Gridpoint Statistical Interpolation

User's Guide Version 3.6

September 2017

Ming Hu, Guoqing Ge National Oceanic and Atmospheric Administration (NOAA)/Earth System Research Laboratory Cooperative Institute for Research in Environmental Sciences (CIRES)

> Hui Shao, Don Stark, Kathryn Newman, Chunhua Zhou National Center for Atmospheric Research (NCAR)

Jeff Beck NOAA/Earth System Research Laboratory and CIRA

Xin Zhang University Corporation for Atmospheric Research (UCAR)

Acknowledgement

This user's guide is constructed with contributions from distributed GSI developers. We give our special acknowledgement to these contributors and reviewers, including, but not limit to:

National Centers for Environmental Prediction (NCEP) Environmental Modeling Center (EMC):

John Derber, Russ Treadon, Mike Lueken, Wan-Shu Wu, Andrew Collard, and Ed Safford

National Center for Atmospheric Research (NCAR): Xiang-Yu Huang, Syed Rizvi, Zhiquan Liu, and Arthur Mizzi

National Oceanic and Atmospheric Administration (NOAA) Earth System Research Laboratory (ESRL): Steve Weygandt, Dezso Devenyi, and Joseph Olson

The GSI community support and code management effort is sponsored by NOAA's Office of Oceanic and Atmospheric Research (OAR). This work is also facilitated by NCAR. NCAR is supported by the National Science Foundation (NSF).

Foreword

This document is the 2017 Gridpoint Statistical Interpolation (GSI) User's Guide, geared particularly for beginners. It describes the fundamentals of using GSI version (v) 3.6 released in September 2017. Advanced features of GSI as well as details of assimilation of specific data types can be found in the Advanced GSI User's Guide, released together with this document and the v3.6 code release.

This User's Guide includes six chapters and three appendices:

- Chapter 1 provides a background introduction of GSI.
- **Chapter 2** contains basic information about how to install and compile GSI including system requirements, required software (and how to obtain it), how to download GSI, and information about compilers, libraries, and how to build the code.
- **Chapter 3** focuses on the input files needed to run GSI and how to configure and run GSI through a sample run script. It also provides an example of a successful GSI run and explanations of often-used namelist variables.
- **Chapter 4** includes information about diagnostics and tuning of the GSI system through GSI standard output, statistic fit files, and some diagnostic tools.
- **Chapter 5** illustrates the GSI applications for regional WRF-ARW cases, including the setup of different data types such as conventional, radiance, and GPSRO data, and different analysis functions available in the GSI, such running a hybrid analysis.
- Chapter 6 illustrates the GSI applications for global and chemical cases.
- Appendix A introduces community tools available for GSI users.
- Appendix B describes the content of the GSI namelist section OBS_INPUT.
- **Appendix C** contains a complete list of the GSI namelist with explanations and default values.

For the latest version of the GSI User's Guide and released code, please visit the GSI User's Website:

http://www.dtcenter.org/com-GSI/users/index.php

Please send questions and comments to the GSI help desk:

gsi-help@ucar.edu

This document and the annual GSI releases are made available through a community GSI effort jointly led by the Developmental Testbed Center (DTC) and the National Centers for Environmental Prediction (NCEP) Environmental Modeling Center (EMC), in collaboration

with other GSI developers. To help sustain this effort, we request that those who use the community-released GSI, the GSI helpdesk, the GSI User's Guide, or other DTC GSI services, please refer to this community GSI effort in their work and publications.

To reference this user's guide, please use:

Hu, M., G. Ge, H. Shao, D. Stark, K. Newman, C. Zhou, J. Beck, and X. Zhang, 2017: Grid-point Statistical Interpolation (GSI) User's Guide Version 3.6. Developmental Testbed Center. Available at http://www.dtcenter.org/com-GSI/users/docs/index.php, 149 pp.

For referencing the general aspect of the GSI community effort, please use:

Shao, H., J. Derber, X.-Y. Huang, M. Hu, K. Newman, D. Stark, M. Lueken, C. Zhou, L. Nance, Y.-H. Kuo, B. Brown, 2016: Bridging Research to Operations Transitions: Status and Plans of Community GSI. Bull. Amer. Meteor. Soc., 97, 1427-1440, doi: 10.1175/BAMS-D-13-00245.1.

Contents

1.	Ove	rview		1
	1.1.	GSI His	story and Background	1
	1.2.	GSI Be	comes Community Code	2
		1.2.1.	GSI Code Management and Review Committee	2
		1.2.2.	Community Code Contributions	3
	1.3.	About '	This GSI Release	3
		1.3.1.	What Is New in This Release Version	4
		1.3.2.	Observations Used by This Version	5
2.	Soft	ware In	stallation	8
	2.1.	Introdu	lction	8
	2.2.	Obtaini	ing and Setting Up the Source Code	9
	2.3.	Directo	ry Structure, Source Code and Supplemental Libraries	10
	2.4.	Compil	ling GSI	11
		2.4.1.	Build Overview	11
		2.4.2.	Environment Variables	12
		2.4.3.	Configure and Compile	13
	2.5.	Exampl	le of Build	14
		2.5.1.	Intel Build	14
		2.5.2.	PGI Build	15
		2.5.3.	GNU Build	16
	2.6.	System	Requirements and External Libraries	16
		2.6.1.	Compilers Tested for Release	17
	2.7.	Getting	g Help and Reporting Problems	17
	2.8.	CMake	Build System	17
		2.8.1.	CMake build process with the DTC script	18
		2.8.2.	Build notes and additional requirements	19
		2.8.3.	How the helper script works	19
3.	Run	ning GS	31 2	22
	3.1.	0		22
		3.1.1.	•	22
		3.1.2.		23

Cont	tents
------	-------

		3.1.3. Fixed Files (Statistic	s and Control Files)				. 24
	3.2.	•	,				
			n Script				
			e GSI Run Script				
			ample Regional Run Script to				
	3.3.		Run Directory				
	3.4.	•	Jsed GSI Namelist Options .				
			of Outer and Inner Loops				
		1	Variable for Moisture				
		1 7	ınd File				
			f Diagnostic Files				
			ognized Observation Files				
		1	Time Window				
		1	1g				
			Error Factor				
			Test				
						•••	
4.	GSI	Diagnostics and Tuning					52
	4.1.	Understanding Standard Ou	tput (<i>stdout</i>)				. 52
	4.2.						
			rvation Test				
			Observation Tests for GSI				
	4.3.						
	4.4.		elization and Observation Dis				
	4.5.		istics				
			vations				
	4.6.						
	4.7.	8	Crrors				
			servation Errors				
			Fross Error Check within GSI				
	4.8.		ce				
		0	Error Covariance through				
		8 8					
	4.9.						
		-	Usage				
		8	0				
5.	GSI	Applications for Regional	3DVar, Hybrid 3DEnVar a	nd Hybrid	1 4D	En∖	/ar 91
	5.1.	Assimilating Conventional G	Observations with Regional G	SI		•••	. 93
		5.1.2. Run GSI and Check	the Run Status			•••	. 94
		5.1.3. Check for Successfu	l GSI Completion			•••	. 95
		5.1.4. Diagnose GSI Analy	sis Results			•••	. 98
			alysis Fit to Observations				
			Minimization				
		5.1.4.3. Check the	Analysis Increment				. 102
	5.2.		with Regional GSI				
		8					
		-					

Contents

		5.2.2.	Run GSI and Check Run Status	104
		5.2.3.	Diagnose GSI Analysis Results	105
			5.2.3.1. Check File fort.207	105
			5.2.3.2. Check the Analysis Increment	106
	5.3.	Assimil	ating GPS Radio Occultation Data with Regional GSI	108
		5.3.1.	Run Script	108
		5.3.2.	Run GSI and Check the Run Status	108
		5.3.3.	Diagnose GSI Analysis Results	109
			5.3.3.1. Check File <i>fort.212</i>	109
			5.3.3.2. Check the Analysis Increment	109
	5.4.	Introdu	ction to GSI Hybrid 3DEnVar Analysis	110
	5.5.	Introdu	ction to GSI Hybrid 4DEnVar Analysis	113
	5.6.	Summa	ry	113
6.	Intro	oductior	to more GSI Applications	114
	6.1.		ction to Global GSI analysis	114
			The Difference between Global and Regional GSI	115
			Global GFS Scripts	116
		6.1.3.	Sample Results	119
	6.2.	Introdu	ction to Chemical Analysis	120
		6.2.1.	Setup GSI Run Scripts for Chemical Analysis	120
		6.2.2.	Sample Results	122
Α.	GSI	Commu	unity Tools	124
			Format and BUFR Tools	124
	A.2.	Read G	SI Diagnostic Files	124
	A.3.	Read an	nd Plot Convergence Information from fort.220	128
	A.4.	Plot Sin	gle Observation Test Result and Analysis Increment	129
	A.5.	Genera	te initial regional ensembles	130
B.	Cont	tents of	Namelist Section OBS_INPUT	132
C.	GSI	Nameli	st: Name, Default Value, Explanation	134
Bił	oliogr	aphy		134

Overview

1.1 GSI History and Background

The Gridpoint Statistical Interpolation (GSI) system is a unified data assimilation (DA) system for both global and regional applications. It was initially developed by the National Centers for Environmental Prediction (NCEP) Environmental Modeling Center (EMC) as a next generation analysis system based on the then operational Spectral Statistical Interpolation (SSI) analysis system ([4]; [1]; [2]). Instead of being constructed in spectral space like the SSI, the GSI is constructed in physical space and is designed to be a flexible, state-of-art system that is efficient on available parallel computing platforms. Starting with a three-dimensional variational (3DVar) data assimilation technique, the current GSI can be run as a data assimilation system of 2DVar (for surface data analysis), 3DVar, 3D ensemble-variational (3D EnVar), 4D EnVar, 3D/4D hybrid EnVar, or 4DVar (if coupled with an adjoint model from a GSI supported forecast system).

After initial development, the GSI analysis system became operational as the core of the North American Data Assimilation System (NDAS) for the North American Mesoscale (NAM) system in June 2006 and the Global Data Assimilation System (GDAS) for the Global Forecast System (GFS) in May 2007 at National Oceanic and Atmospheric Administration (NOAA). Since then, the GSI system has been adopted in various operational systems, including the National Aeronautics and Space Administration (NASA) Goddard Earth Observing System Model (GEOS), the United States Air Force (USAF) mesoscale data assimilation system, the NOAA Real-Time Mesoscale Analysis (RTMA) system, the Hurricane Weather Research and Forecasting (WRF) model (HWRF), and the Rapid Refresh (RAP) and High Resolution Rapid Refresh (HRRR) systems. The number of groups and institutes involved in operational GSI development has also increased throughout these years.

1.2 GSI Becomes Community Code

In 2007, the Developmental Testbed Center (DTC) began collaborating with major GSI development groups to transform the operational GSI system into a community system and support distributed development ([3]). The DTC complements the development groups in providing GSI documentation, porting GSI to multiple platforms, and testing GSI in an independent and objective environment, while maintaining equivalent functionality to what used in thoperational centers. Since 2009, due to the NOAA security constraints, the DTC has been maintaining a community GSI code repository, which mirrors the EMC operational GSI code repository and facilitates community users to develop GSI. Based on this community repository, the DTC releases GSI code annually with updated documentation. Currently, the DTC and EMC are working closely to build a unified GSI code repository for both operational and community developers and users. This unified repository will facilitate direct communication among developers and help accelerate transitions between research and operations. Transition to this unified code repository is ongoing and will be completed by end of 2017.

The first community version of the GSI system was released in 2009. This user's guide describes the release of GSI (v3.6) in September 2017. The DTC provides user support through the GSI Helpdesk (gsi-help@ucar.edu), tutorials and workshops. More information about the GSI community services can be found at the DTC GSI webpage (http://www.dtcenter.org/com-GSI/users/index.php).

1.2.1 GSI Code Management and Review Committee

The GSI code development and maintenance are managed by the Data Assimilation Review Committee (DARC). It was originally formed as the GSI Review Committee in 2010, with the goal of incorporating all major GSI development teams in the United States within a unified community framework. In 2014, EMC and DTC decided to merge their GSI code repository with the code repository of the NOAA ensemble Kalman filter (EnKF) data assimilation system. This merge enabled coordinated development of both systems and joint community support. Following the repository merging, the GSI Review Committee was transitioned to DARC, incorporating new members representing EnKF development and applications. Currently, DARC contains members from NCEP/EMC, NASA's Goddard Global Modeling and Assimilation Office (GMAO), NOAA's Earth System Research Laboratory (ESRL), the Joint Center for Satellite Data Assimilation (JCSDA), the National Center for Atmospheric Research (NCAR) Mesoscale & Microscale Meteorology Laboratory (MMM), the National Environmental Satellite, Data, and Information Service (NESDIS), USAF, the University of Maryland, and the DTC (chair). The DTC also releases the EnKF system annually (along with GSI). Please refer to the community EnKF user's webpage (http://www.dtcenter. org/EnKF/users/index.php) for more information.

DARC primarily steers distributed GSI/EnKF development, community code management, and support. The responsibilities of the committee are divided into two major aspects:

1. Overview

coordination and code review. The purpose and guiding principles of the review committee are as follows:

- Coordination and advisory
 - Propose and shepherd new development
 - Coordinate on-going and new development
 - Establish and manage a code review and transition process
 - Community support recommendation
- Code review
 - Establish and manage a unified coding standard followed by all GSI/EnKF developers
 - Review proposed modifications to the code trunk
 - Make decisions on whether code change proposals are accepted or denied for inclusion in the repository
 - Manage the repository
 - Oversee the timely testing and inclusion of code into the repository

1.2.2 Community Code Contributions

GSI is a community data assimilation system, open to contributions from scientists and software engineers from both the operational and research communities. DARC oversees the code transition from prospective contributors. This committee reviews proposals for code commits to the GSI repository and ensures that coding standards and tests are being fulfilled. Once the committee approves, the contributed code will be committed to the GSI code repository and available for operational implementation and public release.

To facilitate this process, the DTC is providing code transition assistance to the general research community. Prospective code contributors should contact the DTC GSI helpdesk (gsi-help@ucar.edu) for the preparation and integration of their code. It is the responsibility of the contributor to ensure that a proposed code change is correct, meets GSI coding standards, and its expected impact is documented. The DTC will help the contributor run regression tests and merge the code with the top of the repository trunk. Prospective contributors can also apply to the DTC visitor program for their GSI research and code transition. The visitor program is open to applications year-round. Please check the visitor program webpage (www.dtcenter.org/visitors/) for the latest announcement of opportunity and application procedures.

1.3 About This GSI Release

As a critical part of the GSI user support, this document is provided to assist users in applying GSI to data assimilation and analysis studies. It was composed by the DTC and reviewed by the DARC members. Please note that the major focuses of the DTC are currently on testing and evaluation of GSI for regional numerical weather prediction (NWP)

1. Overview

though the instructions. GSI global and chemical applications are briefly discussed in the document. The document is based on GSI v3.6 release. Active users can contact the DTC (gsi-help@ucar.edu) for developmental versions of GSI and access to the GSI code repository.

1.3.1 What Is New in This Release Version

The following lists some of the new functions and changes included in the v3.6 release of the GSI versus v3.5:

Observational aspects:

- Added assimilation of full spectral resolution CrIS radiance observations
- Added near surface temperature (NSST) analysis
- Added options to use correlated radiance observation errors

Code optimization and refactoring:

- Refactored the observer modules using polymorphic code
- Generalized all radiance assimilation across different sensors/instruments for cloud and aerosol usages in GSI
- Removed the First-Order Time extrapolation to the Observation (FOTO)
- Updated to netCDF v4.0 functionality
- Removed unused modules/variables

Application specific updates:

- Non-variational cloud analysis
 - Added number concentration for cloud water, cloud ice, and rain to match the cloud analysis with the Thompson Microphysical scheme
 - Added functions using visibility/fog observation to improve cloud fields in the lowest two levels
 - Added capability to read BUFR format NASA LaRC cloud products
- RTMA
 - Added variational QC algorithm using a super-logistic distribution function
 - Added cloud ceiling height and scalar wind as analysis variables

Other updates:

- Added the Advanced Research WRF (ARW) hybrid vertical coordinate background to GSI
- Added a vertical dependence of the hybrid background error weighting, and horizontal/vertical localization scales in GSI
- Added a NCEP nemsio interface for GFS deterministic and ensemble forecasts
- Utility updates such as using GFS ensemble forecast perturbations to initialize WRF ensemble forecasts.

• Bug fixes

Besides the above-mentioned changes, the release code also includes a new cmake-based build utility. This utility is currently being tested for its portability and has been included in v3.6. In the near future, the DTC and EMC will use the same cmake build utility for all operational and research code. Transition to this new build utility will be completed by early 2018.

Please note that due to the version update, some diagnostic and static information files might have been modified as well.

1.3.2 Observations Used by This Version

GSI is used by various applications on multiple scales. The types of observations GSI can assimilate vary from conventional to aerosol observations. Users should use observations with caution to fit their specific applications. The GSI v3.6 can assimilate, but is not limited to, the following types of observations:

Conventional observations (including satellite retrievals):

- Radiosondes
- Pilot ballon (PIBAL) winds
- Synthetic tropical cyclone winds
- Wind profilers: USA, Jan Meteorological Agency (JMA)
- Conventional aircraft reports
- Aircraft to Satellite Data Relay (ASDAR) aircraft reports
- Meteorological Data Collection and Reporting System (MDCRS) aircraft reports
- Dropsondes
- Moderate Resolution Imaging Spectroradiometer (MODIS) IR and water vapor winds
- Geostationary Meteorological Satellite (GMS), JMA, and Meteosat cloud drift IR and visible winds
- European Organization for the Exploitation of Meteorological Satellites (EUMETSAT) and GOES water vapor cloud top winds
- GEOS hourly IR and cloud top wind
- Surface land observations
- Surface ship and buoy observations
- Special Sensor Microwave Imager (SSMI) wind speeds
- Quick Scatterometer (QuikSCAT), the Advanced Scatterometer (ASCAT) and Oceansat-2 Scatterometer (OSCAT) wind speed and direction
- RapidScat observations
- SSM/I and Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (TMI) precipitation estimates
- Velocity-Azimuth Display (VAD) Next Generation Weather Radar ((NEXRAD) winds
- Global Positioning System (GPS) precipitable water estimates
- Sea surface temperatures (SSTs)
- Doppler wind Lidar

1. Overview

- Aviation routine weather report (METAR) cloud coverage
- Flight level and Stepped Frequency Microwave Radiometer (SFMR) High Density Observation (HDOB) from reconnaissance aircraft
- Tall tower wind

Satellite radiance/brightness temperature observations (instrument/satellite ID):

- SBUV: NOAA-17, NOAA-18, NOAA-19
- High Resolution Infrared Radiation Sounder (HIRS): Meteorological Operational-A (MetOp-A), MetOp-B, NOAA-17, NOAA-19
- GOES imager: GOES-11, GOES-12
- Atmospheric IR Sounder (AIRS): aqua
- AMSU-A: MetOp-A, MetOp-B, NOAA-15, NOAA-18, NOAA-19, aqua
- AMSU-B: MetOp-B, NOAA-17
- Microwave Humidity Sounder (MHS): MetOp-A, MetOp-B, NOAA-18, NOAA-19
- SSMI: DMSP F14, F15, F19
- SSMI/S: DMSP F16
- Advanced Microwave Scanning Radiometer for Earth Observing System (AMSR-E): aqua
- GOES Sounder (SNDR): GOES-11, GOES-12, GOES-13
- Infrared Atmospheric Sounding Interferometer (IASI): MetOp-A, MetOp-B
- Global Ozone Monitoring Experiment (GOME): MetOp-A, MetOp-B
- Ozone Monitoring Instrument (OMI): aura
- Spinning Enhanced Visible and Infrared Imager (SEVIRI): Meteosat-8, Meteosat-9, Meteosat-10
- Advanced Technology Microwave Sounder (ATMS): Suomi NPP
- Cross-track Infrared Sounder (CrIS): Suomi NPP
- GCOM-W1 AMSR2
- GPM GMI
- Megha-Tropiques SAPHIR
- Himawari AHI

Others:

- GPS Radio occultation (RO) refractivity and bending angle profiles
- Solar Backscatter Ultraviolet (SBUV) ozone profiles, Microwave Limb Sounder (MLS) (including NRT) ozone, and Ozone Monitoring Instrument (OMI) total ozone
- Doppler radar radial velocities
- Radar reflectivity Mosaic
- Tail Doppler Radar (TDR) radial velocity and super-observation
- Tropical Cyclone Vitals Database (TCVital)
- Particulate matter (PM) of 10-um diameter, 2.5-um diameter or less
- MODIS AOD (when using GSI-chem package)
- Significant wave height observations from JASON-2, JASON-3, SARAL/ALTIKA and CRYOSAT-2

Please note that some of these above mentioned data are not yet fully tested and/or implemented for operations. Therefore, the current GSI code might not have an optimal setup for

1. Overview

these data.

2

Software Installation

2.1 Introduction

The DTC GSI is a community distribution of NOAA's operational GSI. The community GSI expands the portability of the operational code by adding a flexible build system and providing example run scripts that allow GSI to be compiled and run on many common platforms. The current version of GSI is 3.6. It builds and runs on most standard Linux platforms using Intel, PGI, and Gnu compilers. Legacy build rules are provided for two platforms, the IBM AIX computers using the xlf compiler, and Intel based Macintosh computers using the PGI compiler. In both cases, the default build system must be significantly modified to build on these platforms. See the community web page user support FAQ to get started.

This chapter describes how to build and install the DTC community GSI software on your local Linux computing resources. These instructions apply only to the DTC community GSI. While the community GSI source code is identical to the NCEP's GSI trunk code used for release, the community build system is different, allowing it to be more general to support a wide variety of computing platforms.

The GSI build process consists of four general steps:

- Obtaining the source code for GSI and WRF.
- Building the WRF model (see the WRF user's guide).
- Setting the appropriate environment variables for the GSI build.
- Configuring and compiling the GSI source code.

This chapter is organized as follows: Section 2.2 describes how to obtain the source code. Section 2.3 covers the directory structure and supplemental NCEP libraries included with

the distribution. Section 2.4 starts with an outline of the build example and then goes into a more detailed discussion of setting up the build environment and the configure and compile steps. Section 2.5 illustrates the build process for three of the compilers (Intel, PGI and Gnu) on the NCAR Yellowstone supercomputer. Section 2.6 covers system requirements and settings (tools, libraries, and environment variable settings), and currently supported platforms in detail. Section 2.7 discusses what to do if you have problems with the build and where to get help.

For beginners, sections 2.2 and 2.4 provide the necessary steps to obtain the code and build GSI on most systems. The remainder of the chapters provide background material for completeness. A final chapter 2.8, discusses the new experimental CMake build system being developed by the DTC and EMC as a common shared build method. Advanced topics, such as customizing the build, porting to new platforms, and debugging can be found in the GSI Advanced User's Guide.

2.2 Obtaining and Setting Up the Source Code

The community GSI resources, including source code, build system, utilities, practice data, and documentation, are available from the DTC community GSI users website, located at

http://www.dtcenter.org/com-GSI/users/index.php

The source code is available by first selecting the <u>Download</u> tab on the vertical menu located on the left column of the page, and then selecting the <u>GSI/EnKF System</u> submenu. New users must first register before downloading the source code. Returning users only need to enter their registration email address to log in. After accessing the download page, select the link to the comGSIv3.6_EnKFv1.2.tar tarball to download the most recent version of the source code (October 2017). Selecting the newest release of the community GSI is critical for having the most recent capabilities, versions of supplemental libraries, and bug fixes. Full support is only offered for the two most recent code releases.

To analyze satellite radiance observations, GSI requires the use of CRTM coefficients. It is important to use **only** the version of CRTM coefficients provided on the GSI website. Due to their large size, these are available as a separate tarfile. They can be downloaded by selecting the link to the tarball for the CRTM 2.2.3 Big Endian coefficients from the web page. For all compilers, use the big endian byte order coefficients found in the first CRTM link.

The download page also contains links to the fixed files necessary for running global GSI:

• Global configuration (fix files to run Global GSI)

The community GSI version 3.6 comes in a tar file named comGSIv3.6_EnKFv1.2.tar. The tar file may be unpacked by using the UNIX commands:

gunzip comGSIv3.6_EnKFv1.2.tar.gz
tar -xvf comGSIv3.6_EnKFv1.2.tar

This creates the top level GSI directory comGSIv3.6_EnKFv1.2/. After downloading the source code, and prior to building, the user should check the known issues link on the download page of the DTC website to determine if any bug fixes or platform specific customizations are needed.

2.3 Directory Structure, Source Code and Supplemental Libraries

The GSI system includes the GSI source code, the build system, supplemental libraries, fixed files, and run scripts. Starting with the current version of GSI V3.6, the directory structure has be changed slightly. The following table lists the system components found inside the root GSI directory.

Directory Name	Content
src/	GSI source code and makefiles
lib/	Source code and build location for supplemental libraries
core-libs/	Build directory for supplemental libraries for CMake build
libsrc/	Source code for supplemental libraries for the CMake build
fix/ Fixed input files required by a GSI analysis, such as	
	background error covariances, observation error tables;
	Excluding the CRTM coefficients
include/	Include files created by the build system
dtc/	Directory for the DTC build system, executable gsi.exe location, and sample run scri
arch/	Build system support such as machine architecture specifics
	(see Advanced GSI User's Guide)
util/	Tools for GSI diagnostics

For convenience, supplemental NCEP libraries for building GSI are included in the src/libs/ directory. These libraries will be built when compiling GSI. These supplemental libraries are listed in the table below.

Directory Name	Content
bacio/	NCEP BACIO library
bufr/	NCEP BUFR library
crtm_2.2.3/	JCSDA community radiative transfer model
gsdcloud/	GSD Cloud analysis library
misc/	Misc support libraries
nemsio/	NEMS I/O library
sfcio/	NCEP GFS surface file i/o module
sigio/	NCEP GFS atmospheric file i/o module
sp/	NCEP spectral - grid transforms
w3emc_v2.0.5/	NCEP/EMC W3 library (date/time manipulation, GRIB)
w3nco_v2.0.6/	NCEP/NCO W3 library (date/time manipulation, GRIB)

The one set of non-standard *library* files not included with the source code are those associated with the WRF IO API. These are obtained by linking to a build of the WRF code.

Please note that the release version of WRF/EnKF has only been tested using the previous two release versions of WRF. Older versions of WRF may provide unpredictable results.

Following a registration process similar to that for downloading GSI, the WRF code and full WRF documentation can be obtained from the WRF Users' Page,

http://www.mmm.ucar.edu/wrf/users/

2.4 Compiling GSI

This section starts with a quick outline of how to build GSI (2.4.1), followed by a more detailed discussion of the build process (2.4.2 & 2.4.3). Typically GSI will build *straight out of the box* on any system that successfully builds the WRF model. Should the user experience any difficulties with the default build, check the build environment against the requirements described at the end of section 2.6.

To proceed with the GSI build, it is assumed that the WRF model has already been built on the current system. GSI uses the WRF I/O API libraries to read the background file. These I/O libraries are created as part of the WRF build, and are linked into GSI during the GSI build process. In order to successfully link the WRF I/O libraries with the GSI source, it is crucial that both WRF and GSI are built using the same Fortran compilers. This means that if WRF is built with the Intel Fortran compiler, then GSI must also be built with the Intel Fortran compiler. It is also recommended that both codes be built with the same annual version number of the compiler (e.g., 14, 15, etc.).

2.4.1 Build Overview

This section provides a quick outline of the steps necessary to build the GSI code. The following steps describe that build process.

- 1. Set the environment for the compiler: If not already done, set the necessary paths for using your selected compiler, such as loading the appropriate modules or modifying your path variable.
- 2. Set the environment variables: The first path on this list will always need to be set. The remaining two will depend on your choice of compiler and how your default environment is configured.
 - a. WRF_DIR the path to the compiled WRF directory (to always be set)
 - b. NETCDF the path to the NETCDF libraries
 - c. LAPACK_PATH the path to the LAPACK math libraries
- 3. Change into the dtc/ directory
- 4. Run the configure script
- 5. Run the compile script

2.4.2 Environment Variables

Before configuring the GSI code to be built, be sure to check the following environment variables:

WRF_DIR defines the path to the root of the WRF build directory. Setting this is mandatory. This variable tells the GSI build system where to find the WRF I/O libraries. The process for setting the environment variables varies according to the login shell used. To set the path variable WRF_DIR for csh/tcsh, type:

setenv WRF_DIR /path_to_WRF_root_directory/ for csh or tcsh
export WRF_DIR=/path_to_WRF_root_directory/ for ksh or bash

NETCDF The second environment variable specifies the local path to NetCDF library. The path location for the NETCDF environment variable may be checked by using the command

echo \$NETCDF

If the command returns with the response that the variable is undefined, such as

NETCDF: Undefined variable.

it is then necessary to manually set this variable. If your system uses modules or a similar mechanism to set the environment, do this first. If a valid path is returned by the echo command, no further action is required.

- LAPACK_PATH defines the path to the LAPACK library. Typically, this variable will only need to be set on systems without a vendor provided version of LAPACK. IBM systems typically come installed with the LAPACK equivalent ESSL library that links automatically. Likewise, the PGI compiler often comes with a vendor provided version of LAPACK that links automatically with the compiler. Experience has shown that the following situations make up the majority of cases where the LAPACK variable needs to be set:
 - Linux environments using Intel Fortran compiler.
 - Building with Gfortran.
 - On systems where the path variables are not properly set.
 - On stripped down versions of the IBM AIX OS that lack the ESSL libraries

Of these four, the first case is the most common. The Intel compiler usually comes with a vendor provided mathematics library known as the *Mathematics Kernel Libraries* or MKL for short. While most installations of the Intel compiler typically come with the MKL libraries installed, the ifort compiler does not automatically load the library. It is therefore necessary to set the LAPACK_PATH variable to the location of the MKL libraries when using the Intel compiler. You may need to ask your system administrator for the correct path to these libraries.

On super-computing systems with multiple compiler options, these variables may be set as part of the module settings for each compiler. On the NCAR supercomputer Yellowstone, the Intel build environment can be specified through setting the appropriate modules. When this is done, the MKL library path is available through a local environment variable, MKLROOT. The LAPACK environment may be set for csh/tcsh with the Unix commands

setenv LAPACK_PATH \$MKLROOT

and for bash/ksh by

export LAPACK_PATH=\$MKLROOT

Once the environment variables have been set, the next step in the build process is to run the configure and compile scripts.

2.4.3 Configure and Compile

Once the environment variables have been set, building the GSI source code requires two additional steps:

- 1. Run the configure script and select a compiler option.
- 2. Run the compile script.

Change into the comGSIv3.6_EnKFv1.2/dtc directory and issue the configure command:

./configure

The ./configure command uses user input to create a platform specific configuration file called configure.gsi. The script starts by echoing the NETCDF and WRF_DIR paths set in the previous section. It then examines the current system and queries the user to select from multiple build options.

For 64-bit Linux, the options will be the following:

Enter selection [1-9] :

Looking at the list, there are two things to note. First, the GNU C-compiler (gcc) may be paired with any of the other Fortran compilers. This allows the build to use the GNU C-compiler in place of the Intel (icc) or PGI (pgcc) C-compiler.

There are also separate build targets for vendor supplied versions of MPI such as IBM POE and SGI MPT. This was added due to some computing hardware vendors creating non-standard mpif90 wrappers for their vendor supplied version of MPI. If uncertain about which to choose, start by selecting the default option corresponding to the fortran compiler you wish to use (either 1, 5, or 7). If that option fails with an error referencing a bad argument for mpif90, only then try the options listed for use with Supercomp, IBM POE, or SGI MPT.

On selecting an option, the script reports a successful configuration with the banner:

Configuration successful. To build the GSI, type: compile

Failure to get this banner means that the configuration step failed to complete. The most typical reason for a failure is an error in one of the environment variables paths.

After selecting a build option, run the compile script:

```
./compile >& compile.log
```

Capturing the build information to a log file by redirecting the output is necessary to diagnose build issues.

To remove all built files in every directory, as well as the configure.gsi, type:

./clean -a

A complete clean is necessary if the compilation failed or if the configuration file is changed.

Following a successful compile, the GSI executable gsi.exe can be found in the run/ directory. If the executable is not found, check the compilation log file. If the build failed, search for the first instance of the word "Error" (with a capital "E") to locate the section of the log file with the failure.

2.5 Example of Build

To illustrate the build process, the following section describes the steps necessary to build GSI on the NCAR Yellowstone supercomputer using the Intel compiler, the PGI compiler, and the Gnu compiler. Other platforms will be similar.

2.5.1 Intel Build

Steps to build GSI on Yellowstone using the Intel compiler:

1. Select the Intel compiler environment by using the module commands:

module load intel
module load impi mkl ncarcompilers ncarbinlibs netcdf

These module commands have specified the compiler, MPI, the version of the LAPACK library (MKL), and the NetCDF library.

2. For this case, two of the paths must be set. The path to the WRF directory must always be specified, and the Intel Mathematics Kernal Library (MKL) will be used in place of the LAPACK library. Note that on Yellowstone, the variable MKLROOT is set to the path to the MKL libraries by loading the MKL module. To set the paths in a C-shell environment, use:

setenv WRF_DIR /PATH TO WRF DIRECTORY/
setenv LAPACK_PATH \$MKLROOT

- 3. To run the configure script, type ./configure inside the top of the GSI directory. If the first three steps were completed successfully, a table of compiler options should appear. Select the desired compiler combination option, which in this case is either 6 or 7. The alternative options (eight and nine) are needed for certain platforms that have a vendor supplied custom version of MPI. Try the default build options for MPI first, and only if it fails should the second option be used.
- 4. To compile the code, type the following: ./compile >& compile.log. If the build completes successfully, an executable named gsi.exe will be created in the ./run directory.

2.5.2 PGI Build

Steps to build GSI on Yellowstone using the PGI compiler:

1. The PGI compiler environment is selected using the module commands:

module load pgi
module load impi ncarcompilers ncarbinlibs netcdf

These module commands have specified the compiler, MPI, and the NetCDF library.

2. For this case only the path to the WRF directory must be set. The PGI compiler comes with its own version of LAPACK that it finds automatically. It is not necessary to set the LAPACK path. In a C-shell environment, use:

```
setenv WRF_DIR /PATH TO WRF DIRECTORY/
```

- 3. Similar to the Intel example, pick compiler options listed in the table. In this case, the desired compiler combination option is either 3 or 4.
- 4. To compile the code, type the following: ./compile >& compile.log. If the build completes successfully, an executable named gsi.exe will be created in the ./run directory.

2.5.3 GNU Build

Steps to build GSI on Yellowstone using the GNU compiler:

1. The GNU compiler environment is selected using the module commands:

```
module load gnu/5.3.0
module load ncarcompilers ncarbinlibs netcdf lapack/3.2.1
```

These module commands have specified the compiler, MPI, and the NetCDF library.

2. For this case, two of the paths must be set. The path to the WRF directory must always be specified, and we will use the LAPACK library installed by the module. In a C-shell environment use:

setenv WRF_DIR /PATH TO WRF DIRECTORY/
setenv LAPACK_PATH \$LIB_NCAR

- 3. Similar to the Intel example, pick compiler options listed in the table. In this case, the desired compiler combination option is 5.
- 4. To compile the code, type the following: ./compile >& compile.log. If the build completes successfully, an executable named gsi.exe will be created in the ./run directory.

2.6 System Requirements and External Libraries

The source code for GSI is written in FORTRAN, FORTRAN 90, and C. In addition, the parallel executables require some flavor of MPI and OpenMP for the distributed memory parallelism. Lastly the I/O relies on the NetCDF I/O libraries. Beyond standard shell scripts, the build system relies on the Perl scripting language and makefiles.

The basic requirements for building and running the GSI system are the following:

- FORTRAN 2003+ compiler
- C compiler
- MPI v1.2+
- OpenMP
- Perl
- NetCDF V4.2+
- LAPACK and BLAS mathematics libraries, or equivalent
- WRF V3.6+

Because all but the last of these tools and libraries are typically the purview of system administrators to install and maintain, they are lumped together here as part of the basic system requirements.

2.6.1 Compilers Tested for Release

Version 3.6 of the DTC community GSI system has been successfully tested on a variety of Linux platforms with many versions of the Intel and PGI fortran compilers.

Legacy build rules are also available for IBM AIX and Mac Darwin platforms. Because the DTC does not have the ability to test on these platforms, they are no longer supported. Also, the Linux GNU gfortran option is available in this version.

The following Linux compiler combinations have been fully tested:

	Fortran compiler version	C compiler version
Intel only	ifort 17.0.1, 16.0.3, 15.0.3, 14.0.2	icc
PGI only	pgf90 17.5, 16.5, 15.7	pgcc
GNU only	gfortran 5.4.0 with netcdf 4.4.0	gcc 5.4.0

Unforeseen build issues may occur when using older compiler and library versions. As always, the best results will be achieved by using the most recent compiler versions.

2.7 Getting Help and Reporting Problems

Should a user experience any difficulty building GSI on his/her system, please first confirm that all the required software is properly installed (section 2.4). Next check that the external libraries exist and specified paths in the configure file are correct. Lastly, check the resource file *configure.gsi* for errors in any of the paths or settings. Should all these check out, feel free to contact the community GSI Help Desk for assistance at

gsi-help@ucar.edu

At a minimum, when reporting code building problems to the helpdesk, please include a copy of the build log and the *configure.gsi* file with your e-mail.

2.8 CMake Build System

A new unified build system based on CMake has been added to the GSI code. CMake is a very powerful cross-platform open-source build system. In comGSI, the CMake build system exists in parallel to the previous DTC build system, and either one can be used independently to build the code. The CMake build system is still experimental, but is available as an alternative to the traditional DTC build system.

2.8.1 CMake build process with the DTC script

The CMake build infrastructure consists of a top level directory with the name cmake/ and configuration files in each directory named (CMakeLists.txt). The syntax for CMake relies on a two step command line process, similar to "configure" and "compile." Command line arguments are used to specify paths and compilers. To simplify the process, the DTC provides a helper script that simplifies the choice of arguments that need to be used.

The helper script is called dtcbuild and is located in the directory dtc. This script attempts to walk the user through the process of building GSI. By default CMake prefers to build the source code "out-of-place," meaning that it does not populate the GSI directory with the build. The script first creates a directory called build inside the source code directory to house the build process. If there is already a directory called build, the script halts with a warning to either rename it or delete it.

The script then checks that the path variable for the WRF build, either WRFPATH or WRF_DIR, has been set. It then prompts the user to choose a compiler for the build.

Please select from among the following supported platforms.

```
    Linux x86_64, PGI compilers (pgf90 & pgcc)
    Linux x86_64, PGI compilers (pgf90 & gcc)
    Linux x86_64, GNU compilers (gfortran & gcc)
    Linux x86_64, Intel/gnu compiler (ifort & gcc)
    Linux x86_64, Intel compiler (ifort & icc)
    Linux x86_64, Intel compiler w/intel mpi (mpiifort & icc)
    Linux x86_64, Intel compiler (mpif90 -f90=ifort & icc)
```

Enter selection [1-7] :

Once a compiler has been chosen, it generates local makefiles by invoking the cmake command with the proper arguments. One of those arguments selects that a local build of the NCEP libraries needed by GSI will be conducted prior to the source code being built. The final step of the script is to invoke a parallel build of the code.

This points to two advantages in using CMake to build the code. CMake automatically generates code dependencies each time a build is invoked, allowing the use of a parallel make, greatly reducing the time it take to complete the build. Typically the time to complete the CMake build is a quarter of the time needed for the serial DTC "configure" and "compile" to complete.

Once the build is complete, the two executables a gsi.x and enkf_gfs.x are placed in the directory build/bin. Note that the name of the executables and their location differs from the traditional DTC build.

Summary of CMake build steps:

1. Set up the build environment in the same way as with the DTC build

- Set up compilers/load modules
- Set the environment path for NetCDF and LaPack/MKL
- Set the environment path for WRF by setting either of the variables WRFPATH or WRF_DIR to point to a compiled copy of the WRF code.
- 2. Copy the helper script into the top level directory (cp ./dtc/dtcbuild .)
- 3. Run the helper script (./dtcbuild)
- 4. Select the compiler combination for your build. For instance, number six for Intel on Theia.
- 5. When the build is complets, the executables gsi.x and enkf_gfs.x will be located in the directory build/bin

2.8.2 Build notes and additional requirements

Requirements:

- The CMake build requires use of version 2.8+ of cmake
- GSI will not build with the Intel compiler V15.0 due to an incompatibility with the CRTM library.

Build notes:

- Building on the UCAR Yellowstone supercomputer requires additional flags due to how the C compiler has been installed there. The platform specific script dtcbuild_yellowstone accounts for this need.
- The build is not conducted within the src/ directory, as is the case with the traditional DTC build, but instead is located in build/src/CMakeFiles.
- On the NCEP Theia supercomputer, GSI builds best with option six, due to the way MPI is set up on that machine.

2.8.3 How the helper script works

This sections will go through the DTC helper script, each section at a time to illustrate how the CMake build works.

One of the first things the script does is create the build directory; However, prior to this, it checks if a directory by that name already exists. If it does, the script halts with a warning.

```
# create build directory
if test -d ./build ; then
    echo "directory build already exists, delete or rename the directory and dry again"
    exit
else
    mkdir ./build
fi
```

Next, the environment variables indicating the top of the source tree and the location of the NCEP library source code are set.

```
# set CORE_DIR to top of source tree.
CORE_DIR='pwd'
echo "$CORE_DIR"
export CORE_DIR
export CORELIB=$CORE_DIR/libsrc
echo "$CORELIB"
```

Next the path to the WRF build is set. For the traditional DTC build, the variable WRF_DIR is used. The current CMake build uses a different variable WRFPATH to do the same thing. So as a work around, the script accepts the path information from either variable.

```
# set path to WRF and test that it exists
if test -z "$WRFPATH" ; then
    if test -z $WRF_DIR; then
       echo '** WARNING: No path to WRF_DIR and environment variable WRF_DIR not set.'
       exit
       else
       export WRFPATH=$WRF_DIR
    fi
fi
```

The next section queries the user to select a compiler combination for the build. Many of the CMake build variables, such as compiler information, can be either set as environment variables or included in the command line argument. Here we set them as environment variables, and cmake is invoked. The following shows the variable settings for the combination of the PGI FORTRAN compiler and the Gnu C compiler.

```
if [ "$resp" = "2" ] ; then
    echo ' 2. Linux x86_64, PGI compilers (pgf90 & gcc) '
    export CC=gcc
    export CXX=g++
    export FC=pgf90
    cd build
    cmake -DBUILD_CORELIBS=ON $CORE_DIR
    make -j 8
fi
```

These are standard guesses as to what the C, C++, and MPI call for the FORTRAN compiler are called on your system. They may be wrong. In that case the environment variables CC, CXX, and FC may need to be modified.

The final part of the script is the invocation of cmake.

```
cmake -DBUILD_CORELIBS=ON $CORE_DIR
make -j 8
```

There are two arguments used here. The first is -DBUILD_CORELIBS=ON. This argument directs CMake to look in the core-libs/ directory for rules to build the NCEP libraries needed for GSI. The environment variable CORELIB, defined at the top of the script, indicates where to look for the library source code. In this case, it is in \$CORE_DIR/libsrc/. Any changes to the source code would be placed in \$CORE_DIR/libsrc/, and any changes to the CMake build rules would go in core-libs/. The second argument \$CORE_DIR indicates the location of the build directory. The final statement make -j 8 invokes a parallel call to *make* using eight processors, which speeds up the build considerably. For more details on the CMake build for GSI, see the readme file *README.cmake* in the top directory.

Running GSI

This chapter discusses the issues of running GSI. It starts with introductions to the input data required to run GSI, then proceeds with a detailed explanation of an example GSI run script and introductions to files produced by a successful GSI run. It concludes with some frequently used options from the GSI namelist.

3.1 Input Data Required to Run GSI

In most cases, three types of input data (background, observations, and fixed files) must be available before running GSI. In some special idealized cases, such as a pseudo single observation test, GSI can be run without any observations. If running GSI with the 3D EnVar hybrid option, global or regional ensemble forecasts are also needed.

3.1.1 Background or First Guess Field

As with other data analysis systems, the background or first guess fields may come from a model forecast conducted separately or from a previous data assimilation cycle. The following is a list of the types of background files that can be used by this release version of GSI:

- a) WRF-NMM input fields in binary format
- b) WRF-NMM input fields in NetCDF format
- c) WRF-ARW input fields in binary format
- d) WRF-ARW input fields in NetCDF format

3. Running GSI

- e) GFS input fields in binary format or through NEMS I/O
- f) NEMS-NMMB input fields
- g) RTMA input files (2-dimensional binary format)
- h) WRF-Chem GOCART input fields with NetCDF format
- i) CMAQ binary file

The Weather Research and Forecasting (WRF) community modeling system includes two dynamical cores: the Advanced Research WRF (ARW) and the Nonhydrostatic Mesoscale Model (NMM). The GFS (Global Forecast System), NEMS (National Environmental Modeling System)-NMMB (Nonhydrostatic Mesoscale Model B-Grid), and RTMA (Real-Time Mesoscale Analysis) are operational systems at the National Center for Environmental Prediction (NCEP). The DTC mainly supports GSI for regional WRF applications. Therefore, most of the multiple platform tests were conducted using WRF netcdf background files (d). The DTC also supports the GSI in global and chemical applications with limited resources. The following backgrounds have been tested for this release:

- 1. ARW NetCDF (d) were tested with multiple cases
- 2. GFS (e) was tested with multiple NCEP cases
- 3. WRF-Chem NetCDF (h) was tested with a single case
- 4. NEMS-NMMB(f) was tested with a single case

3.1.2 Observations

GSI can analyze many types of observational data, including conventional data, satellite radiance observations, GPS Radio Occultations, and radar data, among others. The default observation file names are given in the released GSI namelist, with corresponding observations included in each file. Sample BUFR files available for download from the NCEP website listed in table 3.1.

The observations are complex and many observations need format converting and quality control before being used by GSI. GSI ingests observations saved in BUFR format (with NCEP specified features). The NCEP processed PrepBUFR and BUFR files can be used directly. If users need to introduce their own data into GSI, please check the following website for the User's Guide and examples of BUFR/PreBUFR processing:

http://www.dtcenter.org/com-GSI/BUFR/index.php

DTC supports BUFR/PrepBUFR data processing and quality control as part of the GSI community tasks.

GSI can analyze all of the data types in table 3.1, but each GSI run (for both operation and case study purposes) only uses a subset of the data. Some data may be outdated and not available, some are in monitoring mode, and some may have quality issues during certain periods. Users are encouraged to check data quality prior to running an analysis. The following NCEP links provide resources that include data quality history:

3. Running GSI

http://www.emc.ncep.noaa.gov/mmb/data_processing/Non-satellite_Historical_Documentation.htm

Because the current regional models do not have ozone as a prognostic variable, ozone data are not assimilated on the regional scale.

GSI can be run without any observations to see how the moisture constraint modifies the first guess (background) field. GSI can also be run in a pseudo single observation mode, which does not require any BUFR observation files. In this mode, users should specify observation information in the namelist section SINGLEOB_TEST (see Section 4.2 for details). As more data files are used, additional information will be added through the GSI analysis.

3.1.3 Fixed Files (Statistics and Control Files)

A GSI analysis also needs to read specific information from statistic files, configuration files, bias correction files, and CRTM coefficient files. We refer to these files as fixed files and they are located in a directory called fix/ in the release package, except for CRTM coefficients.

