Overview of GSI

John C. Derber
NOAA/NWS/NCEP/EMC
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History

* The Spectral Statistical Interpolation (SSI) analysis system was
developed at NCEP in the late 1980’ s and early 1990’ s.
e Main advantages of this system over OI systems were:

— All observations are used at once (much of the noise generated in Ol
analyses was generated by data selection)

— Ability to use forward models to transform from analysis variable to
observations

— Analysis variables can be defined to simplify covariance matrix and are
not tied to model variables (except need to be able to transform to model

variable)
« The SSI system was the first operational

— variational analysis system
— system to directly use radiances
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History

* While the SSI system was a great improvement
over the prior OI system — it still had some basic

short-comings

— Since background error was defined in spectral space —

not simple to use for regional systems

— Diagonal spectral background error did not allow much

spatial variation in the background error

— Not particularly well written since developed as a
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History

* The Global Statistical Interpolation (GSI) analysis
system was developed as the next generation
global/regional analysis system

— Wan-Shu Wu, R. James Purser, David Parrish

o Three-Dimensional Variational Analysis with spatially

Inhomogeneous Covariances. Mon. Wea. Rev., 130,
2905-2916.

— Based on SSI analysis system

— Replace spectral definition for background errors with
orid point version based on recursive filters

WEATH 5 (qeRsTOR EMVIROMG,
@ . 5 August 2013 0 DTC — Summer Tutorial v,
Ry ‘YCEL



History

* Used in NCEP operations for
— Regional
— Global
— Hurricane

— Real-Time Mesoscale Analysis
— Rapid Refresh (ESRL/GSD)

* Operational at AFWA
« GMAUO collaboration

 Modification to fit into WRF and NCEP
infrastructure

 Evolution to ESMF

@ . 5August 2013 e, DTC — Summer Tutorial

s VOR ENVIRGY
r.‘"ét P »

R Y
‘ A ] P .,9‘": %
= m 3 3
(=] R ] N J/ £

< S 5 ; 3

o SESS
-



General Comments

* GSI analysis code is an evolving system.

— Scientific advances
 situation dependent background errors -- hybrid
* new satellite data
* new analysis variables
— Improved coding
* Bug fixes
* Removal of unnecessary computations, arrays, etc.
* More efficient algorithms (MPI, OpenMP)
» Bundle structure

* Generalizations of code
— Different compute platforms
— Different analysis variables
— Different models

* Improved documentation
— Fast evolution creates difficulties for slower evolving research projects
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General Comments

* Code 1s intended to be used Operationally
— Must satisfy coding requirements
— Must fit into infrastructure
— Must be kept as simple as possible

» External usage intended to:
— Improve external testing
— Reduce transition to operations work/time

— Reduce duplication of effort
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Simplification to operational 3-D for

presentation

e For today’ s introduction, I will be talking about using the
GSI for standard operational 3-D var. analysis. Many
other options available or under development

4d-var

hybrid assimilation
observation sensitivity
FOTO

Additional observation types
SST retrieval

Detailed options

* Options make code more complex — difficult balance
between options and simplicity
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Basic analysis problem
J=J +J +J

J = (x-xp) "B (x-x;,) + (H(x)-yp) "(E+F) (H(x)-y,) + J¢

J = Fit to background + Fit to observations + constraints

X = Analysis

X, = Background

B = Background error covariance
H = Forward model

Yo = Observations

E+F = R = Instrument error + Representativeness error
Jc = Constraint terms
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Jc term

* Currently Jc term includes 2 terms
— Weak moisture constraint (q > 0, q < gsat)

 Can substantially slow convergence if coefficient
made too large.

— Conservation of global dry mass
 not applicable to regional problem
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Solution

At minimum, Grad J = 0, Note this is a necessary
condition — it is sufficient only for a quadratic J

Grad J = 2B"!(x-x,) + HT(E+F)'(H(x)-y,) + Grad J .

