



## **GSI Hybrid Data Assimilation**

Jeff Whitaker\* <jeffrey.s.whitaker@noaa.gov>

\* GSI Hybrid development team: Daryl Kleist, Dave Parrish, John Derber (NCEP) and Xuguang Wang (OU)

#### What is "hybrid DA"?



#### Ingredients of a ensemble-Var hybrid system

- 1 A forecast model.
- 2 An existing Var (3 or 4d) DA system (such as GSI).
- 3 A method of generating ensembles of first-guess forecasts that accurately represents forecast uncertainty (an EnKF DA system).

The Var "cost function" is modified to use an ensemble estimate of the background-error covariance matrix  $\mathbf{B}$  (in the " $J_{\mathbf{R}}$  term")

#### **GSI 3DVar cost function**

$$J_{3DVAR}(\mathbf{x}') = \frac{1}{2}(\mathbf{x}')^{T} \mathbf{B}_{f}^{-1}(\mathbf{x}') + \frac{1}{2}(\mathbf{H}\mathbf{x}' - \mathbf{y}')^{T} \mathbf{R}^{-1}(\mathbf{H}\mathbf{x}' - \mathbf{y}')$$

J: Penalty (Fit to background + Fit to observations)

 $\mathbf{x}'$ : Analysis increment  $(\mathbf{x}^a - \mathbf{x}^b)$ ; where  $\mathbf{x}^b$  is a background

**B**<sub>f</sub>: (Fixed) Background error covariance (estimated offline)

H: Observations (forward) operator

**R**: Observation error covariance (Instrument + representativeness)

 $\mathbf{y}' = \mathbf{y}^{\circ} - H\mathbf{x}^{\circ}$ , where  $\mathbf{y}^{\circ}$  are the observations

Cost function (J) is minimized to find solution,  $\mathbf{x}' \ [\mathbf{x}^a = \mathbf{x}^b + \mathbf{x}']$ 

#### **GSI** ensemble 3DVar cost function

$$\mathbf{J}_{hybrid}\left(\mathbf{x}'\right) = \frac{\beta}{2} \left(\mathbf{x}'\right)^{\mathrm{T}} \mathbf{B}_{\mathrm{f}}^{-1} \left(\mathbf{x}'\right) + \frac{1 - \beta}{2} \left(\mathbf{x}'\right)^{\mathrm{T}} \mathbf{B}_{ens}^{-1} \left(\mathbf{x}'\right) + \frac{1}{2} \left(\mathbf{H}\mathbf{x}' - \mathbf{y}'\right)^{\mathrm{T}} \mathbf{R}^{-1} \left(\mathbf{H}\mathbf{x}' - \mathbf{y}'\right)$$

**B**<sub>f</sub>: (Fixed) background-error covariance (estimated offline)

**B**<sub>ens</sub>: (Flow-dependent) background-error covariance (estimated from ensemble)

 $\beta$ : Weighting factor (0.25 means total **B** is  $\frac{3}{4}$  ensemble).

## What does $\mathbf{B}_{ens}$ do?

#### Temperature observation near a warm front



## What does $\mathbf{B}_{ens}$ do?

#### Zonal wind observation near a hurricane (Ike)



## What does $B_{ens}$ do?

Surface pressure observation near an "atmospheric river"

#### **PWAT** increment



3Dvar increment would be zero! (cross-variable covariances hard to model with static  $B_f$ )

### What does $\mathbf{B}_{ens}$ do?

- Adds flow-dependence to analysis increments.
- Sparse observations near coherent dynamical features used more effectively.
- Changes in the observing network can be captured in background-error variance.
- More information extracted from observations => More skillful forecasts



#### So what's the catch?

- Need an ensemble (fairly large) that accurately represents the uncertainty in the first-guess forecast.
- "Fairly large" means O(50-100) -- smaller ensembles with have large sampling errors (and more weight will have to be given to  $\mathbf{B_f}$ ). Expensive to run.
- In NCEP operations, an "Ensemble Kalman Filter" (EnKF)\* is used to generate the background ensemble.

