the format and units of the bias file are changed, at the very first time when 
you start to use the enhanced radiance bias correction, please use the released 
sample files in fix directory to start: 

• rap_satbias_in_enhanced 
• rap_satbias_pc_enhanced 

 
 

3. script changes 
 

Please make sure the GSI run scripts has code to save the diag files and bias files 
for the next cycle bias correction. 

 
 
8.4.5. Utility For Angle Bias Correction Outside GSI 
 
Before the enhanced radiance bias correction available, the coefficients for correcting the 
angle dependent part of the brightness temperature bias in the GSI are calculated after each 
GSI run. The NCEP has developed a tool to calculate these coefficients and, the 
community GSI release v3.1 started to include this tool as a part of the release package. 
This tool is released as a directory named ./gsi_angupdate within ./comGSIv3.3/util . This 
way is still working if users don’t want to use enhanced bias correction. 
 
Please note the community GSI release package version 3.0 doesn’t have this tool. If users 
are using the GSI release 3.0 and need this tool, please download the tar file 
“gsi_angupdate.tar” from the GSI download page on-line. Once untarred, under the GSI 
directory “./comGSIv3/util”, you will see a new directory: ./gsi_angupdate, which includes 
the tool to update coefficients for radiance angle dependent bias correction. 
 

• Compile 
 

Inside the directory ./gsi_angupdate,  type the following command: 
 

./make 
 
then check if executable “gsi_angupdate.exe” exists in the same directory. 
 
Please note that before compiling this utility, the community GSI should already be 
compiled successfully. Please refer to Chapter 2 of this User’s Guide on how to configure 
and compile the community GSI.  
 

• Run 
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Before running “gsi_angupdate.exe”, make sure that GSI with radiance data have finished 
successfully and the diagnostic files that hold O-B information have been generated in the 
GSI run directory. The executable ““gsi_angupdate.exe” will read in O-B information from 
the diagnostic files for each sensor to update coefficients for angle dependent bias 
correction of the sensor.  
 
To help users easily run this tool, a sample run script named run_gsi_angupdate.ksh is 
provided within the ./comGSIv3.1.run directory. If a user uses the tar file downloaded 
separately on-line, a similar run script can be found in the directory “./comGSI/util” with 
the code.  
 
This script is modified based on the GSI run script. The script has a similar structure. 
Please check section 3.2.2.1 for instructions on setting up the machine environment, and 
section 3.2.2.2 for setting up the run environment.  The run environment portion is 
illustrated below: 
 

##################################################### 
# machine set up (users should change this part) 
##################################################### 
# 
# GSIPROC = processor number used for GSI analysis 
#------------------------------------------------ 
  GSIPROC=1 
  ARCH='LINUX_PBS' 
# Supported configurations: 
            # IBM_LSF, 
            # LINUX, LINUX_LSF, LINUX_PBS, 
            # DARWIN_PGI 

 
In this script, only four parameters need to be set for a case study. These parameters have 
been explained clearly in the run script and illustrated below: 
 

# 
##################################################### 
# case set up (users should change this part) 
##################################################### 
# 
# ANAL_TIME= analysis time  (YYYYMMDDHH) 
# WORK_ROOT= working directory, where angupdate executable runs 
# GSI_WORK_ROOT= GSI working directory, where GSI runs 
# GSI_ANGUPDATE_EXE  = path and name of the gsi angupdate executable  
  ANAL_TIME=2011032212 
  WORK_ROOT=./comGSIv3.1/run/angupdate_${ANAL_TIME} 
  GSI_WORK_ROOT=./comGSIv3.1/run/arw_2011032212 
  GSI_ANGUPDATE_EXE=./comGSIv3.1/util/gsi_angupdate/gsi_angupdate.exe 
# 

 
These parameters tell the analysis case time, where to find the GSI run directory and 
gsi_angupdate.exe, and where to run gsi_angupdate.exe. 
 
The run time information can be found in the stdout file. A successful run should end with 
the following information: 



Satellite Radiance Data Assimilation 

 77 

 
    PROGRAM GLOBAL_ANGUPDATE HAS ENDED.  IBM RS/6000 SP 

 
 After a successful run, an updated coefficients file named “satbias_ang.out” should be 
found in the run directory.  
 
 

• Namelist 
 
The namelist for gsi_angupdate.exe has two sections: setup and obs_input. Here, we 
only show and illustrate part of the namelist as an example. 
 
 &setup 
  jpch=2680,nstep=90,nsize=20,wgtang=0.008333333,wgtlap=0.0, 
  iuseqc=1,dtmax=1.0, 
  iyy1=${iy},imm1=${im},idd1=${id},ihh1=${ih}, 
  iyy2=${iy},imm2=${im},idd2=${id},ihh2=${ih}, 
  dth=01,ndat=50 
 / 
 &obs_input 
  dtype(01)='hirs3',     dplat(01)='n17',       dsis(01)='hirs3_n17', 
  dtype(02)='hirs4',     dplat(02)='metop-a',   dsis(02)='hirs4_metop-a', 
  dtype(03)='goes_img',  dplat(03)='g11',       dsis(03)='imgr_g11', 
  dtype(04)='goes_img',  dplat(04)='g12',       dsis(04)='imgr_g12', 
  dtype(05)='airs',      dplat(05)='aqua',      dsis(05)='airs281SUBSET_aqua', 
  dtype(06)='amsua',     dplat(06)='n15',       dsis(06)='amsua_n15', 
 

 
The section obs_input only has three columns, which have the same meaning as their 
counterparts in the GSI namelist, i.e., dtype and dplat specify the radiance instrument and 
the satellite name, respectively, and dsis indicates the radiance observation type with a 
name combining both the instrument and the satellite names.  
 
Most of the parameters in the section setup are different from the section setup in GSI 
namelist. We will explain these parameters below: 
 

jpch:  total channel number in coefficients file : satbias_ang.in 
nstep:  maximum number of FOV per scan 
iyy1,imm1,idd1,ihh1: start date: year, month, day, and hour 
iyy2,imm2,idd2,ihh2: end date: year, month, day, and hour 
dth:  time interval between start and end date. If start date is not equal to 

end date, the code will loop based on dth through the period to 
process multiple cycles. 

ndat: Number of radiance observation types that can be processed, which 
is the dimension for parameters in section: obs_input 

iuseqc:           >0 (i.e., 1), check variance.  If errinv= (1 /(obs error)) is small 
(small = less than 1.e-6), the observation did not pass quality 
control.  In this case, do not use this observation in computing 
the update to the angle dependent bias. 
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<=0 (i.e., 0 or -1), ensure (o-g)<dtmax. If the user says to ignore the 
qc flag, check that the o-g difference falls within the user 
specified maximum allowable difference.  If the o-g lies outside 
this bound, do not use this observation in computing the update 
to the angle dependent bias. 

dtmax: user specified maximum allowable difference for o-g difference 
nsize: the sample size number. If sample size is less than this number, the 

updating weight will be reduced based on sample size  
wgtang: weight for updating the mean temperature lapse rate 
wgtlap: weight for updating angle dependent bias coefficients. The update 

will be faster as this number gets bigger. 
 
 
8.4.6. Discussion of FAQ 
 
In this section, we will discuss some frequently asked questions on satellite radiance bias 
correction.  
 
• Where to get bias correction coefficient files for the NCEP operational system. 
 

The real-time satellite bias correction coefficients used for the NCEP operational 
system is available on-line from the same website that holds observation 
BUFR/PrepBUFR files:  
 

For GDAS: http://nomads.ncep.noaa.gov/ pub/data/n ccf/com/gfs/prod 
Once in the sub-directory, look for files with name similar to: 
 

gdas1.t00z.abias for coefficients of mass bias correction. 
 
For NAM:  http://nomads.ncep.noaa.gov/ pub/data/n ccf/com/nam/prod 
Once in the sub-directory, look for files with name similar to: 

 
nam.t00z.satbias.tm00 for coefficients of mass bias correction. 

 
Right now, the coefficient files for angle dependent bias correction are not available in 
these web sites. 

 
 
• Notes on released satbias_in and satbias_angle  

 
As mentioned in this section, the released version provides sample files for these 
coefficients under the directory ./fix: 
 

satbias_in: sample.satbias 
satbias_angle:  global_satangbias.txt and nam_global_satangbias.txt 
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These files are provided as a sample only. Users need to generate their own coefficients 
based on their experiments. Usually, these coefficients need to be cycled for a period 
(weeks or months) to get to a stage to do the right bias correction. 

• What if the user has no bias correction coefficients and only runs short experiments 
(e.g., a week) for radiance data assimilation? 

 
Following the suggestion from NCEP experts, the following may help some users 
to improve their radiance data assimilation experiments: 
1) Start with coefficient files for a date as close as possible to your cases. 
2) Run a single GSI analysis with mass bias and angle dependent bias correction. 

You can get updated mass bias and angle dependent bias correction coefficient 
files.  

3) Run the same GSI analysis as step 2 using the same background and 
observations but supply GSI with updated mass and angle dependent bias 
correction coefficient files. 

4) Repeat step 3 about 10 times to spin up the mass and angle dependent 
coefficients. 

5) Move on to the next cycle or analysis time and repeat steps 2 to 4. 
6) After one or two days, the mass coefficient should be ready for the real case 

test. Angle dependent bias correction will spin up slowly. 
 

By starting two days prior to your real case period to spin up the coefficients, you 
should be able to get better bias correction results.  

 
 
• Channel lists in satinfo, satbias_in and satbias_angle do not match 

 
The radiance channels in satinfo should match the channels in satbias_in and 
satbias_angle. If they do not match, GSI will match satbias_in based on channels in 
satinfo: 

 
If radiance channels only exist in satinfo but not in satbias_in, these channels will 
be added to the updated coefficient files with 0 as the initial values. 
 
If radiance channels are not in satinfo but are in satbias_in, the extra channels in 
satbias_in will be removed from the updated files. 

 
If channels in satinfo and satbias_angle do not match, GSI will use the channels in both 
files, but the angle dependent update tool will crash due to the mismatch. Therefore, 
users need to make sure the channels in satinfo and satbias_angle match. 

 
 
• How to select suitable satellite radiance channels when assimilating radiance data with 

GSI: 
This question is not only for bias correction. 

1) Model top and instrument weighting functions: 
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Each channel has its own weighting function. If part of the weighting function is 
above the model top, you may need to exclude this channel because your model 
cannot obtain the correct simulated radiance from background. 

2) Bias correction:  
If a particular channel cannot be bias-corrected, for reasons such as the channel 
is not correctly calibrated or due to instrument failure, you need to turn that 
channel off. You may be able to check the time-series of bias for a certain 
channel to get an idea of the status of the channel bias correction. 

3) Test:  
Try to view the data impact of each channel on the forecast to decide which 
channel(s) are best for your application. You can monitor and perform bias 
correction on each channel for a certain period and then turn that particular 
channel from monitoring to usage in order to check the impact of the channel. 

 
 
8.5. Radiance Data Analysis Monitoring 
 
The NCEP operational GSI system includes a Radiance Monitoring Package to extract 
certain radiance data from the GSI radiance diagnostic files and produce images as an aid 
to monitor GSI radiance data assimilation performance and diagnose assimilation 
problems. This package has been used at NCEP to support the following Radiance 
Assimilation Monitoring web site: 
 

http://www.emc.ncep.noaa.gov/gmb/gdas/radiance/index.html 
 
As discussed in the previous sections of this Chapter, radiance data assimilation is a 
complex process, in which data quality control and bias correction are key steps for a 
successful GSI application with radiance observations. To help users to monitor their 
radiance data assimilation with the GSI system, the DTC ported this useful package into 
the community GSI system for the Linux platform and included it as one of the utility tools 
in the release version 3.1.  
 
