
Physical Schemes and Interstitials

Grant Firl
Global Model Test Bed

CCPP Training
College Park, MD, March 12-13, 2019

Outline of Talk

2

� Big Picture
� Where did all the drivers go?
� What constitutes a scheme?
� Physical parameterizations vs interstitial schemes
� Overview of changes to physics

Big Picture

3

� Hard-coded “suite-drivers” are called in current infrastructure:

� Suite Definition File used by CCPP infrastructure to
autogenerate the equivalent of suite drivers

Disappearing Drivers

4

� IPDv4 within FV3 makes use of 3 drivers: GFS_driver,
GFS_radiation_driver, and GFS_physics_driver

� How does this structure change with the CCPP that aims to
eliminate hard-coded suite-based physics drivers?

� In the CCPP world, all physics-related code must be callable
using a CCPP-compliant interface
� CCPP requires that all of the function provided by these drivers

is placed into CCPP-compliant physics “schemes”

What Constitutes a CCPP “Scheme”?

5

� Any piece of code with a CCPP-compliant interface:
� Code must be wrapped within a Fortran module
� Must contain init, run, and finalize subroutines
� Must contain CCPP-readable metadata describing argument

variables for all subroutines (init/run/finalize)
� Use CCPP error-tracking variables rather than

printing/stopping
� Have formatted scientific/technical documentation
� Conform to modern coding standards

� Scheme independence
� schemes should comprise the smallest functional unit possible

� if scheme functions will always be called together, OK to keep as one
� if scheme functions will operate independently, separate the schemes

Types of Schemes

6

� Physical parameterization entry/exit point
� A subroutine that is exposed to the CCPP framework and serves as a

public interface for the underlying physical parameterization code for
exchanging information with a calling application

� “Interstitial” schemes - modularized data preparation, diagnostics,
and “glue code” that allows schemes to function together as a suite
� Can specifically augment an physical parameterization (scheme-

specific)
� additional functionality beyond what scheme code provides, but tied to one

specific physical parameterization
� Can be suite-level

� contains functionality that is not tied to one specific scheme but may:
� provide functionality on top of a class of schemes
� connects two or more schemes together (“glue code”)
� conversions, initializing sums, applying tendencies

Code Changes

7

� CCPP Physics Code Changes Documentation
� Describes changes to contents of NEMSfv3gfs/FV3/gfsphysics

for transition to CCPP
� What happened to:

� Existing physics schemes and their dependencies
� New physics schemes (coming from outside EMC)
� Existing “interstitial” code from the GFS suite drivers
� New interstitial code (associate with new schemes)
� Stochastic physics code

� Also contains lists of
� files that have not been moved over (schemes/dependencies that are not

yet CCPP-compliant)
� new testing/helper routines
� non-FV3 files (related to SCM)

https://docs.google.com/document/d/1pkGwCbv3ZsqKHGXjtFPphygOEpJQevtS7AZSPuAZbBc/edit

Code Changes

8

� Existing Physics Scheme Example
� Hybrid EDMF PBL scheme

� NEMSfv3gfs/FV3/gfsphysics/physics NEMSfv3gfs/ccpp/physics/physics
� wrap subroutine in module
� create _init, _run, and _finalize routines
� create CCPP-readable metadata table for all arguments of CCPP-

exposed subroutines (scheme entry/exit points)
� add errmsg and errflg arguments for tracking errors with CCPP

infrastructure and initialize them in the subroutines
� mfpbl.F (dependency) copied over to new directory with no changes

� For details run diff between moninedmf.f versions

Code Changes

9

� New Physics Scheme Example
� MYNN PBL scheme

� module_MYNNPBL_wrapper.F90
� conforms to same CCPP-compliancy rules as Hybrid EDMF
� uses wrapper around existing scheme code rather than put CCPP-

compliant interface within scheme algorithm code
� depends on module_bl_mynn.F90 (main algorithm)
� scheme also requires additional functionality to hand subgrid-scale cloudiness

to radiation scheme (interstitial code – does not belong with either PBL or
radiation schemes, but connects the two within the suite)
� module_MYNNrad_pre.F90

o contains code to save original resolved-scale clouds before the call to
radiation and adds subgrid-scale clouds to the cloud field that the
radiation scheme “sees”

