
Building NEMSfv3gfs with CCPP

Laurie Carson
Global Model Test Bed

CCPP Training
College Park, MD, March 12-13, 2019

Building NEMSfv3gfs with CCPP

2

� Code repositories and how to get the code
� Types of builds
� System requirements, compilers, libraries
� How-to instructions (see also: Practical Session exercises)

Code repositories

3

� The repository structure for CCPP development in
NEMSfv3gfs mirrors the Vlab repository structure, with the
addition of the CCPP repositories

NEMSfv3gfs

FMS

NEMS

ccpp/physics

ccpp/framework

FV3
Repository (GMTB development version) Branch name

https://github.com/NCAR/NEMSfv3gfs gmtb/ccpp

https://github.com/NCAR/FV3 gmtb/ccpp

https://github.com/NCAR/ccpp-physics master

https://github.com/NCAR/ccpp-framework master

https://github.com/NCAR/NEMS gmtb/ccpp

https://github.com/NCAR/FMS GFS-FMS

https://github.com/NCAR/NEMSfv3gfs
https://github.com/NCAR/FV3
https://github.com/NCAR/ccpp-physics
https://github.com/NCAR/ccpp-framework
https://github.com/NCAR/NEMS
https://github.com/NCAR/FMS

How to get the code

4

� The authoritative repositories are located on github.com in
the NCAR organizational space
� Some repositories are private (NEMSfv3gfs, FV3, NEMS)
� Some repositories are public (ccpp-physics, ccpp-framework,

FMS)
� Send a request to gmtb-help@ucar.edu to request access to the

private repositories

� Clone a local copy of the repository to begin working,
including submodules

git clone –-recursive -b emc_training_march_2019 https://github.com/NCAR/NEMSfv3gfs

mailto:gmtb-help@ucar.edu

Types of builds

5

Using FV3GFS as the host model, there are several modes of operation

� Non-CCPP:The code is compiled without CCPP enabled and matches the official
NEMSfv3gfs codebase in VLab.

� Hybrid CCPP:The code is compiled with CCPP enabled and allows users to combine
non-CCPP physics and CCPP-compliant physics.

� Standalone CCPP (non-Hybrid): The code is compiled with CCPP enabled and
restricted to CCPP-compliant physics.
� Dynamic CCPP: This option is recommended for research and development users,

since it allows users to change physics schemes at runtime by making adjustments to
the CCPP suite definition file and the model namelist.

� Static CCPP: The code is compiled with CCPP enabled but restricted to CCPP-
compliant physics called by a suite that is chosen at compile time.

This selection is specified by supplying various command-line options to the compile.sh
script

compile.sh $PWD/../FV3 theia.intel “CCPP=Y HYBRID=N STATIC=Y
SUITE=suite_FV3_CPT_advanced.xml”

6

Requires Suite Definition File at
compile time!

Default is CCPP=N
If CCPP=Y, defaults are:

HYBRID=Y
STATIC=N

Non-CCPP

7

� CCPP=N
� The code is compiled without CCPP enabled and

matches the official NEMSfv3gfs codebase in VLab.
� This option entirely bypasses all CCPP functionality

and is only used for regression testing against the
unmodified NEMSfv3gfs codebase.

Hybrid CCPP

8

� CCPP=Y HYBRID=Y
� The code is compiled with CCPP enabled and allows a user to combine non-

CCPP physics and CCPP-compliant physics.
� Restricted to parameterizations that are termed as “physics” by EMC, i.e. that in

a non-CCPP build would be called from GFS_physics_driver.F90.
� Parameterizations that fall into the categories “time_vary”, “radiation” and

“stochastics” have to be CCPP compliant.
� The hybrid option is fairly complex and not recommended for users to start

with and is intended as a temporary measure for research and development
until all physics are available through the CCPP.

� This option uses the existing physics calling infrastructure
(GFS_physics_driver.F90) to call either CCPP-compliant or non-CCPP-
compliant codes within the same run.

� The CCPP framework and physics libraries are dynamically linked to the
executable for this option.