NCEP has updated this package since release 3.1. In this release, the Radaince Monitoring 
package has been taken out of the official community GSI release to give DTC more time 
to port and test the new package. The code and instructions to the Radaince Monitoring 
will be available on-line as a separate package. Please send gsi_help@ucar.edu for latest 
update on this package.  
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Chapter 9 Radar Data Assimilation 
 
The community GSI release version 3.2 and later includes functions for both radar radial 
velocity and reflectivity analysis. The radial velocity observations in each bin are used in 
variational process with other wind observations to improve wind field. The reflectivity 
data are not used in variational process. Instead, they are used by GSD cloud analysis 
package inside GSI to improve precipitation hydrometeor analysis and provide temperature 
tendency in storm to enhance the storm initialization through WRF DDFI. Currently, the 
radial velocity observations are used in NAM operation and reflectivity observations are 
used in RAP and NAM operation. 
 
 

9.1 Prepare Radar Data Files for GSI 

9.1.1 Introduction 
 
Real time data feeding for operational radar data analysis with GSI is complex, involving 
many steps of data quality control and format converting. But in research, these steps can 
be simplified so that community users can generate their own radar data files to feed GSI 
for radar data analysis as long as they understand the GSI radar data interface. Since release 
version 3.2, a new tool is available to help users understand the GSI radar data interface, it 
includes: 
 

• This section to explain the content and structure of the radial velocity and 
reflectivity BUFR files used by the GSI.  

• Sample code to learn how to encode and decode NCEP Level II radial velocity 
BUFR files based on the NCEP radar data preprocess code  

•  Sample code to read NSSL MRMS mosaics tiles and to interpolate the mosaic to 
analysis grid based on the RAP reflectivity preprocess.  

Users should already be familiar with the basic BUFR process skills. If not, please visit the 
DTC BUFR webpage:  
 

http://www.dtcenter.org/com-GSI/BUFR/index.php 
 

In the comGSIv3.2 package, The new sample code for GSI radar data interface is released 
separately from the official package. Users can download it from the same download page 
as the comGSIv3.2 package. It is named as “comGSI_v3.2_radar_process.tar.gz” and need 
to be placed in directory ./util and un-tared before use. After comGSI_v3.3 release, this tool 
is already under ./util directory. 
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9.1.2. GSI Interface To Level II Radar Velocity  
 
To add your own radar level II radial velocity data into GSI analysis, the first thing is to 
understand how GSI reads the radial velocity from the radar Level II radial velocity BUFR 
files. In current GSI code and run script, the Level II radial velocity BUFR file is named as 
“l2rwbufr” and reads in through a subroutine called “radar_bufr_read_all” (in file 
read_l2bufr_mod.f90). The main functions of this subroutine are: 
 

• decodes the BUFR file to read in the radial wind observations 
• does “super-obbing” to get radar velocity super obs 
• write out the new super obs to a binary file called “radar_supobs_from_level2” 

Based on this subroutine and the BUFR output interface code from the NCEP radar Level 
II radial wind process, we generated two sample codes to illustrate the content and the 
structure of the radar level II radial velocity BUFR file used by GSI. Users can find these 
two samples under directory ./util/radar_process/radialwind, 
 

• bufr_decode_l2rwbufr.f90 : sample code to decode (read) the radial velocity from 
BUFR file “l2rwbufr” and write radial velocity observations in a binary file. 

• bufr_encode_l2rwbufr.f90 : sample code to read in radial velocity from the binary 
file generated by bufr_decode_l2rwbufr.f90 and then encode (write) the radial 
velocity to the BUFR file “l2rwbufr”. 

A makefile in the same directory is provided for users to compile the code. The sample 
code has to be compiled after successful compile the GSI. It can be compiled with both 
Intel and PGI compilers. 
 
 

9.1.2.1 Read observations from Level II radar radial velocity BUFR files 
 
The sample code bufr_decode_l2rwbufr.f90 only has 87 lines. It has the same structure as 
the other BUFR decoding code released by DTC as samples for users to learn BUFR file 
decoding. After users know the general BUFR file decoding steps, the key to understand 
the radar radial velocity BUFR file decode process is to know all the mnemonics used in 
the code and the meanings of these mnemonics. Users can get explanations on each 
mnemonic from a BUFR table called “bufr_radar.table”, which is a text file generated 
during decoding sample BUFR file “l2rwbufr” using bufr_decode_l2rwbufr.f90. 
In this document, we provide the following table to explain the meanings of the mnemonics 
used in GSI Level II radial velocity interface. Please refer to the BUFR table itself for more 
details. 
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The mnemonics and their meanings for radar Level II radial velocity 
mnemonic Meaning dimension 
SSTN RADAR STATION IDENTIFIER (SHORT) 1 
CLAT RADAR STATION LATITUDE (COARSE 

ACCURACY) 
1 

CLON RADAR STATION LONGITUDE (COARSE 
ACCURACY) 

1 

HSMSL HEIGHT OF RADAR STATION GROUND ABOVE 
MSL 

1 

HSALG HEIGHT OF ANTENNA ABOVE GROUND 1 
ANEL ANTENNA ELEVATION ANGLE 1 
ANAZ ANTENNA AZIMUTH ANGLE 1 
QCRW QUALITY MARK FOR WINDS ALONG RADIAL 

LINE 
1 

YEAR YEAR OF OBSERVATION BEAM 1 
MNTH MONTH OF OBSERVATION BEAM 1 
DAYS DAY OF OBSERVATION BEAM 1 
HOUR HOUR OF OBSERVATION BEAM 1 
MINU MINUTE OF OBSERVATION BEAM 1 
SECO SECOND OF OBSERVATION BEAM 1 
DIST125M DISTANCE FROM ANTENNA TO GATE CENTER 

IN UNITS OF 125M 
Beam 

DMVR DOPPLER MEAN RADIAL VELOCITY Beam 
DVSW DOPPLER VELOCITY SPECTRAL WIDTH Beam 
SCID RADAR SCAN ID (RANGE 1-21) 1 
HNQV HIGH NYQUIST VELOCITY 1 
VOCP VOLUME COVERAGE PATTERN 1 
VOID RADAR VOLUME ID (IN THE FORM DDHHMM) 1 

 
In NCEP Level II radar radial velocity BUFR file, radar observations are organized and 
saved as radial observation beams. Each subset includes observations from one beam. Two 
parts of information are available in each subset about the beam: 
 

• Head mnemonics (Single variables) describe the beam features: 

SSTN CLAT CLON HSMSL HSALG ANEL ANAZ QCRW 
YEAR MNTH DAYS HOUR MINU SECO 
SCID HNQV VOCP VOID 

• Arrays content the observation location (DIST125M), mean radial wind (DMVR), and 
velocity spectral width (DVSW) along the beam  

In our sample decoding file bufr_decode_l2rwbufr.f90, the above information of each beam 
is read in beam by beam (subset by subset) until all the beams have been processed. If this 
beam includes valid radial wind or velocity width observations, it will be saved to a binary 
file: l2rwbufr.bin. We currently commented out most of the standard output information in 
the file, but leave the final count on the total subsets that have valid observations. 
 



Radar Data Assimilation 

 84 

9.1.2.2 Write Level II radar radial velocity observations to BUFR files 
 
After familiar with the NCEP radar Level II radial wind BUFR file structure and content, 
users can easily understand the sample encoding code bufr_encode_l2rwbufr.f90 in the 
same directory. Based on this file, users can encode their own observations into a BUFR 
file for GSI to do radial wind analysis. 
 
The encoding shares the same mnemonics and structure as decoding. So, after run decode 
sample, users can run encode sample to read in the radar observations from l2rwbufr.bin  
and encode them into a new BUFR file called: l2rwbufr_new. Users may notice that the file 
size of l2rwbufr_new is smaller than the size of l2rwbufr. This is because the l2rwbufr_new 
only includes radial beam with valid observations while the l2rwbufr includes beams with 
missing observations. 
 
Another possible operation is to append some new radial wind observations to a exiting 
NCEP Level II radial wind BUFR file. A little changes to the encoding sample will do the 
job. Please refer to the BUFR user’s guide from DTC BUFR website for how to append the 
observations. 
 
Based on the NCEP radar data interface code, there are 4 variables, SCID HNQV VOCP 
VOID, are in Level II BUFR file but not read in by GSI. Our sample codes keeps these 4 
variables for reference only. 
 
 

9.1.3 GSI Interface To Radar Reflectivity 
 
The GSI interface to radar reflectivity is different from the one to Level II radar radial wind 
introduced above. Before GSI, the radar reflectivity observations in certain height level 
have to be horizontally interpolated into analysis grid points and saved into a BUFR file 
called “refInGSI”. Then the GSI reads in these reflectivity columns over each grid point 
from the BUFR to feed the reflectivity into the GSD cloud analysis package to improve the 
precipitation analysis and storm forecast. 
 

9.1.3.1 Radar reflectivity preprocess code 
 
The GSD has developed an application package to preprocess both the NSSL radar 
reflectivity mosaics and the NCEP radar reflectivity mosaics for RAP GSI cloud analysis. 
DTC simplified that package to only preprocess NSSL new 4 tiles MRMS mosaics in 
binary format. We will use this simplified package as an example to illustrate how to 
prepare radar reflectivity BUFR for the community GSI release version 3.2 and later.  
 
The package is under “./util/radar_process/reflectivity”. It includes fortran code, a 
namelist “mosaic.namelist” for running the code, and a BUFR table 
“prepobs_prep.bufrtable” for encoding the reflectivity BUFR files. The fortran code can be 
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compiled with Intel compiler only with the makefile under the same directory. After 
compile, an executable named as “process_NSSL_mosaic.exe” should show up in the same 
directory.  
 
There are three steps to set up running environment for this executable:  
 

1. The sample code will read the NSSL new 4 tiles MRMS mosaics in binary format. 
The 4 tiles should be renamed as: 

mosaic_t1  mosaic_t2  mosaic_t3  mosaic_t4 
The sample code can only process 4 tiles MRMS mosaics binary files available 
from NSSL since summer 2013. The code for processing old 8 tiles mosaic netcdf 
files is not included in this package. 
 

2. Configure namelist file, mosaic.namelist: 

&setup 
  tversion=4, 
  analysis_time = 2013111518, 
  dataPath = '../data/', 
  bkfile = '../data/wrfinput_d01', 
 / 
where tversion is always set to 4. The analysis_time have format 
YYYYMMDDHH; the dataPath is the directory that includes 4 mosaic tiles 
(mosaic_t1-4); the bkfile is the path and WRF background file used for GSI 
analysis. 
 

3. Run process_NSSL_mosaic.exe with 4 cores.  
Please note the code has to be run by at least 4 cores because each tile needs one 
core to process. The namelist (mosaic.namelist) and BUFR table file 
(prepobs_prep.bufrtable) should be in the same directory as the executable. 
 

After run, the radar reflectivity BUFR file named as “NSSLRefInGSI.bufr” should show up 
in run directory.  
 
 
 

9.1.3.2 Radar reflectivity interface: content and structure 
 
In this package, the file “write_bufr_ref.f90” is to write reflectivity into the BUFR file. 
From this file, we can learn the structure and content of the reflectivity BUFR file.  
The radar reflectivity observations are written column by column. Each subset includes the 
information from one column. In each subset, there are only 6 mnemonics: 
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The mnemonics and their meanings for radar reflectivity 
mnemonic meaning dimension 
SID RADAR STATION IDENTIFIER (not used in GSI) 1 
XOB X-index for grid coordinate of reflectivity column  1 
YOB Y-index for grid coordinate of reflectivity column 1 
DHR OBSERVATION TIME MINUS CYCLE TIME (not 

used in GSI) 
1 

TYP PREPBUFR REPORT TYPE (not used in GSI) 1 
HREF Horizontal reflectivity 31 

 
Only XOB, YOB, and HREF are used by GSI, if users can wire their only reflectivity 
observations over analysis grid with columns that has vertical level list below (in km): 
 

 0.5, 0.75, 1, 1.25, 1.5, 1.75, 2, 2.25, 2.5, 2.75, 3, 3.5, 4, 4.5, 5, 5.5, 6, 6.5, 7, 7.5, 8, 
8.5, 9, 10, 11, 12, 13, 14, 15, 16, 18 
 

Then, users can use ““write_bufr_ref.f90” directory to encode BUFR file for GSI. If user’s 
radar reflectivity column has different vertical levels, please contact DTC GSI help desk 
for how to change the cloud analysis code for the new vertical levels. 
 