A conjugate gradient minimization algorithm is used to
solve for Grad J =0
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Solution Strategy

* Solve series of simpler problems with some nonlinear components eliminated

* Outer iteration, inner iteration structure

- X=X +X + Xy

outer iteration inner iteration

e Outer iteration

~- QC

— More complete forward model
* Inner iteration

— Several different minimization options — preconditioned Conjugate
Gradient (algorithm 1)
» Estimate search direction
» Estimate optimal stepsize in search direction
— Often simpler forward model
— Variational QC

— Solution used to start next outer iteration
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Inner 1teration — algorithm 1

« J=x'B-'x + (Hx-0)'O-!(Hx-0) (assume linear)
 define y =Bx

« J=x'y+ (Hx-0)'O!(Hx-0)

» Grad J, = B'x +H'O-!(Hx-0) =y + H'O-!(Hx-0)
» Grad J, = x + BH'O"'(Hx-0) = B Grad J,

* Solve for both x and y using preconditioned
conjugate gradient (where the x solution 1s
preconditioned by B and the solution for y 1s
preconditioned by B1)
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Inner 1teration — algorithm 1

Specific algorithm
x0=y"=(0
Iterate over n
Grad x" = y™! + HTO-!(Hx"™!-0)
Grad y" = B Grad x®
Dir x" = Grad y" + 8 Dir x™!
Dir y* = Grad x™ + 8 Dir y™!
x"=x"!+qDirx®  (Update xhatsave (outer iter. x) - as well)
yr=y*l +aDiry® (Update yhatsave (outer iter. y) - as well)
Until max iteration or gradient sufficiently minimized

lExy
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Inner 1teration — algorithm 2

« J=x"Bx + (Hx-0)'O!(Hx-0) (assume linear)
¢ define y = B-1"’x

e J= yTy + (HBl/zy_O)To-l(I_ 1/2y_0)

» Grad J, =y +B"*H'O"'(HB"?y-0)

* Solve for y using preconditioned conjugate
gradient

* For our definition of the background error matrix,
B!/2 is not square and thus y is (3x) larger than x.
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Inner 1teration — algorithm 1

« intall routine calculate H'O-!(Hx-0)
 bkerror routines multiplies by B

* dprod x calculates 3 and magnitude of
gradient

* stpcalc calculates stepsize
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Inner 1teration — algorithm 1
Estimation of a (the stepsize)

* The stepsize 1s estimated through estimating the ratio of
contributions for each term

a=>a/>b
e Thea sandb’s can be estimated exactly for the linear
terms.

 For nonlinear terms, the a’ s and b’ s are estimated by
fitting a quadratic using 3 points around an estimate of the
stepsize

 The estimate for the nonlinear terms is re-estimated
iteratively using the stepsize for the previous estimate (up
to 5 iterations)
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Analysis variables

» Background errors must be defined 1n terms
of analysis variable

— Streamfunction (V)
— Unbalanced Velocity Potential (¥, 1anced)

— Unbalanced Temperature (T, .ianced)
— Unbalanced Surface Pressure (Ps

unbalanced)
— Ozone — Clouds — etc.

— Satellite bias correction coefficients
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Analysis variables

* X = Xunbalanced +AY
« T= Tunbalanced +BY

* Ps= Psunbalanced +CVY

» Streamfunction 1s a key variable defining a
large percentage T and P (especially away
from equator). Contribution to y 1s small
except near the surface and tropopause.
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Analysis variables

* A, B and C matrices can involve 2
components

— A pre-specified statistical balance relationship —
part of the background error statistics file

— Optionally a incremental normal model balance

« Not working well for regional problem
 See references for details
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Zonally Ave. RMS Sfc Pres Tendency
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Zonal-average surface pressure tendency for background (green), unconstrained GSI
analysis (red), and G __ analys1s with TLNMC (purple).
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Fits of Surface Pressure Data in Cycled Experiment -
with and without TLNM constraint
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Analysis variables

* Size of problem
— NX xNY x NZ x NVAR
— Global = 25.7 million component control vector

— Requires multi-tasking to fit on computers
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Grid Sub-domains

* The analysis and background fields are divided
across the processors 1n two different ways

