Overview of GSI

John C. Derber NOAA/NWS/NCEP/EMC

5 August 2013

- The Spectral Statistical Interpolation (SSI) analysis system was developed at NCEP in the late 1980's and early 1990's.
- Main advantages of this system over OI systems were:
 - All observations are used at once (much of the noise generated in OI analyses was generated by data selection)
 - Ability to use forward models to transform from analysis variable to observations
 - Analysis variables can be defined to simplify covariance matrix and are not tied to model variables (except need to be able to transform to model variable)
- The SSI system was the first operational
 - variational analysis system
 - system to directly use radiances

- While the SSI system was a great improvement over the prior OI system it still had some basic short-comings
 - Since background error was defined in spectral space not simple to use for regional systems
 - Diagonal spectral background error did not allow much spatial variation in the background error
 - Not particularly well written since developed as a prototype code and then implemented operationally

5 August 2013

- The Global Statistical Interpolation (GSI) analysis system was developed as the next generation global/regional analysis system
 - Wan-Shu Wu, R. James Purser, David Parrish
 - Three-Dimensional Variational Analysis with spatially Inhomogeneous Covariances. Mon. Wea. Rev., 130, 2905-2916.
 - Based on SSI analysis system
 - Replace spectral definition for background errors with grid point version based on recursive filters

5 August 2013

- Used in NCEP operations for
 - Regional
 - Global
 - Hurricane
 - Real-Time Mesoscale Analysis
 - Rapid Refresh (ESRL/GSD)
- Operational at AFWA
- GMAO collaboration
- Modification to fit into WRF and NCEP infrastructure
- Evolution to ESMF

5 August 2013

General Comments

- GSI analysis code is an evolving system.
 - Scientific advances
 - situation dependent background errors -- hybrid
 - new satellite data
 - new analysis variables
 - Improved coding
 - Bug fixes
 - Removal of unnecessary computations, arrays, etc.
 - More efficient algorithms (MPI, OpenMP)
 - Bundle structure
 - Generalizations of code
 - Different compute platforms
 - Different analysis variables
 - Different models
 - Improved documentation
 - Fast evolution creates difficulties for slower evolving research projects

5 August 2013

General Comments

- Code is intended to be used Operationally
 - Must satisfy coding requirements
 - Must fit into infrastructure
 - Must be kept as simple as possible
- External usage intended to:
 - Improve external testing
 - Reduce transition to operations work/time
 - Reduce duplication of effort

5 August 2013

Simplification to operational 3-D for presentation

- For today's introduction, I will be talking about using the GSI for standard operational 3-D var. analysis. Many other options available or under development
 - 4d-var
 - hybrid assimilation
 - observation sensitivity
 - FOTO
 - Additional observation types
 - SST retrieval
 - Detailed options
- Options make code more complex difficult balance between options and simplicity

5 August 2013

Basic analysis problem
$$J = J_b + J_o + J_c$$

$$\mathbf{J} = (\mathbf{x} - \mathbf{x}_{b})^{\mathrm{T}} \mathbf{B}^{-1} (\mathbf{x} - \mathbf{x}_{b}) + (\mathbf{H}(\mathbf{x}) - \mathbf{y}_{0})^{\mathrm{T}} (\mathbf{E} + \mathbf{F})^{-1} (\mathbf{H}(\mathbf{x}) - \mathbf{y}_{0}) + \mathbf{J}_{\mathrm{C}}$$