Table 3.2 lists fixed files required for a GSI run, the content of the files, and corresponding example files from the regional and global applications:

Because most of those fixed files have hardwired names inside the GSI, a GSI run script needs to copy or link those files (right column in table 3.2) from the ./fix directory to the GSI run directory with the file name required in GSI (left column in table 3.2). For example, if GSI runs with an ARW background, the following line should be in the run script:

```
cp ${path of the fix directory}/anavinfo_arw_netcdf anavinfo
```

Note that in this release, there is a strict rule that the numbers of vertical levels in the file anavinfo must match the background file (for example, wrfinput_d01) for the 3-dimensional variables. Otherwise GSI will fail. To identify the correct numbers of vertical levels, users can dump out (use ncdump -h) the dimensions from the NetCDF background file and find the number for bottom_top and bottom_top_stag. For example, if the dimensions for the background file is:

bottom_top = 50 ; bottom_top_stag = 51 ;

Then the corresponding anavinfo file should have 51 levels for prse (3-dimensional pressure field) and 50 levels for other three-dimensional variables such as u, v, tv, q, oz, cw, etc. For details, users can dump out the global attributes of the background file and find the number of vertical levels for each variable. The following shows part of the anavinfo file for the above background:

,	ent, and examples	
Content	Example file names	
Conventional observations, including ps, t, q,	gdas1.t12z.prepbufr.nr	
	gdas1.t12z.satwnd.tm00.bufr_d	
	gdas1.t12z.1bamua.tm00.bufr_d	
from satellites NOAA-15, 16, 17,18, 19 and METOP-A/B		
AMSU-B lb radiance (brightness temperatures) from satellites NOAA-15, 16,17	gdasl.tl2z.lbamub.tm00.bufr_d	
Radar radial velocity Level 2.5 data	ndas.t12z.radwnd.tm12.bufr_d	
GPS radio occultation and bending angle observation	gdas1.t12z.gpsro.tm00.bufr_d	
Precipitation rate observations from SSM/I	gdas1.t12z.spssmi.tm00.bufr_d	
• · · · · · · · · · · · · · · · · · · ·	gdas1.t12z.sptrmm.tm00.bufr_d	
SBUV/2 ozone observations from satellite	gdas1.t12z.osbuv8.tm00.bufr_d	
HIRS2 lb radiance from satellite NOAA-14	gdas1.t12z.1bhrs2.tm00.bufr_d	
HIRS3 1b radiance observations from satellite NOAA-16, 17	gdas1.t12z.1bhrs3.tm00.bufr_d	
HIRS4 lb radiance observation from satellite	gdas1.t12z.1bhrs4.tm00.bufr_d	
MSU observation from satellite NOAA 14	gdas1.t12z.1bmsu.tm00.bufr_d	
AMSU-A and AIRS radiances from satellite AOUA	gdas1.t12z.airsev.tm00.bufr_d	
Microwave Humidity Sounder observation from	gdas1.t12z.1bmhs.tm00.bufr_d	
	gdas1.t12z.ssmit.tm00.bufr_d	
AMSR-E radiance from satellite AQUA	gdas1.t12z.amsre.tm00.bufr_d	
SSMIS radiances from satellite fl6	gdas1.t12z.ssmis.tm00.bufr_d	
GOES sounder radiance (sndrd1, sndrd2, sndrd3 sndrd4) from GOES-11, 12, 13, 14, 15.	gdas1.t12z.goesfv.tm00.bufr_d	
NEXRAD Level 2 radial velocity	ndas.t12z.nexrad.tm12.bufr_d	
GOES sounder radiance from GOES-11, 12	gdas1.t12z.goesnd.tm00.bufr_d	
GOES imager radiance from GOE-11, 12		
Ozone Monitoring Instrument (OMI) observa- tion NASA Aura	gdas1.t12z.omi.tm00.bufr_d	
Infrared Atmospheric Sounding Interfero-meter sounder observations from METOP-A/B	gdas1.t12z.mtiasi.tm00.bufr_d	
The Global Ozone Monitoring Experiment (GOME) ozone observation from METOP-A/B	gdas1.t12z.gome.tm00.bufr_d	
Aura MLS stratospheric ozone data from Aura	gdas1.t12z.mlsbufr.tm00.bufr_d	
Synthetic Tropic Cyclone-MSLP observation	gdas1.t12z.syndata.tcvitals.tm00	
SEVIRI radiance from MET-08,09,10	gdas1.t12z. sevcsr.tm00.bufr_d	
ATMS radiance from Suomi NPP	gdas1.t12z.atms.tm00.bufr_d	
CRIS radiance from Suomi NPP	gdas1.t12z.cris.tm00.bufr_d	
MODIS aerosol total column AOD observations from AQUA and TERRA		
	Conventional observations, including ps, t, q, pw, uv, spd, dw, sst satellite winds observations AMSU-A lb radiance (brightness temperatures) from satellites NOAA-15, 16, 17,18, 19 and METOP-A/B AMSU-B lb radiance (brightness temperatures) from satellites NOAA-15, 16,17 Radar radial velocity Level 2.5 data GPS radio occultation and bending angle obser- vation Precipitation rate observations from SSM/I Precipitation rate observations from TMI SBUV/2 ozone observations from satellite NOAA-16, 17, 18, 19 HIRS2 lb radiance from satellite NOAA-14 HIRS3 lb radiance observations from satellite NOAA-16, 17 HIRS4 lb radiance observation from satellite NOAA-16, 17 HIRS4 lb radiance observation from satellite NOAA-18, 19 and METOP-A/B MSU observation from satellite NOAA 14 AMSU-A and AIRS radiances from satellite AQUA Microwave Humidity Sounder observation from NOAA-18, 19 and METOP-A/B SSMI observation from satellite f13, f14, f15 AMSR-E radiance from satellite f13 GOES sounder radiance (sndrdl, sndrd2, sndrd3 sndrd4) from GOES-11, 12, 13, 14, 15. NEXRAD Level 2 radial velocity GOES sounder radiance from GOES-11, 12 Ozone Monitoring Instrument (OMI) observa- tion NASA Aura Infrared Atmospheric Sounding Interfero-meter sounder observation from METOP-A/B The Global Ozone Monitoring Experiment (GOME) ozone observation from METOP-A/B The Global Ozone Monitoring Experiment (GOME) ozone observation from METOP-A/B The Global Ozone Monitoring Experiment (GOME) stratospheric ozone data from Aura Synthetic Tropic Cyclone-MSLP observation SEVIRI radiance from SUM NPP CRIS radiance from Suomi NPP	

Table 3.1: GSI observation file names, content, and examples

<pre>state_derivatives::</pre>					
!var	level	src			
ps	1	met_guess			
u	50	met_guess			
v	50	met_guess			
tv	50	met_guess			
q	50	met_guess			
oz	50	met_guess			
CW	50	met_guess			
prse	51	met_guess			
::					

GSI Name	Content	Example file names		
anavinfo Information file to set control and		anavinfo_arw_netcdf		
	analysis variables	anavinfo_ndas_netcdf global_anavinfo.164.txt		
berror_stats	background error covariance	nam_nmmstat_na.gcv nam_glb_berror.f77.gcv		
		global_berror.l64y386.f77		
errtable	Observation error table	nam_errtable.r3dv		
		prepobs_errtable.global		
	Observation data control file (more det	ailed explanation in Section 4.3)		
convinfo	Conventional observation infor-	global_convinfo.txt nam_regional_convinfo.txt		
	mation file			
satinfo	satellite channel information file	global_satinfo.txt		
		global_pcpinfo.txt		
formation file				
ozinfo ozone observation information file		global_ozinfo.txt		
	Bias correction and	Rejection list		
satbias_angle	satellite scan angle dependent bias	global_satangbias.txt		
	correction file			
	satellite mass bias correction coef-	sample.satbias		
satbias_in	ficient file			
	combined satellite angle depen-	gdas1.t00z.abias.new		
	dent and mass bias correction co-			
	efficient file			
t_rejectlist,	Rejetion list for T, wind, et al. in	new_rtma_t_rejectlist new_rtma_w_rejectlist		
w_rejectlist,	RTMA			

Table 3.2: GSI fixed files, content, and examples	es, content, and examples
---	---------------------------

Each operational system, such as GFS, NAM, RAP, and RTMA, has their own set of fixed files. For your specific GSI runs, you need to get the correct set of fixed files. Fixed files for regional applications are included in this GSI/EnKF release and put under the *fix*/ directory. Fixed files for global applications are not included in this release in order to save space. Please download comGSIv3.6_EnKFv1.2_fix_global.tar.gz if you need to run global cases. Note that little endian background error covariance files are no longer supported.

Each release version of the GSI calls a certain version of the CRTM library and needs corresponding CRTM coefficients to do radiance data assimilation. This version of GSI uses CRTM 2.2.3. The coefficient files are listed in table 3.3.

3. Running GSI

		-
File name used in GSI	Content	Example files
Nalli.IRwater.EmisCoeff.bin	IR surface emissivity	Nalli.IRwater.EmisCoeff.bin
NPOESS.IRice.EmisCoeff.bin	coefficients	NPOESS.IRice.EmisCoeff.bin
NPOESS.IRsnow.EmisCoeff.bin		NPOESS.IRsnow.EmisCoeff.bin
NPOESS.IRland.EmisCoeff.bin		NPOESS.IRland.EmisCoeff.bin
NPOESS.VISice.EmisCoeff.bin		NPOESS.VISice.EmisCoeff.bin
NPOESS.VISland.EmisCoeff.bin		NPOESS.VISland.EmisCoeff.bin
NPOESS.VISsnow.EmisCoeff.bin		NPOESS.VISsnow.EmisCoeff.bin
NPOESS.VISwater.EmisCoeff.bin		NPOESS.VISwater.EmisCoeff.bin
FASTEM6.MWwater.EmisCoeff.bin		FASTEM6.MWwater.EmisCoeff.bin
AerosolCoeff.bin	Aerosol coefficients	AerosolCoeff.bin
CloudCoeff.bin	Cloud scattering and	CloudCoeff.bin
	emission coefficients	
\${satsen}.SpcCoeff.bin	Sensor spectral re-	\${satsen}.SpcCoeff.bin
	sponse characteristics	
\${satsen}.TauCoeff.bin	Transmittance coeffi-	\${satsen}.TauCoeff.bin
	cients	

Table 3.3: List of radiance coefficients used by CRTM

3.2 GSI Run Script

In this release version, three sample run scripts are available for different GSI applications:

- dtc/run/run_gsi_regional.ksh for regional GSI
- dtc/run/run_gsi_global.ksh for global GSI (GFS)
- dtc/run/run_gsi_chem.ksh for chemical analysis

These scripts will be called to generate GSI namelists:

- dtc/run/comgsi_namelist.sh for regional GSI
- dtc/run/comgsi_namelist_gfs.sh for global GSI (GFS)
- dtc/run/comgsi_namelist_chem.sh for GSI chemical analysis

We will introduce the regional run scripts (run_gsi_regional.ksh) in detail in the following sections and introduce the global run script when we discuss the GSI global application in the Advanced GSI User's Guide.

Note there is also a run script for regional EnKF (run_enkf_wrf.ksh), a run script for global EnKF (run_enkf_global.ksh) and the EnKF namelist script (enkf_wrf_namelist.sh) in the same directory, which will be introduced in the EnKF User's Guide.

3.2.1 Steps in the GSI Run Script

The GSI run script creates a run time environment necessary to run the GSI executable. A typical GSI run script includes the following steps:

- 1. Request computer resources to run GSI.
- 2. Set environmental variables for the machine architecture.
- 3. Set experimental variables (such as experiment name, analysis time, background, and observation).
- 4. Set the script that generates the GSI namelist.
- 5. Check the definitions of required variables.
- 6. Generate a run directory for GSI (sometimes called a working or temporary directory).
- 7. Copy the GSI executable to the run directory.
- 8. Copy the background file to the run directory and create an index file listing the location and name of ensemble members if running with a hybrid set up.
- 9. Link observations to the run directory.
- 10. Link fixed files (statistic, control, and coefficient files) to the run directory.
- 11. Generate namelist for GSI.
- 12. Run the GSI executable.
- 13. Post-process: save analysis results, generate diagnostic files, and clean the run directory.
- 14. Run GSI as observation operator for EnKF, only for if_observer=Yes.

Typically, users only need to modify specific parts of the run script (steps 1, 2, and 3) to fit their specific computer environment and point to the correct input/output files and directories. Users may also need to modify step 4 if changes are made to the namelist and it is under a different name or at a different location. The next section (3.2.2) covers each of these modifications for steps 1 to 3. Section 3.2.3 will dissect a sample regional GSI run script and introduce each piece of this sample GSI run script. Users should start with the run script provided in the same release package with the GSI executable and modify it for their own run environment and case configuration.

3.2.2 Customization of the GSI Run Script

3.2.2.1 Setting Up the Machine Environment

This section focuses on step 1 of the run script: modifying the machine specific entries. Specifically, this consists of setting Unix/Linux environment variables and selecting the correct parallel run time environment (batch system with options).

GSI can be run with the same parallel environments as other MPI programs, for example:

- IBM supercomputer using LSF (Load Sharing Facility)
- IBM supercomputer using LoadLevel
- Linux clusters using PBS (Portable Batch System)
- Linux clusters using LSF
- Linux workstation (no batch system)
- Intel Mac Darwin workstation with PGI complier (no batch system)

Two queuing systems are listed below as examples:

In both of the examples above, environment variables are set specifying system resource

3. Running GSI

Machine &	Linux Cluster with LSF	Linux Cluster with PBS	Workstation
queue system			
example	#BSUB -P ??????? #BSUB -W 00:10 #BSUB -n 4 #BSUB -R "span[ptile=16]	<pre>#PBS -1 procs=4 #PBS -n #PBS -o gsi.out #PBS -e gsi.err</pre>	No batch sys- tem, skip this step
	<pre>#BSUB -J gsi #BSUB -o gsi.%J.out #BSUB -e gsi.%J.err #BSUB -q small</pre>	#PBS -N GSI #PBS -1 walltime=00:20 #PBS -A ?????	

management, such as the number of processors, the name/type of queue, maximum wall clock time allocated for the job, options for standard out and standard error, etc. Some platforms need additional definitions to specify Unix environment variables that further define the run environment.

These variable settings can significantly impact the GSI run efficiency and accuracy of the GSI results. Please check with your system administrator for optimal settings for your computer system. Note that while the GSI can be run with any number of processors, it will not scale well with the increase of processor numbers after a certain threshold based on the case configuration and GSI application types.

3.2.2.2 Setting up the Running Environment

There are only two options to define in this block.

The option ARCH selects the machine architecture. It is a function of platform type and batch queuing system. The option GSIPROC sets the number of cores used in the run. This option also decides if the job is run as a multiple core job or as a single core run. Several choices of the option ARCH are listed in the sample run script. Please check with your system administrator about running parallel MPI jobs on your system.

Option ARCH	Platform	Compiler	batch queuing system
IBM_LSF	IBM AIX	xlf, xlc	LSF
LINUX	Linux workstation	Intel/PGI/GNU	mpirun if GSIPROC > 1
LINUX_LSF	Linux cluster	Intel/PGI/GNU	LSF
LINUX_PBS	Linux cluster	Intel/PGI/GNU	PBS
DARWIN_PGI	MAC DARWIN	PGI	mpirun if GSIPROC > 1

3.2.2.3 Setting Up an Analysis Case

This section discusses setting up variables specific to a given case, such as analysis time, working directory, background and observation files, location of fixed files and CRTM coefficients, the GSI executable file, and the script generating GSI namelist.

```
*****
# case set up (users should change this part)
#
# ANAL_TIME= analysis time (YYYYMMDDHH)
# WORK_ROOT= working directory, where GSI runs
# PREPBURF = path of PreBUFR conventional obs
# BK_FILE = path and name of background file
# OBS_ROOT = path of observations files
# FIX_ROOT = path of fix files
# GSI_EXE = path and name of the gsi executable
 ANAL_TIME=2017051312
 HH='echo $ANAL_TIME | cut -c9-10'
 WORK_ROOT=testarw
 OBS_ROOT=data/${ANAL_TIME}/obs
 PREPBUFR=${OBS_ROOT}/nam.t${HH}z.prepbufr.tm00.nr
 BK_ROOT=data/${ANAL_TIME}/arw
 BK_FILE=${BK_ROOT}/wrfinput_d01.${ANAL_TIME}
 CRTM_ROOT=fix/CRTM_2.2.3
 GSI_ROOT=comGSI
 FIX_ROOT=${GSI_ROOT}/fix
 GSI_EXE=${GSI_ROOT}/dtc/run/gsi.exe
 GSI_NAMELIST=${GSI_ROOT}/dtc/run/comgsi_namelist.sh
```

When picking the observation BUFR files, please be aware of the following:

- GSI run will stop if the time in the background file does not match the cycle time in the observation BUFR file used for the GSI run (there is a namelist option to turn this verification step off).
- Even if their contents are identical, PrepBUFR/BUFR files will differ if they were created on platforms with different endian byte order specification (Linux vs. IBM). Appendix A.1 discusses the conversion tool SSRC used to byte-swap observation files. Since release version 3.2, GSI compiled with PGI and Intel can automatically handle byte order issues in PrepBUFR and BUFR files. Users can directly link BUFR files of any order if working with Intel and PGI platform.

The next part of this block focuses on additional options that specify important aspects of the GSI configuration.

```
# bk_core= which WRF core is used as background (NMM or ARW or NMMB)
# bkcv_option= which background error covariance and parameter will be used
# (GLOBAL or NAM)
# if_clean = clean : delete temperal files in working directory (default)
# no : leave running directory as is (this is for debug only)
# if_observer = Yes : only used as observation operater for enkf
# if_hybrid = Yes : Run GSI as 3D/4D EnVar
```

```
# if_4DEnVar = Yes : Run GSI as 4D EnVar
 if_hybrid=No # Yes, or, No -- case sensitive !
 if_4DEnVar=No  # Yes, or, No -- case sensitive (if_hybrid must be Yes)!
 if_observer=No  # Yes, or, No -- case sensitive !
 bk_core=ARW
 bkcv_option=NAM
 if_clean=clean
#
# setup for GSI 3D/4D EnVar hybrid
  if [ ${if_hybrid} = Yes ] ; then
   ENS_ROOT=data/dacase/2017051312
   ENSEMBLE_FILE_mem=${ENS_ROOT}/gfsens/sfg_2017051306_fhr06s
    if [ ${if_4DEnVar} = Yes ] ; then
     BK_FILE_P1=${BK_ROOT}/wrfout_d01_2017-05-13_19:00:00
     BK_FILE_M1=${BK_ROOT}/wrfout_d01_2017-05-13_17:00:00
     ENSEMBLE_FILE_mem_p1=${ENS_ROOT}/sfg_2017051312_fhr09s
      ENSEMBLE_FILE_mem_m1=${ENS_ROOT}/sfg_2017051312_fhr03s
   fi
 fi
# no_member
              number of ensemble members
# BK_FILE_mem path and base for ensemble members
 no_member=20
 BK_FILE_mem=${BK_ROOT}/wrfarw.mem
```

Option if_hybrid controls whether to run a hybrid ensemble/variational data analysis. If if_hybrid=Yes, option if_4DEnVar=Yes indicates a hybrid 4D-EnVar analysis will be run, while if_4DEnVar=No indicates a hybrid 3DEnVAR analysis will be run. Option if_observer determines whether GSI is run as an observation operator for EnKF.

Option bk_core indicates the specific dynamic core used to create the background files and specifies the core in the namelist. Option bk_core can be ARW or NMMB. Option bkcv_option specifies the background error covariance to be used in the case. Two regional background error covariance matrices are provided with the release, one from NCEP global data assimilation (GDAS), and one from the NAM data assimilation system (NDAS). Please check Section 4.8 for more details about GSI background error covariance. Option if_clean tells the script if it needs to delete temporary intermediate files in the working directory after a GSI run is completed.

In most cases, users should only make minor changes after the following:

3.2.3 Description of the Sample Regional Run Script to Run GSI

Listed below is an annotated regional run script with explanations on each function block.

For further details on the first three blocks of the script that users need to change, see sections 3.2.2.1, 3.2.2.2, and 3.2.2.3:

```
#!/bin/ksh
# machine set up (users should change this part)
set -x
#
# GSIPROC = processor number used for GSI analysis
#-----
 GSIPROC=4
 ARCH='LINUX_LSF'
# Supported configurations:
         # IBM_LSF,
         # LINUX, LINUX_LSF, LINUX_PBS,
         # DARWIN_PGI
#
# case set up (users should change this part)
#
# ANAL_TIME= analysis time (YYYYMMDDHH)
# WORK_ROOT= working directory, where GSI runs
# PREPBURF = path of PreBUFR conventional obs
# BK_FILE = path and name of background file
# OBS_ROOT = path of observations files
# FIX_ROOT = path of fix files
# GSI_EXE = path and name of the gsi executable
 ANAL_TIME=2017051312
 HH='echo $ANAL_TIME | cut -c9-10'
 WORK_ROOT=testarw
 OBS_ROOT=data/${ANAL_TIME}/obs
 PREPBUFR=${OBS_ROOT}/nam.t${HH}z.prepbufr.tm00.nr
 BK_ROOT=data/${ANAL_TIME}/arw
 BK_FILE=${BK_ROOT}/wrfinput_d01.${ANAL_TIME}
 CRTM_ROOT=fix/CRTM_2.2.3
 GSI_ROOT=comGSI
 FIX_ROOT=${GSI_ROOT}/fix
 GSI_EXE=${GSI_ROOT}/dtc/run/gsi.exe
 GSI_NAMELIST=${GSI_ROOT}/dtc/run/comgsi_namelist.sh
#-----
# bk_core= which WRF core is used as background (NMM or ARW or NMMB)
# bkcv_option= which background error covariance and parameter will be used
#
            (GLOBAL or NAM)
# if_clean = clean : delete temperal files in working directory (default)
#
    no : leave running directory as is (this is for debug only)
# if_observer = Yes : only used as observation operater for enkf
# if_hybrid = Yes : Run GSI as 3D/4D EnVar
                                  32
```

```
# if_4DEnVar = Yes : Run GSI as 4D EnVar
 if_hybrid=No # Yes, or, No -- case sensitive !
 if_4DEnVar=No  # Yes, or, No -- case sensitive (if_hybrid must be Yes)!
 if_observer=No  # Yes, or, No -- case sensitive !
 bk_core=ARW
 bkcv_option=NAM
 if_clean=clean
#
# setup for GSI 3D/4D EnVar hybrid
  if [ ${if_hybrid} = Yes ] ; then
   ENS_ROOT=data/dacase/2017051312
   ENSEMBLE_FILE_mem=${ENS_ROOT}/gfsens/sfg_2017051306_fhr06s
    if [ ${if_4DEnVar} = Yes ] ; then
     BK_FILE_P1=${BK_ROOT}/wrfout_d01_2017-05-13_19:00:00
     BK_FILE_M1=${BK_ROOT}/wrfout_d01_2017-05-13_17:00:00
     ENSEMBLE_FILE_mem_p1=${ENS_ROOT}/sfg_2017051312_fhr09s
      ENSEMBLE_FILE_mem_m1=${ENS_ROOT}/sfg_2017051312_fhr03s
   fi
 fi
# no_member
              number of ensemble members
# BK_FILE_mem path and base for ensemble members
 no_member=20
 BK_FILE_mem=${BK_ROOT}/wrfarw.mem
```

At this point, users should be able to run the GSI for simple cases without changing the scripts. However, some advanced users may need to change some of the following blocks for special applications, such as use of radiance data, cycled runs, specifying certain namelist variables, or running GSI on a platform not tested by the DTC.

The next block sets the run command for GSI on multiple platforms. The ARCH variable is set at the beginning of the script. Option BYTE_ORDER has been set as Big_Endian because GSI compiled with Intel and PGI can read a Big_Endian background error file, BUFR files, and CRTM coefficient files.

```
BYTE_ORDER=Big_Endian
# BYTE_ORDER=Little_Endian
case $ARCH in
 'IBM_LSF')
    ####### IBM LSF (Load Sharing Facility)
    RUN_COMMAND="mpirun.lsf " ;;
 'LINUX')
    if [ $GSIPROC = 1 ]; then
        #### Linux workstation - single processor
```

```
RUN_COMMAND=""
      else
         ###### Linux workstation - mpi run
        RUN_COMMAND="mpirun -np ${GSIPROC} -machinefile ~/mach "
      fi ;;
   'LINUX_LSF')
      ###### LINUX LSF (Load Sharing Facility)
      RUN_COMMAND="mpirun.lsf " ;;
   'LINUX_PBS')
      #### Linux cluster PBS (Portable Batch System)
      RUN_COMMAND="mpirun -np ${GSIPROC} " ;;
   'DARWIN_PGI')
     ### Mac - mpi run
      if [ $GSIPROC = 1 ]; then
         #### Mac workstation - single processor
        RUN_COMMAND=""
      else
         ###### Mac workstation - mpi run
         RUN_COMMAND="mpirun -np ${GSIPROC} -machinefile ~/mach "
      fi ;;
   * )
     print "error: $ARCH is not a supported platform configuration."
     exit 1 ;;
esac
```

The next block checks if all the variables needed for a GSI run are properly defined. These variables should have been defined in the first three parts of this script.

```
# Check GSI needed environment variables are defined and exist
#
# Make sure ANAL_TIME is defined and in the correct format
if [ ! "${ANAL_TIME}" ]; then
 echo "ERROR: \$ANAL_TIME is not defined!"
 exit 1
fi
# Make sure WORK_ROOT is defined and exists
if [ ! "${WORK_ROOT}" ]; then
 echo "ERROR: \$WORK_ROOT is not defined!"
 exit 1
fi
# Make sure the background file exists
if [ ! -r "${BK_FILE}" ]; then
 echo "ERROR: ${BK_FILE} does not exist!"
 exit 1
fi
# Make sure OBS_ROOT is defined and exists
if [ ! "${OBS_ROOT}" ]; then
 echo "ERROR: \$OBS_ROOT is not defined!"
 exit 1
fi
if [ ! -d "${OBS_ROOT}" ]; then
 echo "ERROR: OBS_ROOT directory '${OBS_ROOT}' does not exist!"
 exit 1
```

```
fi
# Set the path to the GSI static files
if [ ! "${FIX_ROOT}" ]; then
  echo "ERROR: \$FIX_ROOT is not defined!"
  exit 1
fi
if [ ! -d "${FIX_ROOT}" ]; then
  echo "ERROR: fix directory '${FIX_ROOT}' does not exist!"
 exit 1
fi
# Set the path to the CRTM coefficients
if [ ! "${CRTM_ROOT}" ]; then
 echo "ERROR: \$CRTM_ROOT is not defined!"
  exit 1
fi
if [ ! -d "${CRTM_ROOT}" ]; then
  echo "ERROR: fix directory '${CRTM_ROOT}' does not exist!"
 exit 1
fi
# Make sure the GSI executable exists
if [ ! -x "${GSI_EXE}" ]; then
 echo "ERROR: ${GSI_EXE} does not exist!"
  exit 1
fi
# Check to make sure the number of processors for running GSI was specified
if [ -z "${GSIPROC}" ]; then
  echo "ERROR: The variable $GSIPROC must be set to contain the number of processors to run GSI"
  exit 1
fi
```

The next block creates a working directory (workdir) in which GSI will run. The directory should have enough disk space to hold all the files needed for this run. This directory is cleaned before each run, therefore, save all the files needed from the previous run before rerunning GSI.

```
# Create the work directory and cd into it
workdir=${WORK_ROOT}
echo " Create working directory:" ${workdir}
if [ -d "${workdir}" ]; then
 rm -rf ${workdir}
fi
mkdir -p ${workdir}
cd ${workdir}
#
echo " Copy GSI executable, background file, and link observation bufr to working directory"
# Save a copy of the GSI executable in the workdir
cp ${GSI_EXE} gsi.exe
# Bring over background field (it's modified by GSI so we can't link to it)
cp ${BK_FILE} ./wrf_inout
if [ ${if_4DEnVar} = Yes ] ; then
 cp ${BK_FILE_P1} ./wrf_inou3
 cp ${BK_FILE_M1} ./wrf_inou1
fi
```

3. Running GSI

Note: You can link observation files to the working directory because GSI will not overwrite these files. The observations that can be analyzed in GSI are listed in the column "dfile" of the GSI namelist section OBS_INPUT, as specified in run/comgsi_namelist.sh. Most of the conventional observations are in one single file named prepbufr, while different radiance data are in separate files based on satellite instruments, such as AMSU-A or HIRS. All these observation files must be linked as GSI recognized file names in "dfile." Please check table 3.1 for a detailed explanation of links and the meanings of each file name listed below.

```
ln -s ${PREPBUFR} ./prepbufr
# ln -s ${OBS_ROOT}/gdas1.t${HH}z.sptrmm.tm00.bufr_d tmirrbufr
# Link to the radiance data
srcobsfile[1]=${OBS_ROOT}/gdas1.t${HH}z.satwnd.tm00.bufr_d
gsiobsfile[1]=satwnd
srcobsfile[2]=${OBS_ROOT}/gdas1.t${HH}z.1bamua.tm00.bufr_d
gsiobsfile[2]=amsuabufr
srcobsfile[3]=${OBS_ROOT}/gdas1.t${HH}z.1bhrs4.tm00.bufr_d
gsiobsfile[3]=hirs4bufr
srcobsfile[4]=${OBS_ROOT}/gdas1.t${HH}z.1bmhs.tm00.bufr_d
gsiobsfile[4]=mhsbufr
srcobsfile[5]=${OBS_ROOT}/gdas1.t${HH}z.1bamub.tm00.bufr_d
gsiobsfile[5]=amsubbufr
srcobsfile[6]=${OBS_ROOT}/gdas1.t${HH}z.ssmisu.tm00.bufr_d
gsiobsfile[6]=ssmirrbufr
# srcobsfile[7]=${OBS_ROOT}/gdas1.t${HH}z.airsev.tm00.bufr_d
gsiobsfile[7]=airsbufr
srcobsfile[8]=${OBS_ROOT}/gdas1.t${HH}z.sevcsr.tm00.bufr_d
gsiobsfile[8]=seviribufr
srcobsfile[9]=${OBS_ROOT}/gdas1.t${HH}z.iasidb.tm00.bufr_d
gsiobsfile[9]=iasibufr
srcobsfile[10]=${OBS_ROOT}/gdas1.t${HH}z.gpsro.tm00.bufr_d
gsiobsfile[10] = gpsrobufr
srcobsfile[11]=${OBS_ROOT}/gdas1.t${HH}z.amsr2.tm00.bufr_d
gsiobsfile[11]=amsrebufr
srcobsfile[12]=${OBS_ROOT}/gdas1.t${HH}z.atms.tm00.bufr_d
gsiobsfile[12]=atmsbufr
srcobsfile[13] = ${OBS_ROOT}/gdas1.t${HH}z.geoimr.tm00.bufr_d
gsiobsfile[13]=gimgrbufr
srcobsfile[14] = ${OBS_ROOT}/gdas1.t${HH}z.gome.tm00.bufr_d
gsiobsfile[14]=gomebufr
srcobsfile[15]=${OBS_ROOT}/gdas1.t${HH}z.omi.tm00.bufr_d
gsiobsfile[15]=omibufr
srcobsfile[16]=${OBS_ROOT}/gdas1.t${HH}z.osbuv8.tm00.bufr_d
gsiobsfile[16]=sbuvbufr
srcobsfile[17]=${OBS_ROOT}/gdas1.t${HH}z.eshrs3.tm00.bufr_d
gsiobsfile[17]=hirs3bufrears
srcobsfile[18]=${OBS_ROOT}/gdas1.t${HH}z.esamua.tm00.bufr_d
gsiobsfile[18]=amsuabufrears
srcobsfile[19]=${OBS_ROOT}/gdas1.t${HH}z.esmhs.tm00.bufr_d
gsiobsfile[19]=mhsbufrears
srcobsfile[20]=${OBS_ROOT}/rap.t${HH}z.nexrad.tm00.bufr_d
gsiobsfile[20]=12rwbufr
srcobsfile[21]=${OBS_ROOT}/rap.t${HH}z.lgycld.tm00.bufr_d
gsiobsfile[21]=larcglb
ii=1
```

Link to the prepbufr data

```
while [[ $ii -le 21 ]]; do
    if [ -r "${srcobsfile[$ii]}" ]; then
        ln -s ${srcobsfile[$ii]} ${gsiobsfile[$ii]}
        echo "link source obs file ${srcobsfile[$ii]}"
        fi
        (( ii = $ii + 1 ))
done
```

The following block copies constant fixed files from the fix/ directory and links CRTM coefficients. Please check Section 3.1 for the meanings of each fixed file.

```
echo " Copy fixed files and link CRTM coefficient files to working directory"
# Set fixed files
   berror = forecast model background error statistics
#
   specoef = CRTM spectral coefficients
#
   trncoef = CRTM transmittance coefficients
#
   emiscoef = CRTM coefficients for IR sea surface emissivity model
#
#
   aerocoef = CRTM coefficients for aerosol effects
#
   cldcoef = CRTM coefficients for cloud effects
#
   satinfo = text file with information about assimilation of brightness temperatures
   satangl = angle dependent bias correction file (fixed in time)
#
#
   pcpinfo = text file with information about assimilation of prepcipitation rates
#
   ozinfo = text file with information about assimilation of ozone data
#
   errtable = text file with obs error for conventional data (regional only)
#
   convinfo = text file with information about assimilation of conventional data
# bufrtable= text file ONLY needed for single obs test (oneobstest=.true.)
   bftab_sst= bufr table for sst ONLY needed for sst retrieval (retrieval=.true.)
#
```

Note: For background error covariances, observation errors, and analysis variable information, we provide two sets of fixed files. One set is based on GFS statistics and another is based on NAM statistics. For this release there is an additional setting in the ANAVINFO file for "bk_core" for both GFS and NAM statistics.

```
if [ ${bkcv_option} = GLOBAL ] ; then
 echo ' Use global background error covariance'
 BERROR=${FIX_ROOT}/${BYTE_ORDER}/nam_glb_berror.f77.gcv
 OBERROR=${FIX_ROOT}/prepobs_errtable.global
  if [ ${bk_core} = NMM ] ; then
     ANAVINFO=${FIX_ROOT}/anavinfo_ndas_netcdf_glbe
 fi
  if [ ${bk_core} = ARW ] ; then
    ANAVINFO=${FIX_ROOT}/anavinfo_arw_netcdf_glbe
 fi
  if [ ${bk_core} = NMMB ] ; then
    ANAVINFO=${FIX_ROOT}/anavinfo_nems_nmmb_glb
 fi
else
 echo ' Use NAM background error covariance'
 BERROR=${FIX_ROOT}/${BYTE_ORDER}/nam_nmmstat_na.gcv
 OBERROR=${FIX_ROOT}/nam_errtable.r3dv
```

```
if [ ${bk_core} = NMM ] ; then
     ANAVINFO=${FIX_ROOT}/anavinfo_ndas_netcdf
 fi
  if [ ${bk_core} = ARW ] ; then
     ANAVINFO=${FIX_ROOT}/anavinfo_arw_netcdf
 fi
  if [ ${bk_core} = NMMB ] ; then
     ANAVINFO=${FIX_ROOT}/anavinfo_nems_nmmb
 fi
fi
SATINFO=${FIX_ROOT}/global_satinfo.txt
CONVINFO=${FIX_ROOT}/global_convinfo.txt
OZINFO=${FIX_ROOT}/global_ozinfo.txt
PCPINF0=${FIX_ROOT}/global_pcpinfo.txt
# copy Fixed fields to working directory
 cp $ANAVINFO anavinfo
 cp $BERROR berror_stats
 cp $SATINFO satinfo
 cp $CONVINFO convinfo
 cp $OZINFO
             ozinfo
 cp $PCPINFO pcpinfo
 cp $OBERROR errtable
#
     # CRTM Spectral and Transmittance coefficients
#
CRTM_ROOT_ORDER=${CRTM_ROOT}/${BYTE_ORDER}
emiscoef_IRwater=${CRTM_ROOT_ORDER}/Nalli.IRwater.EmisCoeff.bin
emiscoef_IRice=${CRTM_ROOT_ORDER}/NPOESS.IRice.EmisCoeff.bin
emiscoef_IRland=${CRTM_ROOT_ORDER}/NPOESS.IRland.EmisCoeff.bin
emiscoef_IRsnow=${CRTM_ROOT_ORDER}/NPOESS.IRsnow.EmisCoeff.bin
emiscoef_VISice=${CRTM_ROOT_ORDER}/NPOESS.VISice.EmisCoeff.bin
emiscoef_VISland=${CRTM_ROOT_ORDER}/NPOESS.VISland.EmisCoeff.bin
emiscoef_VISsnow=${CRTM_ROOT_ORDER}/NPOESS.VISsnow.EmisCoeff.bin
emiscoef_VISwater=${CRTM_ROOT_ORDER}/NPOESS.VISwater.EmisCoeff.bin
emiscoef_MWwater=${CRTM_ROOT_ORDER}/FASTEM6.MWwater.EmisCoeff.bin
aercoef=${CRTM_ROOT_ORDER}/AerosolCoeff.bin
cldcoef=${CRTM_ROOT_ORDER}/CloudCoeff.bin
ln -s $emiscoef_IRwater ./Nalli.IRwater.EmisCoeff.bin
ln -s $emiscoef_IRice ./NPOESS.IRice.EmisCoeff.bin
ln -s $emiscoef_IRsnow ./NPOESS.IRsnow.EmisCoeff.bin
ln -s $emiscoef_IRland ./NPOESS.IRland.EmisCoeff.bin
ln -s $emiscoef_VISice ./NPOESS.VISice.EmisCoeff.bin
ln -s $emiscoef_VISland ./NPOESS.VISland.EmisCoeff.bin
ln -s $emiscoef_VISsnow ./NPOESS.VISsnow.EmisCoeff.bin
ln -s $emiscoef_VISwater ./NPOESS.VISwater.EmisCoeff.bin
ln -s $emiscoef_MWwater ./FASTEM6.MWwater.EmisCoeff.bin
ln -s $aercoef ./AerosolCoeff.bin
ln -s $cldcoef
               ./CloudCoeff.bin
# Copy CRTM coefficient files based on entries in satinfo file
for file in 'awk '{if($1!~"!"){print $1}}' ./satinfo | sort | uniq' ;do
   ln -s ${CRTM_ROOT_ORDER}/${file}.SpcCoeff.bin ./
   ln -s ${CRTM_ROOT_ORDER}/${file}.TauCoeff.bin ./
done
# Only need this file for single obs test
```

```
bufrtable=${FIX_ROOT}/prepobs_prep.bufrtable
```

```
cp $bufrtable ./prepobs_prep.bufrtable
```

for satellite bias correction
cp \${OBS_ROOT}/gdas1.t12z.abias ./satbias_in
cp \${OBS_ROOT}/gdas1.t12z.abias_pc ./satbias_pc_in

Please note that in the above sample script, two files related to radiance bias correction are copied to the work directory:

```
cp ${OBS_ROOT}/gdas1.t12z.abias ./satbias_in
cp ${OBS_ROOT}/gdas1.t12z.abias_pc ./satbias_pc_in
```

There are two options on how to perform the radiance bias correction. The first method is to do the angle dependent bias correction offline and do the mass bias correction inside the GSI analysis, therefore requiring two input files: satbias_angle, corresponding to the angle dependent bias correction file and satbias_in, being the input file for mass bias correction. The second method is to combine the angle dependent and mass bias correction together and do it within the GSI analysis, requiring one combined input file: satbias_in. Note that the input bias correction coefficients file, satbias_in, is different for the two options, therefore it is important to use the appropriate input file for each method. The sample input files for the first method are provided with this release: global_satangbias.txt and sample.satbias. To use the second option - combined angle dependent and mass bias correction, a sample file, gdas1.t00z.abias_pc.20150617, is also provided. As a starting point, users may also download a GDAS satbias coefficient file from the NOMADS ftp site as the input file (starting in spring 2015, the GDAS satbias files have adopted the following format):

```
ftp://nomads.ncdc.noaa.gov/GDAS/YYYYMM/YYYYMMDD/gdas1.tHHz.abias
```

In order to use the combined angle dependent and mass bias correction, users also need to set adp_anglebc=.true. in the &SETUP section of the GSI namelist (comgsi_namelist.sh). For more details about the namelist, please see Appendix C in this document.

Set up some constants used in the GSI namelist. Please note that bkcv_option is set for background error tuning. They should be set based on specific applications. Here we provide three sample sets of the constants for different background error covariance options, one set is used in the NAM operations, one for the GFS operations and one for the NMMB operations. In this release, the capability of NMMB application is included and therefore the namelist settings for NMMB are provided in addition to NMM and ARW applications.

```
hzscl_op='0.373,0.746,1.50,'
if [ ${bkcv_option} = GLOBAL ] ; then
   as_op='0.6,0.6,0.75,0.75,0.75,0.75,1.0,1.0'
#
   vs_op='0.7,'
   hzscl_op='1.7,0.8,0.5,'
fi
if [ ${bk_core} = NMMB ] ; then
   vs_op='0.6,'
fi
# default is NMM
   bk_core_arw='.false.'
   bk_core_nmm='.true.'
   bk_core_nmmb='.false.'
  bk_if_netcdf='.true.'
if [ ${bk_core} = ARW ] ; then
  bk_core_arw='.true.'
   bk_core_nmm='.false.'
   bk_core_nmmb='.false.'
   bk_if_netcdf='.true.'
fi
if [ ${bk_core} = NMMB ] ; then
  bk_core_arw='.false.'
   bk_core_nmm='.false.'
   bk_core_nmmb='.true.'
   bk_if_netcdf='.false.'
fi
```

The following section specifies the number of outer loops and whether to save GSI read observations based on the setting of "if_observer".

```
if [ ${if_observer} = Yes ] ; then
  nummiter=0
  if_read_obs_save='.true.'
  if_read_obs_skip='.false.'
else
  nummiter=2
  if_read_obs_save='.false.'
  if_read_obs_skip='.false.'
fi
```

The following section of the script is used to generate the GSI namelist called gsiparm.anl in the working directory. A detailed explanation of each variable can be found in Section 3.4 and Appendix C.

```
# Build the GSI namelist on-the-fly
. $GSI_NAMELIST
cat << EOF > gsiparm.anl
$comgsi_namelist
EOF
```

Note: EOF indicates the end of GSI namelist.

The following block modifies the anavinfo file so that its vertical levels are consistent with the wrf_inout file for WRF ARW or NMM. Users no longer need to manually modify the anavinfo file.

```
# modify the anavinfo vertical levels based on wrf_inout for WRF ARW and NMM
if [ ${bk_core} = ARW ] || [ ${bk_core} = NMM ] ; then
bklevels='ncdump -h wrf_inout | grep "bottom_top =" | awk '{print $3}' `
bklevels_stag='ncdump -h wrf_inout | grep "bottom_top_stag =" | awk '{print $3}' `
anavlevels='cat anavinfo | grep ' sf ' | tail -1 | awk '{print $2}' ` # levels of sf, vp, u, v, t,
anavlevels_stag='cat anavinfo | grep ' prse ' | tail -1 | awk '{print $2}' ` # levels of prse
sed -i 's/ '$anavlevels'/ '$bklevels'/g' anavinfo
sed -i 's/ '$anavlevels_stag'/ '$bklevels_stag'/g' anavinfo
fi
```

The following block runs GSI and checks if GSI has successfully completed.

```
# run GSI
echo ' Run GSI with' ${bk_core} 'background'
case $ARCH in
 'IBM LSF')
   ${RUN_COMMAND} ./gsi.exe < gsiparm.anl > stdout 2>&1 ;;
 * )
   ${RUN_COMMAND} ./gsi.exe > stdout 2>&1 ;;
esac
*****
# run time error check
*****
error=$?
if [ ${error} -ne 0 ]; then
 echo "ERROR: ${GSI} crashed Exit status=${error}"
 exit ${error}
fi
```

The following block saves the analysis results with an understandable name and adds the analysis time to some output file names. Among them, "stdout" contains runtime output of GSI and wrf_inout is the resulting analysis file.

```
ln -s stdout stdout.anl.${ANAL_TIME}
ln -s wrf_inout wrfanl.${ANAL_TIME}
ln -s fort.201 fit_p1.${ANAL_TIME}
ln -s fort.202 fit_w1.${ANAL_TIME}
ln -s fort.203 fit_t1.${ANAL_TIME}
ln -s fort.204 fit_q1.${ANAL_TIME}
ln -s fort.207 fit_rad1.${ANAL_TIME}
```

The following block collects the diagnostic files. The diagnostic files are merged and categorized based on outer loop and data type. Setting "write_diag" to true in the namelist directs GSI to write out diagnostic information for each observation. This information is very useful to check analysis details. Please check Appendix A.2 for the tool to read and analyze these diagnostic files.

```
# Loop over first and last outer loops to generate innovation
# diagnostic files for indicated observation types (groups)
#
# NOTE: Since we set miter=2 in GSI namelist SETUP, outer
#
         loop 03 will contain innovations with respect to
#
         the analysis. Creation of o-a innovation files
#
         is triggered by write_diag(3)=.true. The setting
#
         write_diag(1)=.true. turns on creation of o-g
#
         innovation files.
#
loops="01 03"
for loop in $loops; do
case $loop in
 01) string=ges;;
 03) string=anl;;
   *) string=$loop;;
esac
#
  Collect diagnostic files for obs types (groups) below
#
   listall="conv amsua_metop-a mhs_metop-a hirs4_metop-a hirs2_n14 msu_n14 \
#
           sndr_g08 sndr_g10 sndr_g12 sndr_g08_prep sndr_g10_prep sndr_g12_prep \
#
           sndrd1_g08 sndrd2_g08 sndrd3_g08 sndrd4_g08 sndrd1_g10 sndrd2_g10 \
#
           sndrd3_g10 sndrd4_g10 sndrd1_g12 sndrd2_g12 sndrd3_g12 sndrd4_g12 \
#
           hirs3_n15 hirs3_n16 hirs3_n17 amsua_n15 amsua_n16 amsua_n17 \
#
           amsub_n15 amsub_n16 amsub_n17 hsb_aqua airs_aqua amsua_aqua \
#
           goes_img_g08 goes_img_g10 goes_img_g11 goes_img_g12 \
#
           pcp_ssmi_dmsp pcp_tmi_trmm sbuv2_n16 sbuv2_n17 sbuv2_n18 \
#
           omi_aura ssmi_f13 ssmi_f14 ssmi_f15 hirs4_n18 amsua_n18 mhs_n18 \
#
           amsre_low_aqua amsre_mid_aqua amsre_hig_aqua ssmis_las_f16 \
#
           ssmis_uas_f16 ssmis_img_f16 ssmis_env_f16 mhs_metop_b \
           hirs4_metop_b hirs4_n19 amusa_n19 mhs_n19"
#
listall='ls pe* | cut -f2 -d"." | awk '{print substr($0, 0, length($0)-3)}' | sort | uniq'
   for type in $listall; do
      count='ls pe*${type}_${loop}* | wc -l'
      if [[ $count -gt 0 ]]; then
         cat pe*${type}_${loop}* > diag_${type}_${string}.${ANAL_TIME}
      fi
   done
done
```

The following scripts clean the temporary intermediate files:

The following block of the script runs only for if_observer=Yes, which runs GSI as an observation operator for EnKF and without doing minimization. The script first renames the previous diagnostics files and GSI analysis file by appending .ensmean to the filenames to avoid these files being overwritten by the new GSI run.

Next, the script generates the namelist for each ensemble member.

```
# Build the GSI namelist on-the-fly for each member
nummiter=0
if_read_obs_save='.false.'
if_read_obs_skip='.true.'
. $GSI_NAMELIST
cat << EOF > gsiparm.anl
$comgsi_namelist
```

EOF

The rest of the script loops through the ensemble members to get the background ready, run GSI, and check the run status:

```
# Loop through each member
loop="01"
```

```
ensmem=1
 while [[ $ensmem -le $no_member ]];do
     rm pe0*
     print "\$ensmem is $ensmem"
     ensmemid='printf %3.3i $ensmem'
# get new background for each member
     if [[ -f wrf_inout ]]; then
       rm wrf_inout
     fi
     BK_FILE=${BK_FILE_mem}${ensmemid}
     echo $BK_FILE
     ln -s $BK_FILE wrf_inout
# run GSI
     echo ' Run GSI with' ${bk_core} 'for member ', ${ensmemid}
     case $ARCH in
        'IBM_LSF')
           ${RUN_COMMAND} ./gsi.exe < gsiparm.anl > stdout_mem${ensmemid} 2>&1 ;;
        * )
           ${RUN_COMMAND} ./gsi.exe > stdout_mem${ensmemid} 2>&1 ;;
     esac
# run time error check and save run time file status
     error=$?
     if [ ${error} -ne 0 ]; then
       echo "ERROR: ${GSI} crashed for member ${ensmemid} Exit status=${error}"
       exit ${error}
     fi
     ls -l * > list_run_directory_mem${ensmemid}
```

The following lines generate the diagnostics files for each member.

```
# generate diag files
for type in $listall; do
        count='ls pe*${type}_${loop}* | wc -l'
        if [[ $count -gt 0 ]]; then
        cat pe*${type}_${loop}* > diag_${type}_${string}.mem${ensmemid}
        fi
        done
```

The following section is to move on to the next ensemble member and run GSI.

next member

```
(( ensmem += 1 ))
```

done

fi

If this point is reached, the GSI successfully finishes and exits with status "0":

exit O

3.3 GSI Analysis Result Files in Run Directory

Once the GSI run script is set up, it is ready to be submitted like any other batch job. When completed, GSI will create a number of files in the run directory. Below is an example of the files generated in the run directory from one of the GSI test case runs. This case was run to perform a regional GSI analysis with a WRF-ARW NetCDF background using conventional (prepbufr), radiance (AMSU-A, HIRS4, and MHS), and GPSRO data. The analysis time is 1200Z on 13 May 2017. Four processors were used. To make the run directory more readable, we turned on the clean option in the run script, which deleted all temporary intermediate files.

amsuabufr	fort.206	hirs3bufrears
amsuabufrears	fort.207	hirs4bufr
anavinfo	fort.208	l2rwbufr
atmsbufr	fort.209	larcglb
berror_stats	fort.210	list_run_directory
convinfo	fort.211	mhsbufr
diag_amsua_n15_anl.2017051312	fort.212	mhsbufrears
diag_amsua_n15_ges.2017051312	fort.213	omibufr
diag_amsua_n18_an1.2017051312	fort.214	ozinfo
diag_amsua_n18_ges.2017051312	fort.215	pcpbias_out
diag_amsua_n19_anl.2017051312	fort.217	pcpinfo
diag_amsua_n19_ges.2017051312	fort.218	prepbufr
diag_conv_anl.2017051312	fort.219	prepobs_prep.bufrtable
diag_conv_ges.2017051312	fort.220	<pre>radar_supobs_from_level2</pre>
diag_hirs4_n19_anl.2017051312	fort.221	satbias_angle
diag_hirs4_n19_ges.2017051312	fort.223	satbias_ang.out
diag_mhs_n18_anl.2017051312	fort.224	satbias_in
diag_mhs_n18_ges.2017051312	fort.225	satbias_out
diag_mhs_n19_anl.2017051312	fort.226	satbias_out.int
diag_mhs_n19_ges.2017051312	fort.227	<pre>satbias_pc_in</pre>
errtable	fort.228	<pre>satbias_pc.out</pre>
fit_p1.2017051312	fort.229	satinfo
fit_q1.2017051312	fort.230	satwnd
fit_rad1.2017051312	fort.232	sbuvbufr
fit_t1.2017051312	fort.233	seviribufr
fit_w1.2017051312	fort.234	ssmirrbufr
fort.201	gimgrbufr	stdout
fort.202	gomebufr	stdout.anl.2017051312
fort.203	gpsrobufr	wrfanl.2017051312
fort.204	gsi.exe	wrf_inout
fort.205	gsiparm.anl	
	-	

It is important to know which files hold the GSI analysis results, standard output, and diagnostic information. We will introduce these files and their contents in detail in the following chapter. The following is a brief list of what these files contain:

3. Running GSI

- *stdout* or *stdout.anl.(time)*: standard text output file. *stdout.anl.(time)* is a link to *stdout* with the analysis time appended. This is the most commonly used file to check the GSI analysis processes and contains basic and important information about the analyses. We will explain the contents of the *stdout* file in Section 4.1 and users are encouraged to read this file in detail to become familiar with the order of GSI analysis processing.
- *wrf_inout* or *wrfanl.(time)*: analysis results if GSI completes successfully. It exists only if using WRF for the background. The *wrfanl.(time)* file is a link to *wrf_inout* with the analysis time appended. The format is the same as the background file.
- *diag_conv_anl.(time)*: binary diagnostic files for conventional and GPS RO observations at the final analysis step (analysis departure for each observation).
- *diag_conv_ges.(time)*: binary diagnostic files for conventional and GPS RO observations before the initial analysis step (background departure for each observation)
- *diag_(instrument_satellite)_anl*: diagnostic files for satellite radiance observations at the final analysis step.
- *diag_(instrument_satellite)_ges*: diagnostic files for satellite radiance observations before the initial analysis step.
- gsiparm.anl: GSI namelist, generated by the run script.
- *fit_(variable).(time)*: links to fort.2?? with meaningful names (variable name plus analysis time). They are statistic results of observation departures from background and analysis results according to observation variables. Please see Section 4.5 for more details.
- *fort.220*: output from the inner loop minimization (in *pcgsoi.f90*). Please see Section 4.6 for details.
- *anavinfo*: info file to set up control, state, and background variables. Please see the Advanced GSI User's Guide for details.
- **info (convinfo,satinfo, ...)*: info files that control data usage. Please see Section 4.3 for details.
- *berror_stats* and *errtable*: background error file (binary) and observation error file (text).
- **bufr*: observation BUFR files linked to the run directoryi. Please see Section 3.1 for details.
- *satbias_in*: the input coefficients of bias correction for satellite radiance observations.
- *satbias_out*: the output coefficients of bias correction for satellite radiance observations after the GSI run.
- *satbias_pc*: the input coefficients of bias correction for passive satellite radiance observations.
- *list_run_directory* : the complete list of files in the run directory before cleaning takes place. This is generated by the GSI run script.