 

9.1.3.3 Check the results 
 
When generate the radar reflectivity BUFR file for GSI, the sample preprocess also write 
out the composite reflectivity (compref.bin) based on reflectivity columns over the analysis 
grid. This composite reflectivity can be used to check if the preprocess is process 
reflectivity mosaic successfully.  
 
In the release package under the reflectivity directory, we provide a NCL script, 
plot_compositeRef.ncl, to help user plot the composite reflectivity. The result figure is 
called compsiteRef.pdf and the figure from the sample data we provided on-line is shown 
below. 
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Composite Reflectivity from the sample reflectivity preprocess, which is based on NSSL 

MRMS reflectivity observations at 18Z, November 11, 2013 
 
 

9.2 Analyze Radar Radial Velocity With GSI 
 
After get the radar level II radial velocity BUFR file ready for GSI, users need to go 
through the following steps to setup GSI radial velocity analysis.  
 
1. Link the radial velocity BUFR file to GSI run directory in run scripts 
 
GSI code has hardwired the BUFR file name for Level II radial velocity observations. So 
the 1st step to use the radial velocity is to add a link in the GSI run scripts to link the radial 
velocity BUFR file to GSI working directory with this hardwired name: 
 

ln –s “the patch and name of level II radial velocity BUFR file” l2rwbufr 

 
GSI can also analyze the level-III and level-2.5 radar velocity, which is available for NAM 
application for many years. When both Level-II and Level-III/2.5 available, level-II will be 
used over the III/2.5, but outside the Level-II radar coverage, Level-III/2.5 will be used. 
The Level-II/2.5 BUFR file can be linked through the following line in the runs scripts: 
 
ln –s “the patch and name of level III/2.5 radial velocity BUFR file” radarbufr 
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2. Setup GSI namelist for radial velocity analysis 
 
In GSI namelist, only level III/2.5 radial velocity need to be set as the following sample: 
 

dfile(09)='radarbufr', dtype(09)='rw',        dplat(09)=' ',       dsis(09)='rw',                 dval(09)=1.0, dthin(09)=0, dsfcalc(09)=0, 
 
To apply high-resolution radial velocity to regional GSI analysis, radar observations need 
to be thinned with superobs method. This superobs method is controlled by the following 
namelist section: 
 

&SUPEROB_RADAR 
   
del_azimuth=5.,del_elev=.25,del_range=5000.,del_time=.5,elev_
angle_max=5.,minnum=50,range_max=100000., 
   l2superob_only=.false., 
 / 

 
Please check Appendix A for the detailed explanation of the options in the 
SUPEROB_RADAR section. 
 
3. Setup convinfo for radial velocity  
 
As other conventional observations, GSI uses “convinfo” file to control the data usage of 
each observation type. Please check GSI user’s guide for details of “convinfo”, here is an 
example of the line to control the radial velocity: 
 

rw       999    0    1     2.5      0      0      0  10.0  10.0   2.0  10.0  0.000000     0    0.     0.      0 
 
4. Check the radial velocity results 
 
The fit of the analysis results to radial velocity is recorded in fort.209. We have introduced 
how to check the fit (fort) files in the GSI User’s Guide. Here we suggest user to check 
fort.209 file to get detailed information on bias, rms, and observation numbers for analysis.  
 
 

9.2.1 Data Preprocessing Of Radar Radial Velocity Assimilation Within GSI  
 
This section, drafted by Ming Sun, discusses how GSI does “super-obbing” to get radar 
velocity super-obs after reading the level II radial velocity BUFR file named as “l2rwbufr” 
and generates the new binary file called “radar_supobs_from_level2”. 
 
1. Introduction 
 
A significant characteristic of radar observation is its high spatial and temporal resolution, 
which would also produce redundant information. Therefore, it is desirable to maximize 
whatever data compression the ensemble of radar observations allows, while minimizing 
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any degradation of the information content. The term for a surrogate datum that replaces 
several partially redundant actual data is a “super-observation” or “super-ob” (Alpert et al., 
2006). 
In GSI source code directory (./src/main), the file read_l2bufr_mod.f90 reads the radar 
radial velocity data from the BUFR file l2rwbufr, does “super-obbing” and writes out the 
new super-obs to a new binary file named radar_supobs_from_level2. 
 
2. Adaptable “Super-Ob” Parameters 
 
In the GSI namelist, section &SUPEROB_RADAR is used to setup the spatial and temporal 
sizes of a super-ob box, the minimum number of samples needed to make a super-ob, the 
range of data used to construct super-obs and the logical flag to do “super-obbing” only. 
The following is a sample of the namelist section &SUPEROB_RADAR: 
 
&SUPEROB_RADAR 

del_azimuth=5.,del_elev=.25,del_range=5000.,del_time=.5,elev_angle_max=5.,minnu
m=50,range_max=100000., 
   l2superob_only=.false., 

where del_azimuth is the azimuth range for super-ob box in units of degrees (default 5 
degrees); the del_elev is the elevation angle range for super-ob box in units of degrees 
(default 0.25 degrees); the del_range is the radial range for super-ob box in units of meters 
(default 5km); the del_time is half of the time range for super-ob box in units of hours 
(default 0.5h); the elev_angle_max is the maximum elevation angle in units of degrees and 
the radar radial wind data above this elevation angle will not be used (default 5 degrees); 
the minnum is the minimum number of samples in a super-ob box needed to make a super-
ob (default 50); the range_max is the maximum radial range to use in constructing super-
obs in units of meters and the radar radial wind data out of this range will not be used 
(default 100km); the l2superob_only is the logical flag to do “super-obbing” only if set to 
true (default false). 
 
The super-obs are still in the radar polar coordinate, and the values of the parameters above 
can define the bin numbers in azimuthal, radial and elevation directions. The bin number in 
the azimuthal direction (nazbin) is the nearest integer to 360 divided by del_azimuth, the 
bin number in the radial direction (nrbin) is the nearest integer to range_max devided by 
del_range, and the bin number in the elevation direction (nelbin) is the nearest integer to 
elev_angle_max devided by del_elev, so the total number of super-ob boxes for one radar 
nthisrad is nrbin*nazbin*nelbin. 
 
3. Create A Radar Information Table 
 
The GSI does an initial decoding of the BUFR file l2rwbufr to read in ‘DIST125M’ and 
‘SSTN CLAT CLON HSMSL HSALG ANEL YEAR MNTH DAYS HOUR MINU 
SECO’ (refer to the BUFR table itself for more details).  
l If the parameter l2superob_only is set to true, the radar observation time will be 

printed out into stdout file: 
 
 create superobs only, radar file date = ‘oyear’ ‘omonth’ ‘oday’ ‘ohour’ 
RADAR_BUFR_READ_ALL: analysis time is ‘oyear’ ‘omonth’ ‘oday’ ‘ohour’ 
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If the parameter l2superob_only is set to false (default), the analysis time of the 
background file and the radar observation time will be both printed out into stdout file: 
 
 using restart file date = ‘byear’ ‘bmonth’ ‘bday’ ‘bhour’ 
RADAR_BUFR_READ_ALL: analysis time is ‘oyear’ ‘omonth’ ‘oday’ ‘ohour’ 

 
Users can use this information to check if the observation time is right and if the times 
match between the background and observation files. 

 
l The ‘DIST125M’ data is used to determine the multiplying factor for radial distance.  

If the minimum difference of ‘DIST125M’ between the adjacent gates is 1, the factor 
is set to 250 
If the minimum difference of ‘DIST125M’ between the adjacent gates is 2, the factor 
is set to 125. 
If users see the following message in the stdout file: 
 
RADAR_BUFR_READ_ALL:  problem with level 2 bufr file, gate distance scale 
factor undetermined, going with 125 

which means the minimum difference of ‘DIST125M’ between the adjacent gates is 
neither 1 nor 2, but the multiplying factor for radial distance is still set to 125 and the 
process will still go on. This message only reminds the users that there might be some 
wrong ‘DIST125M’ data. 

 
l The GSI counts the radar number according to the radar station identifier ‘SSTN’ 
o The default maximum number of radars that GSI would deal with is 150, if users see 

the following message in the stdout file: 
 
RADAR_BUFR_READ_ALL:  stop processing level 2 radar bufr file--increase 
parameter max_num_radars 

which means the radar numbers in the BUFR file exceed 150, if so, the parameter 
max_num_radars should be changed in the file read_l2bufr_mod.f90: 
 
integer(i_kind),parameter:: max_num_radars=150 

 
o If the radar number is less than or equal to zero, the message: 

 
RADAR_BUFR_READ_ALL:  NO RADARS KEPT IN radar_bufr_read_all, continue without 
level 2 data 

will be printed in the stdout file and the “super-obbing” process will not be done. 
 

o Because the reading process runs in a parallel mode, if the total radar number is greater 
than zero meanwhile less than the defined maximum radar number, the information of 
the minimum and maximum radar numbers processed by each core can be found in the 
stdout file: 
 
 min,max num_radars=num_radars_min num_radars_max 

 
l The unique master tables of all radar station identifier, latitude, longitude and height 
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are created. 
Table Name Dimension Content Mnemonic 

master_stn_table 

total radar 
numbers 

in 
l2rwbufr 

file 

radar 
station 

identifier 
SSTN 

master_lat_table 
radar 

station 
latitude 

CLAT 

master_lon_table 
radar 

station 
longitude 

CLON 

master_hgt_table 
radar 

station 
height 

HSMSL+HSALG 

 
4. “Super-Obbing ” Preprocessing 
 
The GSI reopens and rereads the BUFR file l2rwbufr to read in ‘SSTN YEAR MNTH 
DAYS HOUR MINU SECO ANAZ ANEL QCRW’ of a subset, and does following checks: 
l If the elevation angle ‘ANEL’ is higher than the defined maximum elevation angle 

elev_angle_max, the data ‘DIST125M DMVR DVSW’ of this subset will not be read 
in. The parameter nradials_fail_angmax is used to counter the number of subsets 
which are above the maximum elevation angle. 

l If the absolute value of the difference between the radar observation time and analysis 
time of the background file is larger than the defined time range del_time. The 
parameter nradials_fail_time is used to counter the number of subsets which are out of 
time range. 

l The azimuth ‘ANAZ’ is transferred into azimuth index iazbin which ranges from 1 to 
nazbin. If the calculated index is out of this range, the program will be stopped and the 
following message can be found in the stdout file: 
 
  RADAR_BUFR_READ_ALL:  error in getting iazbin, program stops 

 
which means there must be some wrong azimuth data in the BUFR file l2rwbufr. 

l The elevation angle ‘ANEL’ will be transferred into elevation angle index ielbin which 
ranges from 1 to nelbin. If the calculated index is out of this range, the data 
‘DIST125M DMVR DVSW’ of this subset will not be read in. The parameter 
nradials_fail_elb is used to counter the number of subsets which are out of the 
elevation angle index range. 

l The radar station identifier ‘SSTN’ will be compared with the created radar information table 
master_stn_table. If there is no match station, the program will be stopped and the 
following message can be found in the stdout file: 
 
 index error in radar_bufr_read_all -- program stops – 0 ‘stn_id’ 

where stn_id is the wrong radar station identifier. 
 