J = Fit to background + Fit to observations + constraints

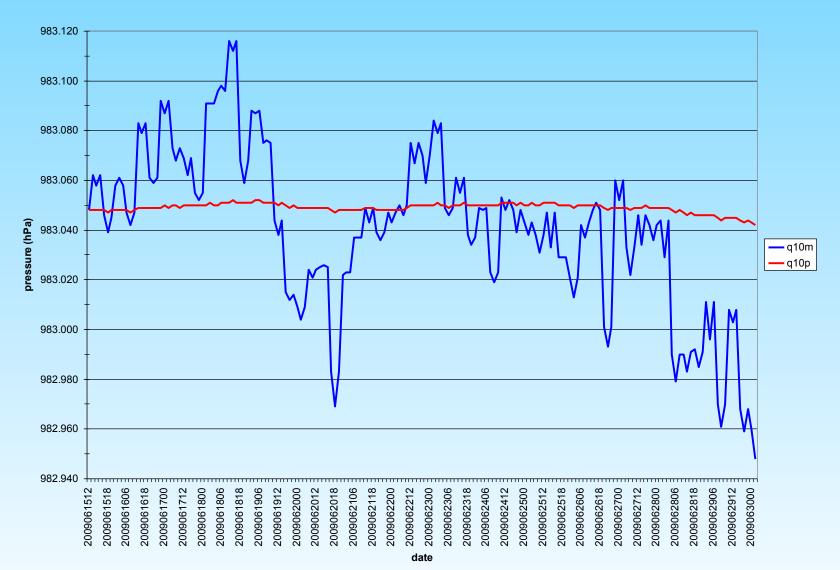
H = Forward model

$$\mathbf{E} + \mathbf{F} = \mathbf{R} = \mathbf{Instrument} \text{ error} + \mathbf{Representativeness} \text{ error}$$

J_C = Constraint terms

5 August 2013

Jc term


- Currently Jc term includes 2 terms
 - Weak moisture constraint (q > 0, q < qsat)
 - Can substantially slow convergence if coefficient made too large.
 - Conservation of global dry mass
 - not applicable to regional problem

global mean_pdry

5 August 2013

DTC – Summer Tutorial

11

Solution

At minimum, Grad J = 0, Note this is a necessary condition – it is sufficient only for a quadratic J

Grad $J = 2B^{-1}(x-x_b) + H^{T}(E+F)^{-1}(H(x)-y_0) + Grad J_{C}$

A conjugate gradient minimization algorithm is used to solve for Grad J = 0

5 August 2013

Solution Strategy

- Solve series of simpler problems with some nonlinear components eliminated
- Outer iteration, inner iteration structure
 - $x = x_{outer iteration} + x_{inner iteration} + x_b$
- Outer iteration
 - QC
 - More complete forward model
- Inner iteration
 - Several different minimization options preconditioned Conjugate Gradient (algorithm 1)
 - Estimate search direction
 - Estimate optimal stepsize in search direction
 - Often simpler forward model
 - Variational QC
 - Solution used to start next outer iteration

- $J = x^T B^{-1} x + (Hx o)^T O^{-1}(Hx o)$ (assume linear)
- define $y = B^{-1}x$
- $J = x^T y + (Hx-o)^T O^{-1}(Hx-o)$
- Grad $J_x = B^{-1}x + H^TO^{-1}(Hx-o) = y + H^TO^{-1}(Hx-o)$
- Grad $J_y = x + BH^TO^{-1}(Hx-o) = B$ Grad J_x
- Solve for both x and y using preconditioned conjugate gradient (where the x solution is preconditioned by B and the solution for y is preconditioned by B⁻¹)

5 August 2013

Specific algorithm $x^{0}=y^{0}=0$ Iterate over n Grad $x^{n} = y^{n-1} + H^{T}O^{-1}(Hx^{n-1}-o)$ Grad $y^{n} = B$ Grad x^{n} Dir $x^{n} = Grad y^{n} + \beta$ Dir x^{n-1} Dir $y^{n} = Grad x^{n} + \beta$ Dir y^{n-1} $x^{n} = x^{n-1} + \alpha$ Dir x^{n} (Update xhatsave (outer iter. x) - as well) $y^{n} = y^{n-1} + \alpha$ Dir y^{n} (Update yhatsave (outer iter. y) - as well) Until max iteration or gradient sufficiently minimized

- $J = x^T B^{-1} x + (Hx o)^T O^{-1}(Hx o)$ (assume linear)
- define $y = B^{-1/2}x$
- $J = y^T y + (HB^{1/2}y-o)^TO^{-1}(HB^{1/2}y-o)$
- Grad $J_y = y + B^{1/2}H^TO^{-1}(HB^{1/2}y-o)$
- Solve for y using preconditioned conjugate gradient
- For our definition of the background error matrix, B^{1/2} is not square and thus y is (3x) larger than x.