� module_MYNNrad_post.F90
o restore the original resolved-scale clouds after the call to radiation

Code Changes

10

� Existing Interstitial Scheme Example
� GFS_PBL_generic.F90

� contains code for calculating tendencies, preparing/interacting with
vertically-diffused tracer arrays, and calculating other diagnostics related to
PBL

� code used to be immediately before/after calls to PBL schemes in
GFS_physics_driver

� this code does not “belong” within the scheme itself because:
� not necessary for scheme function, but plays a vital role for the GFS suite
� may not be necessary as part of another suite if the same diagnostics are

not required or if vertically diffused tracer array is prepared elsewhere in
the host model

� replacing/modifying a physics scheme requires checking for any necessary
changes in these schemes too!

Code Changes

11

� Keeping your eye on the ball…

gbphys

GFS_physics_driver

GFS_DCNV_generic.F90

GFS_MP_generic.F90

GFS_PBL_generic.F90

GFS_SCNV_generic.F90

GFS_suite_interstitial.F90

GFS_surface_generic.F90

GFS_surface_loop_control.F90

cs_conv_aw_adj.F90

m_micro_interstitial.F90

GSM-based GFS

FV3-based GFS (IPDv4)

{CCPP-based
suite-level
interstitial

CCPP-based
scheme-specific
interstitial

Several sections of scheme-
specific interstitial code moved
into scheme source code files:
• sfc_nst_pre/post
• dcyc2t3_post
• sfc_diag_post
• gwdps_pre/post
• gwdc_pre/post
• samfshalcnv_post

Code Changes

12

� Keeping your eye on the ball…

grrad

GFS_radiation_driver

GFS_rrtmg_setup.F90

GFS_rrtmg_pre.F90

GFS_rrtmg_post.F90

radcons.f90

rrtmg_lw_post.F90

rrtmg_lw_pre.F90

rrtmg_sw_post.F90

rrtmg_sw_pre.F90

GSM-based GFS

FV3-based GFS (IPDv4)

{CCPP-based
suite-level
interstitial

{CCPP-based
scheme-specific
interstitial

(also contains code
from rad_initialize.f
and GFS_driver.F90)

Code Changes

13

� Keeping your eye on the ball…

gloopb, gloopr

GFS_driver

GFS_phys_time_vary.fv3.F90*

GFS_rad_time_vary.fv3.F90*

GFS_stochastics.F90

GFS_time_vary_pre.fv3.F90*

GSM-based GFS

FV3-based GFS (IPDv4)

GFS_rrtmg_setup.F90
(also contains code from
rad_initialize.f and
GFS_radiation_driver.F90){CCPP-based

suite-level
interstitial

* these files are host-model dependent since they are run over the entire domain and
depend on how the host model handles ozone, aerosols, etc.

• Physics initialization code in GFS_driver.F90/GFS_initialize moved to _init
subroutines within their respective schemes.

Code Changes

14

� Keeping your eye on the ball…
� Several subroutines previously called through GFS_physics_driver

have now been made into “schemes” even though these may not
typically be thought of as physics

get_prs_fv3.F90

dcyc2.f

sfc_diff.f

sfc_diag.f

rayleigh_damp.f

calculates pressure-related functions in FV3

adjusts radiation to physics timesteps

part of GFS surface layer scheme}

Wrap Up

15

� “Suite-drivers” to modular CCPP-based schemes
� What constitutes a scheme within CCPP

� physical parameterization vs interstitial schemes

� Where did code in previous drivers end up?