Radar Data Assimilation 

 92 

If the subset goes through all the checks above, GSI will read the ‘DIST125M DMVR 
DVSW’ data which contain all the radar observations (number of gates) in a radial direction, 
and do the following 5 steps: 
Step 1, the distance from antenna to gate center is calculated by the multiplying factor for 

radial distance multiplied by ‘DIST125M’. If the distance is greater than the 
maximum radial range range_max, the radar data in this gate will not be used. The 
parameter nrange_max is used to counter the number of gates which are out of the 
maximum radial range. 

Step 2, if the radial velocity ‘DMVR’ is greater than 100000, the radar data in this gate will 
not be used. The parameter nobs_badvr is used to counter the number of gates 
which have bad radial velocity data. 

Step 3, if the velocity spectral width ‘DVSW’ is greater than 100000, the radar data in this 
gate will not be used. The parameter nobs_badsr is used to counter the number of 
gates which have bad velocity spectral width data. 

Step 4, the distance is transferred into distance index irbin which ranges from 1 to nrbin, if 
the distance index is out of this range, the radar data in this gate will not be used. 
The parameter nobs_lrbin is used to counter the number of gates which have the 
distance index less than 1 and nobs_hrbin is used to counter the number of gates 
which have the distance index greater than nrbin. 

Step 5, the three-dimensional coordinate (izabin, ielbin, irbin) is transferred into one-
dimensional coordinate iloc, using the formula: 
iloc = nrbin*(nazbin*(ielbin-1)+(iazbin-1))+irbin 
All the observations from the same radar at the same one-dimensional coordinate 
iloc, which means in the same super-ob box, are added up and the number of 
observations in the same super-ob box is counted. If the number of samples in a 
super-ob box is less than the defined minimum number minnum, the data of this 
super-ob box will not be used. 

 
After doing these steps, all the statistical information is listed in the stdout file as shown in 
the following example: 

RADAR_BUFR_READ_ALL:  num_radars_0 =            2 
 master list radar   1 stn id,lat,lon,hgt,num = RSHI     31.01    121.89    
44.0      4372 
 master list radar   2 stn id,lat,lon,hgt,num = SHQP     31.08    120.96    
42.0      6408 
 RADAR_BUFR_READ_ALL:  ddiffmin,distfact,idups=   2.00000000000000      
   125.000000000000                0 
  nthisrad=       28800 
  nthisbins=      172800 
  timemin,max= -3.055555555555555E-002  2.527777777777778E-002 
  nradials_in=        6554 
  nradials_fail_angmax=        2897 
  nradials_fail_time=           0 
  nradials_fail_elb=           0 
  nobs_in=     1469686 
  nobs_badvr=           0 
  nobs_badsr=          12 
  nobs_lrbin=           0 
  nobs_hrbin=           0 
  nrange_max=      392524 
 ielbin,histo_el=     1                   0 
 ielbin,histo_el=     2              142854 
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 ielbin,histo_el=     3               85071 
 ielbin,histo_el=     4                   0 
 ielbin,histo_el=     5                   0 
 ielbin,histo_el=     6              217218 
 ielbin,histo_el=     7                8899 
 ielbin,histo_el=     8                   0 
 ielbin,histo_el=     9                6365 
 ielbin,histo_el=    10              209058 
 ielbin,histo_el=    11                   0 
 ielbin,histo_el=    12                   0 
 ielbin,histo_el=    13              125610 
 ielbin,histo_el=    14               77976 
 ielbin,histo_el=    15                3795 
 ielbin,histo_el=    16                   0 
 ielbin,histo_el=    17              131792 
 ielbin,histo_el=    18               68512 
 ielbin,histo_el=    19                   0 
 ielbin,histo_el=    20                   0 

where num_radars_0 is the total number of radars, in the example there are radars in the 
BUFR file l2rwbufr; in this example, the 2 lines below list the detail information from each 
radar, which include radar station identifier (RSHI and SHQP respectively), latitude 
(31.01°N and 31.08°N respectively), longitude (121.89°E and 120.96°E respectively), 
height (44.0m and 42.0m) and the number of useful super-ob boxes (4372 and 6408 
respectively); ddiffmin means the minimum difference of ‘DIST125M’ between the 
adjacent gates, in this example ddiffmin is 2, so the multiplying factor for radial distance 
distfact is 125, and idups means the number of observations that the minimum difference of 
‘DIST125M’ between the adjacent gates equals zero (normally 0 as shown in this 
example); ‘nthisrad = 28800’ means he total number of super-ob boxes for one radar is 
28800 and nthisbins equals nthisrad multiplied by 6 (in this example 28800*6=172800); 
‘timemin,max= -3.055555555555555E-002  2.527777777777778E-002’ means the 
minimum and maximum difference between the observation time and the analysis time of 
the background in units of hour; ‘nradials_in=6554’ means the total number of subsets 
read from the BUFR file l2rwbufr is 6554; ‘nradials_fail_angmax=2897’ means there are 
2897 subsets above the maximum elevation angle; ‘nradials_fail_time=0’ means there is 
no subset out of the time range; ‘nradials_fail_elb=0’ means there is no subset out of the 
elevation angle index range; ‘nobs_in=1469686’ means the total number of gates read from 
the subsets is 1469686; ‘nobs_badvr=0’ means there is no gate having bad radial velocity 
data; ‘nobs_badsr=12’ means there are 12 gates having bad velocity spectral width data; 
‘nobs_lrbin= 0’ means there is no gate having distance index less than 1; ‘nobs_hrbin=0’ 
means there is no gate having distance index greater than nrbin; ‘nrange_max=392524’ 
means there are 392524 gates out of the maximum radial range; ielbin and histo_el are the 
elevation angle index and the total gates number of the elevation index respectively, in this 
example there are totally 20 elevation angle indexes and 217218 gates in the elevation 
angle index 6 (ielbin,histo_el=6  217218). 
 
5. Create Super-Obs And Generate The radar_supobs_from_level2 File 
The accumulated values of the same radar in the same super-ob box are divided by the 
number of samples in the super-ob box expect for the radars near the polar (radar station 
latitude is higher than 89.5 degrees). The variables include thisrange (radial range), 
thisazimuth (azimuth), thistilt (elevation angle), thisvr (radial velocity), thisvr2 (the square 
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of radial velocity), thistime (time difference between observation and background). An 
additional variable thiserr is calculated according to the following formula: 

22
r rthiserr V V= −  

The variable thishgt (height of the super-obs box) is also calculated. Then the elevation 
angle, radial distance and azimuth are corrected and written into corrected_tilt, gamma and 
corrected_azimuth respectively. Meanwhile, thislat and thislon (the latitude and longitude 
of the super-obs box) are calculated.  
So all the variables listed below for each super-ob box are written into a new binary file 
named radar_supobs_from_level2. 

Variable Meaning 
this_staid radar station identifier 
this_atalat radar station latitude  
this_stalon radar station longitude 
this_stahgt radar station height 
thistime time difference between observation and background 
thislat super-ob box latitude 
thislon super-ob box longitude 
thishgt super-ob box height 
thisvr mean radial velocity 
corrected_azimuth corrected azimuth 
thiserr mean radial velocity errorr 
corrected_tilt corrected elevation angle 

 
Finally, some information can be found in the stdout file. Below is an example using the 
same data in Section 4: 
 

  for radar RSHI nsuper=        4372  delazmmax=  0.531495369516961      
  vrmin,max=  -20.9300000000000        20.9700000000000       errmin,max= 
  0.309294787065859        14.6110084866894      
  deltiltmin,max=  2.239541454977478E-002  0.663221332668083       
  deldistmin,max=  -326.328815013534      -0.148169009099547      
  for radar SHQP nsuper=        6408  delazmmax=  0.530711027335997      
  vrmin,max=  -24.4200000000000        22.9650000000000       errmin,max= 
  0.298880185862377        21.7435944590585      
  deltiltmin,max=  2.102455505536138E-002  0.665819075690249       
  deldistmin,max=  -303.381730881694      -9.666676340202685E-002 

Because there are two radars in this case, the statistical information of each radar is listed. 
Take RSHI radar as an example:  
• ‘nsuper=4372’ means there are 4372 super-ob boxes from RSHI radar used in this 

example 
• ‘delazmmax=0.531495369516961’ means the maximum corrected value of the 

azimuth is 0.531495369516961 degrees 
• ‘vrmin,max= -20.9300000000000   20.9700000000000’ means the minimum and 

maximum values of the mean radial velocity are -20.93m/s and 20.97m/s respectively 
• ‘errmin,max= 0.309294787065859   14.6110084866894’ means the minimum and 

maximum values of the mean radial velocity error are 0.309294787065859m/s and 
14.6110084866894m/s respectively 
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• ‘deltiltmin,max= 2.239541454977478E-002  0.663221332668083’ means the 
minimum and maximum corrected values of the elevation angle are 
2.239541454977478E-002 degrees and 0.663221332668083 degrees respectively 

• ‘deldistmin,max= -326.328815013534   -0.148169009099547’ means the minimum 
and maximum corrected values of the radial distance are -326.328815013534m and -
0.148169009099547m respectively 

 
  total number of superobs written=       10780 
   vrmin,maxall=  -24.4200000000000        22.9650000000000      
  errmin,maxall=  0.298880185862377        21.7435944590585      
  delazmmaxall=  0.531495369516961      
  deltiltmin,maxall=  2.102455505536138E-002  0.665819075690249      
  deldistmin,maxall=  -326.328815013534      -9.666676340202685E-002 

The statistical information of all the radars are also listed in the stdout file: 
• ‘total number of superobs written=10780’ means there are totally 10780 super-ob 

boxes used in this example 
• ‘vrmin,maxall=-24.4200000000000  22.9650000000000’ means the totally minimum 

and maximum values of the mean radial velocity are -24.42m/s and 22.965m/s 
respectively 

• ‘errmin,maxall=0.298880185862377  21.7435944590585’ means the totally minimum 
and maximum values of the mean radial velocity error are 0.298880185862377m/s and 
21.7435944590585m/s respectively 

• ‘delazmmaxall=0.531495369516961’ means the totally maximum corrected value of 
the azimuth is 0.531495369516961 degrees 

• ‘deltiltmin,maxall=2.102455505536138E-002  0.665819075690249’ means the totally 
minimum and maximum corrected values of the elevation angle are 
2.102455505536138E-002 degrees and 0.665819075690249 degrees respectively 

• ‘deldistmin,maxall=-326.328815013534  -9.666676340202685E-002’ means the 
totally minimum and maximum corrected values of the radial distance are -
326.328815013534m and -9.666676340202685E-002m respectively 

 
 
 
Reference 
Alpert J C, Kumar V K. Radial wind super-obs from the WSR-88D radars in the NCEP 
operational assimilation system[J]. Monthly weather review, 2007, 135(3): 1090-1109. 
 
 

9.2.2 The Processes Of The read_radar.f90 Code  
 
This section was drafted by Ming Sun. 
 