5 August 2013

- intall routine calculate H^TO⁻¹(Hx-o)
- bkerror routines multiplies by B
- dprod x calculates β and magnitude of gradient
- stpcalc calculates stepsize

Inner iteration – algorithm 1 Estimation of α (the stepsize)

• The stepsize is estimated through estimating the ratio of contributions for each term

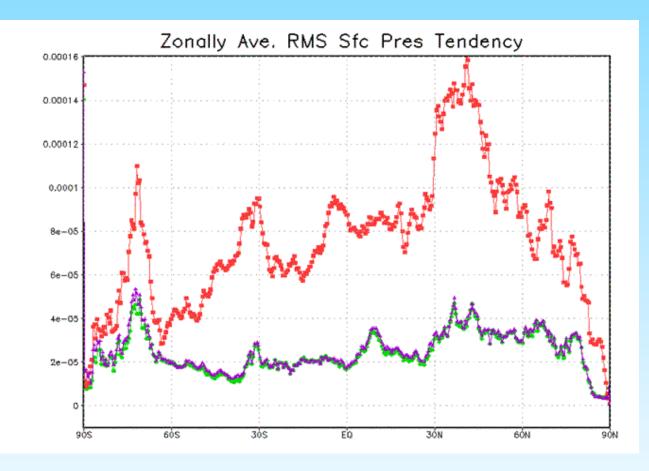
 $\alpha = \sum a / \sum b$

- The a's and b's can be estimated exactly for the linear terms.
- For nonlinear terms, the a's and b's are estimated by fitting a quadratic using 3 points around an estimate of the stepsize
- The estimate for the nonlinear terms is re-estimated iteratively using the stepsize for the previous estimate (up to 5 iterations)

5 August 2013

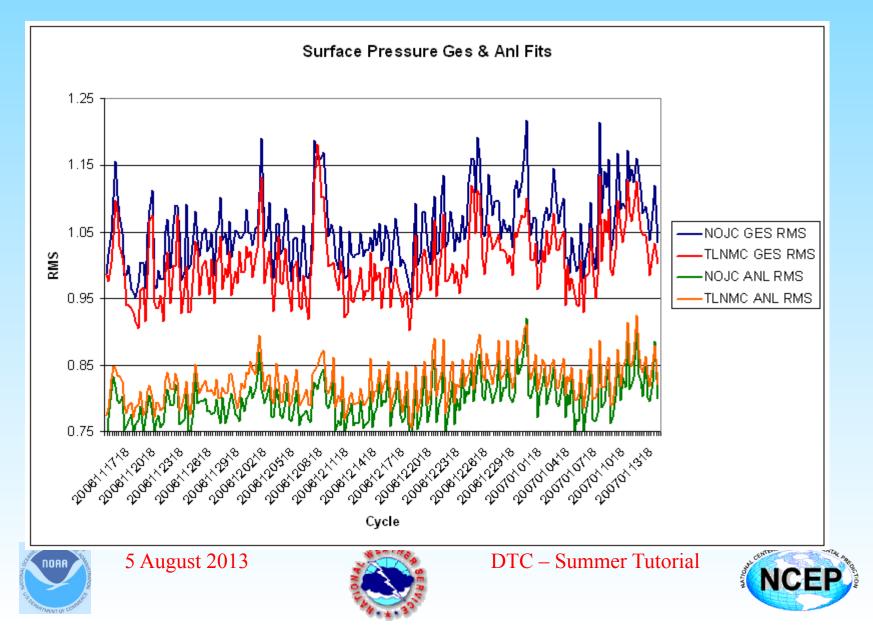
- Background errors must be defined in terms of analysis variable
 - Streamfunction (Ψ)
 - Unbalanced Velocity Potential ($\chi_{unbalanced}$)
 - Unbalanced Temperature (T_{unbalanced})
 - Unbalanced Surface Pressure (Ps_{unbalanced})
 - Ozone Clouds etc.
 - Satellite bias correction coefficients

- $\chi = \chi_{unbalanced} + A \Psi$
- $T = T_{unbalanced} + B \Psi$
- $Ps = Ps_{unbalanced} + C \Psi$
- Streamfunction is a key variable defining a large percentage T and P_s (especially away from equator). Contribution to χ is small except near the surface and tropopause.


