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Why are clouds important? 
• A decade ago almost all assimilation of satellite radiances 

assumed the scene was clear of clouds. 

• Clouds were considered a source of noise that needed to be 

removed or corrected for. 

• This is not because clouds were not important but because 

they were difficult. 

• By ignoring regions affected by cloud we are not 

considering some meteorologically very important areas 

• By selectively assimilating clear radiances we may be 

biasing the model (representivity issues). 
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Microwave Obs of Hurricane Igor (9/19/2010) 

JCSDA 9th Workshop on Satellite Data Assimilation, May 24-25, 2011,    M-J.  Kim   

Cloud or precipitation indicates that some 

dynamically important weather is 

occurring. Subsequent forecasts are often 

sensitive to initial conditions in regions 

with cloud and precipitation. 

( cloud liquid water path < 0.001 kg/m2) 

Passed QC in GSI 

All Obs 



Why are clouds difficult? 



Clouds can be spatially complex 
Often we assume a  

cloud looks like this… 
…when they can really look like this  

Spatial structure can be below the resolution 

of the observation, the model or both 



Clouds can be radiatively complex 

• The complexity of the impact of clouds on observed 

spectra varies greatly with type of cloud and spectral 

region. 

• If clouds are transmissive they will tend to have spectrally 

varying absorption – and hence emission – which depends 

on phase (water or ice), crystal habit and particle size 

distribution 

• Scattering from cloud and precipitation particles can be 

very significant – tends to lower the observed brightness 

temperature in the microwave. 

 

 



Clouds can introduce non-linearities 

• The radiative signal from clouds is often 

large and non-linear so the tangent-linear 

assumption used in variational data 

assimilation does not hold. 

• Quality control that minimizes the impact of 

this non-linearity is required. 



Clouds need to be consistent with temperature 

and humidity fields 

• Adding clouds to the analysis without 

ensuring a consistent humidity and 

temperature profile can be problematic. 

– For example a cloud added into a dry 

atmosphere will tend to be removed by the 

model. 

 
 



Strategies for dealing with clouds 
• Avoid them 

– Do not assimilate radiances that are affected by clouds 

• Correct for them 

– Try to remove the cloud signal from the observations 

• Model them 

– Infer cloud properties and account for them in the radiative transfer 

model, but do not assimilate. 

– The cloud properties are usually inferred by retrieving from the 

observations. 

• Assimilate them 

– Either directly or through modification of the humidity fields. 

 



Infrared Radiances 



Infrared Radiances 
Avoid the Clouds 



Cloud Detection in the GSI 
• Assume the cloud is a single layer at 

pressure Pc and with unit emissivity 

and coverage within the FOV, Nc. 

• 0 ≤ Nc ≤ 1 

• Pc is below the tropopause and above 

the ground 

• Find Pc and Nc so that the RMS 

deviation, J(Nc,Pc), of the calculated 

cloud from the model (over a number 

of channels) is minimized. 

• Remove all channels that would be 

radiatively affected by this cloud. 

Nc 1-Nc 

Rovercast(ν,Pc) Rclear(ν,Pc) 

Eyre and Menzel, 

1989 



CLOUD 

AIRS channel 226 at 13.5micron 

(peak about 600hPa) 

AIRS channel 787 at 11.0 micron 

(surface sensing window channel) 

temperature jacobian (K) 
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Cloud detection in the infrared - ECMWF Method 

A non-linear pattern recognition algorithm is applied to 

departures of the observed radiance spectra from a 

computed clear-sky background spectra.   

 

 

 

 

 

 

 

This identifies the characteristic signal of cloud in the 

data and allows contaminated channels to be rejected 
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Vertically ranked channel index 

From ECMWF 



Number of Clear Channels in infrared spectrum 

High Peaking Channels 

Window 

Channels 

For low peaking 

channels in the 

infrared only 5-

10% of fields of 

view are 

considered clear 

 

Not only are we throwing away useful information but by only considering clear  

observations in regions that are mostly cloudy we are introducing representivity  

errors. 



Infrared Radiances 
Correct for the clouds 



Cloud Cleared Radiances derive a single 

“clear” spectrum from an array of partially 

cloudy fields-of-view (9 in the case of AIRS) 

 

Assumes the cloud height in each FOV is  

identical and only cloud fraction varies between the FOVs. 