1. Check if radar wind files exist. If none exist, exit this routine. 

The files include ‘radar_supobs_from_level2’, the level 2.5 and 3 super-obs files, 
‘tldplrbufr’ and ‘tldplrso’ files 
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2. Set some parameters: 
 
vad_leash=0.3 (used in VAD QC) 
xscale=20000 (horizontal scale, unit: meters) 
maxvadbins=15 (the maximum of VAD levels) 
dzvad=304.8 (vad reports are every 1000 ft = 304.8 meters) 
 

The information of these parameters will be listed in stdout file: 
 
READ_RADAR:  set vad_leash,xscale=  0.300000000000000   20000.0000000000 
READ_RADAR:  set maxvadbins,maxbadbins*dzvad=     15   4572.00000000000 
 

3. Open BURF file ‘vadfile’(which is given in GSI namelist under &OBSQC section) 
which includes VAD winds and read in all VAD winds so that radar data can be 
decided to keep or not using VAD wind quality marks 
If the ‘vadfile’ file does not exit the program will still go on and users will see the 
information in stdout file: 
 
READ_RADAR: nsuper2_in,nsuper2_kept=       12482       0 
READ_RADAR: # no vad match   =           12482 

 
It tells you that all the observations have no VAD wind to match, and no observation is 
kept. 
If the file ‘vadfile’ exists and reads the first message correctly, a line will be found in 
stdout file: 
 
READ_RADAR:  first read vad winds--use vad quality marks to qc 2.5/3 radar 
winds 
 

4. Find out whether the VAD data is in the BUFR file according to subtype(224) or type 
in the ‘convinfo’ file and only read VAD wind data in the BUFR file. 
There is also a time check, the VAD wind data outside the time window will not be 
read. 
For 3DVAR, the time window is set by both ‘twindow’ in the ‘convinfo’ file and half 
an hour. 
 

5. Create VAD wind information table 
If the latitude and longitude of a new VAD wind station is less than 0.1 degrees away 
from a VAD wind station reading before, then it will be considered as the same VAD 
wind station, otherwise, the information of a new VAD wind station will be stored. 
The parameter nvad counts the number of VAD wind stations, if it exceeds the 
maxvad(default value is 500) defined in the program, the program will stop and the 
error will be printed in the stdout file: 
 
READ_RADAR:  ***ERROR*** MORE THAN 500 RADARS:  PROGRAM STOPS 
 

which means the VAD wind station numbers in the BUFR file exceed 500, if so, the 
parameter maxvad should be changed in the file read_radar.f90: 
 
integer(i_kind),parameter:: maxvad=500 
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The VAD wind information table is created 
 

Table 
Name Dimension Content 

vadlon 

nvad 

VAD station 
longitude 

vadlat VAD station latitude 

vadid VAD station 
identifier 

 
6. Update vadqm table 

If levels of the VAD data (levs) are greater than maxlevs(default value is 1500) defined 
by the program, the program will stop and the error will be printed in the stdout file: 
 
READ_RADAR:  ***ERROR*** increase read_radar bufr size since number of 
levs=’levs' > maxlevs=1500 
 

which means the VAD wind levels beyond 1500, if so, the parameter maxlevs should be 
changed in the file read_radar.f90: 
 
integer(i_kind),parameter:: maxlevs=1500 

 
If it is a new VAD wind station (the logical flag ‘newvad’ from read_prepbufr.f90), the 
vadqm table will be updated according to the difference (diffuu, diffvv) between VAD 
wind observation (Uvad,Vvad) and background wind (Ubk,Vbk). 
 

€ 

diffuu =Uvad −Ubk

diffvv =Vvad −Vbk
 

 
If 

€ 

diffuu2 + diffvv 2 >10.0, the VAD data will not be used. 
If 

€ 

diffvv > 8.0, the VAD data will not be used. 
If  

€ 

diffvv > 5.0and 5000.0zob < , the VAD data will not be used (zob is the height of 
VAD wind observation). 
If 7000.0zob > , the VAD data will not be used. 
 
Translate zob (the height of VAD wind observation) into index ivadz (the height 
divided by dzvad which defined before, default value is 304.8 meters). If ivadz is less 
than 1 or greater than maxvadbins (default value is 15), the VAD data will not be used. 
 

Varible Dimension Content 

errzmax 1 
The maximum difference between 
observation height and the nearest 

VAD level height 

vadqm (nvad, 
levs) 

The maximum value of WQM (VAD 
U-, V-component wind quality 

marker) of a VAD wind station at a 
level 
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vadqmmax 1 The maximum value of the vadqm 
array 

vadqmmin 1 The minimum value of the vadqm 
array 

vadu (nvad, 
levs) 

Add all the VAD U-component wind 
up at the same VAD station and the 

same level 

vadv (nvad, 
levs) 

Add all the VAD V-component wind 
up at the same VAD station and the 

same level 

vadcount (nvad, 
levs) 

Count the numbers at the same VAD 
station and the same level 

 
7. Print vadwnd table 

vadu and vadv are divided by vadcount at the same VAD station and the same level so 
that the average U-, V-component wind at every level of every station are obtained. 
The VAD wind table will be printed in stdout file as follows: 
 
n,lat,lon,qm=  1   31.08  120.96   -9 -9  2  2  2  2  2  2  2  2  2  2  2  2  
2 
…… 
errzmax=   48.0000000000000 

 
where n is the serial number of VAD wind station, lat and lon are the latitude and 
longitude of the VAD wind station, qm is the maximum value of WQM of this VAD 
wind station at every level. There should be nvad lines in the stdout file. 
The maximum difference between observation height and the nearest VAD level height 
errzmax in the unit of meters is also listed in the stdout file. 
 

8. Open and read the binary file ‘radar_supobs_from_level2’ which contains super-obs 
 
All the variables in ‘radar_supobs_from_level2’ file are listed below 

Variable Meaning 
this_staid radar station identifier 
this_atalat radar station latitude  
this_stalon radar station longitude 
this_stahgt radar station height 
thistime time difference between observation and background 
thislat super-ob box latitude 
thislon super-ob box longitude 
thishgt super-ob box height 
thisvr mean radial wind 
corrected_azimuth corrected azimuth 
thiserr mean radial wind errorr 
corrected_tilt corrected elevation angle 

 
nsuper2_in is used to count the total number of the super-obs read from the binary file. 
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If the GSI is run under regional mode and the location of the radar is outside the region, 
the super-obs will not be read but this super-ob is still counted in nsuper2_in. 
dlatmax, dlonmax, dlatmin and dlonmin are used to store the maximum and minimum 
grid-relative latitude and longitude of all the radar stations. 
 

9. Find match VAD wind station for every super-ob radar station according to the distance 
between the two stations. 
If the distance between the VAD wind station and the super-ob radar station is less than 
0.2 degrees, they are matched up. 
numhits (dimension of nvad)counts the number of super-obs matched for every VAD 
wind station. 
novadmatch counts the number of super-obs which have no match VAD wind station 
and if a super-ob has no matched VAD wind station, the super-ob data will not be used. 
If the GSI is run under regional mode and the location of the matched VAD wind 
station is outside the region, the super-ob data will not be used. 
If the time difference between observation and background of the super-ob is larger 
than the time window, it will not be used. For 3DVAR, the time window is half an 
hour. 
 

10. If the GSI is run under regional mode and the location of the super-ob observation is 
outside the region, the super-ob data will not be used. 
Compute the distance between the super-ob observation and the radar station, and 
transform it into the distance index (irrr) according to xscale defined before (the default 
value is 20000 meters). If irrr less than one or greater than max_rrr, which is the 
integer of 100000.0 devided by xscale, the data will not be used, which means the 
super-ob observations should be within 100km away from the radar station. 
 

11. Calculate the azimuth index iaaa, which depends on the distance index (irrr). As 
shown below, the azimuth is divided into 8 parts when irrr equals 1, and 16 parts when 
irrr equals 2, 24 parts when irrr equal 3, and so on. 

 
iaaamax and iaaamin are the maximum and minimum of the observation azimuth index 
respectively. 
 

12. Calculate the observation error (error) 
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Observation error (error) equals mean radial wind error (thiserror) multiplied by a 
factor (erradar_inflate). 
erradar_inflate is defined in the qcmod.f90 code, meaning radar error inflation factor 
and the default value is one. 
errmax and errmin are the maximum and minimum (greater than zero) of the 
observation error respectively. 
 

13. Perform limited QC based on azimuth angle, radial wind speed, distance from radar 
site, elevation of radar, height of observation, observation error 
l If the azimuth angle is greater than 400 degrees, the data is considered as a bad 

data. ibadazm is used to count the numbers of bad azimuth angle data. 
l If the radial wind is greater than 200 m/s, the data is considered as a bad data. 

ibadwnd is used to count the numbers of bad radial wind data. 
l If the distance between the super-ob observation and the radar station is greater 

than 400 meters, the data is considered as a bad data. ibaddist is used to count the 
numbers of bad distance data. 

l If the radar station height is lower than -1000 meters or higher than 50000 meters, 
the data is considered as a bad data. ibadstaheight is used to count the numbers of 
bad radar station height data. 

l If the super-ob observation height is lower than -1000 meters or higher than 50000 
meters, the data is considered as a bad data. ibadheight is used to count the 
numbers of bad observation height data. 

l If the super-ob observation height is lower than the radar station height, the data is 
considered as a bad data. iheightbelowsta is used to count the numbers of 
observation height lower than radar station height data. 

l If the mean radial wind error is greater than 6 or no more than 0, the data is 
considered as a bad data. ibaderror is used to count the numbers of bad mean 
radial wind error data. 

notgood0 is used to count the total number of bad data mentioned above. And if the 
data is a bad data, the checks below will not be done. 
 

14. Check fit to VAD wind and VAD wind quality mark 
l Transform the super-ob observation height into index ivadz (the height divided by 

dzvad which defined before, default value is 304.8 meters). If ivadz is less than 1 or 
greater than maxvadbins (default value is 15), the data is considered as a bad data 
and the checks below will not be done. ioutofvadrange is used to count the 
numbers that out of the VAD height range data. 

l Calculate some variables as follows: 
o weight:  

2

1
max(4.0, )

thiswgt
thiserr

= , where thiserr is mean radial wind error of the 

super-ob 
o square of the radial wind difference between VAD and super-ob observation: 

€ 

thisfit2 = (VADvr − thisvr)2 , where VARvr is the radial wind calculated from 
VAD U,V-component wind and thisvr is mean radial wind of the super-ob 

o square root of thisfit2:  
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€ 

thisfit = thisfit2  
o speed of VAD wind: 

2 2thisvadspd VADu VADv= + , where VADu and VADv are the VAD U,V-
component wind respectively 

o vadfit2 is used to add all the thiswgt*thisfit2 up 
o vadcount2 is used to count the number 
o vadwgt2 is used to add all the thiswgt up 

If the ratio 
max(1, )

thisfit
thisvadspd

 is larger than vad_leash defined before (the default 

value is 0.3), the data is considered as a bad data. ibadfit is used to count the 
number of these bad fit data. 
This check is commented out in comGSI_v3.3! 

l Thin out the data 
For the same distance index (irrr), azimuth angle index (iaaa), height index (ivadz) 
and VAD wind station index (ivad), if the number of super-ob observation is more 
than nboxmax (the default value is one), the data is thinned out. kthin is used to 
count the number of thinned out data. 

l VAD wind quality mark check 
If the maximum value of WQM (VAD U-, V-component wind quality marker) of a 
VAD wind station at a level is greater than 3.5 or less than -1, the data is 
considered as a bad data. ibadvad is used to count the number of the bad VAD 
wind quality marker data. 
This check is commented out in comGSI_v3.3! 
 

15. If the data passed all the checks above, then load it into output array 
nsuper2_kept is used to count the total number of the kept good data. 
level2 is used to count the number of the kept good data for each VAD wind station. 
nobs_box is used to count the number of the kept good data for each thinned box. 
notgood is used to count the number of the bad data which does not fit to VAD wind 
and VAD wind quality mark. 
 