- A, B and C matrices can involve 2 components
 - A pre-specified statistical balance relationship part of the background error statistics file
 - Optionally a incremental normal model balance
 - Not working well for regional problem
 - See references for details

Impact of TLNM constraint

Zonal-average surface pressure tendency for background (green), unconstrained GSI analysis (red), and GSI analysis with TLNMC (purple). Just 2013 DTC – Summer Tutorial



5 August 2013

Fits of Surface Pressure Data in Cycled Experiment ²³ with and without TLNM constraint

- Size of problem
 - NX x NY x NZ x NVAR
 - Global = 25.7 million component control vector
 - Requires multi-tasking to fit on computers

5 August 2013

Grid Sub-domains

- The analysis and background fields are divided across the processors in two different ways
 - Sub-Domains an x-y region of the analysis domain with full vertical extent – observations defined on subdomains
 - Horizontal slabs a single or multiple levels of full x-y fields
- Since the analysis problem is a full 3-D problem we must transform between these decompositions repeatedly

5 August 2013

u,v

- Analysis variables are streamfunction and velocity potential
- u,v needed for many routines (int,stp,balmod, etc.) routines
- u,v updated along with other variables by calculating derivatives of streamfunction and velocity potential components of search direction x and creating a dir x (u,v)

5 August 2013

Background fields

- Current works for following systems
 - NCEP GFS
 - NCEP NMM binary and netcdf
 - NCEP RTMA
 - NCEP Hurricane (not using subversion version yet)
 - GMAO global
 - ARW binary and netcdf (not operationally used yet RR GSD)
- FGAT (First Guess at Appropriate Time) enabled up to 100 time levels

5 August 2013

Background Errors

• Three paths – more in talk by D. Kleist

- Isotropic/homogeneous
 - Most common usage.
 - Function of latitude/height
 - Vertical and horizontal scales separable
 - Variances can be location dependent
- Anisotropic/inhomogeneous
 - Function of location /state
 - Can be full 3-D covariances
 - Still relatively immature
- Hybrid

5 August 2013

Observations

- Observational data is expected to be in BUFR format (this is the international standard)
- See presentation by Dennis Keyser
- Each observation type (e.g., u,v,radiance from NOAA-15 AMSU-A) is read in on a particular processor or group of processors (parallel read)
- Data thinning can occur in the reading step.
- Checks to see if data is in specified data time window and within analysis domain

Data processing

- Data used in GSI controlled 2 ways
 - Presence or lack of input file
 - Control files input (info files) into analysis
 - Allows data to be monitored rather than used
 - Each ob type different
 - Specify different time windows for each ob type
 - Intelligent thinning distance specification

Input data – Satellite currently used

Regional AMSU-A NOAA-15 NOAA-18 METOP-A AQUA Thinned to 60km AMSU-B/MHS NOAA-15 NOAA-18 METOP-A Thinned to 60km HIRS NOAA-17 METOP-A Thinned to 120km AIRS AQUA Thinned to 120km IASI METOP-A

Channels 1-10, 12-13, 15 Channels 1-8, 10-13, 15 Channels1-6, 8-13, 15 Channels 5, 8-13