The diag files, such as diag_(instrument_satellite)_anl.(time) and diag_conv_anl.(time), contain important information about the data used in the GSI, including observation departure from analysis results for each observation (O-A). Similarly, diag_conv_ges and diag_(instrumen_satellite)_ges.(time) include the observation innovation for each observation (O-B). These files can be very helpful in understanding the detailed impact of data on the analysis. A tool is provided to process these files, which is introduced in Appendix A.2.

There are many intermediate files in this directory while GSI is running or if the run crashes. The complete list of files in the directory (prior to cleaning) is saved in file

3. Running GSI

list_run_directory. Some knowledge about the content of these files is very helpful for debugging if the GSI run crashes. Please check table 3.4 for the meaning of these files. (Note: you may not see all the files in the list because different observational data are used. Also, the fixed files prepared for a GSI run, such as CRTM coefficient files, are not included.)

File name	Content
sigf03	This is a temporary file, holding binary format back-
	ground files (typically sigf03, sigf06 and sigf09 if FGAT
	used). When you see this file, at the minimum, a back-
	ground file was successfully read in.
siganl	Analysis results in binary format. When this file exists,
	the analysis has finished.
pe????.(conv or instru-	Diagnostic files for conventional and satellite radiance
ment_satellite)_(outer loop)	observations at each outer loop and each sub-domain
	(????=subdomain id)i.
obs_input.????	Observation scratch files (each file contains observations
	for one observation type within the whole analysis domain
	and time window. ????=observation type id in namelist).
pcpbias_out	Output precipitation bias correction file.

Table 3.4: List of GSI intermediate files

3.4 Introduction to Frequently Used GSI Namelist Options

The complete namelist options and their explanations are listed in Appendix A of the Advanced GSI User's Guide. For most GSI analysis applications, only a few namelist variables need to be changed. Here we introduce frequently used variables for regional analyses:

3.4.1 Set Up the Number of Outer and Inner Loops

To change the number of outer loops and the number of inner iterations in each outer loop, the following three variables in the namelist need to be modified:

- miter: number of outer analysis loops.
- niter(1): maximum iteration number of inner loop iterations for the 1st outer loop. The inner loop will stop when it reaches this maximum number, when it reaches the convergence threshold, or when it fails to converge.
- niter(2): maximum iteration number of inner loop iterations for the 2nd outer loop.
- If miter is larger than two, repeat niter with larger index.

3.4.2 Set Up the Analysis Variable for Moisture

There are two moisture analysis variable options. It is based on the following namelist variable:

qoption = 1 or 2:

- If qoption=1, the moisture analysis variable is pseudo-relative humidity. The saturation specific humidity, qsatg, is computed from the guess and held constant during the inner loop. Thus, the relative humidity control variable can only change via changes in specific humidity, q.
- If qoption=2, the moisture analysis variable is normalized relative humidity. This formulation allows relative humidity to change in the inner loop via changes to surface pressure, temperature, or specific humidity.

3.4.3 Set Up the Background File

The following four variables define which background field will be used in the GSI analyses:

- regional: if true, perform a regional GSI run using either ARW or NMM inputs as the background. If false, perform a global GSI analysis. If either wrf_nmm_regional or wrf_mass_regional are true, it will be set to true.
- wrf_nmm_regional: if true, the background comes from WRF-NMM. When using other background fields, set it to false.
- wrf_mass_regional: if true, the background comes from WRF-ARW. When using other background fields, set it to false.
- nems_nmmb_regional: if true, the background comes from NMMB. When using other background fields, set it to false.
- netcdf: if true, WRF files are in NetCDF format, otherwise WRF files are in binary format. This option only works for a regional GSI analysis.

3.4.4 Set Up the Output of Diagnostic Files

The following variables tell the GSI to write out diagnostic results in certain loops:

- write_diag(1): if true, write out diagnostic data in the beginning of the analysis, so that we can have information on observation background (O-B) differences.
- write_diag(2): if true, write out diagnostic data at the end of the 1st outer loop (before the 2nd outer loop starts).
- write_diag(3): if true, write out diagnostic data at the end of the 2nd outer loop (after the analysis finishes if the outer loop number is two), so that we can have information on observation analysis (O-A) differences.

3. Running GSI

Please check appendix A.2 for the tools to read the diagnostic files.

3.4.5 Set Up the GSI Recognized Observation Files

The following sets up the GSI recognized observation files for GSI observation ingest:

0B	S_INPUT::						
!	dfile	dtype	dplat	dsis	dval	dthin	dsfcalc
	prepbufr	ps	null	ps	1.0	0	0
	prepbufr	t	null	t	1.0	0	0
	prepbufr	q	null	q	1.0	0	0
	prepbufr	pw	null	pw	1.0	0	0
	satwndbufr	uv	null	uv	1.0	0	0
	prepbufr	uv	null	uv	1.0	0	0
	prepbufr	spd	null	spd	1.0	0	0
	prepbufr	dw	null	dw	1.0	0	0
	radarbufr	rw	null	rw	1.0	0	0
	prepbufr	sst	null	sst	1.0	0	0
	gpsrobufr	gps_ref	null	gps	1.0	0	0
	ssmirrbufr	pcp_ssmi	dmsp	pcp_ssmi	1.0	-1	0

- dfile: GSI recognized observation file name. The observation file contains observations used for a GSI analysis. This file can include several observation variables from different observation types. The file name listed by this parameter will be read in by GSI. This name can be changed as long as the name in the link from the BUFR/Prep-BUFR file in the run scripts also changes correspondingly.
- dtype: analysis variable name that GSI can read in. Please note this name should be consistent with that used in the GSI code.
- dplat: sets up the observation platform for a certain observation, which will be read in from the file dfile.
- dsis: sets up the data name (including both data type and platform name) used inside GSI.

Please see Section 4.3 for examples and explanations of these variables.

3.4.6 Set Up Observation Time Window

In the namelist section OBS_INPUT, use time_window_max to set the maximum half time window (hours) for all data types. In the convinto file, you can use the column "twindow" to set the half time window for a certain data type (hours). For conventional observations, only observations within the smaller window of these two will be kept for further processing. For others, observations within time_window_max will be kept for further processing.

3.4.7 Set Up Data Thinning

1) Radiance data thinning

3. Running GSI

Radiance data thinning is controlled through two GSI namelist variables in the section &OBS_INPUT. Below is an example:

/	BS_INPUT dmesh(1)=120.0 S INPUT::),dmesh(2)=60	0.0,dmesh(3	3)=30,time_window_max=	1.5,ext	_sonde=	.true.,
!	dfile	dtype	dplat	dsis	dval	dthin	dsfcalc
	prepbufr	ps	null	ps	1.0	0	0
	gpsrobufr	gps_ref	null	gps	1.0	0	0
	ssmirrbufr	pcp_ssmi	dmsp	pcp_ssmi	1.0	-1	0
	tmirrbufr	pcp_tmi	trmm	pcp_tmi	1.0	-1	0
	hirs3bufr	hirs3	n17	hirs3_n17	6.0	1	0
	hirs4bufr	hirs4	metop-a	hirs4_metop-a	6.0	2	0

The two namelist variables that control the radiance data thinning are real array "dmesh" in the 1st line and the "dthin" values in the 6th column. The "dmesh" array sets mesh sizes for radiance thinning grids in kilometers, while "dthin" defines if the data type it represents needs to be thinned and which thinning grid (mesh size) to use. If the value of dthin is:

- an integer less than or equal to zero, no thinning is needed
- an integer larger than zero, this kind of radiance data will be thinned using the mesh size defined as dmesh (dthin).

The following section provides several thinning examples defined by the above sample &OBS_INPUT section:

- Data type ps from prepbufr: no thinning because dthin=0
- Data type gps_ref from gpsrobufr: no thinning because dthin=0
- Data type pcp_ssmi from dmsp: no thinning because dthin(01)=-1
- Data type hirs3 from NOAA-17: thinning in a 120 km grid because dthin=1 and dmesh(1)=120
- Data type hirs4 from metop-a: thinning in a 60 km grid because dthin=2 and dmesh(2)=60 $\,$

2) Conventional data thinning

The conventional data can also be thinned. However, the setup of thinning is not in the namelist. To give users a complete picture of data thinning, conventional data thinning is briefly introduced here. There are three columns, ithin, rmesh, pmesh, in the convinfo file (more details on this file are in Section 4.3) to configure conventional data thinning:

- ithin: 0 = no thinning; 1 = thinning with grid mesh decided by rmesh and pmesh
- rmesh: horizontal thinning grid size in km
- pmesh: vertical thinning grid size in mb; if 0, then use background vertical grid.

3.4.8 Set Up Background Error Factor

In the namelist section BKGERR, vs is used to set up the scale factor for vertical correlation length and hzscl is defined to set up scale factors for horizontal smoothing. The scale factors for the variance of each analysis variables are set in the anavinfo file. The typical values used in operations for regional and global background error covariance are given and picked based on the choice of background error covariance in the run scripts and sample anavinfo files

3.4.9 Single Observation Test

To do a single observation test, the following namelist option has to be set to true:

oneobtest=.true.

Then go to the namelist section SINGLEOB_TEST to set up the single observation location and variable to be tested, please see Section 4.2 for an example and details on the single observation test.

The guidance in this chapter will help users understand how and where to check output from GSI to determine whether a run was successful. Properly checking the GSI output will also provide useful information to diagnose potential errors in the system. This chapter starts with an introduction to the content and structure of the GSI standard output file: (stdout). It continues with the use of a single observation to check the features of the GSI analysis. Then, observation usage control, analysis domain partitioning, fit files, and the optimization process will all be presented from information within the GSI output files (including stdout).

This chapter follows the online case example for 2014061700. This case uses a WRF-ARW NetCDF file as the background and analyzes several observations typical for operations, including most conventional observation data, several radiance data sets (AMSU-A, HIRS4, and MHS), and GPSRO data. The case was run on a Linux cluster supercomputer, using four processors. Users can execute this test to reproduce the following results by visiting:

http://www.dtcenter.org/com-GSI/users/tutorial/index.php

4.1 Understanding Standard Output (*stdout*)

In Section 3.3, we listed the files present in the GSI run directory following a successful GSI analysis and briefly introduced the contents of several important files. Of these, **stdout** is the most useful because critical information about the GSI analysis can be obtained from the file. From **stdout**, users can check if the GSI has successfully completed, if optimal iterations look correct, and if the background and analysis fields are reasonable. Understanding the

content of this file can also be very helpful for users to find where and why the GSI failed if it crashes.

The structure of **stdout** follows the typical steps of a meteorological data analysis system:

- 1. Read in all data and prepare analysis:
 - Read in configuration (namelist)
 - Read in the background
 - Read in observations
 - Partition domain and data for parallel analysis
 - Read in constant fields (fixed files)
- 2. Calculate observation innovations
- 3. Optimal iteration (analysis)
- 4. Save analysis results

In this section, the detailed structure and content of **stdout** are explained using the online example case: 2014061700. To keep the output concise and make it more readable, most repeated content was deleted (shown with a dotted line). For the same reason, the precision of some numbers has been reduced to avoid line breaks in **stdout**.

The following indicates the start of the GSI analysis. It shows the date and time that GSI started running:

The following shows the content of anavinfo, a list of state and control variables:

```
gsi_metguess_mod*init_: 2D-MET STATE VARIABLES:
\mathtt{ps}
z
gsi_metguess_mod*init_: 3D-MET STATE VARIABLES:
u
v
div
vor
tv
q
oz
CW
gsi_metguess_mod*init_: ALL MET STATE VARIABLES:
u
v
div
vor
tv
q
oz
CW
ps
z
state_vectors*init_anasv: 2D-STATE VARIABLES ps
sst
state_vectors*init_anasv: 3D-STATE VARIABLES u
v
                                 tv
tsen
                                 q
oz
                                 CW
```

```
prse
state_vectors*init_anasv: ALL STATE VARIABLES u
37
                                 tv
tsen
                                 q
oz
                                 CW
prse
                                 ps
sst
control_vectors*init_anacv: 2D-CONTROL VARIABLES ARE
ps
                                 sst
control_vectors*init_anacv: 3D-CONTROL VARIABLES ARE
sf
                                 vp
t
                                 q
oz
                                 CW
control_vectors*init_anacv: MOTLEY CONTROL VARIABLES
stl
                                 sti
control_vectors*init_anacv: ALL CONTROL VARIABLES
sf
                                 vp
ps
                                 t
                                 oz
q
sst
                                 CW
stl
                                 sti
```

Next is the content of all namelist variables used in this analysis. The 1st part shows 4DVAR setup information. Please note that while this version of the GSI includes a 4DVAR option, it remains untested. The general setup for the GSI analysis (3DVAR) is located in the &SETUP section of the GSI namelist. Please check Appendix B for definitions and default values of each namelist variable.

```
GSI_4DVAR: nobs_bins =
                                   1
SETUP_4DVAR: 14dvar= F
SETUP_4DVAR: 14densvar= F
SETUP_4DVAR: winlen= 3.000000000000
SETUP 4DVAR: winoff=
                       3.000000000000000
SETUP_4DVAR: hr_obsbin=
                          3.00000000000000
SETUP_4DVAR: nobs_bins=
                                  1
SETUP_4DVAR: ntlevs_ens=
                                   1
SETUP_4DVAR: nsubwin,nhr_subwin=
                                           1
                                                       3
SETUP_4DVAR: lsqrtb= F
SETUP_4DVAR: lbicg= F
SETUP_4DVAR: lcongrad= F
SETUP_4DVAR: lbfgsmin= F
SETUP_4DVAR: ltlint= F
SETUP_4DVAR: ladtest,ladtest_obs,lgrtest= F F F
SETUP_4DVAR: iwrtinc=
                               -1
SETUP_4DVAR: lanczosave= F
SETUP_4DVAR: ltcost= F
SETUP_4DVAR: jsiga=
                             -1
SETUP_4DVAR: nwrvecs=
                               -1
SETUP 4DVAR: iorthomax=
                                  0
SETUP_4DVAR: liauon= F
SETUP_4DVAR: ljc4tlevs= F
SETUP_4DVAR: ibin_anl=
                                 1
in gsimod: use_gfs_stratosphere,nems_nmmb_regional,wrf_nmm_regional= F F F
GSIMOD: ***WARNING*** set l_cloud_analysis=false
INIT_OBSMOD_VARS: reset time window for one or more OBS_INPUT entries to
  INIT_OBSMOD_VARS: ndat_times,ndat_types,ndat=
                                                       1
                                                                  81
         81
INIT_OBSMOD_VARS: nhr_assimilation=
                                              3
GSIMOD: ***WARNING*** reset oberrflg= T
calling gsisub with following input parameters:
&SETUP
GENCODE =
            78.0000000000000
            = 0.00000000000000000E+000,
FACTOMIN
FACTQMAX
                = 0.0000000000000E+000,
CLIP_SUPERSATURATION
                        = F.
FACTV = 1.0000000000000
                                 ,
```

,

FACTL = 1.0000000000000 FACTP = 1.0000000000000 FACTG = 1.00000000000000 FACTW10M = 1.0000000000000 1.000000000000000 FACTHOWV = R_OPTION = F. DELTIM = 1200.0000000000 DTPHYS = 3600.00000000000 BIASCOR = -1.0000000000000 BCOPTION = 1. = 0.0000000000000E+000, DIURNALBC NITER = 0, 2*50, 48*0, NITER_NO_QC = 51 * 1000000. MITER = 2, QOPTION = 2, CWOPTION = 0, NHR_ASSIMILATION з. MIN OFFSET 180. = PSEUDO_Q2 = F, IOUT_ITER = 220, NPREDP = 6. &GRIDOPTS &BKGERR &ANBKGERR &JCOPTS &STRONGOPTS &OBSQC &SUPEROB_RADAR &LAG_DATA &HYBRID_ENSEMBLE &RAPIDREFRESH_CLDSURF . . . &CHEM . . .

This version of GSI attempts to read multiple time level backgrounds for option FGAT (First Guess at Appropriate Time), however we only have provided one time level in this test case. Therefore, there is an error while reading background information:

CONVERT_NETCDF_MASS: problem with flnm1 = wrf_inou1, Status = -1021

We can ignore errors for missing files wrf_inou1, wrf_inou2, ..., and wrf_inou9, because we are only running 3DVAR with one background.

Next, the background fields for the analysis are read in, and the maximum, minimum, and median values of the fields at each vertical level are displayed. Here, only part of the variables ZNU and T are shown, with all other variables read by the GSI listed solely as the variable name in the NetCDF file(rmse_var = T). Maximum and minimum values are useful for a quick verification that the background fields have been read successfully. From this section, we also know the time (iy,m,d,h,m,s) and dimension (nlon,lat,sig_regional) of the background field.

dh1 = 3 iy,m,d,h,m,s= 2014 6 17 0 0 0 dh1 = 3 rmse_var = SMOIS ndim1 = 3 ordering = XYZ staggering = N/A start_index = 1 0 1 1 end_index = 0 332 215 4 WrfType = 104 ierr = 0 rmse_var = T ndim1 = 3 dh1 = 3 WrfType = 104 ierr = 0 ordering = XYZ staggering = N/A start_index = 1 1 1 0 end_index = 332 215 50 0 nlon,lat,sig_regional= 215 50 332 rmse_var = P_TOP ndim1= 0 WrfType = 104 WRF_REAL= 104 ierr = 0 ordering = 0 staggering = N/A start_index = 1 1 1 0 332 end_index = 215 50 0 p_top= 2000.000 rmse_var = ZNU ndim1= 1 WrfType = 104 WRF_REAL= 104 ierr = 0 ordering = Z staggering = N/A start_index = 1 start_index = 0 1 1 end_index = 50 215 50 0 k,znu(k)= 1 0.9990000 k,znu(k)= 2 0.9960001 k,znu(k)= 3 0.9905000 7.1999999E-03 k,znu(k)= 49 k,znu(k)= 50 2.350000E-03 rmse_var = ZNW ndim1= 1 . . . rmse_var = RDX ndim1= 0 rmse_var = RDY ndim1= 0 . . . rmse_var = MAPFAC_M ndim1= 2 . . . rmse_var = XLAT ndim1= 2 . . . rmse_var = XLONG ndim1= 2 . . . rmse_var = MUB ndim1= 2 . . . rmse_var = MU ndim1= 2 . . . rmse_var = PHB ndim1= 3 rmse_var = T ndim1= 3 WrfType = 104 WRF_REAL= 104 ierr = 0 ordering = XYZ staggering = N/A start_index = 0 1 1 1 end_index = 215 332 50 0 k,max,min,mid T= 1 321.5280 270.7682 309.0504 321.6272 309.1002 k,max,min,mid T= 2 270.9064 k,max,min,mid T= 321.4596 271.1610 309.1918 3 k,max,min,mid T= 4 321.2505 271.6038 309.3501 k,max,min,mid T= 5 321.6713 272.2668 309.4191 k,max,min,mid T= 48 632.2557 567.8249 596,6701 k,max,min,mid T= 49 659.2219 604.4777 630.4330 k,max,min,mid T= 689.7565 646.8995 668.5146 50 rmse_var = QVAPOR ndim1= 3

• • •

rmse_var =	U ndim1=	3
rmse_var =	V ndim1=	3
rmse_var =	XLAND ndim1=	2
 rmse_var =	SEAICE ndim1=	2
	SST ndim1=	2
_	IVGTYP ndim1=	2
_	ISLTYP ndim1=	2
	VEGFRA ndim1=	2
	SNOW ndim1=	2
_	U10 ndim1=	2
	V10 ndim1=	2
	SMOIS ndim1=	3
	TSLB ndim1=	3
<pre>rmse_var =</pre>	TSK ndim1=	2
rmse_var =	Q2 ndim1=	2
	QCLOUD ndim1=	3
<pre>rmse_var =</pre>	QRAIN ndim1=	3
	QSNOW ndim1=	3
	QICE ndim1=	3
<pre>rmse_var =</pre>	QGRAUP ndim1=	3
	QNRAIN ndim1=	3
	RAD_TTEN_DFI ndim1	= 3
•••		

For some variables, the following NETCDF error information might show up when they are not in the background fields. These errors don't affect the GSI run so you can ignore them.

rmse_var = QSNOW r	dim1=	3			
WrfType =	104 WRF_R	EAL=	104 ierr :	=	-1021
ordering = XYZ sta	ggering = 1	A/A			
<pre>start_index =</pre>	1	1	1		0
end_index =	332	215	50	0	
NetCDF error: Net(DF: Variable	e not found			
NetCDF error: Net(DF: Variable	e not found			
NetCDF error in wi	f_io.F90, 1:	ine 2	2842 Varname	QSNOW	
NetCDF error in wi	f_io.F90, 1:	ine 2	2842 Varname	QSNOW	

Again, some error information on missing background files shows up. Ignore if you are not doing FGAT.

CONVERT_NETCDF_MASS: problem with flnm1 = wrf_inou4, Status = -1021

Following this is information on the byte order of the binary background files. Since we used a NetCDF file, there is no need to be concerned with byte order. When using a binary format background, byte-order can be a problem. Beginning with the release version v3.2, GSI can automatically check the background byte-order and read it in the right order:

in convert_regional_guess, for wrf arw binary input, byte_swap= F

Information on setting the grid related variables, and the beginning and ending indices for thread one:

```
INIT_GRID_VARS: number of threads 1
INIT_GRID_VARS: for thread 1 jtstart,jtstop = 1
168
```

Information on the initial pointer location for each variable in the Jacobian for the use of satellite radiance data:

Vars in Rad-Jacobian (dims)	
sst	0
u	1
v	2
tv	3
q	53
oz	103

Starting subroutine *gsisub* (major GSI control subroutine) and displaying the analysis and background file time (they should be the same):

[000]gsisub(): : starting								
READ_wrf_mass_FILES:	analys	sis date,minutes	201	4	6			
17	0	0 19175040						
READ_wrf_mass_FILES:	sigma	guess file, nming2	0.0000	00000000000	+000			
2014	6	17 0		0 1917	5040			
READ_wrf_mass_FILES:	sigma	fcst files used in a	analysis	:	3			
3.0000000000000		1						
READ_wrf_mass_FILES:	surfa	ce fcst files used in	n analys	is:	3			
3.0000000000000		1						
GESINFO: Guess da	te is	0	6	17	2014			
0.00000000000000E+0	00							
GESINFO: Analysis da	te is	2014	6	17	0			
0 20140617	00 3	.0000000000000						
using restart file d	ate =	2014	6	17	0			

Read in radar location information and generate superobs for radar level-II radial velocity. This case didn't have radar level-II velocity data linked, therefore there is warning about when opening the file, but this will not impact the rest of the GSI analysis.

RADAR_BUFR_READ_ALL: analysis time is 2014 6 17 0 RADAR_BUFR_READ_ALL: NO RADARS KEPT IN radar_bufr_read_all, continue without level 2 data

Read in information from fix file *scaninfo* (see table 3.2) and *pcpinfo* (see table 3.2).

***WARNING file scaninfo not found, use default CREATE_PCP_RANDOM: iseed= 2014061700 PCPINFO_READ: no pcpbias file. set predxp=0.0

Read in and show the content of the conventional observation information file (*convinfo*; see Section 4.3 for details). Here is the part of the **stdout** file showing information from *convinfo*:

READ_CONVINF0: tcp 112 0.00000 0 0.00000 READ_CONVINF0: ps 120 0.300000E-03 0 0.00000	0 1 3.00000 0.00000 0 1 3.00000 0.00000	0 0 0 0 0.00000 0 0 0 0 0.00000	75.0000 5.00000 0.00000 2 4.00000 3.00000 0.00000 2	1.00000	75.0000 4.00000
READ_CONVINFO: t 120 0.100000E-05 0 0.00000	0 1 3.00000	0 0 0 0 0.00000	8.00000 5.60000 0.00000 2	1.30000	8.00000
READ_CONVINFO: t 126 0.100000E-02 0 0.00000	0 -1 3.00000 0.00000	0 0 0 0 0.00000	8.00000 5.60000 0.00000 2	1.30000	8.00000
READ_CONVINFO: gps 729 0.00000 0 0.00000	0 -1 3.00000	0 0 0	10.0000 10.0000 0.00000 2	1.00000	10.0000
READ_CONVINFO: gps 44 0.00000 0 0.00000	0 -1 3.00000 0.00000	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	10.0000 10.0000 0.00000 2	1.00000	10.0000

Starting subroutine *glbsoi* with information on reading in background fields from the intermediate binary file *sigf03* and partitioning the whole 2D field into subdomains for parallel analysis:

```
glbsoi: starting ...
gsi_metguess_mod*create_: alloc() for met-guess done
guess_grids*create_chemges_grids: trouble getting number of chem/gases
at 0 in read_wrf_mass_guess
at 0.1 in read_wrf_mass_guess
at 1 in read_wrf_mass_guess, lm
                                           =
                                                50
at 1 in read_wrf_mass_guess, num_mass_fields=
                                                215
at 1 in read_wrf_mass_guess, nfldsig =
                                                 1
at 1 in read_wrf_mass_guess, num_all_fields=
                                               215
at 1 in read_wrf_mass_guess, npe
                                      =
                                                4
at 1 in read_wrf_mass_guess, num_loc_groups=
                                                53
at 1 in read_wrf_mass_guess, num_all_pad =
                                               216
at 1 in read_wrf_mass_guess, num_loc_groups=
                                               54
READ_WRF_MASS_GUESS: open lendian_in= 15 to file=sigf03
READ_WRF_MASS_GUESS: open lendian in= 15 to file=sigf03
READ_WRF_MASS_GUESS: open lendian_in=
                                                15 to file=sigf03
in read_wrf_mass_guess, num_doubtful_sfct_all =
                                                     0
 in read_wrf_mass_guess, num_doubtful_sfct_all =
                                                             0
```

Show observation observer as successfully initialized and inquire about the control vectors (space for analysis variables).

observer_init: successfully initialized	
control_vectors: length= 5613648	
<pre>control_vectors: currently allocated=</pre>	0
control_vectors: maximum allocated=	0
control_vectors: number of allocates=	0
control_vectors: number of deallocates=	0
control_vectors: Estimated max memory used=	0.0 Mb

Show the source of observation error used in the analysis (details see Section 4.7.1):

CONVERR: using observation errors from user provided table

The following information is related to the observation ingest processes, which is distributed over all the processors with each processor reading in at least one observation type. To speed up the reading process, some of the large datasets will use more than one (ntasks) processor for the ingest process.

Before reading in data from BUFR files, GSI checks the file status to insure the observation time matches the analysis time and whether the namelist option *offtime_data* is set (can be used to turn off the time consistency check between observation and analysis time). This step also checks for consistency between the satellite radiance data types in the BUFR files and the usage setups in the *satinfo* files. The following shows **stdout** information from this step:

<pre>read_obs_check: read_obs_check: read_obs_check: read_obs_check: read_obs_check: read_obs_check: read_obs_check: read_obs_check: read_obs_check: read_obs_check:</pre>	bufr bufr bufr bufr bufr bufr bufr	file file file file file file file file	uv rw pcp_tmi hirs3 goes_img date is date is date is	g g	201406 trmm n17 g11 201406 201406 201406 n18	61700 61700	not not not not prej prej amsu	avai avai avai avai obufr obufr nabuf	lable lable lable lable lable g t		oufr oufr oufr	
••••												
<pre>read_obs_check: read_obs_check: read_obs_check: read_obs_check: read_obs_check:</pre>	bufr bufr bufr	file file file	omi seviri atms	; 1 1	g15 aura m09 npp 201406	61700	not not not	avai avai avai	lable lable lable	gsnd11 omibu: sevir: atmsbu	fr ibufr	
read_obs_check: read_obs_check: read_obs_check: data type mta_c prepbufr	bufr bufr	file	gome uv	1	m08 metop- ed in		not not	avai avai	lable. lable	sevir: gomeb oscatl t read	ıfr oufr	
data type gos_c	tp		not	us	ed in	info	file	ə	do no	t read	file	
prepbufr data type rad_re refInGSI data type lghtn	əf									t read t read		
lghtInGSI data type larcc larcInGSI	ld									t read		

The list of observation types that were read in and processors used to read them:

number of	extra	proc	essors	1						
READ_OBS:	read	33	mhs	mhs_n18	using	ntasks=	2	0	131	0
READ_OBS:	read	34	mhs	mhs_n19	using	ntasks=	2	2	153	0
READ_OBS:	read	35	mhs	mhs_metop-a	using	ntasks=	2	0	563	0
READ_OBS:	read	36	mhs	mhs_metop-b	using	ntasks=	2	2	2	0
READ_OBS:	read	1	ps	ps	using	ntasks=	1	0	0	0
READ_OBS:	read	2	t	t	using	ntasks=	1	1	0	0
READ_OBS:	read	3	q	q	using	ntasks=	1	2	0	0

READ_OBS:	read	4	pw	pw	using	ntasks=	1	3	839	0
READ_OBS:	read	6	uv	uv	using	ntasks=	1	0	0	0
READ_OBS:	read	10	sst	sst	using	ntasks=	1	1	504	0
READ_OBS:	read	11	gps_ref	gps	using	ntasks=	1	2	0	0
READ_OBS:	read	19	hirs4	hirs4_metop-a	using	ntasks=	2	3	277	0
READ_OBS:	read	21	hirs4	hirs4_n19	using	ntasks=	1	0	75	0
READ_OBS:	read	22	hirs4	hirs4_metop-b	using 1	ntasks=	1	1	2	0
READ_OBS:	read	26	amsua	amsua_n15	using	ntasks=	1	2	27	0
READ_OBS:	read	27	amsua	amsua_n18	using	ntasks=	1	3	45	0
READ_OBS:	read	28	amsua	amsua_n19	using	ntasks=	1	0	47	0
READ_OBS:	read	29	amsua	amsua_metop-a	using 1	ntasks=	1	1	124	0
READ_OBS:	read	30	amsua	amsua_metop-b	using	ntasks=	1	2	2	0

Display basic statistics for full horizontal surface fields (If radiance BUFR files are not linked, this section will not be in the **stdout** file):

GETSFC: ente 215	er with nlat_sfc,nlon_ 332	_sfc=	0	0 and nlat, nlon=
210	llat_sfc,nlon_sfc=	215	332	
Status Var	Mean	Min		Max
sfcges2 FC10	1.00000000000E+00	1.00000000	000E+00	1.00000000000E+00
sfcges2 SNOW	8.137817211798E-02	0.00000000	000E+00	9.510296630859E+01
sfcges2 VFRC	1.701514588514E-01	0.00000000	000E+00	9.899999499321E-01
sfcges2 SRGH	5.003234230527E-02	5.00000074	506E-02	5.00000074506E-02
sfcges2 STMP	2.936729335948E+02	2.643117675	781E+02	3.229424743652E+02
sfcges2 SMST	7.664003944557E-01	6.047149747	610E-02	1.00000000000E+00
sfcges2 SST	2.942266741384E+02	2.688000183	105E+02	3.240092468262E+02
sfcges2 VTYP	1.463281031101E+01	1.00000000	000E+00	2.40000000000E+01
sfcges2 ISLI	3.405295601009E-01	0.00000000	000E+00	2.00000000000E+00
sfcges2 STYP	1.137135051835E+01	1.00000000	000E+00	1.60000000000E+01

Loop over all data files to read in observations, also read in rejection list for surface observations and show GPS observations outside the time window:

READ_BUFRTOVS : file=mhsbufr	type=mhs	sis=mhs_n18	nread=	248485 ithin= 2
rmesh= 60.000000 isfcalc= 0 ndata=	26765 ntask= 2			
READ_BUFRTOVS : file=mhsbufr	type=mhs	sis=mhs_n19	nread=	60900 ithin= 2
rmesh= 60.000000 isfcalc= 0 ndata=	6725 ntask= 2			
READ_BUFRTOVS : file=mhsbufr	type=mhs	sis=mhs_metop-a	nread=	142555 ithin= 2
rmesh= 60.000000 isfcalc= 0 ndata=	15145 ntask= 2			
READ_BUFRTOVS : file=mhsbufr	type=mhs	sis=mhs_metop-b	nread=	113590 ithin= 2
rmesh= 60.000000 isfcalc= 0 ndata=				
READ_PREPBUFR: messages/reports =	142 / 209	25 ntread =		
1				
new vad flag:: F				
READ_PREPBUFR : file=prepbufr	type=pw	sis=pw	nread=	252 ithin= 0 rmesh=
120.000000 isfcalc= 0 ndata= 252	ntask= 1	-		
READ_PREPBUFR: messages/reports =	682 / 670	83 ntread =		
1				
READ_PREPBUFR: time offset is 3.0000	0000000000 hc	ours.		
new vad flag:: F				
READ_PREPBUFR: messages/reports =	682 / 670	83 ntread =		
1				
mesonetuselist: listexist,nprov= F	0			
w_rejectlist: wlistexist,nwrjs= F	0			
t_rejectlist: tlistexist, ntrjs= F	0			
· ·				
READ_PREPBUFR : file=prepbufr	type=ps	sis=ps	nread=	23868 ithin= 0 rmesh=
120.000000 isfcalc= 0 ndata= 15819	ntask= 1			
READ_PREPBUFR : file=prepbufr	type=t	sis=t	nread=	26296 ithin= 0 rmesh=
120.000000 isfcalc= 0 ndata= 25686	ntask= 1			
READ_PREPBUFR : file=prepbufr	type=sst	sis=sst	nread=	0 ithin= 0 rmesh=
120.000000 isfcalc= 0 ndata= 0	ntask= 1			
READ_PREPBUFR : file=prepbufr	type=q	sis=q	nread=	24461 ithin= 0 rmesh=
120.000000 isfcalc= 0 ndata= 20989	ntask= 1	-		
READ_BUFRTOVS : file=hirs4bufr	r type=hirs4	sis=hirs4_n19	nread=	55613 ithin= 2 rmesh=
	8 ntask= 1			
READ_BUFRTOVS : file=amsuabufr	r type=amsua	sis=amsua_n19	nread=	20370 ithin= 2
rmesh= 60.000000 isfcalc= 0 ndata=	16912 ntask= 1			

Using the above output information, many details on the observations can be obtained. For example, the last line indicates that subroutine *READ_BUFRTOVS* was called to read in NOAA-19 AMSU-A (sis=amsua_n19) data from the BUFR file *amsuabufr* (file=amsuabufr). Furthermore, there are 20370 observations in this file (nread=20370) and 16912 in the analysis domain and within the time window (ndata=16912). The data was thinned on a 60 km coarse grid (rmesh=60.000000).

The next step partitions observations into subdomains. The observation distribution is summarized below by listing the number of observations for each variable per subdomain (see Section 4.4 for more information):

OBS_PARA:	ps		1429	3190	4655	6774
OBS_PARA:	t		2564	5200	7057	11128
OBS_PARA:	q		2346	4626	6148	8128
OBS_PARA:	pw		65	80	63	49
OBS_PARA:	uv		3358	6453	8091	11998
OBS_PARA:	gps_ref		1799	1368	2664	3520
OBS_PARA:	hirs4	metop-a	0	0	1146	1661
OBS_PARA:	hirs4	n19	213	1020	0	0
OBS_PARA:	hirs4	metop-b	0	0	85	555
OBS_PARA:	amsua	n15	1458	2026	830	234
OBS_PARA:	amsua	n18	2223	2318	108	0
OBS_PARA:	amsua	n19	176	960	0	0
OBS_PARA:	amsua	metop-a	0	0	1077	1559
OBS_PARA:	amsua	metop-b	0	0	265	1829
OBS_PARA:	mhs	n18	2550	2695	160	0
OBS_PARA:	mhs	n19	246	1103	0	0
OBS_PARA:	mhs	metop-a	0	0	1237	1809
OBS_PARA:	mhs	metop-b	0	0	321	2128

Information on ingesting background error statistics:

```
m_berror_stats_reg::berror_read_bal_reg(PREBAL_REG): get balance variables"
berror_stats". mype,nsigstat,nlatstat = 0 60 93
m_berror_stats_reg::berror_read_wgt_reg(PREWGT_REG): read error amplitudes "
berror_stats". mype,nsigstat,nlatstat = 0 60 93
Assigned default statistics to variable oz
Assigned default statistics to variable cw
```

From this point forward in the **stdout** file, the output shows many repeated entries. This is because the information is written from inside the outer loop. Typically the outer loop is run twice.

For each outer loop, the work begins with the calculation of the observation innovation. This calculation is done by the subroutine **setuprhsall**, which sets up the right hand side (rhs) of the analysis equation. This information is contained within the **stdout** file, which is shown in the following sections:

Start the first outer analysis loop:

GLBSOI: jiter,jiterstart,jiterlast,jiterend= 1 1 2 1

Calculate observation innovation for each data type in the first outer loop:

SETUPALL:,obstype,isis,nreal,nchanl= ps ps 20 0 SETUPALL:,obstype,isis,nreal,nchanl= 25 0 t t SETUPALL:,obstype,isis,nreal,nchanl= q 26 0 q SETUPALL:,obstype,isis,nreal,nchanl= pw 20 0 pw 25 SETUPALL:,obstype,isis,nreal,nchanl= uv uv 0 SETUPALL:,obstype,isis,nreal,nchanl= gps_ref 16 gps 0 SETUPALL:,obstype,isis,nreal,nchanl= hirs4 hirs4_n19 33 19 O setuprad: passive obs 21 hirs4_n19 crtm_interface*init_crtm: crtm_init() on path "./" SpcCoeff_ReadFile(Binary)(INFORMATION) : FILE: ./hirs4_n19.SpcCoeff.bin; ^M SpcCoeff RELEASE.VERSION: 8.03^M N_CHANNELS=19 Read_ODPS_Binary(INFORMATION) : FILE: ./hirs4_n19.TauCoeff.bin; ^M ODPS RELEASE.VERSION: 2.01 N_LAYERS=100 N_COMPONENTS=5 N_ABSORBERS=3 N_CHANNELS=19 N_COEFFS=82000 SEcategory_ReadFile(INFORMATION) : FILE: ./NPOESS.IRland.EmisCoeff.bin; ^M SEcategory RELEASE.VERSION: 3.01^M CLASSIFICATION: NPOESS, N_FREQUENCIES=20 N_SURFACE_TYPES=20 SETUPALL:,obstype,isis,nreal,nchanl= hirs4 33 19 hirs4_metop-a crtm_interface*init_crtm: crtm_init() on path "./"

In the above section, when computing the radiance observation innovation, information on reading in CRTM coefficients follows SETUPALL information. In the **stdout** file, only information related to available radiance data are printed. The complete innovation information can be found in the diagnostic files for each observation (for details see Appendix A.2):

... FitCoeff_ReadFile(INFORMATION) : FILE: ./FASTEM6.MWwater.EmisCoeff.bin; ^M FitCoeff RELEASE.VERSION : 1.6; DIMENSIONS= 3, 6, 2 MWwaterCoeff_ReadFile(INFORMATION) : FILE: ./FASTEM6.MWwater.EmisCoeff.bin; ^M MWwaterCoeff RELEASE.VERSION: 1.6 SETUPRAD: write header record for mhs_n19 12 30 8 0 0 22 4 30303 to file pe0000.mhs_n19_01 2014061700

The inner iteration of the first outer loop is discussed in the example below. In this example, the maximum number of iterations is 50.

Print cost function values for each inner iteration (see section 4.6 for more details):

GLBSOI: START pcgsoi pcgsoi: gnorm(1:2),b=			2 767403469	07800571605+03	0 00000000	000000000000000000000000000000000000000		
Begin J table inner/ou			1	01022011021103	0.0000000	000000000000000000000000000000000000000		
•	-		-					
surface pressure	5.701220	7042385944E-	03					
J term surface pressure temperature	6.424208	7278840627E-	03					
wind	1.678260	7330525603E	04					
moisture	3.587818	3830232451E-	03					
ens	7.881488	3785376896E-	03					
radiance	3.433488	4315701471E-	04					
gps radiance								
J Global		7839910673E-						
End Jo table inner/out	er loop	0	1					
Initial cost function =	7.4712227839	91067263E+04						
Initial gradient norm =	5.2606116277	31377382E+0:						
cost,grad,step,b,step?	= 1 0 7.4	712227839910	67263E+04	5.260611627731	L377382E+01	1.717817994849075269E+	00 0.000000000000000000000000000E+0) good
pcgsoi: gnorm(1:2),b=	1.754232612149	755596E+03	1.754232612	2149755141E+03	6.33891165	9627933792E-01		-
cost,grad,step,b,step?	= 1 1 6.9	958332360510	93263E+04	4.188356016565	5158058E+01	4.106937422100393142E+	00 6.338911659627933792E-0	good
<pre>pcgsoi: gnorm(1:2),b=</pre>	1.216588309725	912268E+03	1.216588309	9725912268E+03	6.93515957	5188962755E-01		
cost,grad,step,b,step?	= 1 2 6.2	753808798604	17917E+04	3.487962599750	0622417E+01	2.174716042085542700E+	00 6.935159575188962755E-0	l good
<pre>pcgsoi: gnorm(1:2),b=</pre>	1.156766558917	323891E+03	1.156766558	3917324346E+03	9.50828270	8864222998E-01		
							00 9.508282708864222998E-0	. good
pcgsoi: gnorm(1:2),b=	6.945724726018	979709E+02	6.945724726	5018985393E+02	6.00443077	'5142600707E-01		
							00 1.076393393015242506E+0) good
pcgsoi: gnorm(1:2),b=								
		42125025938	93171E+04	1.407135218172	2236746E+00	5.458012252072157899E+	00 7.011209809087933786E-0	l good
update_guess: successf	ully complete							

At the end of the 1st outer loop, print some diagnostics about the analysis increments as well as information on the guess fields after adding the analysis increments to the background:

Status Va	r Mean	Min	Max	
analysis U	3.027810174754E+00	-4.616646796505E+01	6.874148210358E+01	
analysis V	-2.783966384966E-02	-6.673607446514E+01	6.206906140999E+01	
analysis TV	2.466648731614E+02	1.909849532362E+02	3.159577451606E+02	
analysis Q	2.789588139811E-03	1.0000000000E-07	2.260955460480E-02	
analysis TS	EN 2.461750146062E+02	1.909846857229E+02	3.153599236074E+02	
analysis OZ	1.00000000007E-15	1.0000000000E-15	1.00000000000E-15	
analysis CW	0.0000000000E+00	0.0000000000E+00	0.0000000000E+00	
analysis DI	V 0.0000000000E+00	0.0000000000E+00	0.00000000000E+00	
analysis VO	R 0.0000000000E+00	0.0000000000E+00	0.0000000000E+00	
analysis PR	SL 4.154470108570E+01	2.152367800892E+00	1.028272918117E+02	
analysis PS	9.910751025141E+01	6.684714489139E+01	1.029767184368E+02	
analysis SS	T 2.942451749464E+02	2.688000183105E+02	3.240092468262E+02	
analysis ra	db 6.939468963354E-02	-1.373884240000E+02	1.230549030000E+02	
analysis pc	pb 0.000000000E+00	0.0000000000E+00	0.00000000000E+00	
analysis af	tb 0.0000000000E+00	0.0000000000E+00	0.00000000000E+00	
increment u		6.699567621	======================================	7.008598936474E+0
increment v		1.5987413177		8.688133965521E+(
increment t	v	-5,4360128948	301E-04 -2.969908758852E+00	4.753382796517E+0
increment t	sen	4,7400943802	224E-04 -2.966625119631E+00	4.955252532399E+0
increment q		-5.6664546947	731E-06 -4.783507458114E-03	4.607810408495E-0
increment o	Z	0.000000000	0.000000000000000000000000000000000000	0.00000000000E+0
increment c	w	0.000000000	0.000000000000000000000000000000000000	0.00000000000E+0
increment p	rse	4.6841952475	526E-03 -8.941125614721E-02	1.065972973935E-0
increment p		1.1450220123	350E-02 -8.941125614721E-02	1.065972973935E-0
increment s	st	2.3373222053	329E-02 -5.017646098146E-01	1.017498439243E+0

Start the second outer loop.

```
GLBSOI: jiter, jiterstart, jiterlast, jiterend= 2 1
2 1
```

Calculate observation innovations for each data type in the second outer loop:

SETUPALL:,obstype,isis,nreal,nchanl=	ps	ps	20	0
SETUPALL:,obstype,isis,nreal,nchanl=	t	t	25	0
<pre>SETUPALL:,obstype,isis,nreal,nchanl=</pre>	q	q	26	0
• • •				

When calculating the radiance data innovation, there is no need to read in CRTM coefficients again because they were already read in during the first outer loop:

<pre>SETUPALL:,obstype,isis,nreal,nchanl= SETUPALL:,obstype,isis,nreal,nchanl= SETUPALL:,obstype,isis,nreal,nchanl=</pre>	ps t q	ps t q	20 25 26	0 0 0
SETUPALL:,obstype,isis,nreal,nchanl=	pw	pw	20	0
SETUPALL:,obstype,isis,nreal,nchanl=	uv	uv	25	0
<pre>SETUPALL:,obstype,isis,nreal,nchanl=</pre>	gps_ref	gps	16	0
<pre>SETUPALL:,obstype,isis,nreal,nchanl=</pre>	hirs4	hirs4_n19	33	19
O setuprad: passive obs	21 ł	nirs4_n19		
SETUPALL:,obstype,isis,nreal,nchanl=	hirs4	hirs4_metop-a	33	19
SETUPALL:,obstype,isis,nreal,nchanl=	amsua	amsua_n15	33	15
SETUPALL:,obstype,isis,nreal,nchanl=	amsua	amsua_n18	33	15
SETUPALL:,obstype,isis,nreal,nchanl=	hirs4	hirs4_metop-b	33	19
SETUPALL:,obstype,isis,nreal,nchanl=	amsua	amsua_metop-a	33	15
SETUPALL:,obstype,isis,nreal,nchanl=	amsua	amsua_n19	33	15
SETUPALL:,obstype,isis,nreal,nchanl=	amsua	amsua_metop-b	33	15
SETUPALL:,obstype,isis,nreal,nchanl=	mhs	mhs_n18	33	5
SETUPALL:,obstype,isis,nreal,nchanl=	mhs	mhs_metop-a	33	5
SETUPALL:,obstype,isis,nreal,nchanl=	mhs	mhs_metop-b	33	5
<pre>SETUPALL:,obstype,isis,nreal,nchanl=</pre>	mhs	mhs_n19	33	5

The output from the inner iterations in the second outer loop is shown below. In this example, the maximum number of iterations is 50.

