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What is “hybrid DA”?

Ingredients of a ensemble-Var hybrid system
@ A forecast model.
@ An existing Var (3 or 4d) DA system (such as GSlI).

@ A method of generating ensembles of first-guess forecasts that
accurately represents forecast uncertainty (an EnKF DA system).

The Var “cost function” is modified to use an ensemble estimate of the
background-error covariance matrix B (in the “J; term”)



GSI 3DVar cost function
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Y iovar (X )=—(x )T Bfl(x) +5(HX -y )TR 1(HX -Y')

J : Penalty (Fit to background + Fit to observations)
X" : Analysis increment (x? — x°) ; where x? is a background

B, : (Fixed) Background error covariance (estimated offline)
H : Observations (forward) operator

R : Observation error covariance (Instrument +
representativeness)

y'= y° - be, where y° are the observations

Cost function (J) is minimized to find solution, x’ [x?=x+x’ ]



GSI| ensemble 3DVar cost function

T (¥) =5 (x) B7 (3 =L ) B (30 (B -y) R (B -y)

B, : (Fixed) background-error covariance (estimated offline)

B... : (Flow-dependent) background-error covariance (estimated
from ensemble)

: Weighting factor (0.25 means total B is % ensemble).



What does B, do?

Temperature observation near a warm front
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Background 850

What does B

do?

ens

Zonal wind observation near a hurricane (lke)

mb Wind(vectors) & Ensemble

Spread(shaded)

Control 850mb Wind increment
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What does B, do?

Surface pressure observation near an “atmospheric river”

PWAT increment

Precipitable Water Analysis Increment 2004013000
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3Dvar increment would be zero!
(cross-variable covariances hard to model with static B;)
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What does B, do?

Adds flow-dependence to analysis increments.

Sparse observations near coherent dynamical
features used more effectively.

Changes in the observing network can be
captured in background-error variance.

More information extracted from
observations => More skillful forecasts
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So what’s the catch?

Need an ensemble (fairly large) that accurately
represents the uncertainty in the first-guess forecast.

“Fairly large” means O(50-100) -- smaller ensembles
with have large sampling errors (and more weight will
have to be given to B;). Expensive to run.

In NCEP operations, an “Ensemble Kalman
Filter” (EnKF)* is used to generate the background

ensemble.

*EnKF: A standalone DA system that updates every ensemble
member with new observations every analysis time using the
ensemble to estimate the background-error covariance (no
static part). Google “ensemble-based atmospheric data
assimilation” for a review article by Tom Hamill.



The Ensemble Kalman Filter (EnKF)
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Background at
Instant k

Analysis at In-
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* Update step uses background-error covariances

(B=B

ens

= PP) estimated from ensemble to update

ensemble state variables directly (no variational

minimization).

* Ad-hoc techniques needed to account for un-
represented sources of error (sampling, model) —
covariance inflation and localization.




Dual-Res Coupled Ensemble 3DVar
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Advantages of the hybrid approach

Features from EnKF Features from VAR

Extra flow-dependence in B

More flexible treatment of
model error (can be treated
in ensemble)

Automatic initialization of
ensemble forecasts,
propagation of covariance
info from one cycle to the
next.

Localization done better for
non-local obs (radiances).

Dual-resolution capability —
can produce a high-res
“control” (deterministic)
analysis.

Ease of adding extra
constraints to cost function
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What if I'm not running an EnKF?

* |n principle, any ensemble can be used (but
analysis won’t be better than 3DVar unless the
ensemble represents the forecast errors well).

* GSI can ingest GFS global ensemble to update
regional models (WRF ARW/NMM).

 80-member GFS/EnKF 6-h ensemble forecasts
are archived at NCEP since May 2012 — but

not publicly available right now.




Ensembles of EnsVar — no EnKF needed
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(in the future — much too expensive now)

e This schematic
is a simplification,
since EnsVar uses
every member

to estimate
background-
error covariances




How to configure the GSI hybrid

 Namelist parameters in &hybrid_ensemble_parameters
control

— ensemble size and horizontal resolution.
— Source of ensemble (from GFS or host model).

— Weighting factor for static covariance (1 means all static, O
means all ensemble).

— Whether to neglect cross-variable covariances in ozone update.
— Horizontal and vertical “covariance localization” distances.

* Also need to setup symlinks in driver script so GSI can find
ensemble files.

* Practical designed to illustrate sensitivity to static
covariance weighting factor (BETA1 INV), ensemble size
(N_ENS), and localization length scales (S ENS_H, S_ENS V).



A simple example of covariance localization
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Estimates of covariances from a small ensemble will be noisy,
with signal-to-noise small especially when covariance is small
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A real-world example of covariance
localization

Temperature Covariance with Temperature ob
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GSI ensemble 3DVar cost function
(with localization)

Jhybrid (X')=E(X')T B;'(x')H+ %(x’)T (BoS), (x')k %(Hx’ -y') R (Hx'-y')

B, : (Fixed) background-error covariance (estimated offline)

B, : (Flow-dependent) background-error covariance (estimated
from ensemble). Schur product with correlation matrix S
implies localization.

: Weighting factor (0.25 means total B is % ensemble).
Extra parameters control horizontal and vertical scales in S.




Summary

 The “hybrid” ensemble 3DVar GSI system uses an
ensemble of first-guess forecasts to better
estimate the background-error covariance term
in the cost function.

— More information can be extracted from obs.
— Added expense (and complexity) of running (and
updating) an ensemble.
 Ensemble (co)variances must be representative

of control forecast error — should be informed by
observations.

* Need to carefully tune localization length scales

(depends on model resolution, observing
network).