Channels 1-3, 5 Channels 1-5 Channels 1-5

Channels 2-15 Channels 2-15

148 Channels

165 Channels

Global

all thinned to 145km

GOES-15 Sounders Channels 1-15 Individual fields of view 4 Detectors treated separately Over ocean only AMSU-A NOAA-15 Channels 1-10, 12-13, 15 NOAA-18 Channels 1-8, 10-13, 15 NOAA-19 Channels 1-7, 9-13, 15 METOP-A Channels 1-6, 8-13, 15 AOUA Channels 6, 8-13 ATMS NPP Channels 1-14,16-22 MHS NOAA-18 Channels 1-5 NOAA-19 Channels 1-5 METOP-A Channels 1-5 HIRS METOP-A Channels 2-15 AIRS AQUA 148 Channels IASI METOP-A 165 Channels

٠

5 August 2013

Input data – Conventional currently used

- Radiosondes
- Pibal winds
- Synthetic tropical cyclone winds
- wind profilers
- conventional aircraft reports
- ASDAR aircraft reports
- MDCARS aircraft reports
- dropsondes
- MODIS IR and water vapor winds
- GMS, JMA, METEOSAT and GOES cloud drift IR and visible winds
- GOES water vapor cloud top winds

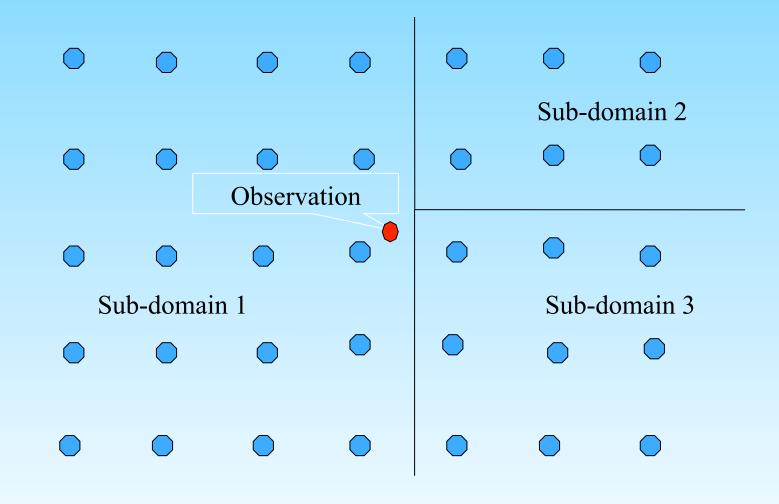
- Surface land observations
- Surface ship and buoy observation
- SSM/I wind speeds
- QuikScat and ASCATwind speed and direction
- SSM/I and TRMM TMI precipitation estimates
- Doppler radial velocities
- VAD (NEXRAD) winds
- GPS precipitable water estimates
- GPS Radio occultation refractivity and bending angle profiles
- SBUV ozone profiles and OMI total ozone

Data Sub-domains

- Observations are distributed to processors they are used on. Comparison to obs are done on sub-domains.
 - If an observation is on boundary of multiple subdomains will be put into all relevant sub-domains for communication free adjoint calculations.
 - However, it is necessary to assign the observation only to one sub-domain for the objective function calculation
 - Interpolation of sub-domain boundary observations requires the use of halo rows around each sub-domain

Simulation of observations

- To use observation, must be able to simulate observation
 - Can be simple interpolation to ob location/time
 - Can be more complex (e.g., radiative transfer)
- For radiances we use CRTM
 - Vertical resolution and model top important



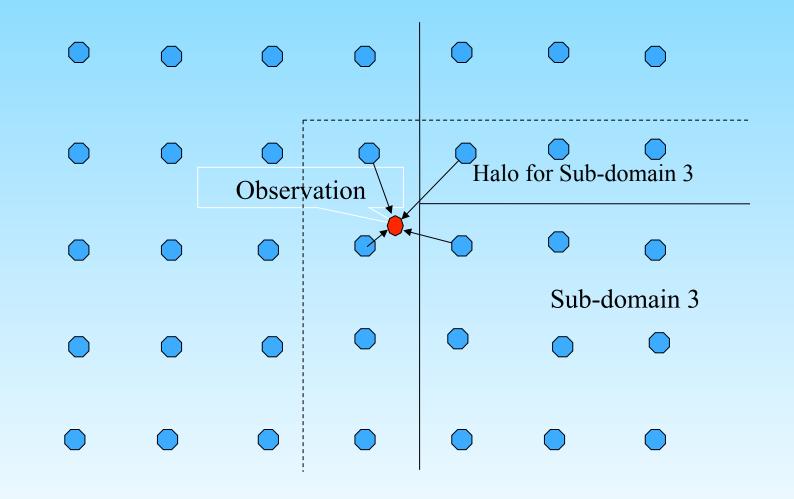
Atmospheric analysis problem (Practical) Outer (K) and Inner (L) iteration operators