Print cost function values for each inner iteration (see section 4.6 for more details):

GLBSOI: START pcgsoi								
<pre>pcgsoi: gnorm(1:2),b=</pre>			9.12552930	4049867960E+02	0.0000000	000000000E+00		
Begin J table inner/o	uter loop	0	2					
J term			r					
background surface pressure	5.152067	78195203345E	-03					
surface pressure	4.118028	39830866377E	-03					
temperature	4.307977	4551559522E	-03					
wind	1.071440)1927194920E	-04					
moisture	1.369606	52777723114E	-03					
gps	3.117568	30587783127E	-03					
radiance	2.425518	6183427002E	-04					
J Global	5.303483	36704935471E	-04					
End Jo table inner/ou	ter loop	0	2					
Initial cost function	= 5.3034836704	193547106E+0	L .					
Initial gradient norm	= 3.0208491031	L57896565E+0						
cost,grad,step,b,step?	= 2 0 5.3	303483670493	47106E+04	3.02084910315	7896565E+01	1.417696886759607366E+00	0.0000000000000000000000E+00	good
pcgsoi: gnorm(1:2),b=	3.752399307247	351885E+02	3.75239930	7247339380E+02	4.11197989	9710630493E-01		
cost,grad,step,b,step?	= 2 1 5.1	74111325649	95937E+04	1.93711107251	1680021E+01	5.251908998246061167E+00	4.111979899710630493E-01	good
pcgsoi: gnorm(1:2),b=	2.403892651142	2143109E+02	2.40389265	1142157320E+02	6.40628156	6301591512E-01		•
cost,grad,step,b,step?	= 2 2 4.9	77038728782	49382E+04	1.550449177219	9989672E+01	3.447718424869901543E+00	6.406281566301591512E-01	good
pcgsoi: gnorm(1:2),b=	3.513995903418	3547186E+02	3.51399590	3418544913E+02	1.46179402	0522907633E+00		•
cost,grad,step,b,step?	= 2 3 4.8	394159278934	28354E+04	1.874565523906	6419173E+01	1.888694950411589302E+00	1.461794020522907633E+00	good
								•
<pre>pcgsoi: gnorm(1:2),b=</pre>	4.240269047847	287087E-01	4.24026904	7846388362E-01	8.92802949	6575288215E-01		
cost,grad,step,b,step?	= 2 49 4.5	549093632176	67331E+04	6.511734828636	6134287E-01	3.659140330083644699E+00	8.928029496575288215E-01	good
pcgsoi: gnorm(1:2),b=								0
							7.458592024656659492E-01	good
update_guess: success								5
1 =0	J 1							

Diagnostics of the analysis results after adding the analysis increment to the guess, as well as diagnostics about the analysis increments:

	=====				
Status V	ar	Mean	Min		Max
analysis U	ſ	3.031191508676E+00	-4.617266089077E+01	6.8898	16661368E+01
analysis V	, ,	-2.943556460524E-02	-6.653467898266E+01	6.1664	08410383E+01
analysis T	'V	2.467118072154E+02	1.909576489123E+02	3.1595	94232825E+02
analysis Q	1	2.792097480151E-03	1.0000000000E-07	2.2637	94691793E-02
analysis T	SEN	2.462214978004E+02	1.909573814527E+02	3.1538	08896427E+02
analysis O	Z	1.0000000007E-15	1.0000000000E-15	1.0000	00000000E-15
analysis C	W	0.00000000000E+00	0.0000000000E+00	0.0000	00000000E+00
analysis D	VI	0.0000000000E+00	0.0000000000E+00	0.0000	00000000E+00
analysis V	OR	0.0000000000E+00	0.0000000000E+00	0.0000	00000000E+00
analysis P	RSL	4.154936446270E+01	2.152390788296E+00	1.0287	57430184E+02
analysis P	S	9.910817481416E+01	6.684789651716E+01	1.0298	02303066E+02
analysis S	ST	2.942451749464E+02	2.688000183105E+02	3.24009	92468262E+02
analysis r		6.938254104671E-02	-1.373884240000E+02	1.23054	49030000E+02
analysis p	-	0.00000000000E+00	0.0000000000E+00		00000000E+00
analysis a	ftb	0.00000000000E+00	0.0000000000E+00	0.0000	00000000E+00
increment	-		3.381333921		-1.617060550844
increment	-		-1.595900755		-2.932441477540
increment			4.693405394		-9.818098783002E
increment			4.648264962		-9.818069362856E
increment	-		2.508348182		-2.410389935149E
increment			0.00000000		0.00000000000E
increment			0.00000000		0.000000000000E
increment	-		2.718674106		-5.539352084836E
increment	-		6.645627545		-5.539352084836E
increment	sst		-2.077555444	927E-03	-3.656869699698E

Because the outer loop is set to two, the completion of the 2^{nd} outer loop marks the end of the analysis. The next step is to save the analysis results. Again, only a portion of variable "T" is shown and all other variables are listed according to variable name in the NetCDF file (rmse_var = T). The maximum and minimum values are useful information for a quick sanity check of the analysis:

at 2 in wrwrfmassa				
update sigf03 at 3 in wrwrfmassa				
at 6 in wrwrfmassa				
at 10.11 in wrwrfmassa,ma	x min(temp1)= 2.1931874E-02	1.3461057E-03	
at 10.12 in wrwrfmassa,ma				
at 10.13 in wrwrfmassa,ma				
at 10.14 in wrwrfmassa,ma	-			
iy,m,d,h,m,s= 2014	-	6 17	0	0
0				
nlon,lat,sig_regional=	332	215	50	
rmse_var=P_TOP				
ordering=0	104	101		
WrfType,WRF_REAL= ndim1= 0	104	104		
ndim1= 0 staggering= N/A				
start_index= 1	1	1	0	
end_index1= 332	215	50	0	
p_top= 2000.000				
rmse_var=MUB				
ordering=XY				
WrfType,WRF_REAL=	104	104		
ndim1= 2				
staggering= N/A			0	
start_index= 1 end index1= 332	1	1	0	
end_index1= 332 max,min MUB= 98672.59	215 63425.	50	0	
max,min psfc= 102799.7	66795			
max,min MU= 2799.734	-1187.84			
rmse_var=MU				
ordering=XY				
WrfType,WRF_REAL=	104	104		
ndim1= 2				
staggering= N/A			_	
start_index= 1	1	1	0	
end_index1= 332	215 1 321.6	50	0 309.3401	
k,max,min,mid T= k,max,min,mid T=	2 321.7			
k,max,min,mid T=	3 321.4			
k,max,min,mid T=	49 662.7	604.6494	637.0358	
k,max,min,mid T=	50 693.4	219 647.1161	675.5701	
_				
rmse_var=T				
rmse_var=QVAPOR				
····				
rmse_var=U				
rmse_var=V				
rmse_var=SEAICE				
 rmse_var=SST				
rmse_var=TSK				
rmse_var=Q2				

• • •

After completion of the analysis, the subroutine "setuprhsall" is called again if write_diag(3)=.true., to calculate analysis and O-A information (this marks the third time this information is presented):

ps	ps	20	0
t	t	25	0
q	q	26	0
pw	pw	20	0
	t q	t t q q	t t 25 q q 26

SETUPALL:, ob	ostype,isis,nreal,no	chanl= uv	uv			25	0
SETUPALL:,ot	ostype,isis,nreal,no	chanl= gps_:	ref gps			16	0
SETUPALL:, ob	ostype,isis,nreal,no	chanl= hirs	4 hirs4_n1	.9		33	19
0	setuprad: passive of	obs	21 hirs4_n19				
SETUPRAD: v	write header record	for hirs4_n	19		12		30
8	0	0	22	4	30303		
to file pe(0000.hirs4_n19_03	2014061700					
SETUPALL:,ob	ostype,isis,nreal,no	chanl= hirs	4 hirs4_me	top-a		33	19
SETUPRAD: v	write header record	for hirs4_m	etop-a		12		30
8	0	0	22	4	30303		

Deallocate the data arrays and finalize the GSI run:

```
gsi_metguess_mod*destroy_: dealloc() for met-guess done
observer_final: successfully finalized
glbsoi: complete
[000]gsisub(): : complete.
```

The end of the GSI analysis (reaching this point does not necessarily guarantee a successful analysis), which shows the date and time when GSI finished and some additional resource statistics:

ENDING DATE-TIME JUL 02,2016 20:43:40.422 184 SAT 2457572 PROGRAM GSI_ANL HAS ENDED. The total amount of wall time = 438.663534 = 427.578998 The total amount of time in user mode The total amount of time in sys mode = 9.457562 = 2020132The maximum resident set size (KB) Number of page faults without I/O activity = 312762 Number of page faults with I/O activity = 0 Number of times filesystem performed INPUT = 0 Number of times filesystem performed OUTPUT = 0 Number of Voluntary Context Switches = 7641 Number of InVoluntary Context Switches = 851

Different GSI applications may write out slightly different **stdout** file information but the major flow and information are the same. A good knowledge of the **stdout** file gives users a clear picture of how GSI runs and the key information provided during a GSI run like data distribution and inner iterations.

4.2 Single Observation Test

A single observation test is a GSI where only one (pseudo) observation is assimilated from a specific time and location within the analysis domain. By examining the analysis increments from a single observation test, one can visualize the important features of the analysis, such as the ratio of background error and observation error variance and the pattern of the background error covariance. Therefore, the single observation test is the first thing that users should run after successfully installing the GSI.

4.2.1 Setup a Single Observation Test

To perform the single observation test with the GSI, the following GSI namelist variables need to be set, which should be done through editing the script *run/comgsi_namelist.sh*:

Under the &SETUP section, turn on the single observation test:

```
oneobtest=.true.,
```

under the &SINGLEOB_TEST section, set up single observation features like:

```
maginnov=1.0,
magoberr=0.8,
oneob_type='t',
oblat=38.,
oblon=262.,
obpres=500.,
obdattim= 2014061700,
obhourset=0.,
```

Note:

- Please check Appendix C in the User's Guide for the explanation of each parameter. From these parameters, we can see that a useful observation in the analysis should include information like the observation type (oneob_type), value (maginnov), observation error (magoberr), location (oblat, oblong, obpres), and time (obdattim, obhourset). Users can dump out (use *ncdump*) the global attributes from the NetCDF background file and set oblat=*CEN_LAT*, oblong=*360-CEN_LON* to have the observation at the center of the domain.
- In the analysis, the GSI first generates a prepbufr file including only one observation based on the information given in the namelist &SINGLEOB_TEST section. To generate this prepbufr file, the GSI needs to read in a PrepBUFR table, which is not needed when running a GSI analysis with real observations. The BUFR table is in the *fix*/ directory and needs to be copied to the run directory. We have put the following lines in the GSI run script for the single observation test:

bufrtable=\${FIX_ROOT}/prepobs_prep.bufrtable
cp \$bufrtable ./prepobs_prep.bufrtable

4.2.2 Examples of Single Observation Tests for GSI

Figure 4.1 is a single observation test that has a temperature observation (oneob_type='t') with a one degree innovation (maginnov=1.0) and a 0.8 degree observation error (magoberr=0.8). The background error covariance converted from global (GFS) BE was picked to provide for better illustration.

This single observation was located at the center of the domain. The results are shown with figures of the horizontal and vertical cross sections through the point of maximum analysis increment. The Figure 4.1 was generated using NCL scripts, which can be found in the *util/Analysis_Utilities/plots_ncl* directory, introduced in Section A.4.

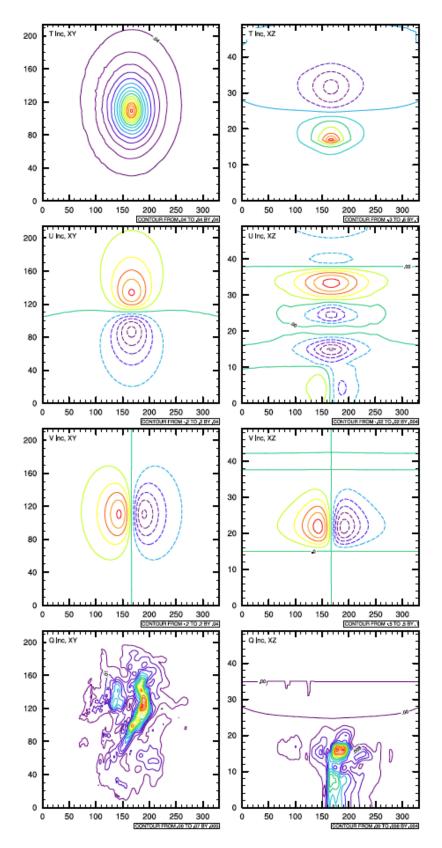


Figure 4.1: Horizontal cross sections (left column) and vertical cross sections (right column) of analysis increment of T, U, V, and Q from a single T observation

4.3 Control Data Usage

Observation data used in the GSI analysis can be controlled through three parts of the GSI system:

- 1. In the GSI run script, by linking observation BUFR files to the working directory
- 2. In section &OBS_INPUT of the GSI namelist (inside *comgsi_namelist.sh*)
- 3. Through parameters in info files (e.g.: convinfo, satinfo, etc.)

Each part provides different levels of control for data usage in the GSI, which is introduced below:

1. Link observation BUFR files to the working directory in the GSI run script:

All BUFR/PrepBUFR observation files need to be linked to the working directory with GSI recognizable names before they can be used in a GSI analysis. The run script (*run_gsi_regional.ksh*) makes these links after locating the working directory. Turning these links on or off can control the use of all the data contained in the BUFR files. Table 4.1 provides a list of all default observation file names recognized by GSI and the corresponding examples of the observation BUFR files from NCEP. The following is the first three rows of the table as an example:

GSI Name	Content	Example file names
prepbufr	Conventional observations, including ps, t, q, pw,	gdas1.t12z.prepbufr
	uv, spd, dw, sst, from observation platforms such as	
	METAR, soundings, etc.	
satwndbufr	satellite winds	gdas1.t12z.satwnd.tm00.bufr_d
amsuabufr	AMSU-A lb radiance (brightness temperatures) from	gdas1.t12z.1bamua.tm00.bufr_d
	satellites NOAA-15, 16, 17,18, 19, and METOP-A/B	

Table 4.1: List of all default observation file names recognized by GSI.

The left column is the GSI recognized name (bold) and the right column are names of BUFR files from NCEP (italic). In the run script, the following lines are used to link the BUFR files in the right column to the working directory using the GSI recognized names shown in the left column:

```
# Link to the prepbufr data
ln -s ${PREPBUFR} ./prepbufr
# Link to the radiance data
ln -s ${OBS_ROOT}/gdas1.t12z.1bamua.tm00.bufr_d amsuabufr
```

The GSI recognized default observation filenames are set up in the namelist section &OBS_INPUT, which can be changed based on application needs (see below for details).

2. In the GSI namelist (inside *comgsi_namelist.sh*), section &OBS_INPUT:

In this namelist section, observation files ("dfile" column) are tied to the observation variables used inside the GSI code ("dsis" column). For example, part of section OBS_INPUT shows:

&0	BS_INPUT						
	dmesh(1)=120.0	,dmesh(2)=60	.0,dmesh(3)=30,time_window_max	=1.5,ext_	sonde=	.true.,
/							
OB	S_INPUT::						
!	dfile	dtype	dplat	dsis	dval	dthin	dsfcalc
	prepbufr	ps	null	ps	1.0	0	0
	prepbufr	t	null	t	1.0	0	0
	prepbufr	q	null	q	1.0	0	0
	prepbufr	pw	null	pw	1.0	0	0
	satwndbufr	uv	null	uv	1.0	0	0
	prepbufr	uv	null	uv	1.0	0	0
	prepbufr	spd	null	spd	1.0	0	0
	prepbufr	dw	null	dw	1.0	0	0
	radarbufr	rw	null	rw	1.0	0	0
	prepbufr	sst	null	sst	1.0	0	0
	gpsrobufr	gps_ref	null	gps	1.0	0	0
	ssmirrbufr	pcp_ssmi	dmsp	pcp_ssmi	1.0	-1	0
	amsuabufr	amsua	n15	amsua_n15	10.0	2	0
	amsuabufr	amsua	n18	amsua_n18	10.0	2	0

This setup tells GSI that conventional observation variables ps, t, and q should be read in from the file prepbufr, while AMSU-A radiances from NOAA-15 and NOAA-18 satellites should be read in from the file **amsuabufr**. Deleting a particular line in &OBS_INPUT will turn off the use of the observation variable presented by the line in the GSI analysis but other variables under the same type can still be used. For example, if we delete:

amsuabufr amsua n15 amsua_n15 10.0 2

Then, the AMSU-A observation from NOAA-15 will not be used in the analysis but the AMSU-A observations from NOAA-18 will still be used.

0

The observation filename in "dfile" can be different from the sample script (*comgsi_namelist.ksh*). If the filename in "dfile" has been changed, the link from the BUFR files to the GSI recognized name in the run script also needs to be changed correspondingly. For example, if we change the "dfile" in **amsuabufr** for NOAA-15 to be amsuabufr_n15,

amsuabufr_n15	amsua	n15	amsua_n15	10.0	2	0
amsuabufr	amsua	n18	amsua_n18	10.0	2	0

Then a new link needs to be added in the run script:

Link to the radiance data ln -s \${0BS_R00T}/le_gdas1.t00z.1bamua.tm00.bufr_d amsuabufr ln -s \${0BS_R00T}/le_gdas1.t00z.1bamua.tm00.bufr_d amsuabufr_n15

The GSI will read NOAA-18 AMSU-A observations from file **amsuabufr** and NOAA-15 AMSU-A observations from file amsuabufr_n15 based on the above changes to the run scripts and namelist. In this example, both **amsuabufr** and amsuabufr_15 are linked to the same BUFR file and NOAA-15 AMSU-A and NOAA-18 AMSU-A observations are still read in from the same BUFR file. If **amsuabufr** and amsuabufr_15 link to different BUFR files, then NOAA-15 AMSU-A and NOAA-18 AMSU-A will be read in from different BUFR files. The changeable filename in *dfile* gives GSI more flexibility to handle multiple data resources.

3. Use info files to control data usage

For each variable, observations can come from multiple platforms (data types or observation instruments). For example, surface pressure (ps) can come from METAR observation stations (data type 187) and rawinsonde (data type 120). There are several files named *info in the GSI system (located in ./fix) to control the usage of observations based on the observation platform. Table 4.2 is a list of info files and their function:

File name	Function and Content
in GSI	
convinfo	Control the usage of conventional data, including tcp, ps, t, q, pw, sst, uv, spd,
	dw, radial wind (Level 2 rw and 2.5 srw), gps, and pm2_5
satinfo	Control the usage of satellite data. Instruments include AMSU-A/B, HIRS3/4,
	MHS, ssmi, ssmis, iasi, airs, sndr, cris, amsre, imgr, seviri, atms, avhrr3, etc., and
	satellites include NOAA 15, 17, 18, 19, aqua, GOES 11, 12, 13, METOP-A/B, NPP,
	DMSP 15,16,17,18,19,20, M08, M09, M10, etc.
ozinfo	Control the usage of ozone data, including sbuv6, 8 from NOAA 14, 16, 17, 18, 19.
	omi_aura, gome_metop-a, and mls_aura
pcpinfo	Control the usage of precipitation data, including pcp_ssmi and pcp_tmi
aeroinfo	Control the usage of aerosol data, including modis_aqua and modis_terra

Table 4.2: The content of info files

The header of each info file includes an explanation of the content of the file. Here we discuss the two most commonly used info files:

• convinfo

The **convinfo** file controls the usage of conventional data. The following is part of the **convinfo** file:

!otype	type	sub i	use	twindow	numgrp	ngroup	nmiter	gross	ermax	ermin	var_b	var_pg	ithin	rmesh	pmesh	npred	pmot	ptime
tcp	112	0	1	3.0	0	0	0	75.0	5.0	1.0	75.0	0.00000	0	0.	0.	0	0.	0.
ps	120	0	1	3.0	0	0	0	4.0	3.0	1.0	4.0	0.000300	0	0.	0.	0	0.	0.
ps	132	0	-1	3.0	0	0	0	4.0	3.0	1.0	4.0	0.000300	0	0.	0.	0	0.	0.
ps	180	0	1	3.0	0	0	0	4.0	3.0	1.0	4.0	0.000300	0	0.	0.	0	0.	0.
ps	180	01	1	3.0	0	0	0	4.0	3.0	1.0	4.0	0.000300	0	0.	0.	0	0.	0.
ps	181	0	1	3.0	0	0	0	3.6	3.0	1.0	3.6	0.000300	0	0.	0.	0	0.	0.
ps	182	0	1	3.0	0	0	0	4.0	3.0	1.0	4.0	0.000300	0	0.	0.	0	0.	0.
ps	183	0	-1	3.0	0	0	0	4.0	3.0	1.0	4.0	0.000300	0	0.	0.	0	0.	0.
ps	187	0	1	3.0	0	0	0	4.0	3.0	1.0	4.0	0.000300	0	0.	0.	0	0.	0.
t	120	0	1	3.0	0	0	0	8.0	5.6	1.3	8.0	0.000001	0	0.	0.	0	0.	0.
t	126	0	-1	3.0	0	0	0	8.0	5.6	1.3	8.0	0.001000	0	0.	0.	0	0.	0.
t	130	0	1	3.0	0	0	0	7.0	5.6	1.3	7.0	0.001000	0	0.	0.	0	0.	0.
t	131	0	1	3.0	0	0	0	7.0	5.6	1.3	7.0	0.001000	0	0.	0.	0	0.	0.
t	132	0	1	3.0	0	0	0	7.0	5.6	1.3	7.0	0.001000	0	0.	0.	0	0.	0.
t	133	0	1	3.0	0	0	0	7.0	5.6	1.3	7.0	0.004000	0	0.	0.	0	0.	0.
t	134	0	-1	3.0	0	0	0	7.0	5.6	1.3	7.0	0.004000	0	0.	0.	0	0.	0.
t	135	0	-1	3.0	0	0	0	7.0	5.6	1.3	7.0	0.004000	0	0.	0.	0	0.	0.
t	180	0	1	3.0	0	0	0	7.0	5.6	1.3	7.0	0.004000	0	0.	0.	0	0.	0.
t	180	01	1	3.0	0	0	0	7.0	5.6	1.3	7.0	0.004000	0	0.	0.	0	0.	0.
t	181	0	-1	3.0	0	0	0	7.0	5.6	1.3	7.0	0.004000	0	0.	0.	0	0.	0.
t	182	0	1	3.0	0	0	0	7.0	5.6	1.3	7.0	0.004000	0	0.	0.	0	0.	0.

The meaning of each column is explained in the header of the file and is listed in Table 4.3.

From this table, we can see that parameter "iuse" is used to control the usage of data and parameter "twindow" is used to control the time window of data usage. Parameters gross, ermax, and ermin are for gross quality control. Through these parameters, GSI can control how to use certain types of data in the analysis.

• satinfo

Column	Content of the column
Name	
otype	observation variables (t, uv, q, etc.)
type	prepbufr observation type (if available)
sub	prepbufr subtype (not yet available)
iuse	flag if to use/not use / monitor data;
	= 1, use data, the data type will be read and used in the analysis after quality control;
	= 0, read in and process data, use for quality control, but do NOT assimilate;
	= -1, monitor data. This data type will be read in and monitored but not be used
	in the GSI analysis.
twindow	time window (+/- hours) for data used in the analysis
numgrp	cross validation parameter - number of groups
ngroup	cross validation parameter - group to remove from data use
nmiter	cross validation parameter - external iteration to introduce removed data
gross	gross error parameter - gross error
ermax	gross error parameter - maximum error
ermin	gross error parameter - minimum error
var_b	variational quality control parameter - b parameter
var_pg	variational quality control parameter - pg parameter
ithin	Flag to turn on thinning (0, no thinning, 1 - thinning)
rmesh	size of horizontal thinning mesh (in kilometers)
pmesh	size of vertical thinning mesh
npred	Number of bias correction predictors
pmot	Option to keep thinned data as monitored, 0: do not keep, other values: keep
ptime	time interval for thinning, 0, no temporal thinning, other values define time interval (less than six)

Table 4.3: list of the content for each convinfo column

The *satinfo* file contains information about the channels, sensors, and satellites. It specifies observation error (cloudy or clear) for each channel, how to use the channels (assimilate, monitor, etc), and other useful information. The following is part of the content of *satinfo*. The meaning of each column is explained in Table 4.4.

!sensor/instr/sat	chan	iuse	error	error_cld	ermax	var_b	var_pg	cld_det
amsua_n15	1	1	3.000	20.000	4.500	10.000	0.000	-2
amsua_n15	2	1	2.200	18.000	4.500	10.000	0.000	-2
amsua_n15	3	1	2.000	12.000	4.500	10.000	0.000	-2
amsua_n15	4	1	0.600	3.000	2.500	10.000	0.000	-2
amsua_n15	5	1	0.300	0.500	2.000	10.000	0.000	-2
amsua_n15	6	-1	0.230	0.300	2.000	10.000	0.000	-2
amsua_n15	7	1	0.250	0.250	2.000	10.000	0.000	-2
amsua_n15	8	1	0.275	0.275	2.000	10.000	0.000	-2
amsua_n15	9	1	0.340	0.340	2.000	10.000	0.000	-2
amsua_n15	10	1	0.400	0.400	2.000	10.000	0.000	-2
amsua_n15	11	-1	0.600	0.600	2.500	10.000	0.000	-2
amsua_n15	12	1	1.000	1.000	3.500	10.000	0.000	-2
amsua_n15	13	1	1.500	1.500	4.500	10.000	0.000	-2
amsua_n15	14	-1	2.000	2.000	4.500	10.000	0.000	-2
amsua_n15	15	1	3.500	15.000	4.500	10.000	0.000	-2
hirs3_n17	1	-1	2.000	0.000	4.500	10.000	0.000	-1
hirs3_n17	2	-1	0.600	0.000	2.500	10.000	0.000	1
hirs3_n17	3	-1	0.530	0.000	2.500	10.000	0.000	1

Table 4.4: list of the content for each satinfo column

Column Name	Content of the column
sensor/instr/sat	Sensor, instrument, and satellite name
chan	Channel number for certain sensor
iuse	= 1, use this channel data;
	=-1, don't use this channel data
error	Variance for each satellite channel
error_cld	Variance for each satellite channel if cloudy
ermax	Error maximum for gross check to observations
var_b	Possible range of variable for gross errors
var_pg	Probability of gross error
icld_det	Use this channel in cloud detection if > 0

4.4 Domain Partition for Parallelization and Observation Distribution

The standard output file (*stdout*) has an information block that shows the distribution of different kinds of observations in each sub-domain. This block follows the observation input section. The following is the observation distribution from the case shown in Section 4.1. From the introduction, we know the prepbufr (conventional data), radiance BUFR files, and GPS BUFR files were used. In this list, the conventional observations (ps, t, q, pw, and uv), GPSRO (gps_ref), and radiance data (amusa, hirs4, and mhs from Metop-a, Metop-b, NOAA 15, and 18) were distributed among four sub-domains:

OBS_PARA: ps

1429 319

3190 4655

6774

OBS_PARA: t		2564	5200	7057	11128
OBS_PARA: q		2346	4626	6148	8128
OBS_PARA: pw		65	80	63	49
OBS_PARA: uv		3358	6453	8091	11998
OBS_PARA: gps_ref		1799	1368	2664	3520
OBS_PARA: hirs4	metop-a	0	0	1146	1661
OBS_PARA: hirs4	n19	213	1020	0	0
OBS_PARA: hirs4	metop-b	0	0	85	555
OBS_PARA: amsua	n15	1458	2026	830	234
OBS_PARA: amsua	n18	2223	2318	108	0
OBS_PARA: amsua	n19	176	960	0	0
OBS_PARA: amsua	metop-a	0	0	1077	1559
OBS_PARA: amsua	metop-b	0	0	265	1829
OBS_PARA: mhs	n18	2550	2695	160	0
OBS_PARA: mhs	n19	246	1103	0	0
OBS_PARA: mhs	metop-a	0	0	1237	1809
OBS_PARA: mhs	metop-b	0	0	321	2128

This list is a good way to quickly check which kinds of data are used in the analysis and how they are distributed in the analysis domain.

4.5 Observation Innovation Statistics

The GSI analysis provides a set of files named *fort.2*^{*} to summarize observations fit to the current solution in each outer loop (except for *fort.220*, see explanation in the next section). The content of some of these files is listed in Table 4.5:

To help users understand the information inside these files, some examples are given in the following sub-sections with corresponding explanations.

4.5.1 Conventional observations

Example of files, including single level data (fort.201, fort.205, and fort.213)

current fit of surface pressure data, ranges in mb											
pressure	levels	s (hPa)=	0.0	2000.0		-					
it	obs	type	stype	count	bias	rms	cpen	qcpen			
o-g 01	ps	120	0000	101	0.1813	0.6089	0.4711	0.4711			
o-g 01	ps	180	0000	601	0.0378	0.6354	0.7171	0.7171			
o-g 01	ps	180	0001	1428	0.1857	0.8555	0.7164	0.7164			
o-g 01	ps	181	0000	610	0.1959	0.8991	0.7387	0.7387			
o-g 01	ps	182	0000	1	0.9173	0.9173	2.8976	2.8976			
o-g 01	ps	187	0000	11149	0.1999	0.7877	0.3360	0.3360			
o-g 01		all		13890	0.1912	0.7931	0.4105	0.4105			
o-g 01	ps	rej 120	0000	1	-3.5799	3.5799	0.0000	0.0000			
o-g 01	ps	rej 180	0001	7	-0.3349	4.9273	0.0000	0.0000			
o-g 01	ps	rej 181	0000	47	1.1146	54.8539	0.0000	0.0000			
o-g 01	ps	rej 183	0000	3	10.4797	10.4836	0.0000	0.0000			
o-g 01	ps	rej 187	0000	52	4.2528	7.4112	0.0000	0.0000			
o-g 01		rej all		110	2.7186	36.2804	0.0000	0.0000			
o-g 01	ps	mon 132	0000	1	0.9173	0.9173	0.2104	0.2104			
o-g 01	ps	mon 180	0000	113	0.0447	0.5158	0.8709	0.8709			
o-g 01	ps	mon 180	0001	24	0.2122	0.4050	0.3559	0.3559			
o-g 01	ps	mon 181	0000	207	0.0910	0.9492	1.2514	1.2514			
o-g 01	ps	mon 183	0000	1386	0.3974	1.0861	0.0000	0.0000			

Table 4.5	: List of the content and units for each fort	mes
File Name	Variables in file	Ranges/units
fort.201 or	fit of surface pressure data	mb
fit_p1.analysis_time		
fort.202 or	fit of u, v wind data	m/s
fit_w1.analysis_time		
fort.203 or	fit of temperature data	K
fit_t1.analysis_time		
fort.204 or	fit of moisture data	percent of qsatu-
fit_q1.analysis_time		ration guess
fort.205	fit of precipitation water data	mm
fort.206	fit of ozone observations from sbuv6_n14	
	(, _n16, _n17, _n18), sbuv8_n16 (, _n17,	
	_n18, _n19), omi_aura, gome_metop-a/b,	
	and mls_aura	
fort.207 or	fit of satellite radiance data, such as: am-	
fit_rad1.analysis_time	sua_n15(, n16, n17, n18, metop-a, aqua,	
	n19), amsub_n17, hirs3_n17, hirs4_n19 (,	
	metop-a), etc.	
fort.208	fit of precipitation rate (pcp_ssmi and	
	pcp_tmi)	
fort.209	fit of radar radial wind (rw)	
fort.210	fit of lidar wind (dw)	
fort.211	fit of radar superob wind data (srw)	
fort.212	fit of GPS data (refractivity or bending	fractional differ-
	angle)	ence
fort.213	fit of conventional sst data	С
fort.214	fit of tropical cyclone central pressure	
fort.215	fit of Lagrangian tracer data	
fort.217	fit of aerosol product (aod)	
fort.218	fit of wind gust	
Fort.219	fit of visibility	

Table 4.5: List of the content and units for each fort files

o-g 01	ps mon 187 0000	88	-0.0100	0.5290	0.7534	0.7534
o-g 01	mon all	1819	0.3188	1.0169	0.2378	0.2378

Example of files including multiple level data (fort.202, fort.203, and fort.204)

i	it c	bs	t	уре	styp	ptop pbot		900.0 1000.0	800.0 900.0	600.0 800.0	100.0 150.0	50.0 100.0	0.0 2000.0	
o-g 0)1	uv		220	0000	count	44	223	223	478	437	519	4231	
o-g O	01	uv		220	0000	bias	0.26	0.51	0.04	0.35	0.99	0.97	0.59	
o-g O	01	uv		220	0000	rms	2.21	2.48	2.51	2.84	5.88	4.79	4.18	
o-g O	01	uv			0000		0.31	0.38	0.44	0.61	1.64	1.18	0.90	
o-g O	01	uv		220	0000	qcpen	0.31	0.38	0.44	0.60	1.63	1.18	0.89	
o-g O	01	uv		223	0000	\mathtt{count}	0	6	16	88	32	8	331	
o-g O	01	uv		223	0000	bias	0.00	0.23	-0.29	0.85	-0.76	-4.89	0.27	
o-g O		uv			0000	rms	0.00	1.28	1.32	2.86	5.21	6.63	3.76	
o-g 0	01	uv		223	0000	cpen	0.00	0.06	0.07	0.45	0.88	1.31	0.73	
o-g O	01			all		count	1799	1726	2001	3050	469	527	13124	
o-g O	01			all		bias	0.05	0.91	0.78	0.63	0.87	0.88	0.62	
o-g O	01			all		rms	2.46	2.58	2.65	3.21	5.83	4.82	3.54	
o-g O	01			all		cpen	0.24	0.24	0.30	0.45	1.58	1.19	0.52	
o-g O				all		qcpen	0.23	0.24	0.30	0.44	1.58	1.19	0.52	
o-g 0						\mathtt{count}	0	0	0	0	0	0	800	
o-g 0	01	uv :	rej	220	0000	bias	0.00	0.00	0.00	0.00	0.00	0.00	3.11	
o-g O	01	uv :	rej	220	0000	rms	0.00	0.00	0.00	0.00	0.00	0.00	6.41	
•••														
o-g O	01	:	rej	all		count	23	108	21	41	2	0	1008	
o-g O	01	:	rej	all		bias	44.72	6.40	-0.30	-7.38	11.46	0.00	3.84	
o-g O	01	:	rej	all		rms	56.08	16.60	6.87	10.47	43.15	0.00	12.28	
o-g O	01	:	rej	all		cpen	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
o-g O	01	:	rej	all		qcpen	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
o-g O	01					\mathtt{count}	0	4	0	1	8	9	29	
o-g O						bias	0.00	1.07	0.00	6.04	-1.03	0.23	-2.21	
o-g O					0000	rms	0.00	20.49	0.00	17.78	9.06	8.51	12.52	
o-g 0					0000	-	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
o-g O	01	uvı	mon	220	0000	qcpen	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
o-g O	01	1	mon	all		count	3573	7736	1004	563	8	9	13052	
o-g O	01	1	mon	all		bias	-0.01	0.40	0.05	-0.30	-1.03	0.23	0.23	
o-g O		1	mon	all		rms	2.55	3.25	4.67	5.98	9.06	8.51	3.60	
o-g O	01	1	mon	all		cpen	0.81	1.21	1.67	1.28	0.00	0.00	1.12	
o-g O	01	1	mon	all		qcpen	0.80	1.15	1.53	1.16	0.00	0.00	1.07	
•••														

Please note that five layers from 600 to 150 hPa have been deleted to make each row fit into one line. Only observation type 220 and 223 are shown as an example.

Table 4.6 lists the meaning of each item in file fort.201-213 except file fort.207:

The contents of the fit files are calculated based on O-B or O-A for each observation. The detailed departure information about each observation is saved in the diagnostic files. For the content of the diagnostic files, please check the content of the array "rdiagbuf" in one of the setup subroutines for conventional data (for example, setupt.f90). We provide a tool in appendix A.2 to help users read in the information from the diagnostic files.

These fit files give lots of useful information on how data are analyzed by the GSI, such as how many observations are used and rejected, the bias and root mean squared (RMS) error

Table 4.6: List of each item in file fort.201-213 (except fort.207).

Name	Explanation
it	outer loop number
	= 01: observation - background
	= 02: observation - analysis (after 1^{st} outer loop)
	= 03: observation - analysis (after 2^{nd} outer loop)
obs	observation variable type (such as uv or ps) and usage,
	which includes:
	blank: used in GSI analysis
	mon: monitored (read in but not assimilated by GSI)
	rej: rejected because of quality control in GSI
type	prepbufr observation type (see the BUFR User's Guide for
	details)
styp	prepbufr observation subtype (not used)
ptop	for multiple level data: pressure at the top of the layer
pbot	for multiple level data: pressure at the bottom of the layer
count	the number of observations summarized under observa-
	tion types and vertical layers
bias	bias of observation departure for each outer loop (it)
rms	root mean square error of observation departure for each
	outer loop (it)
cpen	observation part of penalty (cost function)
qcpen	nonlinear qc penalty

for certain data types or for all observations, and how analysis results fit to the observation before and after analysis. Again, we use observation type 220 in *fort.202* (*fit_w1.2014061700*) as an example to illustrate how to read this information. The fit information for observation type 220 (soundings) is listed below. Like the previous example, five layers from 600 to 150 hPa were deleted to make each row fit into one line. All fit information of observation type 220 is shown.

it	obs type	styp	ptop pbot	1000.0 1200.0	900.0 1000.0	800.0 900.0	600.0 800.0	100.0 150.0	50.0 100.0	0.0 2000.0
o-g 01	uv 220	0000	count	44	223	223	478	437	519	4231
o-g 01	uv 220	0000	bias	0.26	0.51	0.04	0.35	0.99	0.97	0.59
o-g 01	uv 220	0000	rms	2.21	2.48	2.51	2.84	5.88	4.79	4.18
o-g 01		0000	cpen	0.31	0.38	0.44	0.61	1.64	1.18	0.90
o-g 01	uv 220	0000	qcpen	0.31	0.38	0.44	0.60	1.63	1.18	0.89
o-g 01	uv rej 220	0000	count	0	0	0	0	0	0	800
o-g 01	uv rej 220			0.00	0.00	0.00	0.00	0.00	0.00	3.11
o-g 01	uv rej 220	0000	rms	0.00	0.00	0.00	0.00	0.00	0.00	6.41
o-g 01	uv rej 220		-	0.00	0.00	0.00	0.00	0.00	0.00	0.00
o-g 01	uv rej 220	0000	qcpen	0.00	0.00	0.00	0.00	0.00	0.00	0.00
o-g 01	uv mon 220	0000	count	0	4	0	1	8	9	29
o-g 01	uv mon 220	0000		0.00	1.07	0.00	6.04	-1.03	0.23	-2.21
o-g 01	uv mon 220		rms	0.00	20.49	0.00	17.78	9.06	8.51	12.52
o-g 01	uv mon 220		-	0.00	0.00	0.00	0.00	0.00	0.00	0.00
o-g 01	uv mon 220	0000	qcpen	0.00	0.00	0.00	0.00	0.00	0.00	0.00
•••										
			ptop	1000.0	900.0	800.0	600.0	100.0	50.0	0.0
it	obs type	styp	pbot	1200.0	1000.0	900.0	800.0	150.0	100.0	2000.0
o-g 02			\mathtt{count}	44	223	223	478	437	519	4231
o-g 02		0000	bias	0.21	0.05	-0.43	0.03	0.69	0.96	0.39
o-g 02		0000	rms	2.13	2.26	2.29	2.56	5.19	4.55	3.73
o-g 02			cpen	0.32	0.31 0.31	0.37 0.37	0.50 0.50	$1.27 \\ 1.27$	1.07	0.71 0.71
o-g 02	uv 220	0000	qcpen	0.32	0.51	0.37	0.50	1.21	1.07	0.71
••••										
o-g 02	uv rej 220	0000	\mathtt{count}	0	0	0	0	0	0	800
o-g 02	uv rej 220		bias	0.00	0.00	0.00	0.00	0.00	0.00	2.96
o-g 02	uv rej 220		rms	0.00	0.00	0.00	0.00	0.00	0.00	6.33
o-g 02	uv rej 220		-	0.00	0.00	0.00	0.00	0.00	0.00	0.00
o-g 02	uv rej 220	0000	Чсреп	0.00	0.00	0.00	0.00	0.00	0.00	0.00
o-g 02	uv mon 220			0		0	1	8	9	29
o-g 02	uv mon 220			0.00				-1.00		
o-g 02	uv mon 220		rms	0.00	18.44	0.00	12.60	10.31	8.58	10.87
o-g 02 o-g 02	uv mon 220 uv mon 220		-	0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00
0-g 02	uv mon 220	0000	dchen	0.00	0.00	0.00	0.00	0.00	0.00	0.00
			ptop	1000.0	900.0	800.0	600.0	100.0	50.0	0.0
 it	obs type	styp	ptop pbot		900.0 1000.0	800.0 900.0	600.0 800.0	100.0 150.0	50.0 100.0	0.0 2000.0
 it 03			pbot	1200.0						2000.0
	uv 220				1000.0	900.0	800.0	150.0	100.0	
o-g 03	uv 220 uv 220	0000	pbot 	1200.0 44	1000.0 223	900.0 223	800.0 478	150.0 437	100.0 519	2000.0 4231
o-g 03 o-g 03	uv 220 uv 220 uv 220 uv 220	0000	pbot count bias	1200.0 44 0.28	1000.0 223 0.08	900.0 223 -0.32	800.0 478 0.11	150.0 437 0.74	100.0 519 1.00	2000.0 4231 0.43

o-g 03	uv rej 22	0 0000 cour	t 0	0	0	0	0	0	800
o-g 03	uv rej 22	0 0000 bia	s 0.00	0.00	0.00	0.00	0.00	0.00	2.98
o-g 03	uv rej 22	0 0000 rm	us 0.00	0.00	0.00	0.00	0.00	0.00	6.35
o-g 03	uv rej 22	0 0000 cpe	n 0.00	0.00	0.00	0.00	0.00	0.00	0.00
o-g 03	uv rej 22	0 0000 qcpe	n 0.00	0.00	0.00	0.00	0.00	0.00	0.00
o-g 03	uv mon 22	0 0000 6000	t 0	4	~		0	0	00
0	uv mon 22	0000 cour	0	4	0	1	8	9	29
o-g 03	uv mon 22 uv mon 22			4 1.86	0.00	1 6.09	8 -0.98	9 0.07	-0.94
0		0 0000 bia	s 0.00				-		
o-g 03	uv mon 22	0 0000 bia 0 0000 rm	us 0.00 us 0.00	1.86	0.00	6.09	-0.98	0.07	-0.94
o-g 03 o-g 03	uv mon 22 uv mon 22 uv mon 22	0 0000 bia 0 0000 rm	as 0.00 as 0.00 an 0.00	1.86 18.76	0.00	6.09 12.59	-0.98 10.34	0.07 8.69	-0.94 11.01

In loop section o-g 01, from the count line, we can see there were 4231 sounding observations used in the analysis. Among them, 44 were within the 1000-1200 hPa layer. Also from the count lines, in the rejection and monitoring section, there were 800 observations rejected and 29 observations monitored. In the same loop section, from the bias line and rms lines, we can see the total bias and RMS error of O-B for the sounding information is 0.59 and 4.18. The bias and RMS error for each vertical layer can also be found in this file.

Next we can see bias and RMS error values from different loops, as shown with the comparison in the following three lines:

o-g 01	uv	220 0000	rms	2.21	2.48	2.51	2.84	5.88	4.79	4.18
o-g 02	uv	220 0000	rms	2.13	2.26	2.29	2.56	5.19	4.55	3.73
o-g 03	uv	220 0000	rms	2.11	2.17	2.20	2.38	5.00	4.46	3.60

These three lines show that the RMS error reduced from 4.18 (o-g 01, which is O-B) to 3.73 (o-g 02, which is O-A after the 1st outer loop) and then to 3.60 (o-g 03, which is O-A after the 2nd outer loop, which is also the final analysis result). The reduction in the RMS error shows that observation type 220 (sounding) was used in the GSI analysis to modify the background fields to fit to the observations.

4.5.2 Satellite Radiance

. . .

The file *fort.207* is the fit file for radiance data. Its content includes important information about the radiance data analysis.

The first part of the file *fort.207* lists the content that corresponds to those in the file **satinfo**, which is the info file to control radiance data usage.

RADINFO_READ: jpch_rad=	2723						
1 amsua_n15	chan=	1 var=	3.000 varch_cld= 20.000 use=	1 ermax=	4.500 b_rad=	10.00 pg_rad=	0.00 icld_det=-2
2 amsua_n15	chan=	2 var=	2.200 varch_cld= 18.000 use=	1 ermax=	4.500 b_rad=	10.00 pg_rad=	0.00 icld_det=-2
3 amsua_n15	chan=	3 var=	2.000 varch_cld= 12.000 use=	1 ermax=	4.500 b_rad=	10.00 pg_rad=	0.00 icld_det=-2
4 amsua_n15	chan=	4 var=	0.600 varch_cld= 3.000 use=	1 ermax=	2.500 b_rad=	10.00 pg_rad=	0.00 icld_det=-2
5 amsua_n15	chan=	5 var=	0.300 varch_cld= 0.500 use=	1 ermax=	2.000 b_rad=	10.00 pg_rad=	0.00 icld_det=-2

This shows there are 2723 channels listed in the *satinfo* file and the 2723 lines following this line include the details for each channel.

The second part of the file is a list of the coefficients for bias correction, after reading the *satbias_in* file:

RADINFO_READ: not found in		instrument/cha file - set to	_	imawari8		16				
RADINFO_READ:	guess air	mass bias corr	rection coe	fficients be	low					
1	amsua_n15	-1.965181	0.000000	39.068176	-0.923195	0.408460	0.000000	0.000000	0.001735	3.689709
		2.3	67472 8.3	862940 -1.	848292					
2	amsua_n15	-7.415403	0.000000	80.138019	-0.818472	-1.013216	0.000000	0.000000	0.014279	2.638804
		8.3	15096 22.	041458 -1.	564773					

Each channel has 12 coefficients listed in a line. Therefore, there are 2723 lines of radiance bias correction coefficients for all channels, though some of the coefficients are zero.

The 3^{rd} part of the *fort.207* file is similar to other fit files with content repeated in three sections, providing detailed statistics about the data in stages before the 1^{st} outer loop, between the 1^{st} and 2^{nd} outer loops, and after the 2^{nd} outer loop. The results before the 1^{st} outer loop are used here as an example to explain the content of the results:

• Summaries for various statistics as a function of observation type

sat	type	penalty	nobs	iland i	isnoice	icoast :	ireduce	ivarl n	lgross
metop-a	hirs4	371.46818888	385	143	0	25	0	1452	0
		qcpenalty	qc1	qc2	qc3	qc4	qc5	qc6	qc7
		371.46818888	0	0	1651	3330	0	0	0
sat	type	penalty	nobs	iland	isnoice	icoast	ireduce	ivarl	nlgross
metop-b	hirs4	0.00000000	34	25	0	0	0	139	0
merob-p	11154				-	-			-
		qcpenalty	qc1	qc2	qc3		qc5	qc6	qc7
		0.0000000	0	0	97	279	0	0	0
6									
rad total	penalty_all=	13986.093384	5987129						
	<pre>qcpenalty_all=</pre>	13986.093384	5987129						
	failed nonlingc=			0					

• • •

Table 4.7 outlines the meaning of each item in the above statistics:

Note: One radiance observation may include multiple channels, and not all channels are necessarily used in the analysis.