 

Needs a high-quality first guess (often an AMSU-A retrieval) 

 

Can calculate a noise amplification factor which is the basis of  

the QC flag 

 

Cloud Cleared Radiances 



Infrared Radiances 
Model the Clouds 



Inferring cloud properties from the observations 

• Clouds properties are inferred from the observations, either via a 

1DVar retrieval (and retrieving temperature, humidity etc 

simultaneously with clouds) or more simple least-squares methodology 

with fixed temperature and humidity from the background fields. 

• Usually a grey cloud is assumed.  The cloud may then be defined by 

cloud top pressure (CTP) and Cloud Fraction.  

• The retrieved cloud may then be passed to the assimilation stage where 

is may either be treated as fixed or may be modified during the 

minimization as a “sink variable” – one that does not make up part of 

the analysis itself. 

• At ECMWF, only completely overcast situations are considered. 



Form of Jacobians 

Clear Sky 

With Cloud 

The Jacobians of low-peaking 

channels (in clear sky) will all peak 

at the top of an opaque cloud. 

 

So there is a lot of information about the 

cloud top temperature. 

 

But to use this information we need to  

be able to infer exactly where the cloud top is.   

 

Also if the cloud top height changes the Jacobian 

values near the cloud top will change rapidly – 

the problem is highly non-linear. 



Temperature increments at the cloud top 

Cell of very high 

overcast clouds off 

the coast of PNG 

All channels collapse to near delta-

functions at the cloud top giving very 

high vertical resolution temperature 

increments just above the diagnosed 

cloud 

Temperature increments (IASI) 

blue=ops 

red=ops+ cloudy IR 

Tony McNally 



Microwave Radiances 



Microwave Spectrum 
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Liquid water absorption is 

important in window channels 

(1-5,15). 

Scattering becomes more 

important at the higher 

frequencies (channels 15-20). 



Microwave Radiances 
Avoid and Mitigate for Clouds 



Cloud detection in the microwave 

26 AMSU-A Ch 1 Un-bias-corrected First Guess Departure (K) 
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Used Obs deemed Cloudy 

Used Obs deemed Clear 
(unused obs are small dots) 

Water sensitivity results in 

a gradient around 0.5 

Cloud sensitivity results in 

a gradient greater than 1.0 



Using retrieved CLW in the GSI bias correction 

 
Similar to previous 

slide – color-coded 

by retrieved CLW 

After bias correction 

where CLW is a 

bias-correction 

predictor 



Microwave Radiances 
Assimilate cloud information 



Cloudy Radiance Assimilation in the Microwave 

• Balance 

• Control variable 

• Assignment of Observation Errors and 

Representivity 

• Linearity 



Balance  

• We want to ensure during the minimization 

process that the temperature, humidity and 

cloud fields are consistent. 

• We use the moisture physics package from 

the Global Forecasting System (GFS) to 

impose this constraint. 



 The tangent-linear (TL) and adjoint (AD) of full GFS moisture physics are 
under development and validation. 

 These linearized moisture physics are added in the minimization to ensure 
control variables are more physically related and balanced. 
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• NCEP Global Forecast System(GFS) 

moisture physics schemes are 

composed of   

  (1) Simplified Arakawa-Schubert 

(SAS) convection scheme,  

 (2) a  shallow-convection scheme,   

 (3) a grid-scale condensation scheme,  

 and (4) a precipitation scheme.  

 

• The Tangent-linear and adjoint 

codes for (1), (3), and (4) have been 

developed and currently being tested 

in GSI for cloudy radiance data 

assimilation. 

Deep 
convection 

scheme 

Shallow 
convection 

scheme 

Grid-scale 
condensation 

scheme 

Precipitation 
scheme 

Cloud water, q, 
T, winds updated 

Cloud water, q, t updated 

Rain, snow, cloud water, 
q, t are updated.  