Variable	K operator	L operator
Temperature – surface obs. at 2m	3-D sigma interpolation adjustment to different orography	3-D sigma interpolation Below bottom sigma assumed at bottom sigma
Wind – surface obs. at 10m over land, 20m over ocean, except scatt.	3-D sigma interpolation reduction below bottom level using model factor	3-D sigma interpolation reduction below bottom level using model factor
Ozone – used as layers	Integrated layers from forecast model	Integrated layers from forecast model
Surface pressure	2-D interpolation plus orography correction	2-D interpolation
Precipitation	Full model physics	Linearized model physics
Radiances 5 August 2013	Full radiative transfer	Summer Tutorial Linearized radiative transfer

Observation/Sub-domain layout

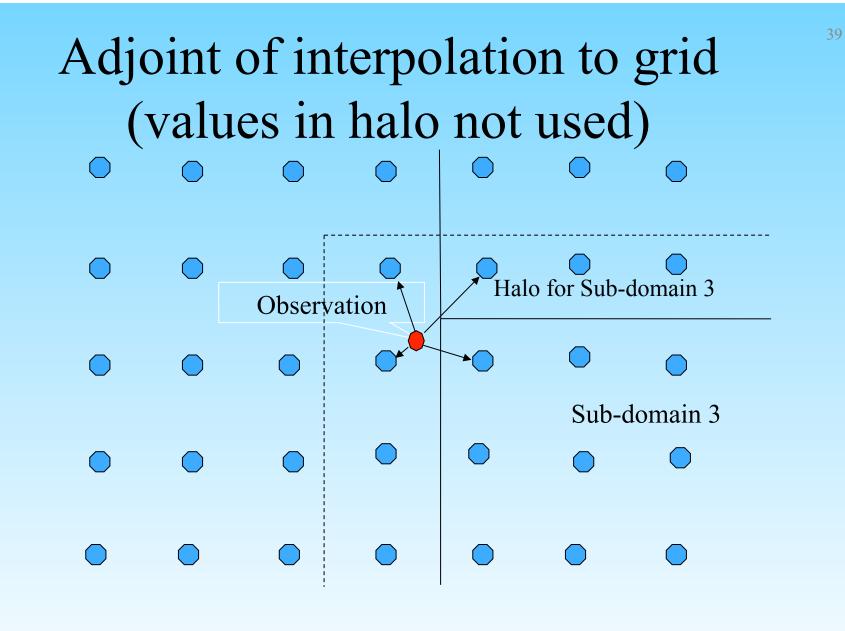
5 August 2013

Sub-domain 3 calculation w/halo \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc Halo for Sub-domain 3 Observation \bigcirc \bigcap ()Sub-domain 3 \bigcirc \bigcirc



5 August 2013

Forward interpolation to ob.



5 August 2013

5 August 2013

Quality control

- External platform specific QC
- Some gross checking in PREPBUFR file creation
- Analysis QC
 - Gross checks specified in input data files
 - Variational quality control
 - Data usage specification (info files)
 - Outer iteration structure allows data rejected (or downweighted) initially to come back in
 - Ob error can be modified due to external QC marks
 - Radiance QC much more complicated. Tomorrow!

