/ CCPP Training \
College Park, MD, March 12-13, 2019

Physical Schemes and Interstitials

Grant Firl
Global Model Test Bed

1,

Developmental Testbed Center

Outline of Talk

® Big Picture

® Where did all the drivers go?

® What constitutes a scheme?

® Physical parameterizations vs interstitial schemes

e Overview of changes to physics

)

Developmental Testbed Center

Big Picture

® Hard-coded “suite-drivers” are called in current infrastructure:

4)

GFS_driver.F90, GFS_physics_driver.F90, GFS_radiation_driver.F90

U J

® Suite Definition File used by CCPP infrastructure to

autogenerate the equivalent of suite drivers

r Suite Definition File]—»[CCPP calling code]

“Scemen | s | sheme | it || scteme |

5

Developmental Testbed Center

)

Disappearing Drivers

¢ [PDv4 within FV 3 makes use of 3 drivers: GFS_driver,
GFS_radiation_driver, and GFS_physics_driver

® How does this structure change with the CCPP that aims to
climinate hard-coded suite-based physics drivers?

® In the CCPP world, all physics-related code must be callable
using a CCPP-compliant interface

® CCPP requires that all of the function provided by these drivers
is placed into CCPP-compliant physics “schemes”

))

Developmental Testbed Center

)

Developmental Testbed Center

What Constitutes a CCPP “Scheme”?

® Any piece of code with a CCPP-compliant interface:
* Code must be wrapped within a Fortran module
® Must contain init, run, and finalize subroutines

® Must contain CCPP-readable metadata describing argument
variables for all subroutines (init/run/tinalize)

e Use CCPP error—tracking variables rather than
printing/ stopping
e Have formatted scientific/technical documentation

® Conform to modern coding standards

* Scheme independence

® schemes should comprise the smallest functional unit possible

if scheme functions will always be called together, OK to keep as one

if scheme functions will operate independently, separate the schemes

o

)

Developmental Testbed Center

Types of Schemes

e Physical parameterization entry/ exit point

* A subroutine that is exposed to the CCPP framework and serves as a
public interface for the underlying physical parameterization code for
exchanging information with a calling application

* “Interstitial” schemes - modularized data preparation, diagnostics,
and “glue code” that allows schemes to function together as a suite
® Can specifically augment an physical parameterization (scheme-

specific)
additional functionality beyond what scheme code provides, but tied to one
specific physical parameterization
® Can be suite-level
contains functionality that is not tied to one specific scheme but may:
provide functionality on top of a class of schemes
connects two or more schemes together (“glue code”)

conversions, initializing sums, applying tendencies

Code Changes

e CCPP Physics Code Changes Documentation

® Describes changes to contents of NEMSfv3 gfs/ FV3/ gfsphysics
for transition to CCPP

® What happened to:

Existing physics schemes and their dependencies

New physics schemes (coming from outside EMC)
Existing “interstitial” code from the GFS suite drivers
New interstitial code (associate with new schemes)
Stochastic physics code

® Also contains lists of

files that have not been moved over (schemes/dependencies that are not

yet CCPP-compliant)
new testing/ helper routines

non-FV3 files (related to SCM)

)

Developmental Testbed Center

https://docs.google.com/document/d/1pkGwCbv3ZsqKHGXjtFPphygOEpJQevtS7AZSPuAZbBc/edit

Code Changes

* Existing Physics Scheme Example

° Hybrid EDMEF PBL scheme
NEMStv3gts/FV3/gtsphysics/physics— NEMStv3gts/ccpp/physics/physics
wrap subroutine in module
create _init, _run, and _finalize routines

create CCPP-readable metadata table for all arguments of CCPP-

exposed subroutines (scheme entry/exit points)

add errmsg and errﬂg arguments for tracking errors with CCPP

infrastructure and initialize them in the subroutines

mfpbl.F (dependency) copied over to new directory with no changes

® For details run diff between moninedmf.f versions

)

Developmental Testbed Center

O

)