Output Array 
Member Variable Meaning 

cdata(1) error wind observation error 
(m/s) 

cdata(2) dlon grid relative longitude 
cdata(3) dlat grid relative latitude 

cdata(4) height observation absolute 
height (m) 

cdata(5) rwnd radial wind observation 
(m/s) 

cdata(6) azm*deg2rad azimuth angle (radians) 
cdata(7) t4dv observation time (hour) 
cdata(8) ikx observation type 
cdata(9) tiltangle tilt angle (radians) 
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cdata(10) staheight station elevation (m) 
cdata(11) rstation_id station id 
cdata(12) usage usage parameter 
cdata(13) idomsfc dominate surface type 
cdata(14) skint skin temperature 
cdata(15) ff10 10 meter wind factor 
cdata(16) sfcr surface roughness 

cdata(17) dlon_earth*rad2deg earth relative longitude 
(degrees) 

cdata(18) dlat_earth*rad2deg earth relative latitude 
(degrees) 

cdata(19) dist 
range from radar in km 
(used to estimate beam 

spread) 

cdata(20) zsges model elevation at 
radar site 

cdata(21) thiserr mean radial wind errorr 
cdata(22) two  

 
16. Finally, some information can be found in the stdout file. Below is an example: 

 
READ_RADAR:  level 2 superobs: reached eof on 2/2.5/3 superob radar file 
 READ_RADAR: nsuper2_in,nsuper2_kept=       12482       10704 
 READ_RADAR: # no vad match   =           0 
 READ_RADAR: # out of vadrange=           0 
 READ_RADAR: # bad azimuths=           0 
 READ_RADAR: # bad winds   =           0 
 READ_RADAR: # bad dists   =           0 
 READ_RADAR: # bad stahgts =           0 
 READ_RADAR: # bad obshgts =           0 
 READ_RADAR: # bad errors  =         372 
 READ_RADAR: # bad vadwnd  =           0 
 READ_RADAR: # bad fit     =           0 
 READ_RADAR: # num thinned =           0 
 READ_RADAR: # notgood0    =         372 
 READ_RADAR: # notgood     =           0 
 READ_RADAR: # hgt belowsta=           0 
 READ_RADAR: timemin,max   =  4.940656458412465E-324  4.940656458412465E-324 
 READ_RADAR: errmin,max    =  0.198997487421342        26.2045158189491      
 READ_RADAR: dlatmin,max,dlonmin,max=   200.880606608956      
   203.096439643754        230.469249250455        260.028462165266      
 READ_RADAR: iaaamin,max,8*max_rrr  =           1          40          40 
 

• ‘nsuper2_in,nsuper2_kept=  12482  10704’ means there are totally 12482 super-ob 
boxes reading in this example, and 10704 super-ob boxes are kept after all the 
checking process. 

• ‘# no vad match  =  0’ tells users how many super-ob boxes have no match VAD wind 
station (refer to novadmatch). 

• ‘# out of vadrange=  0’ tells users how many super-ob boxes are out of the VAD 
height range (refer to ioutofvadrange). 

• ‘# bad azimuths=  0’ tells users how many super-ob boxes have bad azimuth angle 
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(refer to ibadazm). 
• ‘# bad winds   =  0’ tells users how many super-ob boxes have bad bad radial wind 

(refer to ibadwnd). 
• ‘# bad dists   =   0’ tells users how many super-ob boxes have bad distance (refer to 

ibaddist). 
• ‘# bad stahgts =  0’ tells users how many super-ob boxes have bad radar station height 

(refer to ibadstaheight). 
• ‘# bad obshgts =  0’ tells users how many super-ob boxes have bad observation height 

(refer to ibadheight). 
• ‘# bad errors  =  372’ tells users how many super-ob boxes have bad mean radial wind 

error (refer to ibaderror). 
• ‘# bad vadwnd  =  0’ tells users how many super-ob boxes have bad VAD wind 

quality marker (refer to ibadvad). 
• ‘# bad fit  =   0’ tells users how many super-ob boxes are bad fit data (refer to ibadfit) 
• ‘# num thinned =   0’ tells users how many super-ob boxes are thinned out (refer to 

kthin) 
• ‘# notgood0    =  372’ tells users how many super-ob boxes have not passed the 

limited QC based on azimuth angle, radial wind speed, distance from radar site, 
elevation of radar, height of observation, observation error (refer to notgood0) 

• ‘# notgood     =  0’ tells users how many super-ob boxes do not fit to VAD wind and 
VAD wind quality mark (refer to notgood) 

• ‘# hgt belowsta=  0’ tells users how many super-ob boxes have height lower than radar 
station height (refer to iheightbelowsta) 

• ‘timemin,max   =  4.940656458412465E-324  4.940656458412465E-324’ means the 
minimum and maximum observation time respectively. 

• ‘errmin,max    =  0.198997487421342   26.2045158189491’ means the minimum and 
maximum of the observation error respectively 

• ‘dlatmin,max,dlonmin,max=   200.880606608956    203.096439643754     
230.469249250455    260.028462165266’ means the minimum and maximum grid-
relative latitude and longitude of all the radar stations 

• ‘iaaamin,max,8*max_rrr  =  1    40    40’ means the minimum, maximum of the 
observation azimuth index and 8 times the maximum azimuth index (refer to iaaamin, 
iaaamax, max_rrr) 

 
 
 

9.3 Analyze Radar Reflectivity With GSI 
 
After get the radar reflectivity BUFR file ready for GSI, users need to go through the 
following steps to setup GSI reflectivity analysis.  
 
1. Compile with GSD cloud analysis 
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Reflectivity observations are used with the GSI in GSD cloud analysis. To open the cloud 
analysis in the GSI, users need to add the following  bold conditional compiling option in 
“configure.gsi” file: 

CPP_FLAGS      =  -C -P -D_REAL8_ -DWRF –DLINUX -DRR_CLOUDANALYSIS 

 
2. Setup GSI namelist for radial velocity analysis 
 
In GSI namelist section “OBS_INPUT”, a line needs to be set to let GSI know the name of 
the radar reflectivity: 
 
   dfile(88)='refInGSI',  dtype(88)='rad_ref',   dplat(88)=' ',       dsis(88)='rad_ref',            dval(88)=1.0, dthin(88)=0, dsfcalc(88)=0, 
 
Please note the total observation files number in namelist section SETUP need to be add 1: 
 

ndat=original number + 1 

 
The namelist options to control GSD cloud analysis, including the reflectivity analysis, are 
in section RAPIDREFRESH_CLDSURF. Please check Appendix A for the detailed 
explanation of the options in the RAPIDREFRESH_CLDSURF section. 
 
 
3. Link the radial velocity BUFR file to GSI run directory in run scripts 
 
After add GSI namelist for reflectivity, a new link need to be added in the GSI run scripts 
to link the reflectivity BUFR file to GSI working directory with the name setup in the GSI 
OBS_INPUT section: 
 

ln –s “the patch and name of reflectivity BUFR file” refInGSI' 

 
4. Setup convinfo for reflectivity  
 
As other conventional observations and radial velocity, GSI uses “convinfo” file to control 
the data usage of each observation type. Please check GSI user’s guide for details of 
“convinfo”, here is an example of the line to contral the reflectivity: 
 

rad_ref  999    0    1     1.5      0      0      0   7.0   5.6   1.3  10.0  0.000000     0    0.     0.      0 
 
5. Setup anavinfo  for reflectivity  
 
Reflectivity is analyzed as part of the GSD cloud analysis. To open the GSD cloud 
analysis, users also need to make the following changes to the met_guess section of the 
anavinfo_arw_netcdf in fix files: 
 

met_guess:: 
!var     level    crtm_use    desc              orig_name 
  cw       30      10         cloud_condensate  cw 
  ql       30      10         cloud_liquid      ql 
  qi       30      10         cloud_ice         qi 
  qr       30      10         rain              qr 
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  qs       30      10         snow              qs 
  qg       30      10         graupel           qg 
  qnr      30      10         rain_noconc       qnr 
:: 

 
6. Check the reflectivity analysis results 
 
Because the reflectivity is not analzed with the variational method, there is no fit files for 
the reflectivity. But users still can use the stdout file to find if the reflectivity is used in the 
analysis.  
 

• Check data distribution in stdout to look for line: 
 

OBS_PARA: rad_ref                   ????      ????      ????      ???? 

 
• Check the line after minimization: 

 
======================================== 
gsdcloudanalysis: Start generalized cloud analysis 
======================================== 

 
• Check analysis increment for rain and snow mixing ratio 

 
 

9.4 Information On Radar Data Quality Control 
 

Radar data quality control is not discussed in this document because of the complexity of 
the problem. Users can check Shun Liu’s slides in the 2010 Summer Community GSI 
residential Tutorial on radar data assimilation for quality control steps conducted in radial 
velocity process. 
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Chapter 10 GSI Applications 
 

10.1 Introduction To Hybrid 4-Dimensional Ensemble-Variational Analysis 
 
The 4-Dimensional ensemble-variational analysis is the newly implemented feature of the 
GSI-Hybrid system. It takes advantage of the time varying ensembles and first guess fields 
so that the GSI analysis can get the flow-dependent background error information of 
different time levels.  
 
It is an upgrade on the hybrid ensemble-3DVAR analysis. To run the 4-D GSI-Hybrid 
analysis using the multiple time level GFS ensembles, some additional changes are 
required from the hybrid ensemble-3DVAR analysis, in both the namelist and the run 
script: 
 
Change 1: Link the ensemble members to the GSI run directory 
 
This change is to link the GFS ensemble members of different time levels (usually three 
time levels) to the GSI run directory. The current implementation can only accept the GFS 
ensemble forecasts, which is corresponding to the namelist variable 
regional_ensemble_option=1. Using an WRF ARW 4-D GSI-hybrid analysis case with 
three time levels and 6-hour time window as an example, the following lines are needed in 
the run script to link the GFS ensembles: 

 
# ensemble initial time is 6 hours earlier than the analysis time 
m6date=`${HOME}/bin/da_advance_time.exe ${ANAL_TIME} -6 ` 
 
# set the ensemble path and size 
GFSENS=/where/your/GFS/ensemble/is 
ENSEMBLE_SIZE=80 
 
## locate the GFS 6-hour ensemble files for hybrid analysis 
 n=1 
 m=0 
 >filelist06 
 while [[ $n -le ${ENSEMBLE_SIZE} ]]; do 
 if [[ -s ${GFSENS}/${m6date}/$( printf sfg_${m6date}_fhr06s_mem%03d $n ) ]]; 
then 
   m=$(($m + 1)) 
   ln -sf ${GFSENS}/${m6date}/$( printf sfg_${m6date}_fhr06s_mem%03d $n )  \ 
   ./$( printf sfg_${m6date}_fhr06s_mem%03d $m ) 
   ls ./$( printf sfg_${m6date}_fhr06s_mem%03d $m ) >> filelist06 
 fi 
 n=$(($n + 1)) 
 done 

 
## locate the GFS 3-hour ensemble files for hybrid analysis 
 n=1 
 m=0 
 >filelist03 
 while [[ $n -le ${ENSEMBLE_SIZE} ]]; do 
 if [[ -s ${GFSENS}/${m6date}/$( printf sfg_${m6date}_fhr03s_mem%03d $n ) ]]; 
then 
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   m=$(($m + 1)) 
   ln -sf ${GFSENS}/${m6date}/$( printf sfg_${m6date}_fhr03s_mem%03d $n )  \ 
   ./$( printf sfg_${m6date}_fhr03s_mem%03d $m ) 
   ls ./$( printf sfg_${m6date}_fhr03s_mem%03d $m ) >> filelist03 
 fi 
 n=$(($n + 1)) 
 done 

 
## locate the GFS 9-hour ensemble files for hybrid analysis 
 n=1 
 m=0 
 >filelist09 
 while [[ $n -le ${ENSEMBLE_SIZE} ]]; do 
 if [[ -s ${GFSENS}/${m6date}/$( printf sfg_${m6date}_fhr09s_mem%03d $n ) ]]; 
then 
   m=$(($m + 1)) 
   ln -sf ${GFSENS}/${m6date}/$( printf sfg_${m6date}_fhr09s_mem%03d $n )  \ 
   ./$( printf sfg_${m6date}_fhr09s_mem%03d $m ) 
   ls ./$( printf sfg_${m6date}_fhr09s_mem%03d $m ) >> filelist09 
 fi 
 n=$(($n + 1)) 
 done 

  
 

Change 2: Copy the first guess fields to the GSI run directory 
 
This change is to link the first guess fields of different time levels (usually three time 
levels) to the GSI run directory. Using an WRF ARW 4-D GSI-hybrid analysis centered at 
2014080906 with three time levels and 6-hour time window as an example, the flowing 
lines are used in the run script to locate and copy the first guess fields: 

 
ANAL_TIME=2014080906 
HH=`echo $ANAL_TIME | cut -c9-10` 
WRF_TIME06=`${HOME}/bin/da_advance_time.exe ${ANAL_TIME} 0 -w ` 
WRF_TIME03=`${HOME}/bin/da_advance_time.exe ${ANAL_TIME} -3 -w ` 
WRF_TIME09=`${HOME}/bin/da_advance_time.exe ${ANAL_TIME} +3 -w ` 

… …  
BK_FILE03=${BK_ROOT}/wrfout_d01_${WRF_TIME03} 
BK_FILE06=${BK_ROOT}/wrfout_d01_${WRF_TIME06} 
BK_FILE09=${BK_ROOT}/wrfout_d01_${WRF_TIME09} 
      … … 
cp ${BK_FILE06} ./wrf_inout 
cp ${BK_FILE03} ./wrf_inou3 
cp ${BK_FILE06} ./wrf_inou6 
cp ${BK_FILE09} ./wrf_inou9 
 

Change 3: Set up the namelist options in section SETUP 
 
Users need to set l4densvar=.true., to turn on 4-D hybrid ensemble analysis. Users 
also need add nhr_obsbin=3 if three time levels are used for the analysis.  