\*EnKF: A standalone DA system that updates every ensemble member with new observations every analysis time using the ensemble to estimate the background-error covariance (no static part). Google "ensemble-based atmospheric data assimilation" for a review article by Tom Hamill.

#### The Ensemble Kalman Filter (EnKF)



- Update step uses background-error covariances  $(B=B_{ens}=P^b)$  estimated from ensemble to update ensemble state variables directly (no variational minimization).
- Ad-hoc techniques needed to account for unrepresented sources of error (sampling, model) – covariance inflation and localization.

#### **Dual-Res Coupled Ensemble 3DVar**



## Advantages of the hybrid approach

| Features from EnKF                                                                                         | Features from VAR                                                                       |
|------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|
| Extra flow-dependence in <b>B</b>                                                                          | Localization done better for non-local obs (radiances).                                 |
| More flexible treatment of model error (can be treated in ensemble)                                        | Dual-resolution capability – can produce a high-res "control" (deterministic) analysis. |
| Automatic initialization of ensemble forecasts, propagation of covariance info from one cycle to the next. | Ease of adding extra constraints to cost function                                       |

#### What if I'm not running an EnKF?

- In principle, any ensemble can be used (but analysis won't be better than 3DVar unless the ensemble represents the forecast errors well).
- GSI can ingest GFS global ensemble to update regional models (WRF ARW/NMM).
- 80-member GFS/EnKF 6-h ensemble forecasts are archived at NCEP since May 2012 – but not publicly available right now.

#### Ensembles of EnsVar – no EnKF needed

(in the future – much too expensive now)



#### How to configure the GSI hybrid

- Namelist parameters in &hybrid\_ensemble\_parameters control
  - ensemble size and horizontal resolution.
  - Source of ensemble (from GFS or host model).
  - Weighting factor for static covariance (1 means all static, 0 means all ensemble).
  - Whether to neglect cross-variable covariances in ozone update.
  - Horizontal and vertical "covariance localization" distances.
- Also need to setup symlinks in driver script so GSI can find ensemble files.
- Practical designed to illustrate sensitivity to static covariance weighting factor (BETA1\_INV), ensemble size (N\_ENS), and localization length scales (S\_ENS\_H, S\_ENS\_V).

#### A simple example of covariance localization



Estimates of covariances from a small ensemble will be noisy, with signal-to-noise small especially when covariance is small

## A real-world example of covariance localization





# GSI ensemble 3DVar cost function (with localization)

$$\mathbf{J_{hybrid}}\left(\mathbf{x}'\right) = \frac{\beta}{2} \left(\mathbf{x}'\right)^{\mathrm{T}} \mathbf{B}_{\mathrm{f}}^{-1} \left(\mathbf{x}'\right) + \frac{1 - \beta}{2} \left(\mathbf{x}'\right)^{\mathrm{T}} \left(\mathbf{B} \circ \mathbf{S}\right)_{ens}^{-1} \left(\mathbf{x}'\right) + \frac{1}{2} \left(\mathbf{H}\mathbf{x}' - \mathbf{y}'\right)^{\mathrm{T}} \mathbf{R}^{-1} \left(\mathbf{H}\mathbf{x}' - \mathbf{y}'\right)$$

**B**<sub>f</sub>: (Fixed) background-error covariance (estimated offline)

B<sub>ens</sub>: (Flow-dependent) background-error covariance (estimated from ensemble). Schur product with correlation matrix S implies localization.

 $\beta$ : Weighting factor (0.25 means total **B** is  $\frac{3}{4}$  ensemble).

Extra parameters control horizontal and vertical scales in S.

#### Summary

- The "hybrid" ensemble 3DVar GSI system uses an ensemble of first-guess forecasts to better estimate the background-error covariance term in the cost function.
  - More information can be extracted from obs.
  - Added expense (and complexity) of running (and updating) an ensemble.
- Ensemble (co)variances must be representative of control forecast error – should be informed by observations.
- Need to carefully tune localization length scales (depends on model resolution, observing network).