— Sub-Domains — an x-y region of the analysis domain

with full vertical extent — observations defined on sub-
domains

— Horizontal slabs — a single or multiple levels of full x-y
fields
 Since the analysis problem 1s a full 3-D problem —

we must transform between these decompositions
repeatedly
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u,v

* Analysis variables are streamfunction and
velocity potential

* u,v needed for many routines
(int,stp,balmod, etc.) routines

* u,v updated along with other variables by
calculating derivatives of streamfunction
and velocity potential components of search
direction x and creating a dir x (u,v)
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Background fields

* Current works for following systems

— NCEP GFS

— NCEP NMM - binary and netcdf

— NCEP RTMA

— NCEP Hurricane (not using subversion version yet)

— GMAO global

— ARW - binary and netcdf — (not operationally used yet
RR - GSD)

 FGAT (First Guess at Appropriate Time) enabled
up to 100 time levels
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Background Errors

* Three paths — more 1n talk by D. Kleist

— Isotropic/homogeneous
* Most common usage.
* Function of latitude/height
» Vertical and horizontal scales separable
« Variances can be location dependent

— Anisotropic/inhomogeneous
* Function of location /state
e Can be full 3-D covariances
o Still relatively immature

— Hybnid
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Observations

* Observational data is expected to be in BUFR
format (this 1s the international standard)

* See presentation by Dennis Keyser

* Each observation type (e.g., u,v,radiance from
NOAA-15 AMSU-A) 1s read 1n on a particular
processor or group of processors (parallel read)

» Data thinning can occur in the reading step.

* Checks to see i1f data 1s 1n specified data time
window and within analysis domain
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Data processing

* Data used in GSI controlled 2 ways
— Presence or lack of input file
— Control files mput (info files) into analysis

« Allows data to be monitored rather than used

* Each ob type different

* Specify different time windows for each ob type
* Intelligent thinning distance specification
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Input data — Satellite currently used

* Regional

AMSU-A
NOAA-15 Channels 1-10, 12-13, 15
NOAA-18 Channels 1-8, 10-13, 15
METOP-A Channels1-6, 8-13, 15
AQUA Channels 5, 8-13
Thinned to 60km

AMSU-B/MHS
NOAA-15 Channels 1-3, 5
NOAA-18 Channels 1-5
METOP-A Channels 1-5
Thinned to 60km

HIRS
NOAA-17 Channels 2-15
METOP-A Channels 2-15
Thinned to 120km

AIRS
AQUA 148 Channels
Thinned to 120km

TIASI
METOP-A 165 Channels

; @ . 5 August 2013

e  Global
all thinned to 145km

GOES-15 Sounders
Channels 1-15
Individual fields of view
4 Detectors treated separately
Over ocean only

AMSU-A
NOAA-15 Channels 1-10, 12-13, 15
NOAA-18 Channels 1-8, 10-13, 15
NOAA-19 Channels 1-7, 9-13, 15
METOP-A Channels 1-6, 8-13, 15
AQUA Channels 6, 8-13

ATMS
NPP Channels 1-14,16-22

MHS
NOAA-18 Channels 1-5
NOAA-19 Channels 1-5
METOP-A Channels 1-5

HIRS
METOP-A Channels 2-15

AIRS
AQUA 148 Channels

TIASI
METOP-A 165 Channels
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Input data — Conventional currently
used

« Radiosondes » Surface land observations

* Pibal winds » Surface ship and buoy observation
« Synthetic tropical cyclone winds « SSM/I wind speeds

« wind profilers *  QuikScat and ASCATwind speed
« conventional aircraft reports and direction

 ASDAR aircraft reports *  SSM/I and TRMM TMI

precipitation estimates

« Doppler radial velocities
« VAD (NEXRAD) winds

« MDCARS aircraft reports
* dropsondes

« MODIS IR and water vapor winds

«  GMS. IMA. METEOSAT and » GPS precipitable water estimates
COES cloudl IR andvisible «  GPS Radio occultation refractivity
winds and bending angle profiles

«  GOES water vapor cloud top winds *© SBUV ozone profiles and OMI
total ozone
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Data Sub-domains

* Observations are distributed to processors they are
used on. Comparison to obs are done on sub-
domains.