• Summaries for various statistics as a function of channel

1	2	3	4	5	6	7	8	9	10	11
1	1	amsua_n15	915	247	3.000	0.6623748	1.2673027	0.2414967	2.4209147	2.0627099
2	2	amsua_n15	902	261	2.000	0.5209886	1.1773765	0.2626527	2.2705374	1.9414234
3	3	amsua_n15	1114	48	2.000	1.2349467	-1.5090660	0.3421312	1.9416738	1.2218089
4	4	amsua_n15	1162	0	0.600	-0.2114506	-0.3195250	0.5286580	0.6271317	0.5396275
5	5	amsua_n15	1162	3	0.300	-0.0888496	-0.1685199	0.4352839	0.2734131	0.2153040
6	6	amsua_n15	2093	3	-0.230	-1.8141034	-0.0695503	0.8415303	0.2646033	0.2552992
7	7	amsua_n15	2342	28	0.250	-0.0830293	0.0453835	0.6141132	0.2522587	0.2481427
8	8	amsua_n15	2311	59	0.275	0.0201868	0.1758359	0.7782391	0.3173862	0.2642267
9	9	amsua_n15	2124	246	0.340	0.1262987	0.5008846	1.4907547	0.5544190	0.2376868
10	10	amsua_n15	82	2288	0.400	0.6700157	0.8263504	2.0387089	0.8304076	0.0819868
15	15	amsua_n15	862	300	3.000	0.8244923	-2.2960147	0.3769625	2.7445692	1.5036544

• • •

Table 4.7: Summary of the radiance observation fit file (fort.207)

Name	Explanation
sat	satellite name
type	instrument type
penalty	contribution to cost function from this observation type
nobs	number of good observations used in the assimilation
iland	number of observations over land
isnoice	number of observations over sea ice and snow
icoast	number of observations over coast
ireduce	number of observations that reduce qc bounds in tropics
ivarl	number of observations removed by gross check
nlgross	number of observation removed by nonlinear qc
qcpenalty	nonlinear qc penalty from this data type
qc1-7	number of observations whose quality control criteria has
	been adjusted by each qc method (1-7). For details, see the
	Radiance Chapter of the Advanced User's Guide
rad total	summary of penalty for all radiance observation types
penalty_all	
rad total	summary of qcpenalty for all radiance observation types
qcpenalty_all	
rad to-	summary of observations removed by nonlinear qc for all
tal failed	radiance observation types
nonlinqc	

 63
 4 hirs4_metop-a
 11
 217
 0.400
 0.9717384
 0.9536444
 1.8583033
 0.9570578
 0.0807581

 64
 5 hirs4_metop-a
 81
 4
 0.360
 0.1655806
 -0.2231640
 0.3231878
 0.3433454
 0.2609289

 65
 6 hirs4_metop-a
 25
 27
 0.460
 -0.8415009
 -1.1454801
 2.6082742
 1.1558578
 0.1545404

 66
 7 hirs4_metop-a
 20
 3
 0.570
 -0.9563649
 -1.1287970
 1.4138248
 1.1699278
 0.3074870

 67
 8 hirs4_metop-a
 23
 0
 1.000
 1.3954294
 0.6716651
 0.1668694
 0.9134028
 0.6190078

Table 4.8 lists the meaning of each column in the above statistics:

Column	Content
#	
1	series number of the channel in satinfo file
2	channel number for certain radiance observation type
3	radiance observation type (for example: amsua_n15)
4	number of observations (nobs) used in GSI analysis within
	this channel
5	number of observations (nobs) tossed by gross check
	within this channel
6	variance for each satellite channel
7	bias (observation-guess before bias correction)
8	bias (observation-guess after bias correction)
9	penalty contribution from this channel
10	square root of (observation-guess with bias correction)**2
11	standard deviation

Table 4.8: Content of fit statistics for each channel in the fort.207 file.

• Final summary for each observation type

it	satellite i	natrumont	# road	# koon	# pagim	penalty	qcpnlty	cpen	qccpen
				· · · ·		1 0		-	
o-g 01 r	ad n16	hirs3	0	0	0	0.0000	0.0000	0.0000	0.0000
o-g 01 r	ad n17	hirs3	0	0	0	0.0000	0.0000	0.0000	0.0000
o-g 01 r	ad metop-a	hirs4	13832	7315	651	371.47	371.47	0.57061	0.57061
o-g 01 r	ad n18	hirs4	0	0	0	0.0000	0.0000	0.0000	0.0000
o-g 01 r	ad n19	hirs4	0	0	0	0.0000	0.0000	0.0000	0.0000
o-g 01 r	ad metop-b	hirs4	2527	646	0	0.0000	0.0000	0.0000	0.0000
o-g 01 r	ad g11	goes_img	0	0	0	0.0000	0.0000	0.0000	0.0000
o-g 01 r	ad g12	goes_img	0	0	0	0.0000	0.0000	0.0000	0.0000
o-g 01 r	ad aqua	airs	0	0	0	0.0000	0.0000	0.0000	0.0000
o-g 01 r	ad n15	amsua	43515	30810	12976	8854.4	8854.4	0.68236	0.68236
o-g 01 r	ad n18	amsua	30690	25575	8203	3642.7	3642.7	0.44407	0.44407
o-g 01 r	ad n19	amsua	0	0	0	0.0000	0.0000	0.0000	0.0000
o-g 01 r	ad metop-a	amsua	4890	3878	1466	652.20	652.20	0.44489	0.44489
o-g 01 r	ad metop-b	amsua	810	718	294	201.79	201.79	0.68636	0.68636
o-g 01 r	ad aqua	amsua	0	0	0	0.0000	0.0000	0.0000	0.0000
o-g 01 r	ad n17	amsub	0	0	0	0.0000	0.0000	0.0000	0.0000

Table 4.9 lists the meaning of each column in the above statistics:

Similar to other fit files, a comparison between results from different outer loops can give us very useful information on how much impact each channel and data type has in the GSI.

Name	Explanation
it	stage (o-g 01 rad = before 1st outer loop for radiance data)
satellite	satellite name (n16=NOAA -16)
instrument	instrument name (HIRS-3)
# read	number of data (channels) read in within analysis time
	window and domain
# keep	number of data (channels) kept after data thinning
# assim	number of data (channels) used in analysis (passed all qc
	process)
penalty	contribution from this observation type to cost function
qcpnlty	nonlinear qc penalty from this data type
cpen	penalty divided by (the number of data assimilated)
qccpen	qcpnlty divided by (the number of data assimilated)

Table 4.9: Content of the final summary section for the fort.207 file.

4.6 Convergence Information

There are two ways to check the convergence information for each iteration of the GSI:

1. Standard output file (stdout):

The value of the cost function and norm of the gradient for each iteration are listed in the file *stdout*.

The following is an example showing the iterations from the first outer loop:

The following are the iterations from the second outer loop:

Initial cost function = 2.792919782749931983E+04
Initial gradient norm = 4.241369976412337337E+02
cost,grad,step,b,step? = 2 0 2.792919782749931983E+04 4.241369976412337337E+02 4.301269527061492466E-03 0.00000000000000E+00 good
pcgsoi: gnorm(1:2),b = 1.641799966598814228E+06 1.641799966598813771E+05 9.126577097845959274E-01
cost,grad,step,b,step? = 2 1 2.715543302058953486E+04 4.051913087171068923E+02 3.965037770683364597E-03 9.126577097845959274E-01
cost,grad,step,b,step? = 2 2 2.650445313264244396E+04 2.714766785541821719E+02 6.065878225371862040E-03 4.488950450613589660E-01
cost,grad,step,b,step? = 2 2 2.650445313264244396E+04 2.714766785541821719E+02 6.065878225371862040E-03 4.488950450613589660E-01
cost,grad,step,b,step? = 2 9 2.488459155328830457E+04 1.491452772915179139E+02 6.349376870755444636E-03 9.522651754285673675E-01
cost,grad,step,b,step? = 2 9 2.4884591

cost,grad,step,b,step? = 2 9 2.488459155328830457E+04 1.491452772915179139E+02 6.349376870755444636E-03 9.522651754285673675E-01 good pcgsoi: gnorm(1:2),b= 2.350218829989638834E+04 2.350218829989681763E+04 1.056548139732611746E+00 cost,grad,step,b,step? = 2 10 2.474335402213209454E+04 1.533042344486817683E+02 5.304880218120413757E-03 1.056548139732611746E+00 good

Here, we can see the number of outer and inner loops (minimization iteration). The meaning of the names (bold) used in *stdout* are explained in the following:

• cost: the cost function values, (=J)

- grad: inner product of gradients (norm of the gradient (Y*X))
- step: stepsize
- b: parameter to estimate the new search direction

As a quick check, the cost function reduced from 3.915930707165839704E+04 to 2.479985164931967302E+04 in the 1st outer loop and reduced from 2.792919782749931983E+04 to 2.474335402213209454E+04 in the 2nd outer loop.

2. Convergence information in file *fort.220*:

In file *fort.220*, users can find more detailed minimization information about each iteration. A detailed description and example are provided in the Advanced User's Guide.

To evaluate the iteration convergence, we usually make plots based on the information from *fort.220*, such as the value of the cost function and the norm of the gradient. The following are example plots showing the evolution of the cost function and the norm of the gradient in different outer loops:

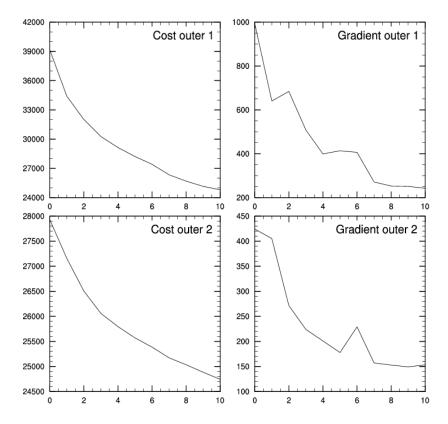


Figure 4.2: Evolution of the cost function (left column) and the norm of the gradient (right column) in the first outer loop (top row) and the second outer loop (bottom row). The Y-axis is the iteration number.

Scripts are available in the release code to read convergence information from *fort.220* and produce the above plots. Please see Section A.3 for information on where to locate and how to run these scripts.

4.7 Conventional Observation Errors

Each observation type has its own observation errors. In this section, we introduce several topics related to the conventional observation error processing in GSI. The observation error for satellite radiance and its adjustment is discussed in the Advanced User's Guide.

4.7.1 Getting Original Observation Errors

For the global GSI analysis, when oberrflg (a namelist option in section &obsqc) is true, observation errors are generated based on an external observation error table according to the observation type. Otherwise, observation errors are read in from the PrepBUFR file.

For regional analyses, GSI forces the use of an external observation error table to get observation errors no matter what the oberrflg is set to (oberrflg is forced to be true for regional runs in *gsimod.F90*).

The external observation error table file, *errtable*, includes observation errors for all types of conventional observations. It is copied from the ./fix directory by the run script. This release package has three sample external observation error table files, $nam_errtable.r3dv$, *prepobs_errtable.global*, and $rtma/new_rtma_nam_errtable.r3dv$ in the ./fix directory. The $nam_errtable.r3dv$ is used in the sample run script as a default observation error table. The observation error file is a text file that can be easily edited to tune the error values. The following shows a portion of $nam_errtable.r3dv$ file for rawinsondes and its description of each column in Table 4.10:

Column # 1 120 OBSERVAT	2 TION TYPE	3	4	5	6
0.11000E+04	0.12696E+01	0.60737E+00	0.10000E+10	0.76322E+00	0.10000E+10
0.10500E+04	0.13282E+01	0.66294E+00	0.10000E+10	0.76322E+00	0.10000E+10
0.10000E+04	0.13932E+01	0.74223E+00	0.10000E+10	0.76322E+00	0.10000E+10
0.95000E+03	0.14390E+01	0.83688E+00	0.10000E+10	0.79899E+00	0.10000E+10
0.90000E+03	0.14354E+01	0.94025E+00	0.10000E+10	0.83561E+00	0.10000E+10
0.85000E+03	0.13669E+01	0.10439E+01	0.10000E+10	0.87224E+00	0.10000E+10
220 OBSERVAT	FION TYPE				
0.11000E+04	0.10000E+10	0.10000E+10	0.18521E+01	0.10000E+10	0.10000E+10
0.10500E+04	0.10000E+10	0.10000E+10	0.20636E+01	0.10000E+10	0.10000E+10
0.10000E+04	0.10000E+10	0.10000E+10	0.22799E+01	0.10000E+10	0.10000E+10
0.95000E+03	0.10000E+10	0.10000E+10	0.24211E+01	0.10000E+10	0.10000E+10
0.90000E+03	0.10000E+10	0.10000E+10	0.24934E+01	0.10000E+10	0.10000E+10
0.85000E+03	0.10000E+10	0.10000E+10	0.25155E+01	0.10000E+10	0.10000E+10

Table 4.10: Description of each column in the observation error table file

Column #	1	2	3	4	5	6
Content	Pressure	Т	RH	UV	Ps	Pw
Unit	hPa	degree C	percent/10	m/s	mb	kg/m2(or mm)

For each observation type, the error table has six columns and 33 rows (levels). The 1st column prescribes 33 pressure levels, covering 1100 hPa to 0 hPa. Columns 2-6 prescribe

observation errors for temperature (T), relative humidity (RH), horizontal wind component (UV), surface pressure (Ps), and the total column precipitable water (Pw). The missing value is 0.10000E+10.

The observation error table for each observation type starts with the observation type number defined for the PrepBUFR files, such as:

120 OBSERVATION TYPE 220 OBSERVATION TYPE

The PrepBUFR data type numbers 100-199 are for temperature (T), moisture (q), and surface pressure (Ps) observations, while numbers 200-299 are for horizontal wind component (UV) observations. A detailed explanation of each data type number can be found in the following table on the EMC website:

http://www.emc.ncep.noaa.gov/mmb/data_processing/prepbufr.doc/table_2.htm

For more details on PrepBUFR/BUFR, please check the BUFR/PrepBUFR User's Guide, which is freely available at the DTC BUFR/PrepBUFR website:

http://www.dtcenter.org/com-GSI/BUFR/index.php

4.7.2 Observation Error Gross Error Check within GSI

The gross error check is an important quality control step to exclude questionable observations that degrade the analysis. Users can adjust the threshold of the gross error check for each data type within the *convinfo* file to make the gross error check more or less strict for a certain data type. For example, the following is a part of the *convinfo* file without the last five columns:

!otype	type	sub	iuse	twindow	numgrp	ngroup	nmiter	gross	ermax	ermin	var_b	var_pg	ithin
ps	183	0	-1	3.0	0	0	0	4.0	3.0	1.0	4.0	0.000300	0
ps	187	0	1	3.0	0	0	0	4.0	3.0	1.0	4.0	0.000300	0
t	120	0	1	3.0	0	0	0	8.0	5.6	1.3	8.0	0.000001	0
t	126	0	-1	3.0	0	0	0	8.0	5.6	1.3	8.0	0.001000	0

The gross check for each data type is controlled by columns "gross", "ermax", and "ermin." If an observation has observation error set to "obserror," then a gross check ratio is calculated:

ratio = (Observation-Background)/max(ermin,min(ermax,obserror))

If *ratio* > *gross*, then this observation fails the gross check and will not be used in the analysis. The unused observation is indicated as a "rejection" in the fit files.

4.8 Background Error Covariance

The GSI package has several files in ./fix to hold the pre-computed background error statistics for different GSI applications with different grid configurations. Within the ./fix subdirectories $./fix/Big_Endian$ and $./fix/Little_Endian$ contain the fix files corresponding to each endianness. Since the GSI code has a build-in mechanism to interpolate the input background error matrix to any desired analysis grid, the following two background error files can be used to specify the B matrix for any GSI regional application.

- *nam_nmmstat_na.gcv* : contains the regional background error statistics, computed using forecasts from the NCEP's NAM model covering North America. The values of this B matrix cover the northern hemisphere with 93 latitude lines, from -2.5 degrees to 89.5 degrees with 60 vertical sigma levels from 0.9975289 to 0.01364.
- nam_glb_berror.f77.gcv : contains the global background errors based on NCEP's GFS model, a global forecast model. The values of this B matrix cover the globe with 192 latitude lines from -90 degrees to 90 degrees and 42 vertical sigma levels from 0.99597 to 0.013831.

The background error matrix files listed above are in Big Endian binary form (therefore located in the *Big_Endian* directory). In the *Little_Endian* directory, *nam_nmmstat_na.gcv* and *nam_glb_berror.f77.gcv* are their Little Endian versions for certain computer platforms that cannot compile GSI with the Big Endian option. In this release version, GSI can be compiled with the Big Endian option with PGI and Intel.

4.8.1 Tuning Background Error Covariance through the Namelist and Anavinfo File

The final background error covariance matrix used in the GSI analysis is the content from the fixed file "berror", which is a copy of *nam_nmmstat_na.gcv* or *nam_glb_berror.f77.gcv*, multiplied by several factors set by the namelist and the **anavinfo** file.

In GSI namelist, three variables are used for tuning horizontal and vertical impact scales:

- vs scale factor for vertical correlation lengths for background error
- hzscl(3) scale factor for three scales specified for horizontal smoothing
- hswgt(3) weights to apply to each horizontal scales

In the GSI anavinfo file, the column **as/tsfc_sdv** in the *control_vector* section are factors for tuning the variance of each analysis control variable.

These values can be used to tune the background error covariance used in the GSI analysis. For each background error matrix file, there are recommended values for these parameters listed in table 4.11.

-		0	1			
	Global		Regiona	ıl		
fixed B ma-	nam_gll	o_berror.f77.gcv	nam_nn	nam_nmmstat_na.gcv		
trix						
vs	0.7		1.0			
hzscl	1.7, 0.8,	0.5	0.373,0.	746,1.50		
hswgt	0.45, 0.	3,0.25	0.45, 0.	3,0.25		
ss/tsfc_sdv						
	contro	l_vector::	contro	l_vector::		
	!var	as/tsfc_sdv	!var	as/tsfc_sdv		
	sf	0.60	sf	1.00		
	vp	0.60	vp	1.00		
	ps	0.75	ps	0.50		
	t	0.75	t	0.70		
	q	0.75	q	0.70		
	oz	0.75	oz	0.50		
	sst	1.00	sst	1.00		
	CW	1.00	CW	1.00		
	stl	3.00	stl	1.00		
	sti	3.00	sti	1.00		

Table 4.11: Recommended tuning values for the provided B matrix.

4.9 Analysis Increments

Analysis increments are defined as the difference between analysis results and the background (A-B). A plot of analysis increments can help users understand how the analysis procedure modifies the background fields according to observations, background and observation error covariances, and other constraints. You can either calculate *analysis-guess* and plot the difference field or use the tools introduced in Appendix A.4 to make analysis increment figures for different analysis fields.

4.10 Running Time and Memory Usage

In addition to analysis increments, run time and memory usage are other important features of an analysis system, especially for operational code like the GSI.

The GSI standard output file (*stdout*) gives the GSI start time and end time of the analysis at the beginning and end of the file. For example:

• • •

This tells us the analysis started at 20:36:21.760 and ended at 20:43:40.422, which means GSI used 7 minutes and 19 seconds to finish.

Following the ending date-time, there is a resource statistics section at the end of the *stdout* file, which gives information about run time and memory usage for the analysis:

*****************RESOURCE STATISTICS*********************************						
The total amount of wall time	= 438.663534					
The total amount of time in user mode	= 427.578998					
The total amount of time in sys mode = 9.457562						
The maximum resident set size (KB) = 2020132						
Number of page faults without I/O activity	= 312762					
Number of page faults with I/O activity	= 0					
Number of times filesystem performed INPUT = 0						
Number of times filesystem performed OUTPUT	= 0					
Number of Voluntary Context Switches	= 7641					
Number of InVoluntary Context Switches = 851						

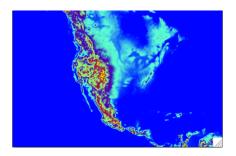
GSI Applications for Regional 3DVar, Hybrid 3DEnVar and

Hybrid 4DEnVar

In this chapter, information from the previous chapters will be applied to three regional GSI cases with different data sources. These examples are to give users a clear idea of how to set up GSI with various configurations and properly check the run status and analysis results in order to determine if a particular GSI application was successful. Note that the examples here only use the WRF-ARW system - WRF-NMM runs are similar, but require different background and namelist options.

For illustrations of all the cases, it is assumed that the reader has successfully compiled GSI on a local machine. For regional case studies, users should have the following data available:

- 1. Background file
 - When using WRF, WPS and real.exe will be run to create a WRF input file: wrfinput_<domain>_<yyyy-mm-dd_hh:mm:ss>
- 2. Conventional data
 - Real time NAM PrepBUFR data can be obtained from the server: ftp://ftpprd.ncep.noaa.gov/pub/data/nccf/com/nam/prod


5. GSI Applications for Regional 3DVar, Hybrid 3DEnVar and Hybrid 4DEnVar

Note: An NDAS PrepBUFR file was chosen to increase the amount of data used in the analysis (compared to a NAM PrepBUFR file)

- 3. Radiance data and GPS RO data
 - Real time GDAS BUFR files can be obtained from the following server: ftp://ftpprd.ncep.noaa.gov/pub/data/nccf/com/gfs/prod Note: GDAS data was chosen to get better coverage for radiance and GPS/RO refractivity

The following cases will give users an example of a successful GSI run with various data sources. Users are welcome to download these example data from the GSI users' webpage (online case) or create a new background and get the observational data from the above server. The background and observations used in this case study are as follows:

- 1. Background files: wrfinput_d01_2014-06-17_00:00:00
 - The horizontal grid spacing is 30-km with 51 vertical sigma levels

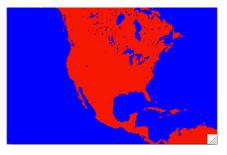


Figure 5.1: The terrain (left) and land mask (right) of the background used in this case study.

- 2. Conventional data: NAM PrepBUFR data from 0000 UTC 17 June 2014
 - File: nam.t00z.prepbufr.tm00.nr
- 3. Radiance and GPS RO data: GDAS PREPBUFR data from 0000 UTC 17 June 2014
 - Files: gdas.t00z.1bamua.tm00.bufr_d gdas.t00z.1bhrs4.tm00.bufr_d gdas.t00z.gpsro.tm00.bufr_d

This case study was run on a Linux cluster. As of version 3.2, the BUFR/PrepBUFR files do not need to be byte-swapped to little endian format. BUFRLIB can automatically handle byte order issues.

Assume the background file is located at:

data/2014061700/arw

All the observations are located at:

data/2014061700/obs

And the GSI release version 3.6 is located at:

code/comGSI(version_number)_EnKF(version_number)

5.1 Assimilating Conventional Observations with Regional GSI

5.1.1 Run Script

With GSI successfully compiled and background and observational data acquired, move to the ./run directory under ./comGSIv3.5_EnKFv1.1 to run the GSI using the sample script run_gsi_regional.ksh. The run_gsi_regional.ksh script must be modified in several places before running:

• Set up batch queuing system.

To run GSI with multi-processors, a job queuing section has to be added at the beginning of the *run_gsi_regional.ksh* script. The set up of the job queue is dependent on the machine and the job control system. More setup examples are described in section 3.2.2. The following example is set up to run on a Linux cluster supercomputer with LSF. The job section is as follows:

```
#BSUB -P ??????? # project code
#BSUB -W 00:20 # wall-clock time (hrs:mins)
#BSUB -n 4 # number of tasks in job
#BSUB -R "span[ptile=16]" # run 16 MPI tasks per node
#BSUB -J gsi # job name
#BSUB -o gsi.%J.out
#BSUB -e gsi.%J.err
#BSUB -q small # queue
```

In order to find out how to set up the job section, a good method is to use an existing MPI job script and copy the job section over.

• Set up the number of processors and the job queue system used. For this example, LINUX_PBS and four processors are used:

GSIPROC=4 ARCH='LINUX_PBS'

• Set up the case data, analysis time, GSI fix files, GSI executable, and CRTM coefficients:

Set up analysis time:

ANAL_TIME=2014061700

Set up a working directory, which will hold all the analysis results. This directory must have correct write permissions, as well as enough space to hold the output.

```
WORK_ROOT=/scratch1/gsiprd_${ANAL_TIME}_prepbufr
```

Set path to the background directory and file:

```
BK_R00T=data/20140617/${ANAL_TIME}/arw
BK_FILE=${BK_R00T}/wrfinput_d01.${ANAL_TIME}
```

Set path to the observation directory and the PrepBUFR file within the observation directory. All observations to be assimilated should be in the observation directory.

```
OBS_ROOT=data/20140617/${ANAL_TIME}/obs
PREPBUFR=${OBS_ROOT}/nam.t${HH}z.prepbufr.tm00.nr
```

Set up the GSI system used for this case, including the paths of fix files and the CRTM coefficients as well as the location of the GSI executable and the namelist file:

```
CRTM_ROOT=data/fix/CRTM_2.2.3
GSI_ROOT=/comGSIv3.5_EnKFv1.1
FIX_ROOT=${GSI_ROOT}/fix
GSI_EXE=${GSI_ROOT}/run/gsi.exe
GSI_NAMELIST=${GSI_ROOT}/run/comgsi_namelist.sh
```

• Set which background and background error file to use:

bk_core=ARW
bkcv_option=NAM
if_clean=clean

This example uses the ARW NetCDF background; therefore bk_core is set to 'ARW.' The regional background error covariance file is used in this case, as set by bkcv_option=NAM. Finally, the run scripts are set to clean the run directory to delete all temporary intermediate files.

5.1.2 Run GSI and Check the Run Status

Once the run script is set up properly for the case and machine, and the anavinfo file has been updated with the same number of vertical levels as the background (please see section 3.1 for more details), GSI can be run through the run script. On our test machine, the GSI run is submitted as follows:

\$ bsub < run_gsi_regional.ksh</pre>

While the job is running, move to the working directory and check the details. Given the following working directory setup:

WORK_ROOT=/scratch1/gsiprd_\${ANAL_TIME}_prepbufr

Go to directory /scratch1 to check the GSI run directory.

A directory named *gsiprd_2014061700_prepbufr* should have been created. This directory is the run directory for this GSI case study. While GSI is still running, the contents of this directory should include files such as:

<pre>imgr_g12.TauCoeff.bin</pre>	$ssmi_f15.SpcCoeff.bin$
<pre>imgr_g13.SpcCoeff.bin</pre>	<pre>ssmi_f15.TauCoeff.bin</pre>
<pre>imgr_g13.TauCoeff.bin</pre>	<pre>ssmis_f16.SpcCoeff.bin</pre>

These are CRTM coefficient files that have been linked to this run directory through the GSI run script. Additionally, many other files are linked or copied to this run directory or generated during the run, such as:

• stdout: standard output file

- wrf_inout: background file
- gsiparm.anl: GSI namelist
- prepbufr: prepBUFR file for conventional observation
- convinfo: data usage control for conventional data
- berror_stats: background error file
- errtable: observation error file

The presence of these files indicates that the GSI run scripts have successfully set up a run environment for GSI and that the GSI executable is running. While GSI is still running, checking the content of the standard output file (*stdout*) can monitor the status of the GSI analysis:

\$ tail stdout		
[mhu@yslogin2 testarw_conv]\$ tail stdout		
pcgsoi: gnorm(1:2),b= 4.971613638691962543E-04 4.971613637988174387E-04 6.539937387039491679E-01		
cost,grad,step,b,step? = 2 21 2.283071832605468444E+04 2.229711559527815246E-02 4.235685495878949780E+01	6.539937387039491679E-01	good
pcgsoi: gnorm(1:2),b= 2.427998455757554152E-04 2.427998455925739387E-04 4.883723137754825139E-01		
cost,grad,step,b,step? = 2 22 2.283069726786290266E+04 1.558203598942562579E-02 5.370146211199837438E+01	4.883723137754825139E-01	good
pcgsoi: gnorm(1:2),b= 1.349871612172568163E-04 1.349871612633241600E-04 5.559606553423739328E-01		
cost,grad,step,b,step? = 2 23 2.283068422915619885E+04 1.161839753224414365E-02 6.137769018004394894E+01	5.559606553423739328E-01	good
pcgsoi: gnorm(1:2),b= 9.116990149652581994E-05 9.116990145686963470E-05 6.753968350377786978E-01		
cost,grad,step,b,step? = 2 24 2.283067594395604101E+04 9.548293119533240308E-03 5.219011413742769179E+01	6.753968350377786978E-01	good
pcgsoi: gnorm(1:2),b= 5.783146215365002791E-05 5.783146214669085264E-05 6.343262545796939378E-01		
cost,grad,step,b,step? = 2 25 2.283067118578847294E+04 7.604700004184913528E-03 5.599317818817987558E+01	6.343262545796939378E-01	good

The above output shows that GSI is in the inner iteration stage. It may take several minutes to finish the GSI run. Once GSI has finished running, the number of files in the directory will be greatly reduced from those during the run stage. This is because the run script was set to clean the working directory after a successful run. The important analysis result files and configuration files will remain. Please check Section 3.3 for more details on GSI run results. Upon successful completion of GSI, the run directory will look as follows:

anavinfo	fort.202	fort.214	fort.228	satbias_ang.out
berror_stats	fort.203	fort.215	fort.229	satbias_in
convinfo	fort.204	fort.217	fort.230	satbias_out
diag_conv_anl.2014061700	fort.205	fort.218	gsi.exe	satbias_out.int
diag_conv_ges.2014061700	fort.206	fort.219	gsiparm.anl	satbias_pc
errtable	fort.207	fort.220	l2rwbufr	<pre>satbias_pc.out</pre>
fit_p1.2014061700	fort.208	fort.221	list_run_directory	satinfo
fit_q1.2014061700	fort.209	fort.223	ozinfo	stdout
fit_rad1.2014061700	fort.210	fort.224	pcpbias_out	stdout.anl.2014061700
fit_t1.2014061700	fort.211	fort.225	pcpinfo	wrfanl.2014061700
fit_w1.2014061700	fort.212	fort.226	prepbufr	wrf_inout
fort.201	fort.213	fort.227	<pre>prepobs_prep.bufrtable</pre>	

5.1.3 Check for Successful GSI Completion

It is important to always check for a successful completion of the GSI analysis. However, completion of the GSI run without crashing does not guarantee a successful analysis. First, it is necessary to check the *stdout* file in the run directory to make sure GSI completed each step without any obvious problems. The following are several important steps to check:

1. Read in the anavinfo and namelist files

The following lines show that GSI started normally and has read in the anavinfo and namelist files:

```
gsi_metguess_mod*init_: 2D-MET STATE VARIABLES:
ps
z
gsi_metguess_mod*init_: 3D-MET STATE VARIABLES:
u
v
          ... ...
control_vectors*init_anacv: ALL CONTROL VARIABLES
sf
                                       vp
                                       t
ps
                                       oz
q
         ... ...
GSI_4DVAR: nobs_bins =
                                          1
SETUP_4DVAR: 14dvar= F
SETUP_4DVAR: 14densvar= F
SETUP_4DVAR: winlen= 3.000000000000
SETUP_4DVAR: winoff= 3.0000000000000
SETUP_4DVAR: nobs_bins=
                                        1
   ... ...
&SETUP
GENCODE = 78.000000000000
CLIP_SUPERSATURATION = F,

      FACTV
      =
      1.0000000000000

      FACTL
      =
      1.0000000000000

      FACTP
      =
      1.0000000000000

      FACTG
      =
      1.00000000000000

                                         ,
                                         ,
                                         ,
 . . . . . .
```

2. Read in the background field

The following lines in standard output file, immediately following the namelist section, indicate that GSI is reading the background fields. Checking the range of the 'max' and 'min' values will indicate if certain background fields are normal.

dh1 =	3				
iy,m,d,h,m,s=	2014	6	17	0	0
0					
dh1 =	3				
RMS errore_var =	SMOIS				
ndim1 =	3				
ordering = XYZ					
staggering = N/A					
<pre>start_index =</pre>	1	1	1	0	
end_index =	332	215	4	0	
WrfType =	104				
ierr =	0				
RMS errore_var =	T ndim1 =	3	dh1 =	3	
• • • • • • • • • • • • • • • • • • •					
51/2					
RMS errore_var =		3			
WrfType =	104 WRF_R		104 ierr =	0	
ordering = XYZ s					
<pre>start_index =</pre>	1	1	1	0 end_	index =
333	215	50	0		
k,max,min,mid U=		18.50961	-17.84097	-0.866757	
k,max,min,mid U=		18.68178	-18.39229	-0.864765	
k,max,min,mid U=		19.28049	-19.42709	-0.861098	
k,max,min,mid U=	4	19.60607	-21.29182	-0.854717	1
	5	21.58153	-24.50086	-0.840545	

3. Read in observational data

Skipping through a majority of the content towards the middle of the standard output file, the following lines will appear:

OBS_PARA: ps	1429	3190	4655	6774
OBS_PARA: t	2564	5200	7057	11128
OBS_PARA: q	2346	4626	6148	8128
OBS_PARA: pw	65	80	63	49
OBS_PARA: uv	3358	6453	8091	11998

This table is an important step to check if the observations have been read in, which types of observations have been read in, and the distribution of observations in each sub domain. At this point, GSI has read in all the data needed for the analysis. Following this table is the inner iteration information.

4. Inner iteration

The inner iteration step in the standard output file will look like this:

	1.131520548923311509E+02		2 0.000000000000000000000000000000000E+00		
Begin J table inner/ou	ter loop 0	1			
J term		J			
	5.7012207042385944E				
	6.4242087278840627E				
wind	1.6782607330525603E	:+04			
moisture	3.5878183830232451E	+03			
J Global	3.2495855145671507E	+04			
End Jo table inner/out	er loop 0	1			
Initial cost function =	3.249585514567150676E+0	4			
Initial gradient norm =	1.063729546888358080E+0	1			
cost.grad.step.b.step?	= 1 0 3.249585514567	150676E+04 1.06372954688	38358080E+01 2.548553547231620442E+01	0.000000000000000000000000000000000E+00	good
			1 8.583043995786756586E-01		0
10 0			01838273E+00 2.514521805501437157E+01	8.583043995786756586E-01	good
			L 8.852129791983981422E-01		0
			53644381E+00 1.036575164309021346E+01	8.852129791983981422E-01	good
			L 6.610975081120487040E-01	010021201010000011222 01	Booa
P05001. 5001m(1.2),0	0.0000100120240210020.01	0.0000100.2024.004101.01			

Following the namelist set up, similar information will be repeated for each inner loop. In this case, two outer loops with 50 inner loops in each outer loop are shown. The last iteration looks like this:

cost,grad,step,b,step? = 2 43 2.283066393607995633E+04 1.877001128106250809E-04 2.191568845986752123E+01 1.034537274286373876E+00 good
pcgsoi: gnorm(1:2),b= 1.819672329827284049E-08 1.819678976283112548E-08 5.164945106960998622E-01 cost,grad,step,b,step? = 2 44 2.283066393350738355E+04 1.34952308210814343E-04 4.180909725254741716E+01 5.164945106960998622E-01 good
pcgsoi: gnorm(1:2),b= 1.127913513618353988E-08 1.127903191777782680E-08 6.198386233002942669E-01 cost,grad,step,b,step? = 2 45 2.2830663933454704667E+04 1.062032727187987424E-04 2.399192596022169610E+01 6.198386233002942669E-01 good
PCGSOI: WARNING **** Stopping inner iteration ***
gnorm 0.9966122228090348903E-10 less than 0.100000000000004E-09
update_guess: successfully complete

At the 45th iterationi, GSI met the stop threshold before getting to the maximum iteration number (50). As a quick check, the J value should descend with each iteration. Here, J has a value of 3.249585514567150676E+04 at the beginning and a value of 2.283066393454704667E+04 for the final iteration. Therefore, the value has reduced by about one third, which is an expected reduction.

5. Write out analysis results

The final step of the GSI analysis procedure looks very similar to the portion where the background fields were read in:

max,min psfc= 102799.9 66793.78

max,min MU= 2799.898 RMS errore_var=MU ordering=XY	- 1	195.195		
WrfType,WRF_REAL=	104	104		
ndim1= 2				
staggering= N/A				
start_index= 1		1	1	0
end_index1= 332		215	50	0
k,max,min,mid T=	1	321.6157	270.8151	309.3634
k,max,min,mid T=	2	321.7112	270.9660	309.4070
k,max,min,mid T=	3	321.4324	271.2166	309.3831
k,max,min,mid T=	4	321.2418	271.6100	309.3864
k,max,min,mid T=	5	321.6863	272.2831	309.3308
k,max,min,mid T=	6	320.9441	272.8387	309.1977
k,max,min,mid T=	7	320.8511	273.1703	309.0908

6. As an indication that GSI has successfully run, several lines will appear at the bottom of the file:

After carefully investigating each portion of the standard output file, it can be concluded that GSI successfully ran through every step and there were no run issues. A more complete description of the standard output file can be found in Section 4.1. However, it cannot be concluded that GSI successfully produced an analysis until more diagnosis has been completed.

5.1.4 Diagnose GSI Analysis Results

a Check Analysis Fit to Observations

The analysis uses observations to correct the background fields to fit to the observations under certain constraints. The easiest way to confirm the GSI analysis results fit the observations better than the background is to check a set of files with names *fort.2?*, where ?? is a number from 01 to 19 or larger than 20. In the run scripts, several "fort" files have also been renamed as *fit_t1* (*q1*, *p1*, *rad1*, *w1*). *YYYYMMDDHH*. Please check Section 4.5.1 for a detailed explanation of the fit files. Here, we illustrate how to use these fit files.

• fit_t1.2014061700 (fort.203)

This file shows how the background and analysis fields fit to temperature observations. The contents of this file show five data types were used in the analysis: 120, 130, 132, 180, and 182. Also included are the number of observations, bias, and RMS error of observation minus background (o-g 01) or analysis (o-g 03) on each level for the three data types. The following is part of the file, only showing data types 120 and 180:

it	obs	type styp	ptop pbot	1000.0 1200.0	900.0 1000.0	800.0 900.0	600.0 800.0	400.0 600.0	300.0 400.0	250.0 300.0	200.0 250.0	150.0 200.0	100.0 150.0	50.0 100.0	0.0 2000.0	
o-g 01	t	120 0000	count	107	350	357	866	1153	719	252	450	551	884	745	7188	
o-g 01	t	120 0000	bias	0.80	0.32	-0.10	-0.12	-0.15	-0.20	-0.24	-0.60	-0.22	0.15	-0.10	-0.07	
o-g 01	t	120 0000	RMS	error	2.06	1.55	0.83	0.77	0.69	0.66	0.73	1.20	1.44	1.65	1.65	1.23
o-g 01	t	120 0000	cpen	0.81	0.49	0.23	0.33	0.33	0.30	0.36	0.79	0.91	0.98	0.79	0.58	
o-g 01	t	120 0000	qcpen	0.81	0.49	0.23	0.33	0.33	0.30	0.36	0.79	0.91	0.98	0.79	0.58	
o-g 01	t	180 0000	count	339	35	0	0	0	0	0	0	0	0	0	374	

01	-	180 0000	b d a a	0 17	1 10	0 00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.26	
o-g 01	t			0.17	1.12	0.00	0.00						0.00			0.04
o-g 01	t	180 0000		error	1.66	4.03	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	2.01
o-g 01	t	180 0000	*	0.63	7.18	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.25	
o-g 01	t	180 0000		0.63	7.18	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.25	
o-g 01	t	180 0001		1344	15	0	0	0	0	0	0	0	0	0	1359	
o-g 01	t	180 0001		0.82	4.17	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.86	
o-g 01	t	180 0001		error	2.07	5.44	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	2.13
o-g 01	t	180 0001		0.47	23.37	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.73	
o-g 01	t	180 0001		0.47	23.37	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.73	
o-g 01		all	count	1792	405	358	871	1172	725	325	800	651	884	745	9482	
o-g 01		all	bias	0.69	0.53	-0.10	-0.12	-0.15	-0.19	-0.09	-0.50	-0.04	0.15	-0.10	0.08	
o-g 01		all	RMS	error	1.99	2.14	0.83	0.77	0.69	0.67	0.84	1.32	1.58	1.65	1.65	1.45
o-g 01		all	cpen	0.52	1.91	0.23	0.33	0.36	0.31	0.44	0.97	1.18	0.98	0.79	0.68	
o-g 01		all	qcpen	0.52	1.91	0.23	0.33	0.36	0.31	0.44	0.97	1.18	0.98	0.79	0.68	
o-g 03	t	120 0000		107	350	357	866	1153	719	252	450	551	884	745	7188	
o-g 03	t	120 0000		0.58	0.29	-0.04	-0.02	-0.04	-0.02	0.01	-0.16	-0.04	0.06	0.04	0.01	
o-g 03	t	120 0000		error	1.72	1.35	0.70	0.61	0.49	0.43	0.50	0.79	1.14	1.40	1.59	1.05
o-g 03	t	120 0000	1	0.57	0.33	0.14	0.19	0.16	0.12	0.18	0.34	0.57	0.72	0.73	0.39	
o-g 03	t	120 0000		0.57	0.33	0.14	0.19	0.16	0.12	0.18	0.34	0.57	0.72	0.73	0.39	
o-g 03	t	180 0000		339	35	0	0	0	0	0	0	0	0	0	374	
o-g 03	t	180 0000		-0.24	0.21	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-0.19	
o-g 03	t	180 0000		error	1.55	2.83	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.71
o-g 03	t	180 0000	*	0.34	2.57	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.55	
o-g 03	t	180 0000	qcpen	0.34	2.57	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.55	
o-g 03	t	180 0001	count	1344	16	0	0	0	0	0	0	0	0	0	1360	
o-g 03	t	180 0001	bias	0.30	1.97	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.32	
o-g 03	t	180 0001	RMS	error	1.75	2.88	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.77
o-g 03	t	180 0001	cpen	0.27	6.05	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.34	
o-g 03	t	180 0001	qcpen	0.27	6.05	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.34	
o-g 03		all	count	1792	406	358	871	1172	725	325	800	651	884	745	9483	
o-g 03		all	bias	0.21	0.34	-0.04	-0.02	-0.04	-0.02	0.04	-0.13	0.06	0.06	0.04	0.05	
o-g 03		all	RMS	error	1.71	1.61	0.69	0.61	0.49	0.43	0.61	0.94	1.26	1.40	1.59	1.22
o-g 03		all	cpen	0.30	0.75	0.14	0.19	0.18	0.14	0.24	0.49	0.76	0.72	0.73	0.42	
o-g 03		all	qcpen	0.30	0.75	0.14	0.19	0.18	0.14	0.24	0.49	0.76	0.72	0.73	0.42	
-																

For example, data type 120 has 1153 observations in layer 400.0-600.0 hPa, a bias of -0.15, and a RMS error of 0.69. The last column shows the statistics for the whole atmosphere. There are several summary lines for all data types, which is indicated by "all" in the data types column. For summary O-B (which is "o-g 01" in the file), there are 9482 observations in total, for a bias of 0.08, and a RMS error of 1.45.

Skipping ahead in the "fort" file, "o-g 03" columns (under "it") show the observation minus analysis (O-A) information. Under the summary ("all") rows, it can be seen that there were 9483 total observations, a bias of 0.05, and a RMS error of 1.22. This shows that from the background to the analysis, one more observation data point is being used because of the recalculation of the innovation and the gross check after each outer loop, the bias reduced from 0.08 to 0.05, and the RMS error reduced from 1.45 to 1.22. This is about a 16% reduction, which is a reasonable value for a large-scale analysis.

• fit_w1.2014061700 (fort.202)

This file demonstrates how the background and analysis fields fit to wind observations. This file (as well as $fit_q \eta$) is formatted the same way as *fort.203*. Therefore, only the summary lines for O-B and O-A will be shown here to gain a quick view of the fit to observations:

it	obs	type styp	ptop pbot	1000.0 1200.0	900.0 1000.0	800.0 900.0	600.0 800.0	400.0 600.0	300.0 400.0	250.0 300.0	200.0 250.0	150.0 200.0	100.0 150.0	50.0 100.0	0.0 2000.0	
o-g 01 o-g 01		all all	count bias	1597 0.27	1703 0.84	1839 0.68	2930 0.61	1213 0.56	828 0.45	290 0.67	687 0.91	533 0.48	694 0.83	798 1.21	14513 0.64	
o-g 01		all	RMS (error	2.50	2.65	2.52	3.11	4.02	3.98	4.37	4.31	5.32	5.41	4.77	3.59
o-g 03 o-g 03 o-g 03		all all all	count bias RMS (1608 0.23 error	1695 0.42 2.27	1843 0.26 2.16	2931 0.30 1.94	1212 0.37 2.23	828 0.33 2.74	290 0.22 2.82	687 0.37 3.64	533 0.32 3.31	694 0.67 4.22	798 1.22 4.43	14520 0.39 4.41	2.90

O-B: 14513 observations in total, bias is 0.64, and RMS error is 3.59

O-A: 14520 observations in total, bias is 0.39, and RMS error is 2.90

The total bias was reduced from 0.64 to 0.39 and the RMS error was reduced from 3.59

to 2.90 (20% reduction).

• fit_q1.2014061700 (fort.204)

This file demonstrates how the background and analysis fields fit to moisture observations (relative humidity). The summary lines for O-B and O-A are as follows:

it	obs	type styp	ptop pbot	1000.0 1200.0	950.0 1000.0	900.0 950.0	850.0 900.0	800.0 850.0	700.0 800.0	600.0 700.0					0.0 2000.0	
o-g 01 o-g 01		all all	count bias	543 1.17	186 -3.68	182 -2.47	211 -1.30	146 -3.55	457 0.19	406 0.64		621 -4.28	623 -5.55	0 0.00	3895 -2.05	
o-g 01		all	RMS (error	9.09	10.63	9.03	9.34	12.73	12.30	14.53	15.27	16.45	16.01	0.00	13.66
o-g 03 o-g 03 o-g 03		all all all	count bias RMS (543 -0.39 error	186 -0.88 5.48	182 -0.68 5.19	211 0.45 4.37	146 -0.51 5.73	457 0.06 8.13	406 0.13 9.31	520 -0.10 12.19	621 -0.70 13.82	623 -1.90 13.01	0 0.00 12.36	3895 -0.53 0.00	10.64

O-B: 3895 observations in total, bias is -2.05, and RMS error is 13.66 O-A: 3895 observations in total, bias is -0.53, and RMS error is 10.64

The total bias and RMS error were reduced.

• fit_p1.2014061700 (fort.201)

This file demonstrates how the background and analysis fields fit to surface pressure observations. Because surface pressure is a two-dimensional field, the table is formatted differently than the three-dimensional fields shown above. Once again, only the summary lines will be shown for O-B and O-A to gain a quick view of the fit to observations:

pressure it o-g 01	levels obs		stype		bias 0.1912		error 0.4105	cpen 0.4105	qcpen
o-g 03		all		13916	0.0403	0.6764	0.2921	0.2921	

O-B: 13890 observations in total, bias is 0.1912, and RMS error is 0.7931 O-A: 13916 observations in total, bias is 0.0403, and RMS error is 0.6764

Both the total bias and RMS error were reduced.

These statistics show that the analysis results fit to the observations closer than the background, which is what we would expect. How close the analysis fits to the observations is based on the ratio of background error variance and observation error.

b Check the Minimization

In addition to the minimization information in the standard output file, GSI writes more detailed information into a file called "fort.220." The content of "fort.220" is explained in the Advanced GSI User's Guide. Below is an example of a quick check of the cost function trend and the norm of gradient. The values should get smaller with each iteration.

In the run directory, information on the cost function and norm of the gradient can be dumped into an output file by using the following command: The file *cost_gradient.txt* includes six columns, however only the first four columns are needed and are explained below. The first five and last five lines read are:

1 1	0 1 2	3.249585514567150676E+04 2.961211443694752961E+04 2.717003835484893352E+04	1.063729546888358080E+01 9.854892517701838273E+00 9.272050290563644381E+00	2.548553547231620442E+01 2.514521805501437157E+01 1.036575164309021346E+01	0.000000000000000000000000000000000000
1	∠ 3	21111100000010100000022 01	7.538909651153024249E+00	1.948409284114243079E+01	6.610975081120487040E-01
1	4	2.517150367563822510E+04	5.715354258100989071E+00	2.423238066649372513E+01	5.747370998254690555E-01
2	41	2.283066394128102547E+04	2.700371175626514980E-04	4.661917669555924704E+01	3.046618826707093719E-01
2	42	2.283066393788155256E+04	1.845403996927800583E-04	5.290241773629001187E+01	4.670206697407201513E-01
2	43	2.283066393607995633E+04	1.877001128106250809E-04	2.191568845986752123E+01	1.034537274286373876E+00
2	44	2.283066393530783535E+04	1.348952308210814343E-04	4.180909725254741716E+01	5.164945106960998622E-01
2	45	2.283066393454704667E+04	1.062032727187987424E-04	2.399192596022169610E+01	6.198386233002942669E-01

The first column is the outer loop number and the second column is the inner iteration number. The third column is the cost function, and the forth column is the norm of the gradient. It can be seen that both the cost function and norm of the gradient are descending.

To get a complete picture of the minimization process, the cost function and norm of the gradient can be plotted using an included NCL script located here:

./util/Analysis_Utilities/plot_ncl/GSI_cost_gradient.ncl.

The plot is shown as Fig.5.2:

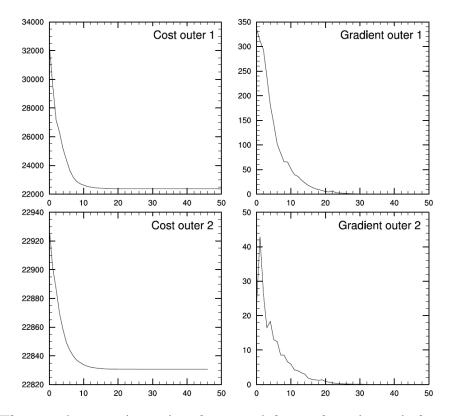


Figure 5.2: The cost function (y-axes) and norm of the gradient (y-axes) change with each iteration (x-axes).

The above plots demonstrate that both the cost function and norm of the gradient descend very fast in the first ten iterations in both outer loops and drop very slowly afterward.

c Check the Analysis Increment

The analysis increment gives us an idea of where and how much the background fields have been modified by the observations through the analysis. Another useful graphics tool that can be used to look at the analysis increment is located here:

./util/Analysis_Utilities/plot_ncl/Analysis_increment.ncl.

The graphic below shows the analysis increment at the 15th sigma (vertical) level on the analysis grid. Notice that the scales are different for each of the plots.

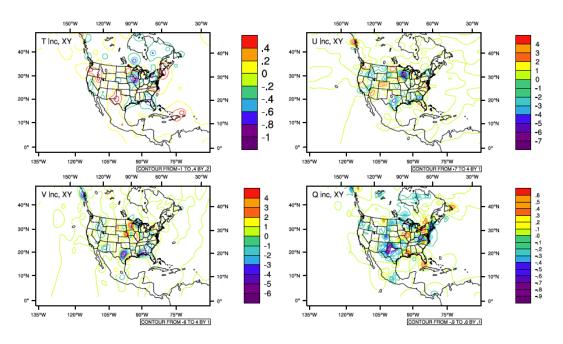


Figure 5.3: Analysis increment at the 15th level

The analysis increment indicates that conventional observations are mostly located within the continental United States and that data availability over the ocean is very sparse.