Developmental Testbed Center

Code Changes

® New Physics Scheme Example

e MYNN PBL scheme
module_ MYNNPBL_ wrapper.F90
conforms to same CCPP—compliancy rules as Hybrid EDMF

uses wrapper around existing scheme code rather than put CCPP-
compliant interface within scheme algorithm code

depends on module_bl_mynn.F90 (main algorithm)

scheme also requires additional functionality to hand subgrid-scale cloudiness
to radiation scheme (interstitial code — does not belong with either PBL or
radiation schemes, but connects the two within the suite)

module_MYNNrad_pre.F90

contains code to save original resolved-scale clouds before the call to
radiation and adds subgrid—scale clouds to the cloud field that the

radiation scheme “sees”
module_MYNNrad_post.F90
restore the original resolved-scale clouds after the call to radiation e

Code Changes

* Existing Interstitial Scheme Example

* GFS_PBL_generic.F90

contains code for calculating tendencies, preparing/interacting with
vertically-diffused tracer arrays, and calculating other diagnostics related to

PBL
code used to be immediately before/after calls to PBL schemes in
GFS_physics_driver
this code does not “belong” within the scheme itself because:
not necessary for scheme function, but plays a vital role for the GFS suite

may not be necessary as part of another suite if the same diagnostics are
not required or if Vertically diffused tracer array is prepared elsewhere in
the host model

replacing/ modifying a physics scheme requires checking for any necessary

2

changes in these schemes too!

)

Developmental Testbed Center

Code Changes

* Keeping your eye on the ball. ..

GSM-based GEFS gbphys

FV3-based GES (IPDv4) GFS_physics_driver

GFS_suite_interstitial.F90
GFS_surface_generic.F90
GFS_surface_loop_control.F90

CCPP-based

suite-level

interstitial

GFS_PBL_generlc F90
GFS_D CNV_generlc F90

GFS_SCNV generic F90
GFS_MP_generic.F90

cs_conv_aw_adj.F90

cheme-specific
DTC interstitial m_ micro_interstitial. F90

CCPP-based

Several sections of scheme-
specific interstitial code moved
into scheme source code files:
* sfc_nst_pre/post

* dcyc2t3_post

* stc_diag_post

* gwdps_pre/post

* gwdc_pre/post

* samfshalcnv_post

Developmental Testbed Center

Code Changes

* Keeping your eye on the ball. ..

GSM-based GEFS grrad

FV3-based GFS (IPDv4) GFS_radiation_driver

- (also contains code

GFS_rrtmg_setup.F9O

from rad_initialize.f

CCPP-based GFS_rrtmg_pre.F90 and GFS_driver.F90)

suite-level

interstitial GFS_rrtmg_post.F90
radcons.f90
rrtmg_lw_post.F90
CCPP-based

rrtmg_lw_pre.F90
scheme-specific

interstitial rrtmg_sw_post.F90

e Yot

rrtmg_sw_pre.F90

1,

Developmental Testbed Center

Code Changes

* Keeping your eye on the ball. ..

GSM-based GFS gloopb, gloopr

FV3-based GES (IPDv4) GFS_driver

GFS_time_vary_pre.fv3.F90"
GF S_rrtmg_setup. F90
GFS_rad_time_vary.fv3. F90*

GFS_phys_time_vary.fv3. F90*

GFS_stochastics.F90

* Physics initialization code in GFS_driver.F90/GFS_initialize moved to _init

(also contains code from

—

" rad_initialize.f and

GFS_radiation_driver.F90)

CCPP-based
suite-level

interstitial

subroutines within their respective schemes.

* these files are host-model dependent since they are run over the entire domain and

(@ depend on how the host model handles ozone, aerosols, etc.

Developmental Testbed Center

Code Changes

* Keeping your eye on the ball...
* Several subroutines previously called through GFS_physics_driver

have now been made into “schemes” even though these may not

typically be thought of as physics

get_prs_{v3.F90 calculates pressure-related functions in FV3

dcyc2.f adjusts radiation to physics timesteps

stc_diff.f
part of GFS surface layer scheme
stc_diag.f

rayleigh_damp.f

)

Developmental Testbed Center

Wrap Up
e “Suite-drivers” to modular CCPP-based schemes

e What constitutes a scheme within CCPP

e physical parameterization vs interstitial schemes

® Where did code in previous drivers end up?

)

Developmental Testbed Center

