
Host-side coding

Dom Heinzeller
Global Model Test Bed

CCPP Training
College Park, MD, March 12-13, 2019

Outline of Talk

2

� When are changes required on the host model side
� Register an existing variable with CCPP
� Adding new variables for running physics
� Output new variables for diagnostics
� Output new variables for restarts
� Wrap up

Host-side coding – scenarios

3

� In many cases, physics developers do not need to change the
host model code (exception: CCPP prebuild config)

� The following scenarios require making host-model changes:
� An existing variable on the host model side is not yet exposed

to the CCPP, i.e. there is no metadata for it
� A new variable is required for physics computations
� A new or existing variable must be added to the model output

(for diagnostics or for restarts)

Adding an existing variable to CCPP

4

Case 1: the existing variable is a standard Fortran variable,
not a member of a derived data type (constants, flags, ...)
� locate the module in which the variable is defined
� add variable to module metadata table if existent
� if the module doesn’t have a metadata table yet:

� create metadata table from scratch
� add Fortran file to CCPP prebuild config, option
VARIABLE_DEFINITION_FILES

� make sure that the module is compiled before the host model
cap (e.g., IPD_CCPP_driver.F90 for slow physics), and that
the compiler flags have the necessary include statements

Adding an existing variable to CCPP

5

Case 1: the existing variable is a standard Fortran variable,
not a member of a derived data type (constants, flags, ...)

module GFS_typedefs
...

!> \section arg_table_GFS_typedefs
!! | local_name | standard_name | long_name ...
!! |------------|-----------------|-----------------...
!! | ... | ... | ...
!! | LTP | extra_top_layer | extra layer rad ...
!!

...
integer :: LTP
...

contains
...

Adding an existing variable to CCPP

6

Case 2: the existing variable is a member of a derived data type,
(DDT; e.g. GFS_Data(:)%Sfcprop%oro), known to CCPP
� locate the module in which the DDT is defined
� add variable to the DDT’s metadata table
contains

...
!! \section arg_table_GFS_sfcprop_type
!! | local_name | standard_name ...
!! |------------------------------------|-----------------
!! | ... | ...
!! | GFS_Data(cdata%blk_no)%Sfcprop%oro | orography ...
!!

type GFS_sfcprop_type
...
real(kind=kind_phys), pointer :: oro(:) => null()

Adding an existing variable to CCPP

7

Case 3: the existing variable is a member of a derived data type,
which is not yet known to CCPP
� add metadata table for DDT, follow case 2 instructions above
� locate the module that holds the memory for the DDT
� add the DDT to this module’s metadata table, do as for case 1
module CCPP_data
!! \section arg_table_CCPP_data Argument Table
!! | local_name | standard_name ...
!! |------------------------|-------------------------------
!! | ... |
!! | GFS_Control | GFS_control_instance ...
!! | GFS_Data(cdata%blk_no) | GFS_data_instance ...
!!
contains

Adding a variable to the host+CCPP

8

Case 1: the new variable is a member of a derived data type that
already exists on the host model side – this is the easiest case.
� most likely this will be in GFS_typedefs.F90
� add constituent array to type definition, allocate and initialize
� reset if applicable (diagnostic or interstitial variables), follow

existing code in GFS_typedefs.F90

Adding a variable to the host+CCPP

9

Case 1: the new variable is a member of a derived data type that
already exists on the host model side – this is the easiest case.
� most likely this will be in GFS_typedefs.F90
� add constituent array to type definition, allocate and initialize
� reset if applicable (diagnostic or interstitial variables), follow

existing code in GFS_typedefs.F90
� key question: purpose of this variable

� interstitial variable
� persistent variable

(also: restart and
diagnostic variable)

ra
di

at
io

n
ph

ys
ic

s

scheme
scheme
scheme
scheme

scheme
scheme
scheme
scheme

loop over blocks
using threading

dynamics, I/O, ...

Adding a variable to the host+CCPP

10

Case 1: the new variable is a member of a derived data type that
already exists on the host model side – this is the easiest case.
� most likely this will be in GFS_typedefs.F90
� add constituent array to type definition, allocate and initialize
� reset if applicable (diagnostic or interstitial variables), follow

existing code in GFS_typedefs.F90
� key question: purpose of this variable

� interstitial variable: use thread-dependent GFS_interstitial DDT
� persistent variable: use other GFS DDTs (Diag, Sfcprop, Tbd, ...)

Adding a variable to the host+CCPP

11

Case 2: the new variable is a member of a derived data type that
doesn’t exist yet in the host model, or the new variable is a
derived data type itself that doesn’t exist yet in the host model
� most developers will not encounter this situation

� except if the new variable is a DDT that should become a member
of an existing DDT (e.g. sfcflw_type in GFS_radtend_type)

� in this case, follow the previous instructions to add a member to a
DDT and to add metadata for a new DDT

� other scenarios are not covered here (most complicated cases),
contact GMTB and NEMSfv3gfs developers if this is really needed

Adding a diagnostic variable

12

� best to use the GFS_Intdiag_type in GFS_typedefs.F90
� other persistent DDTs will work as well
� follow above instructions for adding a new variable to a DDT
� add code to GFS_diagnostics.F90 for outputting the data

(use an existing entry closest to your needs), for example:
idx = idx + 1
ExtDiag(idx)%axes = 2
ExtDiag(idx)%name = 'maxmf'
ExtDiag(idx)%desc = 'maximum mass-flux in column'
ExtDiag(idx)%unit = 'm s-1'
ExtDiag(idx)%mod_name = 'gfs_sfc'
allocate (ExtDiag(idx)%data(nblks))
do nb = 1,nblks

ExtDiag(idx)%data(nb)%var2 => IntDiag(nb)%maxmf(:)
enddo

Adding a diagnostic variable

13

� best to use the GFS_Intdiag_type in GFS_typedefs.F90
� other persistent DDTs will work as well
� follow above instructions for adding a new variable to a DDT
� add code to GFS_diagnostics.F90 for outputting the data

(use an existing entry closest to your needs)
� this outputs the data when quilting is on, if you want that or not
� without quilting, output can be controlled using diag_table
� workaround: use if-my-scheme-is-on in GFS_typedefs.F90

if (Model%do_mynnedmf) then
! output maxmf

end if

Adding a restart variable

14

� more complicated than adding a diagnostic variable,
because there are several ways to do that
� add to GFS_restart_type in GFS_restart.F90
� modify code in FV3GFS_io.F90
� both require adjusting indices and dimensions, possibly more

� without understanding the full picture, it seems to me that
certain variables go into FV3GFS_io.F90 (surface properties,
phy_var2, phy_var3), while others go in GFS_restart.F90

� contact FV3 developers if this is required (some may be sitting
in the audience?)

Wrap up

15

� adding new variables can range anywhere between easy
and highly complicated, depending on the situation

� in most cases it is straightforward for physics developers
� outputting diagnostic variables is an easy task, too
� adding restart variables is more complicated

At this point, we have covered everything you need to know
to become a seasoned NEMSfv3gfs+CCPP developer!