5.2 Assimilating Radiance Data with Regional GSI

5.2.1 Run Script

Adding radiance data into the GSI analysis is straightforward after having already run GSI with conventional data. The same run script from the above section can be used to run GSI with radiance data (with or without PrepBUFR data). The key step to adding the radiance data is linking the radiance BUFR files to the GSI run directory with the names listed in the &OBS_INPUT section of the GSI namelist. The following example adds the two radiance BUFR files:

AMSU-A: gdas1.t00z.1bamua.tm00.bufr_d HIRS4: gdas1.t00z.1bhrs4.tm00.bufr_d

The location of these radiance BUFR files is already included in the scripts variable OBS_ROOT, therefore the following two lines can be inserted below the link to the prepBUFR data in the script *run_gsi_regional.ksh*:

ln -s \${OBS_ROOT}/gdas1.t\${HH}z.1bamua.tm00.bufr_d amsuabufr
ln -s \${OBS_ROOT}/gdas1.t\${HH}z.1bhrs4.tm00.bufr_d hirs4bufr

If radiance data is desired in addition to conventional prepBUFR data, the following link to the prepBUFR data should be kept as is:

ln -s \${PREPBUFR} ./prepbufr

Alternatively, to analyze radiance data without conventional prepBUFR data, this line can be commented out in the script *run_gsi_regional.ksh*:

ln -s \${PREPBUFR} ./prepbufr

In the following example, both radiance and conventional observations will be assimilated.

In order to link the correct name for the radiance BUFR file, the namelist section $\&OBS_INPUT$ should be referenced. This section has a list of data types and BUFR file names that can be used in GSI. The 1st column "dfile" is the file name recognized by GSI. The 2nd column "dtype" and 3rd column "dplat" are the data type and data platform that are included in the file listed in "dfile," respectively. For example, the following line tells us the AMSU-A observation from NOAA-15 should be read from a BUFR file named "amsuabufr":

! dfiledtypedplatdsisdvaldthin dsfcalcamsuabuframsuan15amsua_n1510.020

With radiance data assimilation, data thinning and bias correction need to be checked carefully. The following is a brief description of these two:

• Radiance data thinning

Radiance data thinning is found in the namelist section &OBS_INPUT. The following is a part of namelist in that section:

dm	dmesh(1)=120.0,dmesh(2)=60.0,dmesh(3)=30,time_window_max=1.5,ext_sonde=.true.										
!	dfile	dtype	dplat	dsis	dval	dthin	dsfcalc				
	amsuabufr	amsua	n15	amsua_n15	10.0	2	0				

The first line of &OBS_INPUT lists multiple mesh grids as elements of the array dmesh (three mesh grids in the above example). For the line specifying data type, the 2nd to last element of that line is used to specify the choice of dthin. This selects the

5. GSI Applications for Regional 3DVar, Hybrid 3DEnVar and Hybrid 4DEnVar

mesh grid to be used for thinning. The data thinning option for NOAA-15 AMSU-A observations is set to 60 km because the value of dthin is two, corresponding to dmesh(2)=60 km. For more information about radiance data thinning, please refer to the Advanced GSI User's Guide.

• Radiance data bias correction

Radiance data bias correction is very important for successful radiance data assimilation. In the sample run scripts, there are two files related to bias correction:

for satellite bias correction
cp \${FIX_R00T}/gdas1.t00z.abias.20150617 ./satbias_in
cp \${FIX_R00T}/gdas1.t00z.abias_pc.20150617 ./satbias_pc

For this case, the GDAS bias correction files were downloaded and saved in the fix directory as examples. For other cases, the run script should link to corresponding bias correction coefficient files. The first line sets the path to the bias coefficient file, and the second copies the bias correction coefficients for passive (monitored) channels into the working directory. These two coefficient files are usually calculated from within GSI in the previous cycle. Two files are provided in ./fix as examples of the bias correction coefficients. For the best results, it is necessary for the user to generate his or her own bias files. The details of radiance data bias correction are discussed in the Advanced GSI User's Guide. Please note that GSI releases prior to v3.5 have coefficients for mass bias correction and angle bias correction calculated separately.

Once these links are set, we are ready to run GSI.

5.2.2 Run GSI and Check Run Status

The process for running GSI is the same as described in section 5.1.2. Once *run_gsi_regional.ksh* has been submitted, move into the run directory to check the GSI analysis results. For the current case, the run directory will look almost as it did for the conventional data case, the exception being the two links to the radiance BUFR files and new diag files for the radiance data types used. Following the same steps as in section 5.1.2, check the *stdout* file to see if GSI has run through each part of the analysis process successfully. In addition to the information outlined for the conventional run, the radiance BUFR files should have been read in and distributed to each sub domain:

		1400	2100	4055	0774
OBS_PARA: ps		1429	3190	4655	6774
OBS_PARA: t		2564	5200	7057	11128
OBS_PARA: q		2346	4626	6148	8128
OBS_PARA: pw		65	80	63	49
OBS_PARA: uv		3358	6453	8091	11998
OBS_PARA: hirs4	metop-a	0	0	1146	1661
OBS_PARA: hirs4	n19	213	1020	0	0
OBS_PARA: hirs4	metop-b	0	0	85	555
OBS_PARA: amsua	n15	1458	2026	830	234
OBS_PARA: amsua	n18	2223	2318	108	0
OBS_PARA: amsua	n19	176	960	0	0
OBS_PARA: amsua	metop-a	0	0	1077	1559
OBS_PARA: amsua	metop-b	0	0	265	1829

When comparing this output to the content in step three of section 5.1.3, it can be seen that there are eight new radiance data types that have been read in: HIRS4 from METOP-A,

5. GSI Applications for Regional 3DVar, Hybrid 3DEnVar and Hybrid 4DEnVar

METOP-B and NOAA-19, AMSU-A from NOAA-15, NOAA-18, NOAA-19, METOP-A, and METOP-B. The table above shows that most of the radiance data read in for this case are AMSU-A from NOAA satellite information.

5.2.3 Diagnose GSI Analysis Results

a Check File fort.207

The file *fort.207* contains the statistics for the radiance data, similar to file *fort.203* for temperature. This file contains important details about the radiance data analysis. Section 4.5.2 explains this file in detail. Below are some values from the file *fort.207* to provide a quick look at the radiance assimilation for this example.

The *fort.207* file contains the following lines:

For O-B, before the first outer loop:

it	satellite	instrument	# read	# keep	# assim	penalty	qcpnlty	cpen	qccpen
o-g 01 rad	n15	amsua	83190	58236	25226	10356.	10356.	0.41053	0.41053
o-g 01 rad	n18	amsua	83595	69147	27677	11067.	11067.	0.39988	0.39988

For O-A, after the second outer loop:

o-g 03 rad	n15	amsua	83190	58236	30136	4672.4	4672.4	0.15504	0.15504
o-g 03 rad	n18	amsua	83595	69147	32253	8546.8	8546.8	0.26499	0.26499

From the above information, it can be seen that AMSU-A data from NOAA-15 provides 83190 observations within the analysis time window and domain. After thinning, 58236 observations remained, and only 25226 passed the quality check and were used in the analysis. The penalty for this data decreased from 10356 to 4672.4 after two outer loops. It is important to note that the number of AMSU-A observations assimilated in the O-A calculation increased to 30136 from 25226 as more data passed the quality check in the 2^{nd} outer loop.

The statistics for each channel can be viewed in the *fort.207* file as well. Here, channels from AMSU-A NOAA-15 are listed as an example:

For O-B, before the first outer loop:

1	1 amsua_n15	1903	24	3.000	1.6543287	-0.3164878	0.1411234	1.7151923	1.6857402
2	2 amsua_n15	1927	0	2.200	1.0105548	-0.2430249	0.0385590	1.0284683	0.9993427
3	3 amsua_n15	1927	0	2.000	1.7941589	-0.1480894	0.0575956	0.7909800	0.7769935
4	4 amsua_n15	1927	0	0.600	-0.1848763	-0.0460476	0.0856369	0.2497797	0.2454985
5	5 amsua_n15	1927	4	0.300	0.0314288	-0.0292998	0.3025052	0.2008865	0.1987383
6	6 amsua_n15	4126	10	-0.230	-1.8448526	-0.0778284	0.8969513	0.2463875	0.2337725
7	7 amsua_n15	4468	13	0.250	-0.1497841	-0.0810899	0.5245399	0.2042760	0.1874916
8	8 amsua_n15	4468	13	0.275	-0.0251081	-0.0869918	0.6195120	0.2420568	0.2258847
9	9 amsua_n15	4463	18	0.340	0.1824903	0.2108491	0.6987405	0.3453174	0.2734717
10	10 amsua_n15	294	4187	0.400	0.7946961	0.7908103	2.5281681	0.7982470	0.1087077
15	15 amsua_n15	1922	5	3.500	1.6785936	-0.1471413	0.0940713	1.6461928	1.6396037

For O-A, after the second outer loop:

1	1 amsua_n15	2050	10	3.000	2.0842622	0.1363398	0.0414276	1.0332965	1.0242622
2	2 amsua_n15	2060	0	2.200	1.0926873	-0.0731534	0.0177924	0.8048238	0.8014923
3	3 amsua_n15	2060	0	2.000	1.8733559	-0.0257656	0.0406385	0.6841159	0.6836305
4	4 amsua_n15	2060	0	0.600	-0.1278763	0.0136412	0.0547146	0.2103718	0.2099291
5	5 amsua_n15	2060	4	0.300	0.0730860	0.0118626	0.1759475	0.1624923	0.1620587
6	6 amsua_n15	4234	0	-0.230	-1.7911421	-0.0262042	0.5247873	0.1975867	0.1958414
7	7 amsua_n15	4470	11	0.250	-0.0766482	-0.0094307	0.1918646	0.1288789	0.1285334
8	8 amsua_n15	4475	6	0.275	0.0675371	-0.0047226	0.1715888	0.1341703	0.1340871
9	9 amsua_n15	4481	0	0.340	-0.0508290	-0.0396425	0.1722334	0.1711928	0.1665396
10	10 amsua_n15	4362	119	0.400	0.2373520	0.1943598	0.3425567	0.3140220	0.2466457
15	15 amsua_n15	2058	2	3.500	1.8261335	0.0617429	0.0487809	1.2317674	1.2302190

The second column is the channel number for AMSU-A and the last column is the standard deviation for each channel. It can be seen that most of the channels fit better to the observations after the second outer loop.

b Check the Analysis Increment

The same methods for checking the optimal minimization as demonstrated in section 5.1.4.2 can be used for radiance assimilation. Similar features to the conventional assimilation should be seen with the minimization. The figures below show detailed information on how the radiance data impact the analysis results on top of the conventional data. Using the same NCL script as in section 5.1.4.3, analysis increment fields are plotted comparing the analysis results with radiance and conventional data to the analysis results with conventional data assimilation only. Figure 5.5 is for vertical level 49 and Figure 5.4 is for vertical level six, representing the maximum temperature increment level (49) and maximum moisture increment level (6), respectively.

In order to fully understand the analysis results, the following topics should be reviewed:

- The weighting functions of each channel and the data coverage at the analysis time. There are several sources on the internet that show the weighting functions of the AMSU-A channels. Channel one is the moisture channel, while the others are mainly temperature channels (Channels two, there, and 15 also have large moisture signals). Because a model top of 20 mb was specified for this case study, the actual impact should come from channels with peak weighting below 20 hPa.
- 2. The usage of each channel is located in the file named 'satinfo' in the run directory. The first two columns show the observation type and platform of the channels, and the third column indicates if the channel is used in the analysis. Because many amsua_n15 and amsua_n18 data were used, they should be checked in detail. In this case, Channels six, 11, and 14 from amsua_n15 and channels nine and 14 from amsua_n18 were turned off.
- 3. Thinning information, including a quick look at the namelist in the run directory. The file "gsiparm.anl" shows that both amsua_n15 and amsu_n18 use thinning grid two, which is 60 km. In this case, the grid spacing is 30 km, which indicates to use the satellite observations every four grid-spaces, which might be a little dense.

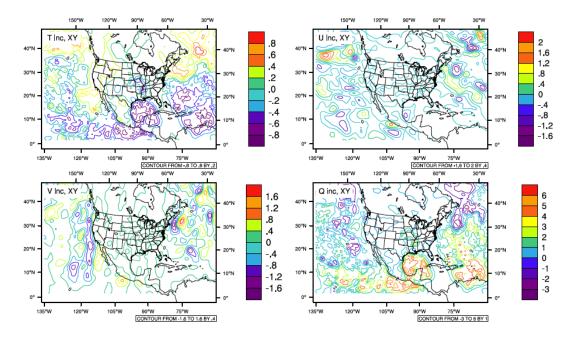


Figure 5.4: Analysis increment fields of the prepBUFR and radiance data analysis compared to the analysis with prepBUFR only at vertical level six

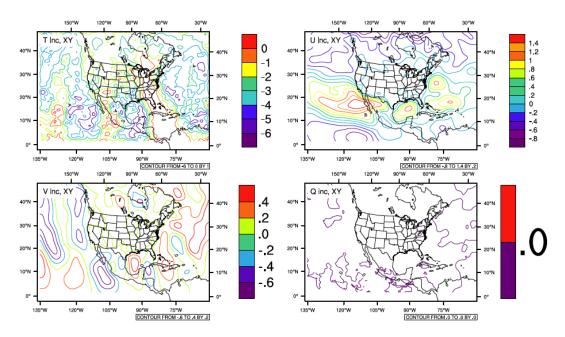


Figure 5.5: Analysis increment fields of the prepBUFR and radiance data analysis compared to the analysis with prepBUFR only at vertical level 49

4. Bias correction: Radiance bias correction was previously discussed. It is very important for a successful radiance data analysis. The run script can only link to the GDAS bias correction coefficients that are provided as an example in ./*fix*:

cp \${FIX_R00T}/gdas1.t00z.abias.20150617 ./satbias_in cp \${FIX_R00T}/gdas1.t00z.abias_pc.20150617 ./satbias_pc

Users can download the operational bias correction coefficients during their experiment period as a starting point to calculate the coefficients suitable for their experiments. Radiance bias correction for regional analyses is a difficult issue because of the limited coverage of radiance data. This topic is out of the scope of this document, but this issue should be considered and understood when using GSI with radiance applications.

5.3 Assimilating GPS Radio Occultation Data with Regional GSI

5.3.1 Run Script

The addition of GPS Radio Occultation (RO) data into the GSI analysis is similar to that of adding radiance data. In the example below, the RO data is used as refractivity. There is also an option to use the data as bending angles. The same run scripts in sections 5.1.1 and 5.2.1 can be used with the addition of the following link to RO observations:

ln -s \${OBS_ROOT}/gdas1.t\${HH}z.gpsro.tm00.bufr_d gpsrobufr

For this case study, the GPS RO BUFR file was downloaded and saved in the OBS_ROOT directory. The file is linked to the name *gpsrobufr*, following the namelist section &OBS_INPUT:

!	dfile	dtype	dplat	dsis	dval	dthin	dsfcalc
	gpsrobufr	gps_ref	null	gps	1.0	0	0

This indicates that GSI is expecting a GPS refractivity BUFR file named *gpsrobufr*. In the following example, GPS RO and conventional observations are both assimilated. Change the run directory name in the run scripts to reflect this test:

WORK_ROOT=/scratch1/gsiprd_\${ANAL_TIME}_gps_prepbufr

5.3.2 Run GSI and Check the Run Status

The process of running GSI is the same as described in section 5.1.2. Once run gsi regional.ksh has been submitted, move into the working directory, gsiprd_2014061700_gps_prepbufr, to check the GSI analysis results. The run directory will look exactly the same as with the conventional data, with the exception of the link to the GPS RO BUFR files used in this case. Following the same steps as in section 5.1.3, check the standard output file to see if GSI has run through each part of the analysis process successfully. In addition to the information outlined for the conventional run, the GPS RO BUFR files should have been read in and distributed to each sub domain:

OBS_PARA: ps	1429	3190	4655	6774
OBS_PARA: t	2564	5200	7057	11128
OBS_PARA: q	2346	4626	6148	8128
OBS_PARA: pw	65	80	63	49
OBS_PARA: uv	3358	6453	8091	11998
OBS_PARA: gps_ref	1799	1368	2664	3520

Comparing the output to the content in section 5.1.3, it can be seen that the GPS RO refractivity data have been read in and distributed to four sub-domains successfully.

5.3.3 Diagnose GSI Analysis Results

a Check File fort.212

The file *fort.212* shows the fit of the analysis/background to the GPS/RO data as fractional differences. It has the same structure as the fit files for conventional data. Below is a quick look to be sure the GPS RO data were used:

tion - B	ackground (D-B)													
obs	type styp	ptop pbot	1000.0 1200.0	900.0 1000.0	800.0 900.0	600.0 800.0	400.0 600.0	300.0 400.0	250.0 300.0	200.0 250.0	150.0 200.0	100.0 150.0	50.0 100.0	0.0 2000.0	
	all all all	count bias RMS	0 0.00	13 -0.76	58 -0.03 1.41	223 -0.06 0.75	355 -0.04 0.96	342 0.01 0.79	232 -0.03 0.35	261 0.04 0.32	326 -0.04 0.42	440 -0.16 0.54	729 -0.18 0.57	3740 -0.14 0.55	0.59
tion - A															
		ptop	1000.0	900.0	800.0	600.0	400.0	300.0	250.0	200.0	150.0	100.0	50.0	0.0	
obs	type styp	pbot	1200.0	1000.0	900.0	800.0	600.0	400.0	300.0	250.0	200.0	150.0	100.0	2000.0	
	all	count	1	18	65	229	355	342	231	266	330	440	731	3776	
	all all	bias RMS	-0.40 error	-0.43 0.40	0.03 1.03	0.02 0.54	-0.02 0.59	-0.01 0.70	-0.02 0.26	0.00 0.14	0.01 0.20	-0.01 0.24	-0.02 0.28	0.00 0.39	0.41
-	obs 	obs type styp all all all tion - Analysis (0-/ obs type styp all all	obs type styp pbot all count all bias all RMS tion - Analysis (O-A) obs type styp pbot all count all bias	ptop 1000.0 obs type styp pbot 1200.0 all count 0 all bias 0.00 all RMS error tion - Analysis (0-A) obs type styp pbot 1200.0 all count 1 all bias -0.40	ptop 1000.0 900.0 obs type styp pbot 1200.0 1000.0 all count 0 13 all bias 0.00 -0.76 all RMS error 0.00 tion - Analysis 0-A) obs type styp pbot 1200.0 1000.0 all count 1 18 all bias -0.40 -0.43	ptop 1000.0 900.0 800.0 obs type styp pbot 1200.0 1000.0 900.0 all count 0 13 58 all bias 0.00 -0.76 -0.03 all RMS error 0.00 1.41 tion - Analysis (0-A) ptop 1000.0 900.0 800.0 obs type styp pbot 1200.0 1000.0 900.0 all count 1 18 65 all bias -0.40 -0.43 0.03	ptop 1000.0 900.0 800.0 600.0 obs type styp pbot 1200.0 1000.0 900.0 800.0 all count 0 13 58 223 all bias 0.00 -0.76 -0.03 -0.06 all RMS error 0.00 1.41 0.75 tion - Analysis (0-A) ptop 1000.0 900.0 800.0 obs type styp pbot 1200.0 1000.0 900.0 800.0 all count 1 18 65 229 all bias -0.40 -0.43 0.03 0.02	ptop 1000.0 900.0 800.0 600.0 400.0 obs type styp pbot 1200.0 1000.0 900.0 800.0 600.0 all count 0 13 58 223 355 all bias 0.00 -0.76 -0.03 -0.06 -0.04 all RMS error 0.00 1.41 0.75 0.96 tion - Analysis (0-A) ptop 1000.0 900.0 800.0 600.0 400.0 obs type styp pbot 1200.0 1000.0 900.0 800.0 600.0 400.0 all count 1 18 65 229 355 all count 1 18 65 229 355 all bias -0.40 -0.43 0.03 0.02 -0.02	ptop 1000.0 900.0 800.0 600.0 400.0 300.0 obs type styp pbot 1200.0 1000.0 900.0 800.0 600.0 400.0 all count 0 13 58 223 355 342 all bias 0.00 -0.76 -0.03 -0.06 -0.04 0.01 all RMS error 0.00 1.41 0.75 0.96 0.79 tion - Analysis (0-A) ptop 1000.0 900.0 800.0 600.0 400.0 obs type styp pbot 1200.0 1000.0 900.0 800.0 600.0 400.0 all count 1 18 65 229 355 342 all bias -0.40 -0.43 0.03 0.02 -0.02 -0.01	ptop 1000.0 900.0 800.0 600.0 400.0 300.0 250.0 obs type styp pbot 1200.0 1000.0 900.0 800.0 600.0 400.0 300.0 all count 0 13 58 223 355 342 232 all bias 0.00 -0.76 -0.03 -0.06 -0.04 0.01 -0.03 all RMS error 0.00 1.41 0.75 0.96 0.79 0.35 tion - Analysis (0-A) ptop 1000.0 900.0 800.0 600.0 400.0 300.0 obs type styp pbot 1200.0 1000.0 900.0 800.0 600.0 400.0 300.0 all count 1 18 65 229 355 342 231 all bias -0.40 -0.43 0.03 0.02 -0.01 -0.02	ptop 1000.0 900.0 800.0 600.0 400.0 300.0 250.0 200.0 obs type styp pbot 1200.0 1000.0 900.0 800.0 600.0 400.0 300.0 250.0 200.0 all count 0 13 58 223 355 342 232 261 all bias 0.00 -0.76 -0.03 -0.06 -0.04 0.01 -0.03 0.04 all RMS error 0.00 1.41 0.75 0.96 0.79 0.35 0.32 tion - Analysis (0-A) ptop 1000.0 900.0 800.0 600.0 400.0 300.0 250.0 200.0 obs type styp pbot 1200.0 1000.0 900.0 800.0 600.0 400.0 300.0 250.0 200.0 all count 1 18 65 229 355 342 231 266 all <	ptop 1000.0 900.0 800.0 600.0 400.0 300.0 250.0 200.0 150.0 obs type styp pbot 1200.0 1000.0 900.0 800.0 600.0 400.0 300.0 250.0 200.0 150.0 all count 0 13 58 223 355 342 232 261 326 all bias 0.00 -0.76 -0.03 -0.06 -0.04 0.01 -0.03 0.04 -0.04 all RMS error 0.00 1.41 0.75 0.96 0.79 0.35 0.32 0.42 tion - Analysis (0-A) ptop 1000.0 900.0 800.0 600.0 400.0 300.0 250.0 200.0 150.0 obs type styp pbot 1200.0 1000.0 900.0 800.0 600.0 400.0 300.0 250.0 200.0 200.0 all count 1	ptop 1000.0 900.0 800.0 600.0 400.0 300.0 250.0 200.0 150.0 100.0 obs type styp pbot 1200.0 1000.0 900.0 800.0 600.0 400.0 300.0 250.0 200.0 150.0 100.0 all count 0 13 58 223 355 342 232 261 326 440 all bias 0.00 -0.76 -0.03 -0.06 -0.04 0.01 -0.03 0.04 -0.04 -0.16 all RMS error 0.00 1.41 0.75 0.96 0.79 0.35 0.32 0.42 0.54 tion - Analysis (0-A) 600.0 400.0 300.0 250.0 200.0 150.0 100.0 obs type styp pbot 1200.0 1000.0 900.0 800.0 600.0 400.0 300.0 250.0 200.0 150.0	ptop 1000.0 900.0 800.0 600.0 400.0 300.0 250.0 200.0 150.0 100.0 100.0 obs type styp pbot 1200.0 1000.0 900.0 800.0 600.0 400.0 300.0 250.0 200.0 150.0 100.0 100.0 all count 0 13 58 223 355 342 232 261 326 440 729 all bias 0.00 -0.76 -0.03 -0.06 -0.04 0.01 -0.03 0.04 -0.04 -0.16 -0.18 all RMS error 0.00 1.41 0.75 0.96 0.79 0.35 0.32 0.42 0.54 0.57 tion - Analysis (0-A) 900.0 800.0 600.0 400.0 300.0 250.0 200.0 150.0 100.0 50.0 obs type styp pbot 1200.0 1000.0 900.0 800.0 <td>obs type styp ptop 1000.0 900.0 800.0 600.0 400.0 300.0 250.0 200.0 150.0 100.0 50.0 2000.0 all count 0 13 58 223 355 342 232 261 326 440 729 3740 all bias 0.00 -0.76 -0.03 -0.06 -0.04 0.01 -0.03 0.04 -0.04 -0.16 -0.18 -0.14 all RMS error 0.00 141 0.75 0.96 0.79 0.35 0.32 0.42 0.54 0.57 0.55 tion - Analysis (0-A) 600.0 400.0 300.0 250.0 200.0 150.0 100.0 50.0 0.00 obs type styp pbot 1000.0 900.0 800.0 600.0 400.0 300.0 250.0 200.0 150.0 100.0 200.0 obs type styp</td>	obs type styp ptop 1000.0 900.0 800.0 600.0 400.0 300.0 250.0 200.0 150.0 100.0 50.0 2000.0 all count 0 13 58 223 355 342 232 261 326 440 729 3740 all bias 0.00 -0.76 -0.03 -0.06 -0.04 0.01 -0.03 0.04 -0.04 -0.16 -0.18 -0.14 all RMS error 0.00 141 0.75 0.96 0.79 0.35 0.32 0.42 0.54 0.57 0.55 tion - Analysis (0-A) 600.0 400.0 300.0 250.0 200.0 150.0 100.0 50.0 0.00 obs type styp pbot 1000.0 900.0 800.0 600.0 400.0 300.0 250.0 200.0 150.0 100.0 200.0 obs type styp

It can be seen that most of the GPS RO data are located in the upper levels, with a total of 3740 observations used in the analysis during the 1^{st} outer loop, and 3776 used to calculate O-A. After the analysis, the data bias reduced from -0.14 to 0.00, and the RMS error was reduced from 0.59 to 0.41. It can be concluded that the analysis with GPS RO data looks reasonable from these statistics.

b Check the Analysis Increment

The same methods for checking the minimization in section 5.1.4.2 can be used for the GPS RO assimilation.

The following figures provide detailed information about how the new data impacts the analysis. Using the NCL script from section ??, analysis increment fields are plotted comparing the analysis results with GPS RO and conventional data to the analysis results with conventional data assimilation only for vertical level 48, which represents the maximum temperature increment.

Figure 5.6: Analysis increment fields comparing the use of GPS RO and conventional observations to only prepBUFR at vertical level 48.

5.4 Introduction to GSI Hybrid 3DEnVar Analysis

The three-dimensional hybrid ensemble-variational (hybrid 3DEnVar) analysis is an important option in the GSI system that has been used operationally. It provides the ability to bring the flow dependent background error covariance into the analysis based on ensemble forecasts. If ensemble forecasts have been generated, setting up GSI to do a hybrid analysis is straightforward and only requires two changes in the run script in addition to the current 3DVAR run script:

• Change 1: Link the ensemble members to the GSI run directory

This change is required to link the ensemble members to the GSI run directory and assign each ensemble member a name that GSI recognizes. GSI can accept four kinds of ensemble forecasts, controlled by the namelist variable *regional_ensemble_option*. Table 5.1 provides a list of options for *regional_ensemble_option* and the naming convention for linking the ensemble files to GSI recognized names.

Users have to change the GSI run script to add the links to the ensemble forecasts if they want to use the GSI hybrid function. Below is an example of using an ensemble in ARW netcdf format, assuming that all the ensemble members are located in a directory defined by the parameter \$mempath and the ensemble members have a name such as: $wrfout_d01_\$iiimem$, where \$iiimem is an integer indicating the ensemble member ID. The following lines should be added to the run script with loop *iiimem* from one to the total number of ensemble members:

if [-r \${mempath}/wrfout_d01_\${iiimem}]; then
 ln -sf \${mempath}/wrfout_d01_\${iiimem} ./wrf_en\${iiimem}
else
 echo "member \${mempath}/wrfout_d01_\${iiimem} does not exit"

anation	Function called	GSI recognized ensemble
		file names
ensemble internally	get_gefs_for_regional	filelist : a text file includ-
polated to hybrid		ing the path and name of
		ensemble files
mble is in WRF-	get_wrf_nmm_ensperts	d01_en001,
A (HWRF) format		d01_en002,
mble is in ARW	get_wrf_mass_ensperts_netcdf	wrf_en001,
df format		wrf_en002,
mble is in NMMB	get_nmmb_ensperts	nmmb_ens_mem001,
at	-	nmmb_ens_mem002,
	ensemble internally polated to hybrid mble is in WRF- A (HWRF) format mble is in ARW df format mble is in NMMB	ensemble internally polated to hybridget_gefs_for_regionalmble is in WRF- A (HWRF) formatget_wrf_nmm_enspertsmble is in ARW aff formatget_wrf_mass_ensperts_netcdfmble is in NMMBget_nmmb_ensperts

Table 5.1: List of ensemble forecasts that can be read by GSI

fi

• Change 2: Set up the namelist options in section HYBRID_ENSEMBLE

Users need to set l_hyb_ens=.true. to turn on the hybrid ensemble analysis. Commonly used namelist options for the hybrid analysis are listed in table 5.2: Please note: the parameters s_ens_h, s_ens_v, and beta1_inv are tunable parameters. They should be tuned for best performance.

After setting up the namelist parameters and the path/name of the ensemble members, GSI can be run in the same manner as the other 3DVAR cases introduced in this chapter. The same procedures could be followed as in the previous sections to check the run status and diagnose the GSI analysis.

Table 5.2: The list of namelist options for GSI hybrid

	1 ,
Options	explanation
l_hyb_ens	if true, turn on hybrid ensemble option
uv_hyb_ens	if true, ensemble perturbation wind variables are u and v;
	otherwise, ensemble perturbation wind variables are stream
	function and velocity potential
generate_ens	if true, generate an internal ensemble based on the existing
	background error; recommended = false
n_ens	number of ensemble members
beta1_inv	(1/beta1), the weight given to the static background error co-
	variance. $0 \leq beta1_inv \leq 1$, should be tuned for optimal
	performance; beta2_inv = 1 - beta1_inv is the weight given to the
	ensemble derived covariance
	=1, ensemble information turned off
	=0, static background errors turned off
s_ens_h	homogeneous isotropic horizontal ensemble localization scale
	(km)
s_ens_v	vertical localization scale
	If positive, in grid units;
	if negative, in lnp unit
regional_ensemble	integer, used to select the type of ensemble to read in for re-
_option	gional applications. Currently takes values from one to four:
	=1: use GEFS internally interpolated to ensemble grid;
	=2: ensembles are in WRF-NMM format;
	=3: ensembles are in ARW netcdf format;
	=4: ensembles are in NMMB format.
grid_ratio_ens	for regional runs, the ratio of ensemble to analysis grid resolu-
	tion. If turned on and specified with an appropriate value, this
	could increase the computational efficiency.

5.5 Introduction to GSI Hybrid 4DEnVar Analysis

The GSI hybrid 4DEnVAR analysis is similar to the hybrid 3DEnVar except that the hybrid 4DEnVar will use multiple background files and GFS ensemble forecasts. As an example, the following shows how to conduct a hybrid 4DEnVar analysis using three time levels of background files and ensembles.

Before creating a hybrid 4DEnVar analysis, be sure to read the previous section about how to run hybrid 3DEnVar first. The following steps are additional procudures beyond hybrid 3DEnVar and assume that all hybrid 3DEnVar settings have already been set.

(1). Set *if_4DEnVar=Yes* in *run_gsi_regional.ksh*.

(2). Set the correct background files and ensemble files at different time levels in *run_gsi_regional.ksh*. See the following example:

Note that the background file at the analysis time (201705131800 for the above example) is set by BK_FILE and the ensemble files at the analysis time are set by $ENSEMBLE_FILE_mem$ as introduced in previous sections. See the following example:

```
BK_FILE=${BK_ROOT}/wrfout_d01_2017-05-13_18:00:00
...
if [ ${if_hybrid} = Yes ] ; then
...
ENSEMBLE_FILE_mem=${ENS_ROOT}/sfg_2017051312_fhr06s
...
```

Now GSI can be run following the hybrid 3DEnVar case introducted in the prevous section. Similar procedures can be conducted to check the GSI run status and results.

5.6 Summary

This chapter applied previous information outlined in the user's guide to demonstrate how to set up, run, and analyze GSI for various regional applications. It is important to always check for a successful GSI analysis, as running to completion does not always indicate a successful analysis was generated. Using the tools and methods described in this chapter, a complete picture of the GSI analysis can be obtained.

It is important to realize that GSI applications are not limited to regional analyses with WRF. Other GSI applications, including global analyses for GFS, chemical analyses, and others will be introduced in the next chapter.

Introduction to more GSI

Applications

6.1 Introduction to Global GSI analysis

The *Global Forecast System (GFS)* is a global numerical weather prediction system containing a global computer model and variational analysis run by the U.S. National Weather Service (NWS). As of February 2015, the numerical model is run four times a day, and produces forecasts for up to 16 days in advance, with decreased spatial resolution after 10 days. It is a spectral model with a resolution of T1534 from 0 to 240 hours (0-10 days) and T574 from 240 to 384 hours (10-16 days). In the vertical, the model is divided into 64 layers and temporally, it produces forecast output every hour for the first 12 hours, every 3 hours out to 10 days, and every 12 hours after that. Its data assimilation system runs 6-hourly continuous cycles using the GSI-hybrid.

GSI has many functions specifically designed and tuned for GFS. Although the release version of the community GSI includes all the functions used by the operational systems, the DTC can only support the GSI regional applications because the DTC is not able to run GFS on community computers. Beginning with release version 3.2, the DTC began to introduce the use of GSI for global applications, assuming users can obtain the GFS background through the NCEP data hub or by running GFS themselves.

6.1.1 The Difference between Global and Regional GSI

As mentioned above, all of the NCEP operational systems use GSI as their analysis system. The majority of the GSI code is common to these operational systems. Very little source code is specific to a particular operational system. The main differences in the GSI operational application come from the configuration the run scripts and namelist parameters.

The different GSI applications need different backgrounds, observations, and fixed files. For the GFS system, GSI needs:

- GFS Backgrounds: Typically, GSI uses 6-h GFS forecasts as the background. GFS 3-h and 9-h forecasts are also needed for the FGAT function in the GSI analysis. Both surface and atmosphere forecasts are needed.
- Observations: NCEP has several sets of BUFR/prepBUFR observation files with global coverage for global systems. The files that start with the prefix **GDAS** are for the 6-hourly global data assimilation system. These files have more data available for the analysis, but have a longer delay for use in real-time. The files that start with **gfs** are for the GFS forecasts. Different operational systems need different observation data files because they require different kinds of observations with different coverage, cut-off times, and quality control processes. All these observation files are read in and processed in GSI by the same section of code. Therefore, there is no problem using GFS observation data files for regional GSI applications, as is described in the practice cases and the GSI User's Guide. Using regional BUFR files for global applications will cause problems since the data only cover part of the analysis domain, but GSI can still read in the observations and perform the analysis.
- Fixed files: Section 3.1 of the GSI User's Guide introduced the notion that different operational systems have their own fixed files. These global fixed files can be downloaded as a separate tar ball from the GSI user's website (http://www.dtcenter.org/com-GSI/users/downloads/index.php). For the GFS GSI application, the big difference is the background error covariance (BE). Different resolutions of the GFS backgrounds use their matched BE files, which are different from the BE files used by the regional GSI applications. In release version 3.4, ten new BE files were provided for users (in addition to the two for release version 3.3):
 - 1. global_berror.164y386.f77
 - 2. global_berror.164y96.f77
 - 3. global_berror.164y1154.f77
 - 4. global_berror.164y290.f77
 - 5. global_berror.164y882.f77
 - 6. global_berror.164y130.f77
 - 7. global_berror.164y192.f77
 - 8. global_berror.164y578.f77
 - 9. global_berror.164y258.f77
 - 10. global_berror.164y674.f77

6.1.2 Global GFS Scripts

Starting with release version 3.3, support for running GSI global applications was added to the community release. Specifically a sample global analysis run script was added to the ./run directory named run_gsi_global.ksh of the community release. This script run_gsi_global.ksh is based on the GSI GFS regression tests. This script retains the same basic structure as the regional run script run_gsi_regional.ksh, but includes additional details needed for the global analysis.

	EULERIAN		SEMI-LAGRANGIAN		
SPECTRAL	LONB	LATB	LONB	LATB	
RESOLUTION					
T62	192	94	128	64	
T126	384	190	256	128	
T170	512	256	352	176	
T190	576	288	384	192	
T254	768	384	512	256	
T382	1152	576	768	384	
T574	1760	880	1152	576	
T878	2304	1152	1760	880	
T1148			2304	1152	
T1534			3072	1536	
T2014			4032	2016	
T2046			4096	2048	
T3070			6144	3072	

Table 6.1: The grid dimensions for GFS.

The first part of the global analysis run script, just as in the regional script, sets up the computer environment and case configuration. The primary differences between the global and regional scripts are the specification of the GFS case and the global application namelist.

GFSCASE=T126 GSI_NAMELIST=\${GSI_ROOT}/run/comgsi_namelist_gfs.sh

While the regional script simply specifies the background and BE files, the global script needs to know the background resolution by defining the following parameters:

Set the JCAP resolution which you want. # All resolutions use LEVS=64 if [["\$GFSCASE" = "T62"]]; then JCAP=62 JCAP_B=62 elif [["\$GFSCASE" = "T126"]]; then JCAP=126 JCAP_B=126 elif [["\$GFSCASE" = "enkf_glb_t254"]]; then JCAP=254 JCAP_B=254 elif [["\$GFSCASE" = "T254"]]; then JCAP=254

```
JCAP_B=574
elif [[ "$GFSCASE" = "T574" ]]; then
JCAP=574
JCAP_B=1534
else
echo "INVALID case = $GFSCASE"
exit
fi
LEVS=64
#
```

Just as with the regional analysis run script, the global script double checks the needed parameters, creates a run directory, and copies the background, observations, and fixed files into the run directory. It generates the namelist, and places it in the run directory as well.

1. Specify the values of LATA, LONA, DELTIME, resol based on the choice of JCAP:

```
# Given the requested resolution, set dependent resolution parameters
   if [[ "$JCAP" = "382" ]]; then
      LONA=768
      LATA=384
      DELTIM=180
      resol=1
   elif [[ "$JCAP" = "574" ]]; then
      LONA=1152
      LATA=576
      DELTIM=1200
      resol=2
   elif [[ "$JCAP" = "254" ]]; then
      LONA=512
      LATA=256
      DELTIM=1200
      resol=2
   elif [[ "$JCAP" = "126" ]]; then
      LONA=256
      LATA=128
      DELTIM=1200
      resol=2
   elif [[ "$JCAP" = "62" ]]; then
      LONA=192
      LATA=94
      DELTIM=1200
      resol=2
   else
      echo "INVALID JCAP = $JCAP"
      exit
   fi
   NLAT=' expr $LATA + 2 '
2. Set up CO2, CH4, N2O, CO file decisions:
   ICO2=${ICO2:-0}
```

```
if [ $ICO2 -gt 0 ] ; then
       # Copy co2 files to $workdir
       co2dir=${FIX_ROOT}
       yyyy='echo $ANAL_TIME | cut -c1-4'
       rm ./global_co2_data.txt
       co2=$co2dir/global_co2.gcmscl_$yyyy.txt
       while [ ! -s $co2 ] ; do
                ((yyyy-=1))
                co2=$co2dir/global_co2.gcmscl_$yyyy.txt
       done
        if [ -s $co2 ] ; then
                cp $co2 ./global_co2_data.txt
       fi
        if [ ! -s ./global_co2_data.txt ] ; then
                echo "\./global_co2_data.txt" not created
                exit 1
       fi
```

```
fi
```

```
#CH4 file decision
```

3. Set up the namelist parameters and generate the namelist:

Set some parameters for use by the GSI executable and to build the namelist echo " Build the namelist "

```
vs_op='0.7,'
hzscl_op='1.7,0.8,0.5,'
... ...
# Build the GSI namelist on-the-fly
. $GSI_NAMELIST
cat << EOF > gsiparm.anl
$comgsi_namelist
```

EOF

4. Multiple time level backgrounds are needed:

```
if [[ "$GFSCASE" = "enkf_glb_t254" ]]; then
  cp $OBS_ROOT/gdas1.t12z.abias
                                      ./satbias_in
  cp $0BS_ROOT/gdas1.t12z.satang
                                      ./satbias_angle
  cp $BK_ROOT/sfcanl_2014040506_fhr03_ensmean ./sfcf03
  cp $BK_ROOT/sfcanl_2014040506_fhr06_ensmean ./sfcf06
  cp $BK_ROOT/sfcanl_2014040506_fhr06_ensmean ./sfcf09
  cp $BK_ROOT/sfg_2014040506_fhr03_mem001
                                              ./sigf03
  cp $BK_ROOT/sfg_2014040506_fhr06_mem001
                                              ./sigf06
  cp $BK_ROOT/sfg_2014040506_fhr09_mem001
                                              ./sigf09
else
  cp $OBS_ROOT/satbias_in
                                      ./satbias_in
  cp $OBS_ROOT/satbias_angle
                                     ./satbias_angle
  cp $BK_ROOT/sfcf03 ./sfcf03
  cp $BK_ROOT/sfcf06 ./sfcf06
  cp $BK_ROOT/sfcf09 ./sfcf09
  cp $BK_ROOT/sigf03 ./sigf03
 cp $BK_ROOT/sigf06 ./sigf06
cp $BK_ROOT/sigf09 ./sigf09
fi
```

Both surface and atmosphere files at 03, 06, and 09 hour forecasts are needed.

5. More observations files are available

In the sample run script, many more observations are listed for use:

```
# Link to the other observation data
```

```
if [[ "$GFSCASE" = "enkf_glb_t254" ]]; then
    obsfile_amua=gdas1.t12z.1bamua.tm00.bufr_d
    obsfile_amub=gdas1.t12z.1bamub.tm00.bufr_d
else
    obsfile_amua=amsuabufr
    obsfile_amub=amsubbufr
fi

if [ -r "${OBS_ROOT}/satwnd" ]; then
    ln -s ${OBS_ROOT}/gpsrobufr" ]; then
    ln -s ${OBS_ROOT}/gpsrobufr .
fi
......
```

```
if [ -r "${OBS_ROOT}/amsubbufrears" ]; then
    ln -s ${OBS_ROOT}/amsubbufrears .
fi
if [ -r "${OBS_ROOT}/tcvitl" ]; then
    ln -s ${OBS_ROOT}/tcvitl .
fi
```

Table 6.1 lists the grid dimensions for GFS of different resolutions from *Running Global Model Parallel Experiments Version 6.0* from NCEP/EMC, which may provide users more information on the above mentioned resolution parameters:

6.1.3 Sample Results

After a successful run of the GSI GFS analysis, the contents of the run directory, with the clean option turned on, will look something like this:

amsrebufr	diag_mhs_n18_anl.2011080100.gz	fort.213
amsuabufr	diag_mhs_n18_ges.2011080100.gz	fort.214
amsubbufr	diag_mhs_n19_anl.2011080100.gz	fort.215
anavinfo	diag_mhs_n19_ges.2011080100.gz	fort.217
atms_beamwidth.txt	diag_mmis_nijs_ges.2011080100.gz diag_omi_aura_anl.2011080100.gz	fort.218
berror_stats	diag_omi_aura_ges.2011080100.gz	fort.219
-		fort.220
bftab_sstphr convinfo	diag_pcp_tmi_trmm_anl.2011080100.gz	fort.221
	diag_pcp_tmi_trmm_ges.2011080100.gz	
diag_amsre_hig_aqua_anl.2011080100.gz	diag_sbuv2_n16_anl.2011080100.gz	gomebufr
diag_amsre_hig_aqua_ges.2011080100.gz	diag_sbuv2_n16_ges.2011080100.gz	gpsrobufr
diag_amsre_low_aqua_anl.2011080100.gz	diag_sbuv2_n17_anl.2011080100.gz	gsi.exe
diag_amsre_low_aqua_ges.2011080100.gz	diag_sbuv2_n17_ges.2011080100.gz	gsiparm.anl
diag_amsre_mid_aqua_anl.2011080100.gz	diag_sbuv2_n18_anl.2011080100.gz	hirs3bufr
diag_amsre_mid_aqua_ges.2011080100.gz	diag_sbuv2_n18_ges.2011080100.gz	hirs4bufr
diag_amsua_metop-a_anl.2011080100.gz	diag_sbuv2_n19_anl.2011080100.gz	mhsbufr
diag_amsua_metop-a_ges.2011080100.gz	diag_sbuv2_n19_ges.2011080100.gz	omibufr
diag_amsua_n15_anl.2011080100.gz	diag_seviri_m09_anl.2011080100.gz	ozinfo
diag_amsua_n15_ges.2011080100.gz	diag_seviri_m09_ges.2011080100.gz	pcpbias_out
diag_amsua_n18_anl.2011080100.gz	errtable	pcpinfo
diag_amsua_n18_ges.2011080100.gz	fit_p1.2011080100	prepbufr
diag_amsua_n19_anl.2011080100.gz	fit_q1.2011080100	prepobs_prep.bufrtable
diag_amsua_n19_ges.2011080100.gz	fit_rad1.2011080100	satbias_angle
diag_amsub_n17_anl.2011080100.gz	fit_t1.2011080100	satbias_in
diag_amsub_n17_ges.2011080100.gz	fit_w1.2011080100	satbias_out
diag_conv_anl.2011080100.gz	fort.201	satinfo
diag_conv_ges.2011080100.gz	fort.202	satwnd
diag_gome_metop-a_anl.2011080100.gz	fort.203	sbuvbufr
diag_gome_metop-a_ges.2011080100.gz	fort.204	scaninfo
diag_hirs3_n17_anl.2011080100.gz	fort.205	seviribufr
diag_hirs3_n17_ges.2011080100.gz	fort.206	sfcanl.gsi
diag_hirs4_metop-a_anl.2011080100.gz	fort.207	siganl
diag_hirs4_metop-a_ges.2011080100.gz	fort.208	stdout
diag_hirs4_n19_anl.2011080100.gz	fort.209	stdout.anl.2011080100
diag_hirs4_n19_ges.2011080100.gz	fort.210	tcvitl
diag_mhs_metop-a_anl.2011080100.gz	fort.211	tmirrbufr
diag_mhs_metop-a_ges.2011080100.gz	fort.212	
5		

The majority of these files existed after running the GSI regional analysis examples in section 3.2.3 of the Basic User's Guide, and they provide the same information about the GSI run. Of note, the GSI global analysis run includes more radiance observations, resulting in more radiance diag files in this list. Instead of the single background file wrf_inout as seen with the regional analysis, the global analysis background is split between the two files sigan1, for the atmosphere, and sfcan1.gsi for the surface. A quick check of the standard output file stdout shows information similar to that generated by the regional runs for the

namelist, data ingest, and minimization, but is quite different with respect to information on the background IO.

Please visit our online tutorial for more details regarding how to conduct a global GSI run.

6.2 Introduction to Chemical Analysis

The GSI has also been developed to analyze chemical observations, such as MODIS AOD or PM2.5, to improve the pollution forecasts with chemical models. In this release, GSI can do the following chemical analyses:

case	Chemical Model	background species	Observations
1	WRF-Chem	GOCART	MODIS AOD
2	WRF-Chem	GOCART	PM2.5
3	WRF-Chem	PM2.5	PM2.5
4	CMAQ	CMAQ	PM2.5

Table 6.2: List of GSI chemical analyses

The GSI run script for a chemical analysis (./run/run_gsi_chem.ksh) and associated namelist (./run/comgsi_namelist_chem.sh) are provided with this release. Sample back-ground and observation files are provided through the on-line tutorial.

6.2.1 Setup GSI Run Scripts for Chemical Analysis

The script run_gsi_chem.ksh was built based on regional GSI run scripts and has a similar structure to the regional run script run_gsi_regional.ksh, but include a couple of differences.

The first part of the run script sets up the computer environment and case configuration. This is similar to the regional analysis run scripts, except for the specification of (bk_core and obs_type) for a given chemical case, and the namelist for the chemical application:

GSI_NAMELIST=\${GSI_ROOT}/run/comgsi_namelist_chem.sh
#-----# bk_core= set background (WRFCHEM_GOCART WRFCHEM_PM25 or CMAQ)
obs_type= set observation type (MODISAOD or PM25)
bk_core=CMAQ
obs_type=PM25

The choices of (bk_core and obs_type) for a chemical case need to match with the options PREPBUFR and BK_FILE, which set background and observation files. Table 6.3 shows how to set up these two options for each case:

Similar to the regional run script, this chemical run script will also double check the needed parameters. Then it creates a run directory, generates the namelist, and copies the background, observations, and fixed files into the run directory. Users who run the cases listed in

6. Introduction to more GSI Applications

case	background (BK_FILE ; bk_core)	Observation (PREPBUFR; obs_type)
1	wrfinput_enkf_d01_2012-06-03_18:00:00;	Aqua_Terra_AOD_BUFR:2012-06-03_00:00:00;
	WRFCHEM_GOCART	MODISAOD
2	wrfinput_enkf_d01_2012-06-03_18:00:00;	anow.2012060318.bufr;
	WRFCHEM_GOCART	PM25
3	wrfinput_enkf_d01_2012-06-03_18:00:00;	anow.2012060318.bufr;
	WRFCHEM_PM25	PM25
4	cmaq2gsi_4.7_20130621_120000.bin;	anow.2013062112.bufr;
	CMAQ	PM25

Table 6.3: List of GSI chemical analyses.

table 6.2 do not need to change the rest of the run script. But users who need to build new cases may need to know the differences between chemical and regional applications, which is shown below.