Observation output

- Diagnostic files are produced for each data type for each outer iteration (controllable through namelist)
- Output from individual processors (subdomains) and concatenated together outside GSI
- External routines for reading diagnostic files

5 August 2013

GSI layout (major routines) (generic names, 3dvar path)

- gsimain (main code)
 - gsimain_initialize (read in namelists and initialize variables
 - gsimain_run
 - gsisub
 - deter_subdomain (creates sub-domains)
 - *read_info (reads info files to determine data usage)
 - glbsoi
 - » observer_init (read background field)
 - » observer_set (read observations and distribute)
 - » prewgt (initializes background error)
 - » setuprhsall (calculates outer loop obs. increments
 - » Pcgsoi, sqrtmin or other minimization (solves inner iteration)
 - gsimain_finalize (clean up arrays and finalize mpi)

5 August 2013

GSI layout (major routines)

- pcgsoi (other minimizations similar)
 - control2state (convert control vector to state vector)
 - intall (compare to observations and adjoint)
 - state2control (convert state vector to control vector
 - bkerror (multiply by background error)
 - stpcalc (estimate stepsize and update solution)
 - update_guess (updates outer iteration solution)
 - write_all (write solution)

Useful References

- Wan-Shu Wu, R. James Purser and David F. Parrish, 2002: Three-Dimensional Variational Analysis with Spatially Inhomogeneous Covariances. *Monthly Weather Review*, Vol. 130, No. 12, pp. 2905–2916.
- R. James Purser, Wan-Shu Wu, David F. Parrish and Nigel M. Roberts, 2003: Numerical Aspects of the Application of Recursive Filters to Variational Statistical Analysis. Part I: Spatially Homogeneous and Isotropic Gaussian Covariances. *Monthly Weather Review*, Vol. 131, No. 8, pp. 1524–1535.
- R. James Purser, Wan-Shu Wu, David F. Parrish and Nigel M. Roberts, 2003: Numerical Aspects of the Application of Recursive Filters to Variational Statistical Analysis. Part II: Spatially Inhomogeneous and Anisotropic General Covariances. *Monthly Weather Review*, Vol. 131, No. 8, pp. 1536–1548.
- McNally, A.P., J.C. Derber, W.-S. Wu and B.B. Katz, 2000: The use of TOVS level-1B radiances in the NCEP SSI analysis system. Q.J.R.M.S., 126, 689-724.
- Parrish, D. F. and J. C. Derber, 1992: The National Meteorological Center's spectral statistical interpolation analysis system. Mon. Wea. Rev., 120, 1747 1763.
- Derber, J. C. and W.-S. Wu, 1998: The use of TOVS cloud-cleared radiances in the NCEP SSI analysis system. Mon. Wea. Rev., 126, 2287 - 2299.
- Kleist, Daryl T; Parrish, David F; Derber, John C; Treadon, Russ; Wu, Wan-Shu; Lord, Stephen , Introduction of the *GSI* into the NCEP Global Data Assimilation System, Weather and Forecasting. Vol. 24, no. 6, pp. 1691-1705. Dec 2009
- Kleist, Daryl T; Parrish, David F; Derber, John C; Treadon, Russ; Errico, Ronald M; Yang, Runhua, **Improving Incremental Balance in the GSI 3DVAR Analysis System,** Monthly Weather Review [Mon. Weather Rev.]. Vol. 137, no. 3, pp. 1046-1060. Mar 2009.
- Kazumori, M; Liu, Q; Treadon, R; Derber, JC, Impact Study of AMSR-E Radiances in the NCEP Global Data Assimilation System Monthly Weather Review, Vol. 136, no. 2, pp. 541-559. Feb 2008.
- Zhu, Y; Gelaro, R, Observation Sensitivity Calculations Using the Adjoint of the Gridpoint Statistical Interpolation (*GSI*) Analysis System, Monthly Weather Review. Vol. 136, no. 1, pp. 335-351. Jan 2008.
- DTC GSI documentation (http://www.dtcenter.org/com-GSI/users/index.php)

5 August 2013

Challenges

- Negative Moisture and other tracers
- Diabatic analysis
- Cloud and precipitation assimilation
- Trace gas and aerosol assimilation
- Cross-variable covariances "balance"
- Situation dependent background and observation errors
- Use of satellite radiances in regional mode
- Use of satellite data over land/ice/snow

5 August 2013