Standalone CCPP, dynamic build

9

� CCPP=Y HYBRID=N STATIC=N
� Any parameterization to be called as part of a suite must be available in CCPP.
� Physics scheme selection and order is determined by an external suite

definition file (SDF). This is used only at RUN time.
� The existing physics-calling code (GFS_physics_driver.F90,

GFS_radiation_driver.F90) are bypassed altogether in this mode and any
“glue” code previously contained therein is executed from a CCPP-compliant
“interstitial scheme”.

� Dynamic CCPP
� CCPP framework and physics libraries are dynamically linked to the executable
� All physics parameterizations are compiled into the library
� This option is recommended for research and development users, since it allows to

change physics schemes at runtime by making adjustments to the CCPP suite
definition file and the model namelist.

� This option carries computational overhead associated with the higher level of
flexibility.

Standalone CCPP, static build

10

� CCPP=Y HYBRID=N STATIC=Y SUITE=“xyz.xml”
� Any parameterization to be called as part of a suite must be available in CCPP.
� Physics scheme selection and order is determined by an external suite

definition file (SDF). This is used at COMPILE time and RUN time.
� The existing physics-calling code (GFS_physics_driver.F90,

GFS_radiation_driver.F90) are bypassed altogether in this mode and any
“glue” code previously contained therein is executed from a CCPP-compliant
“interstitial scheme”.

� Static CCPP
� CCPP framework and physics libraries are statically linked to the executable
� The code is restricted to CCPP-compliant physics called by a suite that is chosen at

compile time.
� This option is recommended for advanced users and operational applications, since it

limits flexibility in favor of runtime performance and memory footprint.

System requirements, compilers, libraries

11

� FORTRAN 90+ compiler (ifort v15+, gfortran v5.4+,pgf90 v17.9+)

� C compiler (icc v15+, gcc v5.4+, pgcc v17.9+)

� cmake v2.8.11+

� netCDF v4.x (not v3.x) with HDF5, ZLIB and SZIP

� Python v2.x (not v3.x)

� Libxml2 (tested with 2.2 and 2.9.1)

� The Earth System Modeling Framework (ESMF), the SIONlib, the NCEPlibs,
and the netCDF libraries must be built with the same compiler as
NEMSfv3gfs.

� The available compilers are currently Intel, PGI, and GNU.

System requirements, compilers, libraries

12

� NCEP libs (pre-installed on theia, jet, Cheyenne)*

* these libraries are pre-built with the Intel compiler and OpenMP and –fPIC flags to
support CCPP. They are not the same builds as those available as modules on theia, jet

Library name/version Description

bacio NCEP binary I/O library

ip NCEP general interpolation library

nemsio NEMS I/O routines

sp NCEP spectral grid transforms

w3emc NCEP/EMC library for decoding data in GRIB1 format

w3nco/v2.0.6 NCEP/NCO library for decoding data in GRIB1 format

System requirements, compilers, libraries

13

� Other system libs

Library name/version Description

ESMF v7.1.0r Earth System Modeling Framework for coupling
applications – used for the NUOPC layer for
NEMSfv3gfs, NOT for CCPP!

netCDF v4.x Interface to data access functions for storing and
retrieving data arrays

SIONlib (optional) v1.7.2 Library (link) used to read precomputed lookup
tables instead of computing them on the fly

http://www.fz-juelich.de/ias/jsc/EN/Expertise/Support/Software/SIONlib/_node.html

How-to instructions

14

� See Practical Session instructions at:
� https://dtcenter.org/community-code/common-

community-physics-package-ccpp/tutorial-practical-
instructions

https://dtcenter.org/community-code/common-community-physics-package-ccpp/tutorial-practical-instructions

Wrap up

15

� Authoritative repositories @github.com
� Use “git clone” to get the source code directories
� Understand the various CCPP build options
� Compile (with selected options) using the NEMSfv3gfs compile.sh script
� Run a test case (next section!)

This is the first phase – become familiar with how CCPP integrates with
NEMSfv3gfs!

Next steps: modify or add code, contribute new code for review/inclusion
(tomorrow!)

QUESTIONS?