1. Specify the name of the background and observations:

```
# Bring over background field (it's modified by GSI so we can't link to it)
if [ ${bk_core} = WRFCHEM_GOCART ] ; then
   cp ${BK_FILE} ./wrf_inout
fi
if [ ${bk_core} = WRFCHEM_PM25 ] ; then
   cp ${BK_FILE} ./wrf_inout
fi
if [ ${bk_core} = CMAQ ] ; then
   cp ${BK_FILE} ./cmaq_in.bin
fi
# Link to the observation data
if [ ${obs_type} = MODISAOD ] ; then
ln -s ${PREPBUFR} ./modisbufr
fi
if [ ${obs_type} = PM25 ] ; then
ln -s ${PREPBUFR} ./pm25bufr
fi
```

2. Specify the background error file and anavinfo:

```
if [ ${bk_core} = WRFCHEM_GOCART ] ; then
    BERROR=${FIX_ROOT}/wrf_chem_berror_little_endian
    BERROR_CHEM=${FIX_ROOT}/wrf_chem_berror_little_endian
    ANAVINFO=${FIX_ROOT}/anavinfo_wrfchem_gocart
fi
if [ ${bk_core} = WRFCHEM_PM25 ] ; then
    BERROR=${FIX_ROOT}/wrf_chem_berror_little_endian
    BERROR_CHEM=${FIX_ROOT}/wrf_chem_berror_little_endian
    ANAVINFO=${FIX_ROOT}/wrf_chem_berror_little_endian
    ANAVINFO=${FIX_ROOT}/anavinfo_wrfchem_pm25
fi
if [ ${bk_core} = CMAQ ] ; then
    BERROR=${FIX_ROOT}/cmaq_berror_little_endian
    BERROR=${FIX_ROOT}/cmaq_berror_little_endian
    BERROR=${FIX_ROOT}/cmaq_berror_little_endian
    ANAVINFO=${FIX_ROOT}/anavinfo_cmaq_pm25
fi
```

3. Specify the options for building the namelist:

```
if [ ${bk_core} = WRFCHEM_GOCART ] ; then
    bk_core_arw='.true.'
    bk_if_netcdf='.true.'
    bk_core_cmaq='.false.'
    bk_wrf_pm2_5='.false.'
    bk_laeroana_gocart='.true.'
fi
if [ ${bk_core} = WRFCHEM_PM25 ] ; then
    bk_core_arw='.true.'
bk_if_netcdf='.true.'
```

```
bk_core_cmaq='.false.'
 bk_wrf_pm2_5='.true.'
 bk_laeroana_gocart='.false.'
fi
if [ ${bk_core} = CMAQ ] ; then
 bk_core_arw='.false.'
bk_if_netcdf='.false.'
bk_core_cmaq='.true.'
 bk_wrf_pm2_5='.false.'
bk_laeroana_gocart='.false.'
fi
```

6.2.2 Sample Results

In this section, case one in Table 6.2 will be used as an example. After a successful run of the GSI Chem analysis, the contents of the run directory, with the clean option turned on, will look something like this:

aeroinfo	fit_w1.2012060318	fort.212	fort.226	pcpinfo
anavinfo	fort.201	fort.213	fort.227	prepobs_prep.bufrtable
berror_stats	fort.202	fort.214	fort.228	satbias_angle
berror_stats_chem	fort.203	fort.215	fort.229	satbias_in
convinfo	fort.204	fort.217	fort.230	satbias_out
diag_conv_anl.2012060318	fort.205	fort.218	gsi.exe	satinfo
diag_conv_ges.2012060318	fort.206	fort.219	gsiparm.anl	stdout
errtable	fort.207	fort.220	l2rwbufr	stdout.anl.2012060318
fit_p1.2012060318	fort.208	fort.221	list_run_directory	wrfanl.2012060318
fit_q1.2012060318	fort.209	fort.223	modisbufr	wrf_inout
fit_rad1.2012060318	fort.210	fort.224	ozinfo	
fit_t1.2012060318	fort.211	fort.225	pcpbias_out	

Following instructions from Chapter 5, the following steps are conducted to check the results of this GSI chemical analysis:

- 1. Check the standard output file:
 - Read in chemical background fields:

	rmse_var=sulf											
	ordering=XYZ		101		101							
	WrfType,WRF_RE		104		104							
	ndim1=	3										
	staggering= N/	/A										
	<pre>start_index=</pre>	1		1		1	L		0			
	end_index=	112	1	22		40		0				
	k,max,min,mid	var=sulf							1	9.62293	3	
	3.3167184E-13	0.7885093										
	k,max,min,mid	var=sulf							2	9.68704	5	
	3.3167214E-13	0.7910572										
	rmse_var=BC1											
	-											
	rmse_var=BC2											
	-											
	rmse_var=OC1											
	rmse_var=OC2											
-	D 1 · 1			. •								
-	Read in modi	is AOD ob	serva	tions	:							
(DBS_PARA: modis_aod t	terra	7	64	50		11	34		25	7	81

OBS_PARA: modis	_aod terra	L	7	64	50	11	34	25	7	81
	40	31	50	27	38	46	56	25	7	0
	26	53	62	60	19	0				

```
OBS_PARA: modis_aod aqua
                                                        50185576763020
                            29
                                    34
                                                  23
              33
36
                     30
76
                            49
38
                                   22
50
                                          20
14
                                                 67
0
• Minimizations:
   Begin J table inner/outer loop
                                         0
                                                    1
      J term
                                               Т
                            7.8897778549100276E+03
  aerosol aod
   _____
  J Global
                          7.8897778549100276E+03
  End Jo table inner/outer loop
                               0
                                                  1
  Initial cost function = 7.88977E+03
  Initial gradient norm = 1.531557E+02
  cost,grad,step,b,step? = 1 0 7.8897778E+03 1.5315573E+02 1.3701618E-01 0.0000000E+00 good
  pcgsoi: gnorm(1:2),b= 5.2207374E+03 5.220737604157E+03 2.225693512490E-01
  cost,grad,step,b,step? = 1 1 4.67583332E+03 7.2254671E+01 1.4308398E-01 2.2256935E-01 good
  . . .
  pcgsoi: gnorm(1:2),b= 1.254432996913E-06 1.254434051E-06 2.97203315E-01
  cost,grad,step,b,step? = 2 16 3.15885215E+03 1.12001473E-03 2.3966297E-01 2.9720331E-01 good
  PCGSOI: WARNING **** Stopping inner iteration ***
  gnorm 0.534787149781733860E-10 less than 0.100000004E-09
  update_guess: successfully complete
  \end{scriptsize}
  \end{tiny}
  \item Update chemical background fields:
  \begin{scriptsize}
  \begin{verbatim}
    . . .
                                                           38 9.1036431E-02
   k,max,min,mid var=sulf
   4.5203370E-07 1.8112745E-02
   k,max,min,mid var=sulf
                                                           39 2.5694052E-02
   6.2565640E-08 5.7557132E-03
                                                           40 1.1622031E-02
   k,max,min,mid var=sulf
   1.4633585E-09 8.4061045E-03
    rmse_var=sulf
    . . .
```

2. Analysis increments: After successfully running GSI, the analysis increments should be checked to see if data impacts are reasonable.

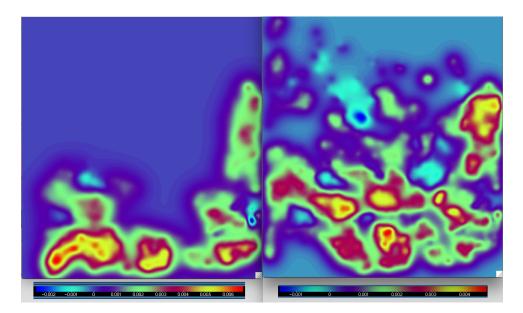


Figure 6.1: Analysis increments in the lowest level for SEAS_1 (left) and BC1 (right).

GSI Community Tools

A.1 BUFR Format and BUFR Tools

Under ./util/bufr_tools, there are many Fortran examples to illustrate basic BUFR/PrepBUFR file process skills such as encoding, decoding, and appending. For details of these examples and the BUFR format, please see the BUFR/PrepBUFR User's Guide, which is freely available on-line

http://www.dtcenter.org/com-GSI/BUFR/docs/index.php

The observation BUFR files generated by NCEP (for example, PrepBUFR and BUFR files from NCEP ftp server or gdasl.tl2z.prepbufr.nr in tutorial case) are in Big Endian binary format. For release version older than 3.2, the BUFR files have to be converted from Big Endian BUFR file to Little Endian file when used by the GSI on Linux platform. Please refer to older version User's guide on how to convert.

Since release 3.2, BUFRLIB can automatically identify and handle either byte orders. For Intel and PGI compilers on Linux, the Big Endian BUFR/PrepBUFR files can be used by GSI without byte swap.

A.2 Read GSI Diagnostic Files

Lots of useful information about how one observation was used in the analysis such as innovation, observation values, observation error and adjusted observation error, and quality control information, has been saved in diagnostic files. To generate these diagnosis files,

A. GSI Community Tools

namelist variable *write_diag* in namelist section *SETUP* needs to be true. The *write_diag* variable has been introduced in Part 4 of Section 3.4. The following is an example of using the *write_diag* variable to control diagnostic files. When we set the number of outer loops to 2, and set the *write_diag* namelist variable to the following:

write_diag(1)=.true.,write_diag(2)=.false.,write_diag(3)=.true.,

GSI will write out diagnostic files before the start of the 1st outer loop start (O-B) and after the completion of the 2nd outer loop finish (O-A). We don't want GSI to write out diagnosis files after the 1st outer loop because we set $write_diag(2)=.false$.

This is what we set in our example case described in section 5.2. From this case, we can see the following diagnostic files generated from the GSI analysis:

diag_amsua_metop-a_anl.2014061700 diag_amsua_n18_ges.2014061700 diag_amsua_metop-a_ges.2014061700 diag_conv_anl.2014061700 diag_amsua_n15_anl.2014061700 diag_conv_ges.2014061700 diag_amsua_n15_ges.2014061700 diag_hirs4_metop-a_anl.2014061700 diag_hirs4_metop-a_ges.2014061700

All files are identified with a filename containing three elements. The first element "diag" indicates these are combined diagnostic files. The second element identifies the observation type (here, "conv" means conventional observation from prepbufr and "amsua_n15" corresponds to radiance observation AMSU-A from NOAA 15). The last element identifies which step of outer loop the files were generated for. Here, "anl" means the contents were written after the last outer loop (from $write_diag(3)=.true.$) and "ges" means the contents were written before the first output loop (from $write_diag(1)=.true.$).

To help users to read the information from these diagnostic files, we have provided two Fortran programs in the ./*util/Analysis_Utilities/read_diag/* directory:

read_diag_rad.f90 : Reads the diagnostic files for radiance observation. For example:

diag_amsua_n15_ges.2014061700 diag_hirs4_metop-a_anl.2014061700 diag_amsua_n18_anl.2014061700 diag_hirs4_metop-a_ges.2014061700

To compile the programs, use the makefile provided:

./make

Note: since information in the GSI *include* directory is required, the GSI must have been compiled first.

To run *read_diag_conv.exe*, a namelist file *namelist.conv* needs to be in the directory along with the executable. The namelist.conv only has two parameters:

```
&iosetup
infilename='./diag_conv_anl', : The path and name of GSI diagnosis file
outfilename='./results_conv_anl', : The path and name of a text file used to
save the content of the diagnostic file
/
```

The user can set the test case directory and file *diag_conv_anl.2014061700* from section 5.2 as the entry for *infilename* in the namelist, then run the executable

./read_diag_conv.exe

The results are placed in the file specified by the outfilename entry in the namelist. In this case that would be a file *results_conv_anl* located in the directory where the executable was run.

Similarly, to run *read_diag_rad.exe*, the namelist file namelist.rad is needed. It contains the same parameters as *namelist.conv* but it links to radiance diag files. After setting it to use the same case from section 5.2, such as:

```
&iosetup
    infilename='(test directory)/diag_amsua_n18_ges.2014061700',
    outfilename='./results_amsua_n18_ges',
    /
```

Running the executable creates the text file *results_amsua_n18_ges* specified by the namelist in the directory *read_diag_rad.exe* runs.

For the conventional observations, the data is stored in two arrays: *rdiagbuf* and *cdiagbuf*. Their contents are listed as follows, for temperature (check *src/main/setupt.f90*) as an example:

```
cdiagbuf
            = station id
rdiagbuf(1) = observation type
rdiagbuf(2) = observation subtype
rdiagbuf(3) = observation latitude (degrees)
rdiagbuf(4) = observation longitude (degrees)
rdiagbuf(5) = station elevation (meters)
rdiagbuf(6) = observation pressure (hPa)
rdiagbuf(7) = observation height (meters)
rdiagbuf(8) = observation time (hours relative to analysis time)
rdiagbuf(9) = input prepbufr qc or event mark
rdiagbuf(10) = setup qc or event mark (currently qtflg only)
rdiagbuf(11) = read_prepbufr data usage flag
rdiagbuf(12) = analysis usage flag (1=use, -1=not used)
rdiagbuf(13) = nonlinear qc relative weight
rdiagbuf(14) = prepbufr inverse obs error (K**-1)
rdiagbuf(15) = read_prepbufr inverse obs error (K**-1)
rdiagbuf(16) = final inverse observation error (K**-1)
rdiagbuf(17) = observation (K)
rdiagbuf(18) = obs-ges used in analysis (K)
rdiagbuf(19) = obs-ges without bias correction (K)
```

For wind observations, the content after index 16 (check *src/main/setupw.f90*) is:

rdiagbuf(17) = earth relative u wind component observation (m/s)

The *read_diag_conv.exe* reads these arrays and outputs important information in the text file *results_conv_anls*pecified by the user in the *&iosetup* namelist. For example:

station	obs	obs	obs	obs	obs	usag	obs	0-B		
ID	type	time	latitude	longitude	pressure		value			
ps @ 46047	: 180	-0.17	32.40	240.50	1014.30	1	1014.30	-0.09		
t @ 72293	: 120	-0.98	32.85	242.88	996.00	1	297.25	1.26		
uv @ 72293	: 220	-0.98	32.85	242.88	996.00	1	3.90	0.38	3.30	2.66

For wind, the last 4 columns are the wind components in the order of: U observation, O-B for U, V observation, O-B for V.

For radiance observations, the data is stored in two arrays: *diagbuf* and *diagbufchan*. Their contents are listed as follows (please refer to *src/main/setuprad.f90* for more details):

```
diagbuf(1) = observation latitude (degrees)
 diagbuf(2) = observation longitude (degrees)
 diagbuf(3) = model (guess) elevation at observation location
 diagbuf(4) = observation time (hours relative to analysis time)
 diagbuf(5) = sensor scan position
 diagbuf(6) = satellite zenith angle (degrees)
 diagbuf(7) = satellite azimuth angle (degrees)
 diagbuf(8) = solar zenith angle (degrees)
 diagbuf(9) = solar azimuth angle (degrees)
 diagbuf(10) = sun glint angle (degrees) (sgagl)
 diagbuf(11) = surface fractional coverage by water
 diagbuf(12) = surface fractional coverage by land
 diagbuf(13) = surface fractional coverage by ice
 diagbuf(14) = surface fractional coverage by snow
if(.not. retrieval)then
 diagbuf(15) = surface temperature over water (K)
 diagbuf(16) = surface temperature over land (K)
 diagbuf(17) = surface temperature over ice (K)
 diagbuf(18) = surface temperature over snow (K)
 diagbuf(19) = soil temperature (K)
 diagbuf(20) = soil moisture
 diagbuf(21) = surface land type
else
 diagbuf(15) = SST first guess used for SST retrieval
 diagbuf(16) = NCEP SST analysis at t
 diagbuf(17) = Physical SST retrieval
 diagbuf(18) = Navy SST retrieval
 diagbuf(19) = d(ta) corresponding to sstph
 diagbuf(20) = d(qa) corresponding to sstph
 diagbuf(21) = data type
endif
 diagbuf(22) = vegetation fraction
 diagbuf(23) = snow depth
 diagbuf(24) = surface wind speed (m/s)
   Note: The following quantities are not computed for all sensors
 if (.not.microwave) then
    diagbuf(25) = cloud fraction (%)
    diagbuf(26) = cloud top pressure (hPa)
 else
     diagbuf(25) = cloud liquid water (kg/m**2)
    diagbuf(26) = total column precip. water (km/m**2)
 endif
```

```
diagbuf(27) = foundation temperature: Tr
diagbuf(28) = diurnal warming: d(Tw) at depth zob
diagbuf(29) = sub-layer cooling: d(Tc) at depth zob
diagbuf(30) = d(Tz)/d(Tr)
```

diagbufchan include loop through channel *i* from 1 to *nchanl*:

In the sample output file *results_amsua_n18_ges*, only the observation location and time are written in the file. Users can write out other information based on the list.

A.3 Read and Plot Convergence Information from fort.220

In section 4.6, we introduced how to check the convergence information in the *fort.220* file. Further detail on the *fort.220* convergence information can be found in the Advanced User's Guide. Here, we provide tools to filter this file and to plot the values of the cost function and the norm of gradient during each iteration.

These tools - one ksh script and one ncl script - are in: ./util/Analysis_Utilities/plot_cost_grad directory:

The ksh script, *filter_fort220.ksh*, only has one line:

grep 'cost,grad,step,b' fort.220 | sed -e 's/cost,grad,step,b,step? = //g' | sed -e 's/good//g' > cost_gradient.txt

To run *filter_fort220.ksh*, the *fort.220* needs to be in the same directory. The script will filter out the values of the cost function and the norm of gradient at each iteration from *fort.220* into a text file called *cost_gradient.txt*.

Once the file *cost_gradient.txt* is ready, run ncl script *GSI_cost_gradient.ncl* to generate the plot:

ncl GSI_cost_gradient.ncl

The pdf file *GSI_cost_gradient.pdf* is created. The pdf file contains plots of the convergence of the GSI analysis like those in section 4.6.

A.4 Plot Single Observation Test Result and Analysis Increment

In Section 4.2, we introduced how to do a single observation test for GSI. Here we provide users with the ncl scripts to plot the single observation test results.

There are 5 ncl scripts in the *util/Analysis_Utilities/plots_ncl* directory:

	1 0
GSI_singleobs_arw.ncl	Plot single observation test with ARW NetCDF back-
	ground
GSI_singleobs_nmm.ncl	Plot single observation test with NMM NetCDF
	background
Analysis_increment.ncl	Plot analysis increment from the case with ARW
	NetCDF background
Analysis_increment_nmm.ncl	Plot analysis increment from the case with NMM
	NetCDF background
fill_nmm_grid2.ncl	E grid to A grid convertor

Table A.1: the list of ncl plotting tools

The main difference between the ARW and NMM core used in GSI is that ARW is on a C grid, while NMM is on an E grid. *GSI_singleobs_nmm.ncl* calls *fill_nmm_grid2.ncl* to convert the E grid to an A grid for plotting, while *GSI_singleobs_arw.ncl* itself includes a C grid to A grid convertor.

Before running ncl scripts, users need to set up two links:

- *cdf_analysis* Link to analysis result in NetCDF format (*wrf_inout*)
- *cdf_bk* Link to background file in netCDF format

These scripts read in the analysis and background fields of temperature (T), U component of wind (U), V component of wind (V), and moisture (Q) and calculate the difference of the analysis field minus the background field. Then XY sections (left column) and XZ sections (right column) are plotted for T, U, V, and Q through the point that has maximum analysis increment of single observation. Here the default single observation test is T. If the user conducts other single observation tests, the corresponding changes should be made based on the current scripts.

The scripts *Analysis_increment.ncl* and *Analysis_increment_nmm.ncl* are very similar the one for the single observation but only the XY section for a certain analysis level is plotted.

For more information on how to use ncl, please check the NCL website at:

http://www.ncl.ucar.edu/

A.5 Generate initial regional ensembles

Under the ./util/EnKF directory, there are two sub-directories: enspreproc_regional.fd/ and initialens_regional.fd/. The first one is to extract ensemble pertubations from GDAS 80 member ensembles and the second one is to add the extracted ensembles to a regional WRF background field (considered as the mean filed) to generate initial regional ensembles.

Before using these two unitilies, you should have already successfully compiled the GSI and gotten the "gsi.exe" file. After that, enter each of the two directory, type "make" to compile the utilities. A successful compilation should yield "enspreproc.exe" and "initialens.exe" respectively.

Now, the next step is to get GDAS spectrally smoothed atmospheric ensemble forecasts. These files should be in the sigma format, which is currently the only format supported by "enspreproc.exe". You need to contact NCEP or other appropriate contacts to download these kind of ensembles. These ensemble files follow the name convection of "sfg_\$CDATE_fhr\$FEs_mem\$MEM". \$CDATE is the cycle date, such as 2017011518 which means 18z of Jan. 15th, 2017. \$FE is the forecast hour, for example, 06 means 6 hour of forecasts. \$MEM is the member number. Here is an example of GDAS ensembles: $sfg_2017011518_{fhr}06s_{mem}001$.

After you download the required GDAS ensembles, follow the following steps:

1. Running "enspreproc.exe", enter the *enspreproc_regional.fd*/ directory:

(1). generate the file "fileslist01". This file lists the ensemble files to be used in the calculation of ensemble pertubations. For example, if it is determined to use 20 members to generate ensemble perturbations, the file "filelist01" will be as follows:

sfg_2017011518_fhr06s_mem001 sfg_2017011518_fhr06s_mem002 sfg_2017011518_fhr06s_mem003 ... sfg_2017011518_fhr06s_mem018 sfg_2017011518_fhr06s_mem019 sfg_2017011518_fhr06s_mem020

(2). Modify the file "namelist.input", change "n_ens" to the total number of ensembles to be used.

(3). Copy the "anavinfo" file used by GSI into current directory.

(4). Copy the background WRF file, name it as "wrf_inout".

(5). Create a job description file, submit the job to get it run in parallel.

After the successful running of "enspreproc.exe", you will get ensemble perturbations as follows:

en_perts4ars.mem0001 en_perts4ars.mem0002 en_perts4ars.mem0003 ... en_perts4ars.mem0018 en_perts4ars.mem0019 en_perts4ars.mem0020

2. Running "initialens.exe", enter the *initialens_regional.fd*/ directory:

(1). Modify the file "namelist.input", change "n_ens" to the total number of ensembles to be used.

(2). Copy wrf_inout to current directry

(3). Copy wrf_inout to wrfinput_d01.mem\$MEM files as follows:

cp wrf_inout wrfinput_d01.mem0001 cp wrf_inout wrfinput_d01.mem0002 cp wrf_inout wrfinput_d01.mem0003 ... cp wrf_inout wrfinput_d01.mem0018 cp wrf_inout wrfinput_d01.mem0019 cp wrf_inout wrfinput_d01.mem0020

Be sure that each member has a correspoding wrfinput_d01 file. These files will be updated by "initialens.exe" later.

(4). Link the ensemble perturbations generated by "enspreproc.exe" to current directory. Something like this *ln* -s ../enspreproc_regional.fd/en_perts4arw.mem*.

(5). Create a job description file, submit the job to get it run in parallel. Please note that only 1 processor is required to run "initialens.exe" but submitting it to run on computing node is a must.

After the successful running of "initialens.exe", all the *wrfinput_d01.mem\$MEM* files are updated with ensemble perturbation added to the background or "mean" state of the original wrf_inout.

Now the initial regionl ensembles have been sucessfully generated.

Contents of Namelist Section

OBS_INPUT

&OBS_INPUT

dmesh(1)=120.0,dmesh(2)=60.0,dmesh(3)=30,time_window_max=1.5,ext_sonde=.true.,

/ OBS_INPUT::

UD	S_INPUI::						
!	dfile	dtype	dplat	dsis	dval	dthin	dsfcalc
	prepbufr	ps	null	ps	1.0	0	0
	prepbufr	t	null	t	1.0	0	0
	prepbufr	q	null	q	1.0	0	0
	prepbufr	pw	null	pw	1.0	0	0
	satwndbufr	uv	null	uv	1.0	0	0
	prepbufr	uv	null	uv	1.0	0	0
	prepbufr	spd	null	spd	1.0	0	0
	prepbufr	dw	null	dw	1.0	0	0
	radarbufr	rw	null	rw	1.0	0	0
	prepbufr	sst	null	sst	1.0	0	0
	gpsrobufr	gps_ref	null	gps	1.0	0	0
	ssmirrbufr	pcp_ssmi	dmsp	pcp_ssmi	1.0	-1	0
	tmirrbufr	pcp_tmi	trmm	pcp_tmi	1.0	-1	0
	sbuvbufr	sbuv2	n16	sbuv8_n16	1.0	0	0
	sbuvbufr	sbuv2	n17	sbuv8_n17	1.0	0	0
	sbuvbufr	sbuv2	n18	sbuv8_n18	1.0	0	0
	hirs3bufr	hirs3	n16	hirs3_n16	0.0	1	0
	hirs3bufr	hirs3	n17	hirs3_n17	6.0	1	0
	hirs4bufr	hirs4	metop-a	hirs4_metop-a	6.0	2	0
	hirs4bufr	hirs4	n18	hirs4_n18	0.0	1	0
	hirs4bufr	hirs4	n19	hirs4_n19	1.0	2	0
	hirs4bufr	hirs4	metop-b	hirs4_metop-b	1.0	1	0
	gimgrbufr	goes_img	g11	imgr_g11	0.0	1	0
	gimgrbufr	goes_img	g12	imgr_g12	0.0	1	0
	airsbufr	airs	aqua	airs281SUBSET_aqua	20.0	2	0
	amsuabufr	amsua	n15	amsua_n15	10.0	2	0
	amsuabufr	amsua	n18	amsua_n18	10.0	2	0
	amsuabufr	amsua	n19	amsua_n19	10.0	2	0
	amsuabufr	amsua	metop-a	amsua_metop-a	10.0	2	0

B. Contents of Namelist Section OBS_INPUT

omaushufr	07010	moton h	omeno motor h	10.0	2	0
amsuabufr airsbufr	amsua amsua	metop-b	amsua_metop-b	10.0 5.0	2	0
amsubbufr	amsub	aqua n17	amsua_aqua amsub_n17	1.0	1	0
mhsbufr	mhs	n18	mhs_n18	3.0	2	0
mhsbufr	mhs	n19	—	3.0	2	0
	mhs		mhs_n19	3.0	2	0
mhsbufr		metop-a	mhs_metop-a			0
mhsbufr	mhs	metop-b	mhs_metop-b	3.0	2	
ssmitbufr	ssmi	f13	ssmi_f13	0.0	2	0
ssmitbufr	ssmi	f14	ssmi_f14	0.0	2	0
ssmitbufr	ssmi	f15	ssmi_f15	0.0	2	0
amsrebufr	amsre_low	aqua	amsre_aqua	0.0	2	0
amsrebufr	amsre_mid	aqua	amsre_aqua	0.0	2	0
amsrebufr	amsre_hig	aqua	amsre_aqua	0.0	2	0
ssmisbufr	ssmis_las	f16	ssmis_f16	0.0	2	0
ssmisbufr	ssmis_uas	f16	ssmis_f16	0.0	2	0
ssmisbufr	ssmis_img	f16	ssmis_f16	0.0	2	0
ssmisbufr	ssmis_env	f16	ssmis_f16	0.0	2	0
gsnd1bufr	sndrd1	g12	sndrD1_g12	1.5	1	0
gsnd1bufr	sndrd2	g12	sndrD2_g12	1.5	1	0
gsnd1bufr	sndrd3	g12	sndrD3_g12	1.5	1	0
gsnd1bufr	sndrd4	g12	sndrD4_g12	1.5	1	0
gsnd1bufr	sndrd1	g11	sndrD1_g11	1.5	1	0
gsnd1bufr	sndrd2	g11	sndrD2_g11	1.5	1	0
gsnd1bufr	sndrd3	g11	sndrD3_g11	1.5	1	0
gsnd1bufr	sndrd4	g11	sndrD4_g11	1.5	1	0
gsnd1bufr	sndrd1	g13	sndrD1_g13	1.5	1	0
gsnd1bufr	sndrd2	g13	sndrD2_g13	1.5	1	0
gsnd1bufr	sndrd3	g13	sndrD3_g13	1.5	1	0
gsnd1bufr	sndrd4	g13	sndrD4_g13	1.5	1	0
gsnd1bufr	sndrd1	g15	sndrD1_g15	1.5	2	0
gsnd1bufr	sndrd2	g15	sndrD2_g15	1.5	2	0
gsnd1bufr	sndrd3	g15	sndrD3_g15	1.5	2	0
gsnd1bufr	sndrd4	g15	sndrD4_g15	1.5	2	0
iasibufr	iasi	metop-a	iasi616_metop-a	20.0	1	0
gomebufr	gome	metop-a	gome_metop-a	1.0	2	0
omibufr	omi	aura	omi_aura	1.0	2	0
sbuvbufr	sbuv2	n19	sbuv8_n19	1.0	0	0
tcvitl	tcp	null	tcp	1.0	0	0
seviribufr	seviri	m08	seviri_m08	1.0	1	0
seviribufr	seviri	m09	seviri_m09	1.0	1	0
seviribufr	seviri	m10	seviri_m10	1.0	1	0
iasibufr	iasi	metop-b	iasi616_metop-b	0.0	1	0
gomebufr	gome	metop-b	gome_metop-b	0.0	2	0
atmsbufr	atms	npp	atms_npp	0.0	1	0
crisbufr	cris	npp	cris_npp	0.0	1	0
mlsbufr	mls30	aura	mls30_aura	0.0	0	0
oscatbufr	uv	null	uv	0.0	0	0
prepbufr	mta_cld	null	mta_cld	1.0	0	0
prepbufr	gos_ctp	null	gos_ctp	1.0	0	0
refInGSI	rad_ref	null	rad_ref	1.0	0	0
lghtInGSI	lghtn	null	lghtn	1.0	0	0
larcInGSI	larccld	null	larccld	1.0	0	0

::

GSI Namelist: Name, Default

Value, Explanation

The following are lists and explanations of the GSI namelist variables. You can also find them in the source code gsimod.F90.

Variable name	Default value	Description
SETUP		General control namelist
gencode	80	source generation code
factqmin	1	weighting factor for negative moisture constraint
factqmax	1	weighting factor for supersaturated moisture constraint
clip_supersaturation	.false.	flag to remove supersaturation during each outer loop
factv	1	weighting factor for negative visibility constraint
factl		
factp		
factg		
factw10m		
facthowv		
deltim	1200	model timestep
dtphys	3600	physics timestep
biascor	-1	background error bias correction coefficient
bcoption	1	0=ibc (no bias correction to bkg);
		1= sbc(original implementation)
diurnalbc	0	1= diurnal bias; 0= persistent bias

Variable name	Default value	Description
SETUP		General control namelist
niter(0:50)	0,	Maximum number of inner loop iterations for each outer loop
niter_no_qc(0:50)	1000000	Inner loop iteration at which to turn on variational quality control
miter	1	number of outer loops
qoption	1	option for moisture analysis variable; 1:q/qsatg 2:normalized RH
cwoption		
pseudo_q2	.false.	breed between $q1/q2$ options, that is, $(q1/sig(q))$
nhr_assimilation	6	assimilation time interval (currently 6 hours for global, 3 hours for regional)
min_offset	3	time of analysis in assimilation window
iout_iter	220	output file number for iteration information
npredp	6	number of predictors for precipitation bias correction
retrieval	.false.	logical to turn off or on the SST physical retrieval
nst_gsi	0	indicator to control the Tr Analysis mode:
		0 = no nst info ingsi at all;
		1 = input nst info, but used for monitoring only
		2 = input nst info, and used in CRTM simulation, but no Tr
		analysis
		3 = input nst info, and used in CRTM simulation and Tr anal-
		ysis is on
nst_tzr	0	indicator to control the Tzr_QC mode:
		0 = no Tz retrieval;
		1 = Do Tz retrieval and applied to QC
nstinfo	0	number of nst variables
fac_dtl	0	index to apply diurnal thermocline layer or not: $0 = no; 1 =$
	0	yes
fac_tsl	0	index to apply thermal skin layer or not: $0 = no; 1 = yes.$
nst_tzr	6.1	
tzr_bufrsave	.false.	logical to turn off or on the bufr Tz retrieval file true=on
diag_rad	.true.	logical to turn off or on the diagnostic radiance file (true=on)
diag_pcp	.true.	logical to turn off or on the diagnostic precipitation file
1.		(true=on)
diag_conv	.true.	logical to turn off or on the diagnostic conventional file
1.		(true=on)
diag_ozone	.true.	logical to turn off or on the diagnostic ozone file (true=on)
diag_aero	.false.	logical to turn off or on the diagnostic aerosol file (true=on)
diag_co	.false.	logical to turn off or on the diagnostic carbon monoxide file
	1	(true=on)
iguess	1	flag for guess solution (currently not working)
		-1 do not use guess file
		0 write only guess file
		1 read and write guess file
to dia a	folge	2 read only guess file
write_diag	.false.,	logical to write out diagnostic files for outer iteration
reduce_diag	.false.	namelist logical to produce reduced radiance diagnostic files

C. GSI Namelist: Name, Default Value, Explanation

Variable name	Default value	Description
SETUP		General control namelist
oneobtest	.false.	one observation test flag true=on
sfcmodel	.false.	if true, then use boundary layer forward model for surface
		temperature data.
dtbduv_on	.true.	logical for switching on (.true.) sensitivity of uv winds to
		microwave brightness temperatures. if true, use d(microwave
		brightness temperature)/d(uv wind) in inner loop
ifact10	0	flag for recomputing 10m wind factor
		= 1 compute using GFS surface physics
		= 2 compute using MM5 surface physics
		= 0 or any other value - DO NOT recompute - use value from
		guess file
l_foto	.false.	option for First-Order Time extrapolation to observation
offtime_data	.false.	if true, then allow use of obs files with ref time different from
		analysis time. default value = .false., in which case analysis
		fails if observation file reference time is different from analysis
		time.
npred_conv_max	0	maximum number of conventional observation bias correction
		coefficients
id_bias_ps	0	prepbufr id to have conv_bias added for testing
id_bias_t	0	prepbufr id to have conv_bias added for testing
id_bias_spd	120	prepbufr id to have conv_bias added for testing
conv_bias_ps	0	magnitude of ps bias(mb)
conv_bias_t	0	magnitude of t bias(deg K)
conv_bias_spd	0	magnitude of spd bias(m/sec)
id_bias_pm2_5		
conv_bias_pm2_5		
id_bias_pm10		
conv_bias_pm10		
stndev_conv_ps	1.0	
stndev_conv_t	1.0	
stndev_conv_spd	1.0	
use_pbl	.false.	Logical flag to include PBL effects in tendency model.
use_compress	.false.	option to turn on the use of compressibility factors in geopo-
		tential heights
nsig_ext	13	number of layers above the model top which are necessary to
		compute the bending angle for gpsro
gpstop	30.0	maximum height for gpsro data assimilation. Reject anything
		above this height. (km)
perturb_obs	.false.	logical flag to perturb observation (true=on)
perturb_fact	1	magnitude factor for observation perturbation
oberror_tune	.false.	logical to tune (=true) oberror
preserve_restart_date	.false.	if true, then do not update regional restart file date.
crtm_coeffs_path		path of directory w/ CRTM coeffs files
berror_stats	berror_stats	filename if other than "berror_stats"
newpc4pred	.false.	option for additional preconditioning for pred coeff
adp_anglebc	.false.	option to perform variational angle bias correction
angord	0	order of polynomial for variational angle bias correction

Variable name	Default value	Description
SETUP		General control namelist
passive_bc	.false.	option to turn on bias correction for passive (monitored) chan-
		nels
use_edges	.true.	option to exclude radiance data on scan edges
biaspredvar	0.1	set background error variance for radiance bias coeffs
lobsdiagsave	.false.	write out additional observation diagnostics
l4dvar	.false.	turn 4D-Var on/off (default=off=3D-Var)
lbicg	.false.	use B-precond w/ bi-conjugate gradient for minimization
lsqrtb	.false.	Use sqrt(B) preconditioning
lcongrad	.false.	Use conjugate gradient/Lanczos minimizer
lbfgsmin	.false.	Use L-BFGS minimizer
ltlint	.false.	Use TL inner loop (ie TL intall)
nhr_obsbin	-1	length of observation bins
nhr_subwin	-1	length of weak constraint 4d-Var sub-window intervals
nwrvecs	-1	Number of precond vectors (Lanczos) or pairs of vectors (QN)
iorthomax	0	being saved max number of vectors used for orthogonalization of various
Iorthomax	0	CG options
ladtest	.false.	Run adjoint test
ladtest_obs	.false.	if true, doing the adjoint check for the observation operators
lgrtest	.false.	Run gradient test
lobskeep	.false.	keep obs from first outer loop for subsequent OL
lsensrecompute	.false.	does adjoint by recomputing forward solution
jsiga	-1	calculate approximate analysis errors from lanczos for
5.0		jiter=jsiga
ltcost	.false.	calculate true cost when using Lanczos (this is very expensive)
lobsensfc	.false.	compute forecast sensitivity to observations
lobsensjb	.false.	compute Jb sensitivity to observations
lobsensincr	.false.	compute increment sensitivity to observations
lobsensadj	.false.	use adjoint of approx. Hessian to compute obs sensitivity
lobsensmin	.false.	use minimisation to compute obs sensitivity
iobsconv	0	compute convergence test in observation space
		=1 at final point, =2 at every iteration
idmodel	.false.	uses identity model when running 4D-Var (test purposes)
iwrtinc	.false.	when .t., writes out increments instead of analysis
jiterstart	1	first outloop iteration number
jiterend	1	last outloop iteration number
lobserver	.false.	when .t., calculate departure vectors only
lanczosave	.false.	save lanczos vectors for forecast sensitivity computation
llancdone	.false.	use to tell adjoint that Lanczos vecs have been pre-computed
lferrscale	.false.	Something related to forecast error
print_diag_pcg	.false.	logical turn on of printing of GMAO diagnostics in pcgsoi.f90
tsensible	.false.	option to use sensible temperature as the analysis variable.
1	C . 1	Works only for twodvar_regional=.true.
lgschmidt	.false.	option for re-biorthogonalization of the gradx and grady set
		from pcgsoi when twodvar_regional=.true.