 
After setup of the namelist parameters and the path and name of the ensemble members 
and the first guess fields, GSI can be run following the same way as the GSI hybrid 3-D 
ensemble-variational analysis. And the same procedures could be followed as in the 
previous sections to check the run status and diagnose the GSI analysis. 
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10.2 Introduction to RTMA Analysis 
 
The Real-Time Mesoscale Analysis (RTMA) is a NOAA/NCEP high-spatial and temporal 
resolution analysis/assimilation system for near-surface weather conditions. Its main 
component is the NCEP/EMC Gridpoint Statistical Interpolation (GSI) system applied in 
two-dimensional variational mode to assimilate conventional and satellite-derived 
observations. The RTMA produces analyses of 2-m temperature, 2-m specific humidity, 
2m-dew point temperature, 10-m winds, 10-m wind gust, surface pressure, and surface 
visibility. 

The RTMA was developed to support the National Digital Forecast Database (NDFD) 
operations and provide field forecasters with high quality analyses for nowcasting, 
situational awareness, and forecast verification purposes. Presently, the system produces 
hourly, real-time analyses for the 5-km and 2. 5-km resolution CONUS NDFD grids, 6-km 
Alaska NDFD grid and 2.5-km Hawaii, Puerto-Rico and Guam NDFD grids. 

RTMA fields for the CONUS are displayed at:  

http://mag.ncep.noaa.gov/ 

 
In this section, we will introduce how to run the RTMA system. The whole RTMA system 
includes three components: 
 

1. Prepare first guess file 
2. Run GSI in RTMA mode 
3. RTMA post-process 

 
 

10.2.1. Prepare First Guess File 
 
The major function of the RTMA is to create a high- resolution 2D near surface analysis. 
The background file of the RTMA GSI is an unformatted binary file that includes a set of 2 
dimensional surface fields. There are no forecast files that can be directly used as its 
background. For the community RTMA GSI, the background file can be generated using a 
tool in the release community GSI package, which includes the code under directory 
./util/RTMA/rtma_firstguess and a run script:  ./ util/RTMA/ rtma_getguess.sh . 
 
1. Compile the code  
 
The code in the directory ./util/RTMA/rtma_firstguess will produce an executable for 
generating RTMA GSI first guess (background). Because the dimension of the analysis 
domain, and the needed navigational information (eg., longitude and latitude of the 
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southwestern most point and grid spacing for Lambert-Conformal grids) are hardwired in 
the code, users need to edit the code for the specific domain: 
 

1) get into directory ./util/RTMA/rtma_firstguess; 
2) open file “param.incl” ; 
3) find the following lines (starts from line 94): 

 
!==>parameter definition for dtc 
        integer(4),parameter::nx_dtc=758 
        integer(4),parameter::ny_dtc=567 
 
        real(8),parameter::alat1_dtc=21.138000_8 
        real(8),parameter::elon1_dtc=237.280000_8 
        real(8),parameter::da_dtc=13545.09_8 
 

4) modify the values to fit the user’s specific domain: 
 

nx_dtc:  analysis domain dimension in X direction 
ny_dtc :  analysis domain dimension in Y direction 
alat1_dtc : analysis domain latitude of southwestern most point 
elon1_dtc : analysis domain longitude of southwestern most point 
da_dtc :  analysis grid space in meters 

 
 
After setting the right analysis grid configuration, edit the “makefile” inside the same 
directory and put the right location of the GSI root directory in a line: 
 

GSIDIR=comGSI/releaseV33/release_V3.3_intel.12-12.0 
 
Please note that this tool has to be compiled after the compilation of the community GSI. 
Users also need to pick the following part for PGI or Intel compiler: 
 
For Intel compiler, pick: 

FC=ifort 
FFLAGS=-nofixed  -convert big_endian 

 
For PGI compiler, pick: 

FC=pgf90 
FFLAGS= -Mfree -byteswapio 

 
Then, in the same directory, compile the code using the command: 
 

./make 
 
The successful compilation should give a new executable in the directory named: 
 

rtma_firstguess.exe 
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If user needs to clean the code for recompilation, use command: 
 

./make clean 
 
 
2. Using run scripts to generate first guess for RTMA GSI 
 
The generation of background (first guess) files for RTMA is controlled by the script 
“rtma_getguess.sh” in directory “./util/RTMA”. Users need to setup the following 
parameters for “rtma_getguess.sh”: 
 

ROOTDIR= comGSI/releaseV33/release_V3.3_intel.12-12.0/util/RTMA 
FGFILE= 2012052811/postprd/wrftwo_rr_01.grib1 
work_dir=${ROOTDIR}/rtmagus 
CYCLE=2012052811 

 
Where 
 

• ROOTDIR:  full directory for ./uitl/RTMA 
• FGFILE: background file, which is a two-dimension grib file from uni-post. 
• work_dir: work directory 
• CYCLE: analysis time 

 
This run script can be run in front node directly using: 
 

./rtma_getguess.sh 
 
In this script, command “wgrib” is used to extract the surface fields out from the 2D grib 
file “wrftwo_rr_01.grib1” and save these fields into a file called “slabs.dat”.  Then this file 
and a binary file called “rtma_dtc_latlon_mpfactor_slmask.data” under directory 
util/RTMA/fix are read in and processed. Finally, a set of 2D fields are written into a binary 
file called “twodvar_input_bi” to be used as the RTMA background file. 
 
Users should be aware that running a domain other than the Rapid Refresh (RAP) case in 
the example may require additional modifications to be sure the appropriate surface fields 
are present in the 2D grib file and the binary files are appropriate for the domain of interest. 
See the following section (3. Binary file structure) for more information. 
 
After running the script, the run directory (./RTMA/rtmagus) for first guess generation 
should look like: 
 

bigrjlist.txt      mass_rjlist.txt_static   slabs2_nobiasc.dat 
cycledate          parm_ndfd_time_namelist  slabs.dat 
first_guess.grib1  p_rejectlist             stdout.rtma_getguess 
fort.20            p_rjlist.txt_static      t_rejectlist 
fort.30            q_rejectlist             t_rjlist.txt_static 
fort.88            q_rjlist.txt_static      twodvar_input_bi 
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fort.9             rtma_slmask.dat          w_rejectlist 
gridname_input     rtma_terrain.dat         w_rjlist.txt_static 
mass_rejectlist    slabs2.dat 

 
The following is a list of important files in this run directory: 
 

• first_guess.grib1: 2D grib file from uni-post 
• slabs.dat: binary file including 2D fields extracted from first_guess.grib1 using 

wgrib command. 
• parm_ndfd_time_namelist: namelist holding analysis time 
• gridname_input:  namelist holding analysis grid configuration 
• twodvar_input_bi: RTMA first guess, binary file. 
• stdout.rtma_getguess: standard output 

 
 
3. Binary file structure 
 
The binary file “rtma_dtc_latlon_mpfactor_slmask.data” is a fix file that includes map 
factor, grid latitude, grid longitude, and land mask information from the goegrid file. They 
are 2D real arrays arranged in the following order: 
 

       mapfac(nx,ny) 
       glat(nx,ny) 
       glon(nx,ny) 
       landmask(nx,ny) 

 
Users have to generate “rtma_dtc_latlon_mpfactor_slmask.data” for their own analysis 
domain and save this file in the same location. 
 
If users want to write their own first guess generation code, they can find the content of the 
binary file “twodvar_input_bi” from file “firstguess.f” by searching “write(88)”. Here is a 
list of these lines. Please check the code for details of each line: 
 
        write(88) ihdrbuf 
        write(88) iyear,imonth,iday,ihour,iminute,isecond,nx,ny,nsig 
        write(88) dx,dy 
        write(88) glat 
        write(88) glon 
        write(88) psfcgrid       !  psfc0 
        write(88) phbgrid        !  PHB (zsfc*g) 
        write(88) tgrid          !  T(k)  ! TEMP (sensible) 
        write(88) qgrid          !  Q(k) 
        write(88) ugrid          !  U(K) 
        write(88) vgrid          !  V(K) 
        write(88) landmask  !  LANDMASK  (0=water and >0.5 for land)  
        write(88) field          !  XICE 
        write(88) sst            !  SST 
        write(88) ifield         !  IVGTYP 
        write(88) ifield         !  ISLTYP 
        write(88) field          !  VEGFRA 
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        write(88) field          !  SNOW 
        write(88) ugrid          !  U10 
        write(88) vgrid          !  V10 
        write(88) field          !  SMOIS 
        write(88) tslb           !  TSLB 
        write(88) tsk            !  TSK 
        write(88) gust           !  GUST 
        write(88) vis            !  VIS 
        write(88) pblh           !  PBLH 

 
 

10.2.2. Run GSI RTMA Analysis 
 
The code for GSI RTMA analysis is the same as for other GSI applications, but with 
different namelist options and environmental setups. In this release, a run script named 
“run_gsi_rtma.ksh” in directory “./util/RTMA” is provided to help users set up the RTMA 
GSI run environments and namelist.  
 
1. Code change for user specific domain 
 
The GSI code also includes hardwired  information on the analysis grid. Therefore, users 
need to add analysis grid information to GSI code for their specific RTMA analysis. This is 
done by editing the file “support_2dvar.f90” in src/main to change the following lines: 
 

  elseif (trim(cgrid) == 'dtc') then 
     nx=758 
     ny=567 
     alat18=21.138_r_kind 
     elon18=237.280_r_kind 
     da8=13545.09_r_kind 

 
After adding this domain configuration, users can compile the GSI the same way as the 
general community GSI (details see Chapter 2 of the fndamental User’s Guide). 
 
 
2. Run script for RTMA 
 
The sample script “./ util/RTMA/run_gsi_rtma.ksh”  has a similar structure as the general 
GSI run script “./run/run_gsi.ksh” and needs similar information to set up and run. Here, 
we only introduce the settings that are different from those in the run_gsi.ksh. Please read 
Chapter 3 of the fundamental User’s Guide for instruction on how to set up run_gsi.ksh. 
 