— If an observation 1s on boundary of multiple sub-

domains will be put into all relevant sub-domains for
communication free adjoint calculations.

— However, 1t 1s necessary to assign the observation only
to one sub-domain for the objective function calculation

— Interpolation of sub-domain boundary observations
requires the use of halo rows around each sub-domain
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Simulation of observations

* To use observation, must be able to simulate
observation

— Can be simple interpolation to ob location/time

— Can be more complex (e.g., radiative transfer)

 For radiances we use CRTM

— Vertical resolution and model top important
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Atmospheric analysis problem (Practical)
Outer (K) and Inner (L) 1teration operators

Variable

K operator

L operator

Temperature — surface
obs. at 2m

3-D sigma interpolation
adjustment to different
orography

3-D sigma interpolation
Below bottom sigma
assumed at bottom sigma

Wind — surface obs. at
10m over land, 20m over
ocean, except scatt.

3-D sigma interpolation

reduction below bottom
level using model factor

3-D sigma interpolation

reduction below bottom
level using model factor

Ozone — used as layers

Integrated layers from
forecast model

Integrated layers from
forecast model

Surface pressure

2-D interpolation plus
orography correction

2-D interpolation

Precipitation

Full model physics

Linearized model physics

Radiancds "eust 2013

Full radiative transPe?C B
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Observation/Sub-domain layout

O O O O O O O
Sub-domain 2

O O O O O O O

Observation

@
O O O O O o O

Sub-domain 1 Sub-domain 3

e o o O  ©6 e o0

O O O O O O O
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Sub-domain 3 calculation w/halo

O
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O O O O O

®@ o O O
I Halo for Sub-domain 3

Obser*:vatlon
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Forward interpolation to ob.

O O O O O O O

________________________________________________________________

® o @ /O © O
— Halo for Sub-domain 3
Obser*:vatlon
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Sub-domain 3
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Adjoint of iterpolation to grid

(values 1n halo not used)
O O O O O O O

®© © ©o: o | e © o

— Halo for Sub-d In 3
Sl i ’\\ / alo for Sub-domain

© © o @ [0 O g

Sub-domain 3

e ©¢ o © & o o
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Quality control

« External platform specific QC
* Some gross checking in PREPBUFR file creation
* Analysis QC

— @Gross checks — specified in mput data files

— Variational quality control

— Data usage specification (info files)

— QOuter iteration structure allows data rejected (or
downweighted) 1nitially to come back in

— Ob error can be modified due to external QC marks
— Radiance QC much more complicated. Tomorrow!
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Observation output

» Diagnostic files are produced for each data
type for each outer iteration (controllable
through namelist)

* Output from 1ndividual processors (sub-
domains) and concatenated together outside

GSI

» External routines for reading diagnostic
files
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GSI layout (major routines)
(generic names, 3dvar path)

e gsimain (main code)
— gsimain_initialize (read in namelists and initialize variables
— gsimain_run
* gsisub
— deter_subdomain (creates sub-domains)
— *read info (reads info files to determine data usage)
— glbsoi
» observer init (read background field)
» observer set (read observations and distribute)
» prewgt (initializes background error)

» setuprhsall (calculates outer loop obs. increments
» Pcgsol, sqrtmin or other minimization (solves inner iteration)

— gsimain_finalize (clean up arrays and finalize mpi)
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GSI layout (major routines)

* pcgsol (other minimizations similar)
— control2state (convert control vector to state vector)
— 1ntall (compare to observations and adjoint)
— state2control (convert state vector to control vector
— bkerror (multiply by background error)
— stpcalc (estimate stepsize and update solution)
— update guess (updates outer 1teration solution)
— write all (write solution)
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Challenges

* Negative Moisture and other tracers

* Diabatic analysis

* Cloud and precipitation assimilation

* Trace gas and aerosol assimilation

e Cross-variable covariances — ~ balance”

 Situation dependent background and
observation errors

» Use of satellite radiances 1n regional mode
» Use of satellite data over land/ice/snow
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