Moisture Physics  Models 

NCEP GFS moisture physics schemes  



Linearized Moisture Physics in the Inner Loop of the 

Minimization 

δT 

δq 
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Linearized Moisture Physics in the Inner Loop of the 

Minimization - Adjoint 

δT 

δq 

δCW 

Adjoint of 

Linearized 

Moisture 

Physics 

Sum CLW* 

and CIW* 

terms 

CRTM 

K 

Unbalanced 

gradients 

Balanced 

gradients 

J is the 

minimization 

cost function 



Control Variable Choice 

• Consider two possibilities for the cloudy control variables 

in the minimization: 

– A three variable approach: Cloud liquid water (CLW), 

Cloud Ice Water (CIW) and Water Vapor (q) 

– A single total water variable (qtot) 

– Of course, each of these will be a profile 

• The difference is whether we use the background error 

covariance matrix to partition the increments or model 

physics 

• The Gaussianity of the variables’ first-guess departure 

statistics will affect which is chosen. 



Total Humidity requires an extra step before the moisture 

physics 
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Total Water as Moisture Control Variable 

 Find a form of total water with its error distribution Gaussian (in practice, 

closer to Gaussian) 

 The background errors are directly related to forecast differences in that 

if the forecast difference are Gaussian, so are the background errors 

(can be mathematically proven) 

 60 pairs of 24 and 48-hour forecasts from GFS were used to study the 

error distribution of total water (NMC method) 
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Total Water as Moisture Control Variable 

Pros and Cons 

 Advantages 

– Reduce the dimension (computationally efficient)  

– Condensation/evaporation rapidly converts between humidity and 

cloud water, but total water is more constant in time (more linear)  

– Changes in total water is spatially more homogeneous than in cloud 

water (has a simpler error characteristic) 

 Disadvantages 

– Need to separate total water increment into water vapor increment 

and cloud water increment in the minimization (prone to introduce 

biases) 

 
* Currently, assuming total water has uniform distribution in a    

   grid box 



Assignment of observation errors 
• The observation errors assigned when doing cloudy 

assimilation need to reflect: 

• Instrument error (generally a small contribution) 

• Forward model error (higher for cloudy radiances, even 

higher for ice clouds and precipitation where scattering 

is an issue) 

• Representivity error 

• We define the observation error as a function of cloud 

amount. 

• Cloud may be derived from the model … 

• … or from the observations as with the cloud detection 

above 



Obs: Cloudy sky 

Model: Clear 

Observation errors 
function of observed cloud or model cloud ?? 

Obs: Clear sky 

Model: Cloudy 
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Geer et al. (2010)  
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6.5 K (2K) 10 K (2.5 K) 

Standard deviation of AMSU-A Tb departure (clwp < 0.5 kg/m2) 
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New Observation Errors  

for clear and non-precipitating cloudy sky over the ocean 

CLD = 0.5*(observation + model estimates for CLW) 

Ai = clear sky error  for each channel(i) 

Bi = cloudy sky error for each channel(i) 

 

If(CLD .lt. 0.05) then 

   Obs_errori = Ai 

else if (CLD .ge. 0.05 .and.  .lt. 0.275) then 

   Obs_errori = Ai+ (CLD-0.05)*(Bi-Ai)/(0.275-0.05) 

else 

   Obs_errori = Bi 

endif 

42 



New Observation Errors  

for clear and non-precipitating cloudy sky over the ocean 

CLD = 0.5*(observation + model estimates for CLW) 

Ai = clear sky error  for each channel(i) 

Bi = cloudy sky error for each channel(i) 

 

If(CLD .lt. 0.05) then 

   Obs_errori = Ai 

else if (CLD .ge. 0.05 .and.  .lt. 0.275) then 

   Obs_errori = Ai+ (CLD-0.05)*(Bi-Ai)/(0.275-0.05) 

else 

   Obs_errori = Bi 

endif 

In satinfo: 

Ai Bi 



Linearity and Quality Control 

• As with the infrared, there can be 

significant non-linearity when the 

brightness temperature departures are large. 

• In the GSI we impose a quality control 

check where the retrieved cloud liquid 

water amount is less than 0.5 kg m-2. 



Summary 
• Observations of clouds have until recently been under-used 

in operational data assimilation schemes. 

• A number of strategies may be adopted to either allow 

assimilation of temperature/humidity in cloudy regions or 

to use the information about the clouds themselves. 

• The main issues that need to be addressed when using 

cloudy radiances are non-linearity, representivity and 

internal consistency of the analysis. 



Questions? 
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