BK_DIR=comGSI/releaseV33/util/RTMA/rtmagus 
ROOTDIR= comGSI/releaseV33/util/RTMA 

 
• BK_DIR   = path of first guess generation directory 
• ROOTDIR  = RTMA root directory: ./util/RTMA 
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In RTMA GSI, there is no need to set up CRTM and satellite radiance related parameters 
because RTMA doesn’t use satellite radiance observations. 
 
There are two binary files holding geogrid information under: ${ROOTDIR}/fix: 
 

• rtma_dtc_slmask.dat  : Sea Land mask field 
• rtma_dtc_terrain.dat  : terrain of analysis domain 

 
Users can easily generate these two files from geogrid files based on the following read in 
code information from GSI: 
 

  allocate(slmask(nx,ny)) 
  open (55,file='rtma_slmask.dat',form='unformatted') 
  read(55) slmask 
  close(55) 
 
  allocate(terrain(nx,ny)) 
  open (55,file='rtma_terrain.dat',form='unformatted') 
  read(55) terrain 
  close(55) 

 
 
After setting up the run script, users can run the RTMA GSI using the same procedure as 
that used for the general GSI. Please check Chapter 3 of the fundamental User’s Guide for 
more details. 
 
An important aspect to remember is that the RTMA GSI uses anisotropic recursive filters 
to model the action of its background error covariances. Therefore, in run_gsi.ksh,  the 
namelist variable "anisotropic" under "&ANBKGERR" must be set to ".true." For this 
tutorial, the background error covariances are mapped to the underlying terrain field to a 
controlled degree (please see section 4th part of this section for more details). 
 
 
3. Sample results 

 
The run directory of a successful GSI RTMA run with clean option turned on should look 
like: 

 
anavinfo                  fort.205                        sm_theta.des 
bckg_dxdy.dat             fort.209                        sm_z.dat 
bckg_psfc.dat             fort.210                        sm_z.des 
bckg_qsat.dat             fort.211                        stdout 
bckgvar.dat_chi           fort.212                        stdout.anl.2012052811 
bckgvar.dat_gust          fort.213                        sub_ps.dat 
bckgvar.dat_ps            fort.214                        sub_ps.des 
bckgvar.dat_pseudorh      fort.215                        sub_q.dat 
bckgvar.dat_psi           fort.218                        sub_q.des 
bckgvar.dat_t             fort.219                        sub_sf.dat 
bckgvar.dat_vis           fort.220                        sub_sf.des 
bckg_z.dat                fort.221                        sub_t.dat 
berror_stats              gsi.exe                         sub_t.des 
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convinfo                  gsiparm.anl                     sub_vp.dat 
diag_conv_anl.2012052811  mesonet_stnuselist              sub_vp.des 
diag_conv_ges.2012052811  mesonetuselist                  theta.dat 
errtable                  parmcard_input                  theta.des 
fit_p1.2012052811         p_rejectlist                    t_rejectlist 
fit_q1.2012052811         prepbufr                        w_rejectlist 
fit_t1.2012052811         prepobs_prep.bufrtable          wrfanl.2012052811 
fit_w1.2012052811         q_rejectlist                    wrf_inou2 
fltnorm.dat_chi           random_flips                    wrf_inou3 
fltnorm.dat_gust          rtma_slmask.dat                 wrf_inou4 
fltnorm.dat_ps            rtma_terrain.dat                wrf_inou5 
fltnorm.dat_pseudorh      shoreline_obrelocation.dat_000  wrf_inou6 
fltnorm.dat_psi           shoreline_obrelocation.dat_001  wrf_inou7 
fltnorm.dat_t             shoreline_obrelocation.dat_002  wrf_inou8 
fltnorm.dat_vis           shoreline_obrelocation.dat_003  wrf_inou9 
fort.201                  shoreline_obrelocation.dat_004  wrf_inout 
fort.202                  shoreline_obrelocation.dat_005  z.dat 
fort.203                  sigfupdate02                    z.des 
fort.204                  sm_theta.dat 

 
Some files, such as fort.* file (fit files), diag files, stdout, and wrf_inout, are similar to 
those from the general GSI analysis. Others are specific to the RTMA. Here we introduce 
some of these specific RTMA files: 

 
wrf_inou2, …, wrf_inou9 are empty and used only when the so-called FGAT 
option is turned on. FGAT stands for “First guess at the Appropriate Time”. It’s a 
technique that uses auxiliary first guess files with distinct valid times to improve the 
time interpolation in the GSI. 
 
random_flips is an input file storing random numbers. It is needed to generate the 
anisotropic background error covariances. 
 
bckgvar_* contain the square-root of the background error covariances for the 
various analysis variables. They are used in the RTMA post to aid with the 
evaluation of the analysis error.  
 
 

4. Namelist for RTMA 
  
RTMA GSI uses the same namelist as the general GSI, and  one additional namelist file: 
 

parmcard_input 
 
The namelist parameters in parmcard_input  are as follows: 
 

• afact0=1 activates the anisotropic component of the background error covariance 
model. Use afact0=0 instead to have the anisotropic recursive filter simulate an 
isotropic analysis. 

 
• hsteep=500.: sets an artificial elevation difference of 500m between land and 

water along the coastlines. The resulting escarpment in the terrain-following 
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covariances serves to confine the influence of the land (water) observations to the 
land (water) bodies. 

 
• lsmoothterrain=.true. : induces a smoothing of the terrain field before the 

background error covariances are computed 
 

• hsmooth_len=1.0 : is the correlation length in grid units used to smooth the 
terrain field. 

 
• rltop_wind : is the function correlation length for streamfunction and velocity 

potential, and rltop_temp, rltop_q, rltop_psfc, rltop_gust, and 
rltop_vis are those for temperature, specific humidity, surface pressure, wind 
gust, and visibility, respectively. Smaller (larger) values of the function correlation 
lengths lead to stronger (weaker) anisotropies.  

 
• svpsi, svchi, svpsfc, svtemp, and svshum are used to adjust the 

background error variances for streamfunction, velocity potential, surface pressure, 
temperture, and specific humidity, respectively. 

 
• sclpsi, sclchi, sclpsfc, scltemp, sclhum, sclgust, and sclvis 

are used to adjust the spatial correlation lengths for streamfunction, velocity 
potential, surface pressure, temperature, specific humidity, wind gust, and visibility, 
respectively. 

 
 

10.2.3. Post-Process 
 
The analysis result from GSI RTMA is a binary file. It needs to be post-processed to 
generate GRIB files for easy use. In addition to format conversion, the RTMA post-process 
also: 
 

• computes an estimate of the analysis error by finding a representation of the inverse 
of the Hessian matrix of the 2DVar. The analysis error is also made available in 
GRIB format.  
 

• reads in from the original unformatted gsi observation stats files and writes out 
formatted, streamlined versions for each observation type. 

 
1. Compile the code 
 
The RTMA post-process code is in directory ./util/RTMA/rtma_post. Just as with the other 
components of the RTMA code, the dimensions of the analysis domain, analysis grid 
spacing, and lat/lon information for the southwestern most point are hardwired in the code. 
Users need to edit the code for the specific domain: 
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1) get into directory ./util/RTMA/rtma_post; 
2) open file “param.incl” ; 
3) find the following lines (starts from line 94): 

 
!==>parameter definition for dtc 
        integer(4),parameter::nx_dtc=758 
        integer(4),parameter::ny_dtc=567 
 
        real(8),parameter::alat1_dtc=47.49000_8 
        real(8),parameter::elon1_dtc=256.000000_8 
        real(8),parameter::da_dtc=13545.09_8 
        real(8),parameter::elonv_dtc=256.000000_8 
        real(8),parameter::alatan_dtc=47.490000_8 
 

4) modify the values to fit the user’s specific domain. For this tutorial, the (Conic 
Lambert Conformal) navigation parameters are: 

 
nx_dtc:  analysis domain dimension in X direction 
ny_dtc :  analysis domain dimension in Y direction 
alat1_dtc : analysis domain latitude of point (1,1) 
elon1_dtc : analysis domain longitude of point (1,1) 
da_dtc :  analysis grid spacing in meters 
elonv_dtc:  Y-axis is parallel to longitude circle at this longitude  
alatan_dtc: Latitude at which the projection intersects the earth 

 
5) open file “post.f90” and edit the following two lines 

line 955   if (trim(cgrid)=='dtc')       xn=sin(47.49*dg2rad) 
line 964   if (trim(cgrid)=='dtc')       elonv=256.0 

 
Here, elonv is the same as elonv_dtc, and xn is sin(alatan_dtc *dg2rad). 

 
After setting the right analysis grid configuration, edit the “makfile” inside the same 
directory and put the right location of the UPP root directory in a line: 
 

UPPDIR= /glade/p/work/mhu/UPP/UPPV2.1 
 
Please note that this tool has to be compiled after the compilation of the community UPP 
because this application needs some UPP libraries.  
 
The location of libraries for grib2 compression also needs to be set in the following line: 
 

SRCDIRLIB= /glade/u/home/duda/grib2/lib 
 
Please note the that makefile only works for Intel compiler for now. 
 
Then, in the same directory, compile the code using the command: 
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./make all 
 
The successful compilation should give a new executable in the directory named: 
 

rtma_post.exe 
 
If user needs to clean the code for recompilation, use command: 
 

./make clean 
 
 
2. Run scripts 
 
The running of the RTMA post process is not straightforward. There are many files from 
first guess generation, RTMA GSI, and fix directory that need to be copied or linked to the 
run directory. Here, we provide a sample script “./ util/RTMA/rtma_post.sh” to help users  
run the RTMA post process. 
 
As with all other MPI job scripts, a job control head needs to be at the top of the run script 
to ask for computer resources to run MPI job. This part can be set in the same way as 
run_gsi.ksh (check Chapter 3 of the Basic User’s Guide for more details). Then, the 
parameters in following section need to be set: 
 

ROOTDIR=/glade/p/work/mhu/gsi/rtma/rtma/RTMA 
work_dir=/glade/p/work/mhu/gsi/rtma/rtma/RTMA/rpostprd 
fixparm=${ROOTDIR}/fix 
rtmagsidir=$ROOTDIR/rtmaprd 
rtmafgdir=$ROOTDIR/rtmagus 
 
CYCLE=2012052811 
RUN_COMMAND="mpirun.lsf" 

Where: 
 

• ROOTDIR  = RTMA root directory: (util/RTMA) 
• work_dir = working directory for RTMA post 
• fixparm = path of RTMA local directory ./fix  
• rtmagsidir = run directory of RTMA GSI 
• rtmafgdir   = run directory of first guess generation directory 
• CYCLE = analysis time in YYYYMMDDHH 
• RUN_COMMAND = setup MPI run command based on job control system. This is 

the same as the GSI run command. 
 
After setting up the run script, users can run the RTMA post using the same procedure used 
for the general GSI. Please check Chapter 3 of the fundamental User’s Guide for more 
details. 
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3 Results 
 
Although there are many files in the RTMA post run directory, the ones that are most 
relevant to users are the following: 
 

• anlerr.grib2, anl.grib2, bckg.grib2: analysis error, analysis, and background in 
GRIB2 fromat. 

• t_obs.*, u_obs.*, v_obs.*, q_obs.*, ps_obs.*, spd_obs.*, vis_obs.*, gust_obs.* :  
lists of observation statistics for each outer loop. Specifically, files carrying the 
string “iter_01” and  “iter_02” display observation statistics for the beginning of the 
first outer-loop and second outer-loop, respectively. Files carrying the string 
“iter_anl” contain observation statistics valid at the end of the analysis. 

 
 

10.2.4. Notes on This RTMA Section 
 
In this section, we only briefly introduce how to compile and run each component of the 
RTMA. This information and code should help users build an initial RTMA system for 
their own grid configuration. We did not touch some of the other features that the RTMA 
possesses, such as: 
 

1) Running the RTMA with FGAT activated 
2) Using bias correction for the background fields 
3) Using the Hilbert-Curve based Cross-validation capability 
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