SETUP Ceneral control namelist Iread_obs_save .false. option to write out collective obs selection info usc_gfs_ozone .false. option to read in collective obs selection info usc_gfs_ozone_date .false. option to read in gfs ozone and interpolate to regional model domain check_gfs_ozone_date .false. option to turn on ozone in regional analysis lwrite_predterms .false. option to write out actual predictor terms instead of predicted bias to the radiance diagnostic files lwrite_peakwt .false. option to write out actual predictor terms instead of predicted bias to the radiance diagnostic files use_gfs_nemsio .false. option to write out the approximate pressure of the peak of the weighting function for satellite data to the radiance diagnostic files use_gfs_nemsio .false. lalow using satwnd's from preptuff (historical) file lddensvar .false. logical to turn on ensemble 4dvar ens4d_nstarthr 3 sata thour for ensemble false mmm guess is used to replace the upper levels with gfs values. The purpose of this is to allow direct use of gdas derived sat radiance bias correction coefs. pblend0 152 The nerms-mmb vertical coordinate is smoothly merged with gfs above this level, les orginal nems-mmb.	Variable name	Default value	Description
Iread_obs_skip .false. option to read in gollective obs selection info use_gfs_ozone .false. option to read in gfs ozone and interpolate to regional model domain check_gfs_ozone_date .false. option to date check gfs ozone before interpolating to regional model domain regional_ozone .false. option to turn on ozone in regional analysis lwrite_predterms .false. option to write out actual predictor terms instead of predicted bias to the radiance diagnostic files lwrite_peakwt .false. option to writ out actual predictor terms instead of predicted bias to the radiance diagnostic files use_gfs_nemsio .false. option to writ out actual predictor terms instead of predicted bias to the radiance diagnostic files use_gfs_nemsio .false. option to use nemsio to read global model NEMS/GFS first guess use_gfs_stratosphere .false. allow using satwnd's from preptuf (historical) file Iddensvar .false. logical to turn on ensemble 4dvar ens4d_nstarthr 3 start hour for ensemble perturbations (generally should match min_offset) use_gfs_stratosphere When true, a guess gfs valid at the same time as the nems-mmb guess is used to replace the upper levels with gfs values. The purpose of this is to allow direct use of gdas derived sat radiance bias correction coeffs. gfs	SETUP		General control namelist
Iread_obs_skip .false. option to read in gollective obs selection info use_gfs_ozone .false. option to read in gfs ozone and interpolate to regional model domain check_gfs_ozone_date .false. option to date check gfs ozone before interpolating to regional model domain regional_ozone .false. option to turn on ozone in regional analysis lwrite_predterms .false. option to write out actual predictor terms instead of predicted bias to the radiance diagnostic files lwrite_peakwt .false. option to writ out actual predictor terms instead of predicted bias to the radiance diagnostic files use_gfs_nemsio .false. option to writ out actual predictor terms instead of predicted bias to the radiance diagnostic files use_gfs_nemsio .false. option to use nemsio to read global model NEMS/GFS first guess use_gfs_stratosphere .false. allow using satwnd's from preptuf (historical) file Iddensvar .false. logical to turn on ensemble 4dvar ens4d_nstarthr 3 start hour for ensemble perturbations (generally should match min_offset) use_gfs_stratosphere When true, a guess gfs valid at the same time as the nems-mmb guess is used to replace the upper levels with gfs values. The purpose of this is to allow direct use of gdas derived sat radiance bias correction coeffs. gfs	lread_obs_save	.false.	option to write out collective obs selection info
use_gfs_ozone .false. option to read in gfs ozone and interpolate to regional model domain check_gfs_ozone_date .false. option to date check gfs ozone before interpolating to regional model domain regional_ozone .false. option to virie out actual predictor terms instead of predicted bias to the radiance diagnostic files lwrite_predterms .false. option to writ out the approximate pressure of the peak of the weighting function for satellite data to the radiance diagnostic files use_gfs_nemsio .false. option to use nemsio to read global model NEMS/GFS first guess liauon .false. option to use nemsio to read global model NEMS/GFS first guess liauon .false. allow using satwnd's from prepbuf (historical) file l/densvar .false. allow using satwnd's from prepbuf (historical) file l/densvar .false. use gfs_stratosphere When true, a guess gfs valid at the same time as the nems-mmb guess is used to replace the upper levels with gfs values. The purpose of this is to allow direct use of gdas derived sat radiance bias correction coefs. pblend0 152 The nems-mmb vertical coordinate is smoothly merged with gfs above this level. Below this level, is original nems-mmbi files um_greprecon .false. logical to turo ensinsity bias predictor		.false.	-
domain domain check_gfs_ozone_date .false. option to date check gfs ozone before interpolating to regional model domain regional_ozone .false. option to turn on ozone in regional analysis lwrite_predterms .false. option to write out actual predictor terms instead of predicted bias to the radiance diagnostic files lwrite_peakwt .false. option to writ out the approximate pressure of the peak of the weighting function for satellite data to the radiance diagnostic files use_gfs_nemsio .false. option to use nemsio to read global model NEMS/GFS first guess liauon .false. allow using satward's from prepbuff (historical) file l/densvar .false. logical to turn on ensemble 4dvar ensd_nstarthr .astart hour for ensemble perturbations (generally should match min_offset) use_gfs_stratosphere When true, a guess gfs valid at the same time as the nems-mmb guess is used to replace the upper levels with gfs values. The purpose of this is to allow direct use of gdas derived sat radiance bias correction coefs. pblend0 152 The nems-mmb vertical coordinate is smoothly merged with gfs above this level. Below this level, is offs. step_start .false. logical to turg or radiance bias correction coefs. lmu_subdirs .false.	•	.false.	
model domain model domain regional_ozone .false. option to turn on ozone in regional analysis lwrite_predterms .false. option to write out actual predictor terms instead of predicted bias to the radiance diagnostic files lwrite_peakwt .false. option to write out actual predictor terms instead of predicted bias to the radiance diagnostic files use_gfs_nemsio .false. option to use nemsio to read global model NEMS/GFS first guess liauon .false. allow using satwnd's from prepbuff (historical) file lddensvar .false. allow using satwnd's from prepbuff (historical) file lddensvar .false. logical to turn on ensemble 4dvar ens4d_nstarthr .3 start hour for ensemble perturbations (generally should match min_offset) use_gfs_stratosphere When true, a guess is used to replace the upper levels with gfs values. The purpose of this is to allow direct use of gdas derived sat radiance bias correction coefs. pblend0 152 The nems-mmb vertical coordinate is smoothly merged with gfs above this level. Below this level, hove this level, blove this level, blow this level, blove this level, blow this level, blowe this level, blow this level, blowe this level, blowe this lev	0		
model domain model domain regional_ozone .false. option to turn on ozone in regional analysis lwrite_predterms .false. option to write out actual predictor terms instead of predicted bias to the radiance diagnostic files lwrite_peakwt .false. option to write out actual predictor terms instead of predicted bias to the radiance diagnostic files use_gfs_nemsio .false. option to use nemsio to read global model NEMS/GFS first guess liauon .false. allow using satwnd's from prepbuff (historical) file lddensvar .false. allow using satwnd's from prepbuff (historical) file lddensvar .false. logical to turn on ensemble 4dvar ens4d_nstarthr .3 start hour for ensemble perturbations (generally should match min_offset) use_gfs_stratosphere When true, a guess is used to replace the upper levels with gfs values. The purpose of this is to allow direct use of gdas derived sat radiance bias correction coefs. pblend0 152 The nems-mmb vertical coordinate is smoothly merged with gfs above this level. Below this level, hove this level, blove this level, blow this level, blove this level, blow this level, blowe this level, blow this level, blowe this level, blowe this lev	check_gfs_ozone_date	.false.	option to date check gfs ozone before interpolating to regional
lwrite_predterms .false. option to write out actual predictor terms instead of predicted bias to the radiance diagnostic files lwrite_peakwt .false. option to write out the approximate pressure of the peak of the weighting function for satellite data to the radiance diagnostic files use_gfs_nemsio .false. option to use nemsio to read global model NEMS/GFS first guess liauon .false. treat 4dvar CV as tendency perturbation (default=false) use_prepb_satwnd .false. logical to turn on ensemble 4dvar ens4d_nstarthr 3 start hour for ensemble perturbations (generally should match min_offset) use_gfs_stratosphere When true, a guess gfs valid at the same time as the nems- mmb guess is used to replace the upper levels with gfs values. The purpose of this is to allow direct use of gdas derived sat radiance bias correction coefs. pblend0 152 The nems-nmmb vertical coordinate is smoothly merged with gfs above this level. Below this level, is orginal nems-nmmb. pblend1 79.0 The nems-numb vertical coordinate is smoothly merged with gfs above this level. Above this level, is orginal nems-numb. un_subdirs .false. if true do preconditioning lrun_subdirs .false. option to turn on emissivity bias predictor upd_pred 1 bias update indicato	-		model domain
bias to the radiance diagnostic files lwrite_peakwt .false. option to writ out the approximate pressure of the peak of the weighting function for satellite data to the radiance diagnostic files use_gfs_nemsio .false. option to use nemsio to read global model NEMS/GFS first guess liauon .false. allow using satwnd's from prepbuft (historical) file lidensvar .false. logical to turn on ensemble 4dvar ens4d_nstarthr 3 start hour for ensemble perturbations (generally should match min_offset) use_gfs_stratosphere When true, a guess gfs valid at the same time as the nems-mmb guess is used to replace the upper levels with gfs values. The purpose of this is to allow direct use of gdas derived sat radiance bias correction coefs. pblend0 152 The nems-mmb vertical coordinate is smoothly merged with gfs below this level. Below this level, is original nems-mmb. gfs above this level. Set original nems-mmb. The specific files step_start 1.e-4 if true do preconditioning lrun_subdirs .false. option to turn on emissivity bias predictor upd_pred 1 bias update indicator for radiance bias correction; 1.0=bias correction coefficients evolve use_greflectivity .false. option to turn on emissivity bias predictor upd_pred 1 </td <td>regional_ozone</td> <td>.false.</td> <td>option to turn on ozone in regional analysis</td>	regional_ozone	.false.	option to turn on ozone in regional analysis
lwrite_peakwt .false. option to writ out the approximate pressure of the peak of the weighting function for satellite data to the radiance diagnostic files use_gfs_nemsio .false. option to use nemsio to read global model NEMS/GFS first guess liauon .false. treat 4dvar CV as tendency perturbation (default=false) use_prepb_satwnd .false. allow using satwnd's from prepbufr (historical) file lidensvar .false. logical to turn on ensemble 4dvar ens4d_nstarthr 3 start hour for ensemble perturbations (generally should match min_offset) use_gfs_stratosphere When true, a guess gfs valid at the same time as the nems-mmb genes is used to replace the upper levels with gfs values. The purpose of this is to allow direct use of gdas derived sat radiance bias correction coefs. pblend0 152 The nems-nmmb vertical coordinate is smoothly merged with gfs below this level. Below this level, is original nems-nmmb. gfs below this level. Above this level, is gfs. if ture do preconditioning lrun_subdirs .false. logical to toggle use of subdirectires at runtime for pe specific files emiss_bc .false. option to turn on emissivity bias predictor up_pred 1 bias update indicator for radiance bias correction; 1.0=bias correction coefficients evolve use_reflectivity .false. <td>lwrite_predterms</td> <td>.false.</td> <td>option to write out actual predictor terms instead of predicted</td>	lwrite_predterms	.false.	option to write out actual predictor terms instead of predicted
weighting function for satellite data to the radiance diagnostic files use_gfs_nemsio .false. iauon .false. use_prepb_satwnd .false. idensavar .false. use_gfs_stratosphere logical to turn on ensemble perturbations (generally should match min_offset) use_gfs_stratosphere When true, a guess gfs valid at the same time as the nems-mmmb guess is used to replace the upper levels with gfs values. The purpose of this is to allow direct use of gdas derived sat radiance bias correction coefs. pblend0 152 The nems-mmb vertical coordinate is smoothly merged with gfs above this level. Below this level, is original nems-nmmb. pblend1 79.0 The nems-numb vertical coordinate is smoothly merged with gfs below this level. Above this level, is gfs. step_start l.e-4 initial stepsize in minimization diag_precon .false. upd_pred 1 bias update indicator for radiance bias correction; 1.0=bias correction coefficients evolve use_reflectivity .false. logical to turg or nestavity bias predictor upd_pred 1 bias update indicator for radiance bias correction; 1.0=bias correction coefficients evolve use_reflectivity .false.			bias to the radiance diagnostic files
guess liauon .false. treat 4dvar CV as tendency perturbation (default=false) use_prepb_satwnd .false. allow using satwnd's from prepbulf (historical) file l4densvar .false. logical to turn on ensemble 4dvar ens4d_nstarthr .3 start hour for ensemble perturbations (generally should match min_offset) use_gfs_stratosphere When true, a guess gfs valid at the same time as the nems-mmb guess is used to replace the upper levels with gfs values. The purpose of this is to allow direct use of gdas derived sat radiance bias correction coefs. pblend0 .152 The nems-nmmb vertical coordinate is smoothly merged with gfs above this level. Below this level, is original nems-nmmb. pblend1 79.0 The nems-nmmb vertical coordinate is smoothly merged with gfs below this level. Above this level, jis original nems-nmmb. gits_step_start 1.e-4 initial stepsize in minimization diag_precon .false. logical to toggle use of subdirectires at runtime for pe specific files emiss_bc .false. logical to toggle use of subdirectires at runtime for pe specific files upd_pred 1 bias update indicator for radiance bias correction; 1.0=bias correction coefficients evolve use_reflectivity .false. logical to write out 4d analysi	lwrite_peakwt	.false.	weighting function for satellite data to the radiance diagnostic
use_prepb_satwnd .false. allow using satwnd's from prepbufr (historical) file 14densvar .false. logical to turn on ensemble 4dvar ens4d_nstarthr 3 start hour for ensemble perturbations (generally should match min_offset) use_gfs_stratosphere When true, a guess gfs valid at the same time as the nems-nmmb guess is used to replace the upper levels with gfs values. The purpose of this is to allow direct use of gdas derived sat radiance bias correction coefs. pblend0 152 The nems-mmb vertical coordinate is smoothly merged with gfs above this level. Below this level, is original nems-nmmb. pblend1 79.0 The nems-nmmb vertical coordinate is smoothly merged with gfs below this level. Above this level, is gfs. step_start 1.e-4 initial stepsize in minimization diag_precon .false. logical to toggle use of subdirectires at runtime for pe specific files emiss_bc .false. option to turn on emissivity bias predictor uba_pred 1 bias update indicator for radiance bias correction; 1.0=bias correction coefficients evolve use_reflectivity .false. logical to write out 4d analysis states if 4dvar or 4denvar mode lsingleradob .false. logical to ring reflectivity ssmis_method 1	use_gfs_nemsio	.false.	
Iddensvar .false. logical to turn on ensemble 4dvar ens4d_nstarthr 3 start hour for ensemble perturbations (generally should match min_offset) use_gfs_stratosphere When true, a guess gfs valid at the same time as the nems-numb guess is used to replace the upper levels with gfs values. The purpose of this is to allow direct use of gdas derived sat radiance bias correction coefs. pblend0 152 The nems-numb vertical coordinate is smoothly merged with gfs above this level. Below this level, is original nems-numb. pblend1 79.0 The nems-numb vertical coordinate is smoothly merged with gfs below this level. Above this level, is gfs. step_start 1.e-4 initial stepsize in minimization diag_precon .false. if true do preconditioning lrun_subdirs .false. option to turn on emissivity bias predictor upd_pred 1 bias update indicator for radiance bias correction; 1.0=bias correction coefficients evolve use_reflectivity .false. logical to write out 4d analysis states if 4dvar or 4denvar mode lsingleradob .false. logical for single radiance observation assimilation. Uses existing buff file and rejects all radiances that don't fall within a tight threshold around oblat/oblon (SINGLEOB_TEST) ssmis_method 1 choose method for SSMIS noise reduction 0=no smoothing l=default	liauon	.false.	treat 4dvar CV as tendency perturbation (default=false)
ens4d_nstarthr 3 start hour for ensemble perturbations (generally should match min_offset) use_gfs_stratosphere When true, a guess gfs valid at the same time as the nems-nmmb guess is used to replace the upper levels with gfs values. The purpose of this is to allow direct use of gdas derived sat radiance bias correction coefs. pblend0 152 The nems-nmmb vertical coordinate is smoothly merged with gfs above this level. Below this level, is original nems-nmmb. pblend1 79.0 The nems-nmmb vertical coordinate is smoothly merged with gfs below this level. Above this level, is original nems-nmmb. ntm_subdirs .false. if true do preconditioning lrun_subdirs .false. if true do preconditioning lrun_subdirs .false. option to turn on emissivity bias predictor upd_pred 1 bias update indicator for radiance bias correction; 1.0=bias correction coefficients evolve use_reflectivity .false. allow for nested resolution outer/inner loops lwite4dan1 .false. logical to write out 4d analysis states if 4dvar or 4denvar mode lsingleradob .false. logical for single radiance observation assimilation. Uses existing buff file and rejects all radiances that don't fall within a tight threshold around oblat/oblon (SINGLEOB_TEST) ssmis_method 1 choose	use_prepb_satwnd	.false.	
use_gfs_stratosphere min_offset) use_gfs_stratosphere When true, a guess gfs valid at the same time as the nems- nmmb guess is used to replace the upper levels with gfs values. The purpose of this is to allow direct use of gdas derived sat radiance bias correction coefs. pblend0 152 The nems-nmmb vertical coordinate is smoothly merged with gfs above this level. Below this level, is original nems-nmmb. pblend1 79.0 The nems-nmmb vertical coordinate is smoothly merged with gfs below this level. Above this level, is original nems-nmmb. pblend1 79.0 The nems-nmmb vertical coordinate is smoothly merged with gfs below this level. Above this level, is original nems-nmmb. pblend1 79.0 The nems-numb vertical coordinate is smoothly merged with gfs below this level. Above this level, is original nems-numb. pblend1 79.0 The nems-numb vertical coordinate is smoothly merged with gfs below this level. Above this level, is original nems-numb. pblend1 79.0 The nems-numb vertical coordinate is smoothly merged with gfs below this level. Above this level, is original nems-numb. pblend1 79.0 The nems-numb vertical coordinate is smoothly merged with gfs below this level. Above this level, is original nems-numb. upd_pred false. logical to toggle use of subdirectires at runtime for pe specific files emiss_bc false. option of using reflectivity <td< td=""><td></td><td>.false.</td><td>0</td></td<>		.false.	0
use_gfs_stratosphere When true, a guess gfs valid at the same time as the nems- nmmb guess is used to replace the upper levels with gfs values. The purpose of this is to allow direct use of gdas derived sat radiance bias correction coefs. pblend0 152 The nems-nmmb vertical coordinate is smoothly merged with gfs above this level. Below this level, is original nems-nmmb. pblend1 79.0 The nems-nmmb vertical coordinate is smoothly merged with gfs below this level. Above this level, is gfs. step_start 1.e-4 initial stepsize in minimization diag_precon false. if true do preconditioning lrun_subdirs false. option to turn on emissivity bias predictor upd_pred 1 bias update indicator for radiance bias correction; 1.0=bias cor- rection coefficients evolve use_reflectivity false. option of using reflectivity lnested_loops false. logical to write out 4d analysis states if 4dvar or 4denvar mode lsingleradob false. logical for single radiance observation assimilation. Uses ex- isting buf file and rejects all radiances that don't fall within a tight threshold around oblat/oblon (SINGLEOB_TEST) ssmis_precond 0.01 weighting factor for SSMIS preconditioning (if not using newpc4pred) R_option false. Option to use variable correlation l	ens4d_nstarthr	3	start hour for ensemble perturbations (generally should match
nmmb guess is used to replace the upper levels with gfs values. The purpose of this is to allow direct use of gdas derived sat radiance bias correction coefs.pblend0152The nems-nmmb vertical coordinate is smoothly merged with gfs above this level. Below this level, is original nems-nmmb.pblend179.0The nems-nmmb vertical coordinate is smoothly merged with gfs below this level. Above this level, is original nems-nmmb.pblend179.0The nems-nmmb vertical coordinate is smoothly merged with gfs below this level. Above this level, is original nems-nmmb.diag_precon.false.if true do preconditioninglrun_subdirs.false.logical to toggle use of subdirectires at runtime for pe specific filesemiss_bc.false.option to turn on emissivity bias predictorupd_pred1bias update indicator for radiance bias correction; 1.0=bias cor- rection coefficients evolveuse_reflectivity.false.option of using reflectivitylnested_loops.false.logical to write out 4d analysis states if 4dvar or 4denvar modelsingleradob.false.logical for single radiance observation assimilation. Uses ex- isting buff file and rejects all radiances that don't fall within a tight threshold around oblat/oblon (SINGLEOB_TEST)ssmis_precond0.01weighting factor for SSMIS noise reduction 0=no smoothing 1=defaultssmis_precond0.01weighting factor for SSMIS preconditioning (if not using newpc4pred)R_option.false.Option to use variable correlation length for lcbas based on data density - follows Hayden and Purser (1995) (twod- var_regional only) <td></td> <td></td> <td></td>			
The purpose of this is to allow direct use of gdas derived sat radiance bias correction coefs.pblend0152The nems-nmmb vertical coordinate is smoothly merged with gfs above this level. Below this level, is original nems-nmmb.pblend179.0The nems-nmmb vertical coordinate is smoothly merged with gfs below this level. Below this level, is gfs.step_start1.e-4initial stepsize in minimizationdiag_precon.false.if true do preconditioninglrun_subdirs.false.logical to toggle use of subdirectires at runtime for pe specific filesemiss_bc.false.option to turn on emissivity bias predictorupd_pred1bias update indicator for radiance bias correction; 1.0=bias cor- rection coefficients evolveuse_reflectivity.false.logical to write out 4d analysis states if 4dvar or 4denvar modelsingleradob.false.logical for single radiance observation assimilation. Uses ex- isting buf file and rejects all radiances that don't fall within a tight threshold around oblat/oblon (SINGLEOB_TEST)ssmis_method1choose method for SSMIS noise reduction 0=no smoothing l=defaultssmis_precond0.01weighting factor for SSMIS preconditioning (if not using newpc4pred)R_option.false.Option to use variable correlation length for lcbas based on data density - follows Hayden and Purser (1995) (twod- var_regional only)	use_gfs_stratosphere		
pblend0152radiance bias correction coefs.pblend0152The nems-nmmb vertical coordinate is smoothly merged with gfs above this level. Below this level, is original nems-nmmb.pblend179.0The nems-nmmb vertical coordinate is smoothly merged with gfs below this level. Above this level, is original nems-nmmb.step_start1.e-4initial stepsize in minimizationdiag_precon.false.if true do preconditioninglrun_subdirs.false.logical to toggle use of subdirectires at runtime for pe specific filesemiss_bc.false.option to turn on emissivity bias predictorupd_pred1bias update indicator for radiance bias correction; 1.0=bias cor- rection coefficients evolveuse_reflectivity.false.logical to write out 4d analysis states if 4dvar or 4denvar modelsingleradob.false.logical for single radiance observation assimilation. Uses ex- isting buf file and rejects all radiances that don't fall within a tight threshold around oblat/oblon (SINGLEOB_TEST)ssmis_method1choose method for SSMIS noise reduction 0=no smoothing l=defaultssmis_precond.false.Option to use variable correlation length for lcbas based on data density - follows Hayden and Purser (1995) (twod- var_regional only)			· · · ·
pblend0152The nems-nmmb vertical coordinate is smoothly merged with gfs above this level. Below this level, is original nems-nmmb.pblend179.0The nems-nmmb vertical coordinate is smoothly merged with gfs below this level. Above this level, is gfs.step_start1.e-4initial stepsize in minimizationdiag_precon.false.if true do preconditioninglrun_subdirs.false.logical to toggle use of subdirectires at runtime for pe specific filesemiss_bc.false.option to turn on emissivity bias predictorupd_pred1bias update indicator for radiance bias correction; 1.0=bias cor- rection coefficients evolveuse_reflectivity.false.option of using reflectivitylnestd_loops.false.logical to write out 4d analysis states if 4dvar or 4denvar modelsingleradob.false.logical for single radiance observation assimilation. Uses ex- isting bufr file and rejects all radiances that don't fall within a tight threshold around oblat/oblon (SINGLEOB_TEST)ssmis_precond0.01weighting factor for SSMIS preconditioning (if not using newpc4pred)R_option.false.Option to use variable correlation length for lcbas based on data density - follows Hayden and Purser (1995) (twod- var_regional only)			
gfs above this level. Below this level, is original nems-nmmb.pblendl79.0The nems-nmmb vertical coordinate is smoothly merged with gfs below this level. Above this level, is gfs.step_start1.e-4initial stepsize in minimizationdiag_precon.false.if true do preconditioninglrun_subdirs.false.logical to toggle use of subdirectires at runtime for pe specific filesemiss_bc.false.option to turn on emissivity bias predictorupd_pred1bias update indicator for radiance bias correction; 1.0=bias cor- rection coefficients evolveuse_reflectivity.false.option of using reflectivitylnested_loops.false.logical for single radiance observation assimilation. Uses ex- isting bufr file and rejects all radiances that don't fall within a tight threshold around obla/oblon (SINGLEOB_TEST)ssmis_precond0.01weighting factor for SSMIS preconditioning (if not using newpc4pred)R_option.false.Option to use variable correlation length for lcbas based on data density - follows Hayden and Purser (1995) (twod- var_regional only)			
step_startI.e-4initial stepsize in minimizationdiag_precon.false.if true do preconditioninglrun_subdirs.false.logical to toggle use of subdirectires at runtime for pe specific filesemiss_bc.false.option to turn on emissivity bias predictorupd_pred1bias update indicator for radiance bias correction; 1.0=bias cor- rection coefficients evolveuse_reflectivity.false.option of using reflectivitylnested_loops.false.allow for nested resolution outer/inner loopslwrite4danl.false.logical for single radiance observation assimilation. Uses ex- isting buf file and rejects all radiances that don't fall within a tight threshold around oblat/oblon (SINGLEOB_TEST)ssmis_method1choose method for SSMIS preconditioning (if not using newpc4pred)R_option.false.Option to use variable correlation length for lcbas based on data density - follows Hayden and Purser (1995) (twod- var_regional only)	pblend0	152	
step_start1.e-4initial stepsize in minimizationdiag_precon.false.if true do preconditioninglrun_subdirs.false.logical to toggle use of subdirectires at runtime for pe specific filesemiss_bc.false.option to turn on emissivity bias predictorupd_pred1bias update indicator for radiance bias correction; 1.0=bias cor- rection coefficients evolveuse_reflectivity.false.option of using reflectivitylnested_loops.false.allow for nested resolution outer/inner loopslwrite4danl.false.logical for single radiance observation assimilation. Uses ex- isting buf file and rejects all radiances that don't fall within a tight threshold around oblat/oblon (SINGLEOB_TEST)ssmis_method1choose method for SSMIS noise reduction 0=no smoothing 1=defaultssmis_precond0.01weighting factor for SSMIS preconditioning (if not using newpc4pred)R_option.false.Option to use variable correlation length for lcbas based on data density - follows Hayden and Purser (1995) (twod- var_regional only)	pblend1	79.0	The nems-nmmb vertical coordinate is smoothly merged with
diag_precon.false.if true do preconditioninglrun_subdirs.false.logical to toggle use of subdirectires at runtime for pe specific filesemiss_bc.false.option to turn on emissivity bias predictorupd_pred1bias update indicator for radiance bias correction; 1.0=bias cor- rection coefficients evolveuse_reflectivity.false.option of using reflectivitylnested_loops.false.allow for nested resolution outer/inner loopslwrite4danl.false.logical to write out 4d analysis states if 4dvar or 4denvar modelsingleradob.false.logical for single radiance observation assimilation. Uses ex- isting bufr file and rejects all radiances that don't fall within a tight threshold around oblat/oblon (SINGLEOB_TEST)ssmis_method1choose method for SSMIS noise reduction 0=no smoothing 1=defaultssmis_precond0.01weighting factor for SSMIS preconditioning (if not using newpc4pred)R_option.false.Option to use variable correlation length for lcbas based on data density - follows Hayden and Purser (1995) (twod- var_regional only)			gfs below this level. Above this level, is gfs.
Irun_subdirs.false.logical to toggle use of subdirectires at runtime for pe specific filesemiss_bc.false.option to turn on emissivity bias predictorupd_pred1bias update indicator for radiance bias correction; 1.0=bias cor- rection coefficients evolveuse_reflectivity.false.option of using reflectivitylnested_loops.false.allow for nested resolution outer/inner loopslwrite4danl.false.logical to write out 4d analysis states if 4dvar or 4denvar modelsingleradob.false.logical for single radiance observation assimilation. Uses ex- isting buf file and rejects all radiances that don't fall within a tight threshold around oblat/oblon (SINGLEOB_TEST)ssmis_method1choose method for SSMIS noise reduction 0=no smoothing 1=defaultssmis_precond0.01weighting factor for SSMIS preconditioning (if not using newpc4pred)R_option.false.Option to use variable correlation length for lcbas based on data density - follows Hayden and Purser (1995) (twod- var_regional only)	step_start	1.e-4	initial stepsize in minimization
filesemiss_bc.false.option to turn on emissivity bias predictorupd_pred1bias update indicator for radiance bias correction; 1.0=bias correction coefficients evolveuse_reflectivity.false.option of using reflectivitylnested_loops.false.allow for nested resolution outer/inner loopslwrite4danl.false.logical to write out 4d analysis states if 4dvar or 4denvar modelsingleradob.false.logical for single radiance observation assimilation. Uses existing bufr file and rejects all radiances that don't fall within a tight threshold around oblat/oblon (SINGLEOB_TEST)ssmis_method1choose method for SSMIS noise reduction 0=no smoothing 1=defaultssmis_precond0.01weighting factor for SSMIS preconditioning (if not using newpc4pred)R_option.false.Option to use variable correlation length for 1cbas based on data density - follows Hayden and Purser (1995) (twod-var_regional only)	diag_precon	.false.	
upd_pred1bias update indicator for radiance bias correction; 1.0=bias correction coefficients evolveuse_reflectivity.false.option of using reflectivitylnested_loops.false.allow for nested resolution outer/inner loopslwrite4danl.false.logical to write out 4d analysis states if 4dvar or 4denvar modelsingleradob.false.logical for single radiance observation assimilation. Uses existing bufr file and rejects all radiances that don't fall within a tight threshold around oblat/oblon (SINGLEOB_TEST)ssmis_method1choose method for SSMIS noise reduction 0=no smoothing 1=defaultssmis_precond0.01weighting factor for SSMIS preconditioning (if not using newpc4pred)R_option.false.Option to use variable correlation length for lcbas based on data density - follows Hayden and Purser (1995) (twod-var_regional only)	lrun_subdirs	.false.	
rection coefficients evolveuse_reflectivity.false.lnested_loops.false.allow for nested resolution outer/inner loopslwrite4danl.false.logical to write out 4d analysis states if 4dvar or 4denvar modelsingleradob.false.logical for single radiance observation assimilation. Uses ex- isting bufr file and rejects all radiances that don't fall within a tight threshold around oblat/oblon (SINGLEOB_TEST)ssmis_method1choose method for SSMIS noise reduction 0=no smoothing 1=defaultssmis_precond0.01R_option.false.Option to use variable correlation length for lcbas based on data density - follows Hayden and Purser (1995) (twod- var_regional only)	emiss_bc	.false.	option to turn on emissivity bias predictor
use_reflectivity.false.option of using reflectivitylnested_loops.false.allow for nested resolution outer/inner loopslwrite4danl.false.logical to write out 4d analysis states if 4dvar or 4denvar modelsingleradob.false.logical for single radiance observation assimilation. Uses ex- isting bufr file and rejects all radiances that don't fall within a tight threshold around oblat/oblon (SINGLEOB_TEST)ssmis_method1choose method for SSMIS noise reduction 0=no smoothing 1=defaultssmis_precond0.01weighting factor for SSMIS preconditioning (if not using newpc4pred)R_option.false.Option to use variable correlation length for lcbas based on data density - follows Hayden and Purser (1995) (twod- var_regional only)	upd_pred	1	bias update indicator for radiance bias correction; 1.0=bias cor-
Inested_loops.false.allow for nested resolution outer/inner loopslwrite4danl.false.logical to write out 4d analysis states if 4dvar or 4denvar modelsingleradob.false.logical for single radiance observation assimilation. Uses ex- isting bufr file and rejects all radiances that don't fall within a tight threshold around oblat/oblon (SINGLEOB_TEST)ssmis_method1choose method for SSMIS noise reduction 0=no smoothing 1=defaultssmis_precond0.01weighting factor for SSMIS preconditioning (if not using newpc4pred)R_option.false.Option to use variable correlation length for lcbas based on data density - follows Hayden and Purser (1995) (twod- var_regional only)			rection coefficients evolve
lwrite4danl.false.logical to write out 4d analysis states if 4dvar or 4denvar modelsingleradob.false.logical for single radiance observation assimilation. Uses ex- isting bufr file and rejects all radiances that don't fall within a tight threshold around oblat/oblon (SINGLEOB_TEST)ssmis_method1choose method for SSMIS noise reduction 0=no smoothing 1=defaultssmis_precond0.01weighting factor for SSMIS preconditioning (if not using newpc4pred)R_option.false.Option to use variable correlation length for lcbas based on data density - follows Hayden and Purser (1995) (twod- var_regional only)	use_reflectivity	.false.	option of using reflectivity
lsingleradob .false. logical for single radiance observation assimilation. Uses existing bufr file and rejects all radiances that don't fall within a tight threshold around oblat/oblon (SINGLEOB_TEST) ssmis_method 1 choose method for SSMIS noise reduction 0=no smoothing 1=default ssmis_precond 0.01 weighting factor for SSMIS preconditioning (if not using newpc4pred) R_option .false. Option to use variable correlation length for 1cbas based on data density - follows Hayden and Purser (1995) (twod-var_regional only)	lnested_loops		
isting bufr file and rejects all radiances that don't fall within a tight threshold around oblat/oblon (SINGLEOB_TEST) ssmis_method 1 choose method for SSMIS noise reduction 0=no smoothing 1=default ssmis_precond 0.01 weighting factor for SSMIS preconditioning (if not using newpc4pred) R_option .false. Option to use variable correlation length for lcbas based on data density - follows Hayden and Purser (1995) (twod-var_regional only)			
tight threshold around oblat/oblon (SINGLEOB_TEST) ssmis_method 1 choose method for SSMIS noise reduction 0=no smoothing 1=default ssmis_precond 0.01 weighting factor for SSMIS preconditioning (if not using newpc4pred) R_option .false. Option to use variable correlation length for 1cbas based on data density - follows Hayden and Purser (1995) (twod-var_regional only)	lsingleradob	.false.	
ssmis_method 1 choose method for SSMIS noise reduction 0=no smoothing l=default ssmis_precond 0.01 weighting factor for SSMIS preconditioning (if not using newpc4pred) R_option .false. Option to use variable correlation length for lcbas based on data density - follows Hayden and Purser (1995) (twod-var_regional only)			
I=default ssmis_precond 0.01 weighting factor for SSMIS preconditioning (if not using newpc4pred) R_option .false. Option to use variable correlation length for lcbas based on data density - follows Hayden and Purser (1995) (twod-var_regional only)			
newpc4pred) R_option .false. Option to use variable correlation length for lcbas based on data density - follows Hayden and Purser (1995) (twod- var_regional only)	ssmis_method	1	8
R_option .false. Option to use variable correlation length for lcbas based on data density - follows Hayden and Purser (1995) (twod- var_regional only)	ssmis_precond	0.01	
	R_option	.false.	Option to use variable correlation length for lcbas based on data density - follows Hayden and Purser (1995) (twod-
	thin4d		- 0 //

Variable name	Default value	Description
GRIDOPTS		Grid setup variables, including regional specific variables
jcap	62	spectral resolution of the analysis
jcap_b	62	spectral resolution of background (model guess field)
nsig	42	number of sigma levels
nlat	96	number of latitudes
nlon	384	number of longitudes
hybrid	logical	hybrid data file flag true=hybrid
nlat_regional	0	Number of y grid point in whole regional domain
nlon_regional	0	Number of x grid point in whole regional domain
diagnostic_reg	.false.	logical for regional debugging
update_regsfc	.false.	logical to write out updated surface fields to the regional anal-
		ysis file (default = false)
netcdf	.false.	if true, then wrf files are in netcdf format, otherwise wrf files
		are in binary format.
regional	.false.	logical for regional GSI run
wrf_nmm_regional	.false.	logical for input from WRF NMM
nems_nmmb_regional	.false.	logical for input from NEMS NMMB
wrf_mass_regional	.false.	logical for input from WRF MASS-CORE (ARW)
twodvar_regional	.false.	logical for regional 2d-var analysis
filled_grid	.false.	logical to fill in points on WRF-NMM E-grid
half_grid	.false.	logical to use every other row of WRF-NMM E-Grid
nvege_type	24	number of types of vegetation; old=24, IGBP=20
nlayers(100)	1	number of sub-layers to break indicated model layer into prior
		to calling radiative transfer model
cmaq_regional	.false.	Background input is from CMAQ model
nmmb_reference_grid	Н	='H', then analysis grid covers H grid domain
		= 'V', then analysis grid covers V grid domain
grid_ratio_nmmb	sqrt(2)	ratio of analysis grid to nmmb model grid in nmmb model grid
		units.
grid_ratio_wrfmass	1.0	ratio of analysis grid to wrf mass grid in wrf grid units
jcap_gfs		spectral truncation used to transform high wavenum-
		ber spectral coefficients to a coarser resolution grid, when
		<pre>use_gfs_ozone = .true. or use_gfs_stratosphere = .true.</pre>
jcap_cut		
use_sp_eqspac	.false.	if .true., then ensemble grid is equal spaced, staggered 1/2 grid unit off poles. if .false., then gaussian grid assumed for ensem-
		ble (global only)

Variable name	Default value	Description
BKGERR		Background error related variables
VS	1/1.5	scale factor for vertical correlation lengths for background er-
		ror
nhscrf	3	number of horizontal scales for recursive filter
hzscl(3)	1, 1, 1	scale factor for horizontal smoothing, n=1,number of scales (3
		for now)
		specifies factor by which to reduce horizontal scales (i.e. 2
		would then apply $1/2$ of the horizontal scale)
hswgt(3)	1/3, 1/3, 1/3	empirical weights to apply to each horizontal scale
norh	2	order of interpolation in smoothing
ndeg	4	degree of smoothing in recursive filters
noq	3	1/4 of accuracy in compact finite differencing
bw	0	factor in background error calculation
norsp	0	order of interpolation for smooth polar cascade routine de-
		fault is norsp=0, in which case norh is used with original polar
		cascade interpolation (global only).
fstat	.false.	logical to separate f from balance projection
pert_berr	.false.	logical to turn on random inflation/deflation of background
		error tuning parameters
pert_berr_fct	0	factor for increasing/decreasing berror parameters, this is mul-
		tiplied by random number
bkgv_flowdep	.false.	flag to turn on flow dependence to background error variances
bkgv_rewgtfct	0	factor used to perform flow dependent reweighting of error
		variances
bkgv_write	.false.	flag to turn on=.true. /off=.false. generation of binary file with
		reweighted variances
fpsproj	.true.	controls full nsig projection to surface pressure
fut2ps		controls the projection from unbalance T to surface pressure
adjustozvar		adjusts ozone variances in the stratosphere based on guess field
cwcoveqqcov		sets cw Bcov to be the same as B-cov(q) (presently glb default)

Variable name	Default value	Description
ANBKGERR		Anisotropic background error related variables
anisotropic	.false.	if true, then use anisotropic background error covariance
ancovmdl	0	covariance model settings - 0: pt-based, 1: ensemble based
triad4	.true.	for 2d variables, if true, use blended triad algorithm
ifilt_ord	4	filter order for anisotropic filters
npass	1	2ÃŮnpass = number of factors in background error
normal	200	number of random vectors to use for filter normalization (if
		< 0 then slightly slower, but results independent of number of
		processors)
binom	.true.	if true, weight correlation lengths of factors using binomial
		distribution, with shortest scales on outside, longest scales on
		inside. This can help to produce smoother correlations in the
		presence of strong anisotropy
ngauss	3	number of Gaussians to add together in each factor
rgauss	0	multipliers on reference aspect tensor for each Gaussian factor
anhswgt	1.0	empirical weights to apply to each gaussian
an_vs	1	scale factor for background error vertical scales (temporary
		carry over from isotropic inhomogeneous option)
grid_ratio	2.0	ratio of coarse to fine grid in fine grid units
grid_ratio_p	0	ratio of coarse to fine grid in fine grid units for polar patches
nord_f2a	4	order of interpolation for transfer operators between filter grid
	-	and analysis grid
an_flen_u	1	coupling parameter for connecting horizontal wind to back-
	-	ground error
an_flen_t	1	coupling parameter for connecting grad(potential temperature)
		to background error
an_flen_z	1	coupling parameter for connecting grad(terrain) to background
		error
rtma_subdomain_option	.false.	if true, then call alternative code which calls recursive filter
		directly from subdomain mode, bypassing transition to/from
		horizontal slabs. This is mainly to improve efficiency for
		2d rtma analysis. at the moment, this only works for twod-
		var_regional=.true. rtma_subdomain_option will be forced to
luce der server	false	false when twodvar_regional=.false.
lreadnorm	.false.	if true, then read normalization from fixed files
nsmooth	0	number of 1-2-1 smoothing passes before and after background
namooth shaning	0	error application
nsmooth_shapiro	U	number of 2nd moment preserving (shapiro) smoothing passes
		before and after background error application. NOTE: default for nsmooth and nsmooth_shapiro is 0.
		if both are > 0 , then nsmooth will be forced to zero.
afact0	0.0	anistropy effect parameter, the range must be in 0.0-1.0.
covmap	.false.	if true, covariance map would be drawn
covinap	.iuise.	In this, covariance map would be drawn

Variable name	Default value	Description
JCOPTS		Constraint term in cost function (Jc)
ljcdfi	.false.	if .false., uses original formulation based on wind, temp, and
		ps tends
		when .t. uses digital filter initialization of increments (4dvar)
alphajc	10.0	parameter for digital filter
switch_on_derivatives	.false., âĂę	if true, then compute horizontal derivatives of all state vari-
		ables (to be used eventually for time derivatives, dynamic con-
		straints and observation forward models that need horizontal
		derivatives)
tendsflag	.false.	if true, compute time tendencies
ljcpdry	.false.	when .t. uses dry pressure constraint on increment
bamp_jcpdry	0.0	parameter for pdry_jc
eps_eer	-1.0	Errico-Ehrendofer parameter for q-term in energy norm
ljc4tlevs	.false.	when true and in 4D mode, apply any weak constraints over
		all time levels instead of just at a single time

	5 . 1 1	
Variable name	Default value	Description
STRONGOPTS		Strong dynamic constraint
reg_tlnmc_type	1	=1 for 1st version of regional strong constraint
		=2 for 2nd version of regional strong constraint
tlnmc_option	0	integer flag for strong constraint (various capabilities for hy-
		brid):
		=0: no TLNMC
		=1: TLNMC for 3DVAR mode
		=2: TLNMC on total increment for single time level only (for
		3D EnVar) or if 4D EnVar mode, TLNMC applied to increment
		in center of window
		=3: TLNMC on total increment over all time levels (if in 4D
		EnVar mode)
		=4: TLNMC on static contribution to increment ONLY for any
		EnVar mode
nstrong	0	if > 0 , then number of iterations of implicit normal mode ini-
		tialization to apply for each inner loop iteration
period_max	1000000.0	cutoff period for gravity waves included in implicit normal
_		mode initialization (units = hours)
period_width	1.0	defines width of transition zone from included to excluded
_		gravity waves
nvmodes_keep	0	number of vertical modes to use in implicit normal mode ini-
		tialization
baldiag_full	.false.	flag to toggle balance diagnostics for the full fields
baldiag_inc	.false.	flag to toggle balance diagnostics for the analysis increment

Variable name	Default value	Description
OBSQC		Observation quality control variables
		Parameters used for gross error checks are set in file con-
		vinfo (ermin, ermax, ratio) Parameters below used for non-
		linear (variational) quality control
dfact	0	factor for duplicate observation at same location for conven-
		tional data
dfact1	3.0	time factor for duplicate observation at same location for con-
		ventional data
erradar_inflate	1	radar error inflation factor
tdrerr_inflate	.false.	logical for tdr obs error inflation
tdrgross_fact	1	factor applied to tdr gross error
oberrflg	.false.	logical for reading in new observation error table (if set to true)
vadfile	'none'	character(10) variable holding name of VAD wind bufr file
noiqc	.false.	logical flag to bypass OI QC (if set to true)
c_varqc	1	constant number to control variance qc turning on speed
blacklst	.false.	logical for reading in raob blacklist (if set to true)
use_poq7	.false.	Logical to toggle accept (.true.) or reject (.false.) SBUV/2 ozone
		observations flagged with profile ozone quality mark
hilbert_curve	.false.	option for hilbert-curve based cross-validation. works only
		with twodvar_regional=.true.
tcp_refps	1000.0	reference pressure for tcps oberr calculation (mb)
tcp_width	50.0	parameter for tcps oberr inflation (width, mb)
tcp_ermin	0.75	parameter for tcps oberr inflation (minimum oberr, mb)
tcp_ermax	5.0	parameter for tcps oberr inflation (maximum oberr, mb)
qc_noirjaco3	.false.	controls whether to use O3 Jac from IR instruments
qc_noirjaco3_pole	.false.	controls wheter to use O3 Jac from IR instruments near poles
qc_satwnds	.true.	allow bypass sat-winds qc normally removing lots of mid-tropo
		obs
njqc		
vqc		
aircraft_t_bc_pof	.false.	logical for aircraft temperature bias correction, pof is used for
		predictor
aircraft_t_bc	.false.	logical for aircraft temperature bias correction
aircraft_t_bc_ext	.false.	logical for reading aircraft temperature bias correction from
		external file
buddycheck_t	.false.	When true, run buddy check algorithm on temperature obser-
		vations
buddydiag_save	.false.	When true, output files containing buddy check QC info for all
		obs run through the buddy check
biaspredt	1	berror var for temperature bias correction coefficients
upd_aircraft	.true.	indicator if update bias at 06Z & 18Z
cleanup_tail	.false.	logical to remove tail number no longer used

Variable name	Default value	Description
OBS_INPUT		Controls input data
dfile	, ,	input observation file name
dtype	, ,	observation type
dplat	, ,	satellite (platform) id (for satellite data)
dsis	, ,	sensor/instrument/satellite flag from satinfo files
dthin	, ,	satellite group
dval	, ,	relative value of each profile within group relative weight for
		observation = dval/sum(dval) within grid box
dmesh(max(dthin))		thinning mesh for each group
		mesh size (km) for radiance thinning grid (used in satthin)
dsfcalc	, ,	specifies method to determine surface fields within a FOV.
		when equal to one, integrate model fields over FOV. when not
		one, bilinearly interpolate model fields to FOV center.
time_window_max	3	upper limit on time window for all input data
ext_sonde	.false.	logical for extended forward model on sonde data
l_foreaft_thin	.false.	separate TDR fore/aft scan for thinning

Variable name	Default value	Description
SINGLEOB_TEST		Single observation test case setup
maginnov	1	magnitude of innovation for one observation
magoberr	1	magnitude of observational error
oneob_type	, ,	observation type (t, u, v, etc.)
oblat	0	observation latitude
oblon	0	observation longitude
obpres	1000.0	observation pressure (hPa)
obdattim	2000010100	observation date (YYYYMMDDHH)
obhourset	0	observation delta time from analysis time
pctswitch	.false.	if .true. innovation & oberr are relative (%) of background value
		(level ozone only)
obchan	0	if > 0, selects the channel number. If \leq zero, it will use all
		channels that pass qc in setuprad.

Variable name	Default value	Description
SUPEROB_RADAR		Level 2 bufr file to radar wind superobs
del_azimuth	5.0	azimuth range for superob box (default 5 degrees)
del_elev	0.25	elevation angle range for superob box (default .05 degrees)
del_range	5000.0	radial range for superob box (default 5 km)
del_time	0.5	1/2 time range for superob box (default .5 hours)
elev_angle_max	5.0	max elevation angle (default of 5 deg) minnum 50 minimum
		number of samples needed to make a superob
range_max	100000.0	max radial range in meters to use in constructing superobs
		(default 100km)
l2superob_only	.false.	if true, then process level 2 data creating superobs, then quit.
		(added for easier retrospective testing, since level 2 bufr files
		are very large and hard to work with)

Variable name	Default value	Description
LAG_DATA		Lagrangian data assimilation related variables
lag_accur	1.0e-6	Accuracy used to decide whether or not a balloon is on the
		grid
infile_lag	inistate_lag.dat	File containing the initial position of the balloon
lag_stepduration	900.0	Duration of one time step for the propagation model
lag_nmax_bal	1000	Maximum number of balloons at starting time
lag_vorcore_stderr_a	2.0e3	Observation error for vorcore balloon
lag_vorcore_stderr_b	0.0	error = b + a*timestep(in hours)

Variable name	Default value	Description
HYBRID_ENSEMBLE		Parameters for use with hybrid ensemble option
l_hyb_ens	.false.	if true, then turn on hybrid ensemble option
uv_hyb_ens	.false.	if true, then ensemble perturbation wind variables are u,v, oth-
		erwise, ensemble perturbation wind variables are stream, pot.
		Functions.
q_hyb_ens	.false.	if true, then use specific humidity ensemble perturbations, oth-
		erwise, use relative humidity
aniso_a_en	.false.	if true, then use anisotropic localization of hybrid ensemble
		control variable a_en.
generate_ens	.true.	if true, then generate internal ensemble based on existing back-
		ground error
n_ens	0	number of ensemble members.
nlon_ens	0	number of longitudes on ensemble grid (may be different from analysis grid nlon)
nlat_ens	0	number of latitudes on ensemble grid (may be different from
		analysis grid nlat)
jcap_ens	0	for global spectral model, spectral truncation
pseudo_hybens	.false.	if true, turn on pseudo ensemble hybrid for HWRF
merge_two_grid_ensperts	.false.	if true, merge ensemble perturbations from two forecast do-
		mains to analysis domain (one way to deal with hybrid DA for
		HWRF moving nest)
regional_ensemble_option	0	integer, used to select type of ensemble to read in for regional
		application. Currently takes values from 1 to 4
		=1: use GEFS internally interpolated to ensemble grid.
		=2: ensembles are WRF NMM format
		=3: ensembles are ARW netcdf format.
	6.1	=4: ensembles are NEMS NMMB format.
full_ensemble	.false.	if true, first ensemble perturbation on first guess istead of on ens mean
betaflg	.false.	if true, use vertical weighting on betal_inv and beta2_inv, for
Security		regional
coef_bw	0.9	fraction of weight given to the vertical boundaries when betafig
	0.0	is true
pwgtflg	.false.	if true, use vertical integration function on ensemble contribu-
1 0 0		tion of Psfc
jcap_ens_test	0	for global spectral model, test spectral truncation (to test dual
J I – –		resolution)
beta1_inv	1	1/betal, the default weight given to static background error
		covariance if (.not. readin_beta)
		0 <= beta1_inv <= 1, tuned for optimal performance
		=1, then ensemble information turned off
		=0, then static background turned off the weights are applied
		per vertical level such that :
		betas_inv(:) = beta1_inv , vertically varying weights given to
		static B;
		betae_inv(:) = 1 - beta1_inv , vertically varying weights given
		ensemble derived covariance.
		If (readin_beta) then betas_inv and betae_inv are read from a
		file and beta1_inv is not used.

Variable name	Default value	Description
HYBRID_ENSEMBLE		Parameters for use with hybrid ensemble option
s_ens_h	2828	homogeneous isotropic horizontal ensemble localization scale
		(km)
s_ens_v	30	vertical localization scale (grid units for now) s_ens_h, s_ens_v,
		and betal_inv are tunable parameters.
use_gfs_ens	.true.	controls use of global ensemble: .t. use GFS (default); .f. uses
		user-defined ens
readin_localization	.false.	flag to read (.true.)external localization information file
readin_beta	.false.	flag to read (.true.) the vertically varying beta parameters be-
		tas_inv and betae_inv from a file.
eqspace_ensgrid	.false.	if .true., then ensemble grid is equal spaced, staggered $1/2$ grid
		unit off ploes.
		if .false., then gaussian grid assumed for ensemble (global only)
use_localization_grid	.false.	if true, then use extra lower res gaussian grid for horizontal lo-
		calization (global runs only-allows possiblity for non-gaussian
		ensemble grid)
grid_ratio_ens	1	for regional runs, ratio of ensemble grid resolution to analysis
		grid resolution
		default value = 1 (dual resolution off)
oz_univ_static	.false.	if true, decouple ozone from other variables and defaults to
		static B (ozone only)
write_ens_sprd	.false.	writing global ensemble spread in byte addressable format for
		plotting with grads
enspreproc	.false.	flag to read(.true.) pre-processed ensemble data already
i_en_perts_io	0	flag to read in ensemble perturbations in ensemble grid.
		This is to speed up RAP/HRRR hybrid runs because the same
		ensemble perturbations are used in 6 cycles
		=0: No ensemble perturbations IO (default)
		=2: skip get_gefs_for_regional and read in ensemble perturba-
1 1 1 1 1 1 1	<u> </u>	tions from saved files.
l_ens_in_diff_time	.false.	if use ensembles that are available at different time from anal-
		ysis time.
		=false: only ensembles available at analysis time can be used
		for hybrid. (default)
		=true: ensembles available time can be different from analysis
ensemble_path		time in hybrid analysis
ensemble_path		

Variable name	Default value	Description
rapidrefresh_cldsurf		Options for cloud analysis and surface en-
		hancement for RR application
dfi_radar_latent_heat_time_period	30.0	DFI forward integration window in minutes
metar_impact_radius	10.0	metar cloud observation impact radius in grid number
metar_impact_radius_lowCloud	4.0	impact radius for METAR cloud observation that indicate low cloud base
l_gsd_terrain_match_surfTobs	.false.	if .true., GSD terrain match for surface tempera-
l_sfcobserror_ramp_t	.false.	ture observation namelist logical for adjusting surface tempera-
l_sfcobserror_ramp_q	.false.	ture observation error namelist logical for adjusting surface moisture
		observation error
l_PBL_pseudo_SurfobsT	.false.	if .true. produce pseudo-obs in PBL layer based on surface obs T
l_PBL_pseudo_SurfobsQ	.false.	if .true. produce pseudo-obs in PBL layer based on surface obs Q
l_PBL_pseudo_SurfobsUV	.false.	if .true. produce pseudo-obs in PBL layer based on surface obs UV
pblH_ration	0.75	percent of the PBL height within which to add pseudo-obs
pps_press_incr	30hPa	pressure increase for each additional pseudo-obs on top of previous level
l_gsd_limit_ocean_q	.false.	if .true. do GSD limitation of Q over ocean
l_pw_hgt_adjust	.false.	if .true. do GSD PW adjustment for model vs. obs station height
l_limit_pw_innov	.false.	if .true. do GSD limitation of PW obs
max_innov_pct	0.1	sets limit of PW ob to a percent of the back- ground value (0-1)
l_cleanSnow_WarmTs	.false.	if .true. do GSD limitation of using retrieved snow over warn area (Ts > r_cleanSnow_WarmTs_threshold)
l_conserve_thetaV	.false.	if .true. conserve thetaV during moisture adjust- ment in cloud analysis
r_cleanSnow_WarmTs_threshold	8.0	threshold for using retrieved snow over warn area
i_conserve_thetaV_iternum	3	iteration number for conserving thetaV during moisture adjustment
l_gsd_soilTQ_nudge	.false.	if .true. do GSD GOES cloud building
l_cld_bld	.false.	if .true. do GSD soil T and Q nudging based on the lowest t analysis increment
cld_bld_hgt	1200m	sets limit below which GOES cloud building oc- curs
build_cloud_frac_p	0.95	sets the threshold for building clouds from satel- lite
clear_cloud_frac_p	0.1	sets the threshold for clearing clouds from satel- lite
nesdis_npts_rad	1	NESDIS cloud product impact radiu (grid points)
iclean_hydro_withRef	1	if =1, then clean hydrometeors if the grid point has no echo and maxref=0
iclean_hydro_withRef_allcol	0	if =1, then clean whole column hydrometeors if the observed max ref =0 and satellite cloud shows clean

Variable name	Default value	Description
rapidrefresh_cldsurf		Options for cloud analysis and surface en-
		hancement for RR application
l_use_2mq4b	0	background used for calculate surface moisture
		observation innovation
		=0 Use Q from the 1st model level. (default)
		=1 use 2m Q as part of background
i_use_2mt4b	0	background used for calculate surface tempera-
		ture observation innovation
		=0 Use T from the 1st model level. (default)
		=1 use 2m T as part of background
i_gsdcldanal_type	0	options for how GSD cloud analysis should be
		conducted
		=0. no cloud analysis (default)
		=1. cloud analysis after var analysis
		=5. skip cloud analysis and NETCDF file update
i_gsdsfc_uselist	0	options for how to use surface observation use
		or rejection list
		=0 . EMC method (default)
		=1 . GSD method
i_lightpcp	0	options for how to deal with light precipitation
		=0 . don't add light precipitation (default)
		=1 . add light precipitation in warm section
i_sfct_gross	0	if use extended threshold for surface T gross
		check
		=0 use threshold from convinfo (default)
		=1 for cold surface, threshold for gross check is
		enlarged to bring more large negative innovation
		into analysis.

Variable name	Default value	Description
CHEM		Chemistry data assimilation
berror_chem	.false.	if berror file is supplied for chemistry
oneobtest_chem	.false.	single observation test for chemistry
maginnov_chem	30.0	if oneobtest_chem=T magnitude of innovation
		for chemistry
magoberr_chem	2.0	if oneobtest_chem=T magnitude of observation
		error for chemistry
oneob_type_chem	pm2_5	if oneobtest_chem=T type of chemical observa-
		tion
oblat_chem	45.0	if oneobtest_chem=T latitude of the observation
oblon_chem	270.0	if oneobtest_chem=T longitude of the observa-
		tion
obpres_chem	1000.0	if oneobtest_chem=T pressure of the observation
diag_incr	.false.	if user wishes to output to a binary file increment
elev_tolerance	500.0	for surface chemical observation sometimes ele-
		vation (elev_obs) of the measurement is available
		(sometimes not).
tunable_error	0.5	tuning parameter to specify representativeness
		error for in-situ observations
in_fname	cmaq_input.bin	name of background file for cmaq
out_fname	cmaq_output.bin	name analysis file for cmaq
incr_fname	chem_increment.bin	if diag_incr=T name of the binary dump for
		pm2_5
laeroana_gocart	.false.	when true, do chem analysis with wrfchem and
		modis
l_aoderr_table		
aod_qa_limit		
luse_deepblue		
aero_ratios		
wrf_pm2_5		

Bibliography

- J. Purser, W.-S. Wu, D. F. Parrish, and N. M. Roberts. Numerical aspects of the application of recursive filters to variational statistical analysis. part i: Spatially homogeneous and isotropic gaussian covariances. *Mon. Wea. Rev.*, 131:1524–1535, 2003.
- [2] J. Purser, W.-S. Wu, D. F. Parrish, and N. M. Roberts. Numerical aspects of the application of recursive filters to variational statistical analysis. part ii: Spatially inhomogeneous and anisotropic general covariances. *Mon. Wea. Rev.*, 131:1536–1548, 2003.
- [3] H. Shao, J. Derber, X.-Y. Huang, M. Hu, K. Newman, D. Stark, M. Lueken, C. Zhou, L. Nance, Y.-H. Kuo, and B. Brown. Bridging research to operations transitions: Status and plans of community gsi. *Bulletin of the American Meteorological Society*, 2016.
- [4] W.-S. Wu, J. Purser, and D. F. Parrish. Three-dimensional variational analysis with spatially inhomogeneous covariances. *Mon. Wea. Rev.*, 130:2905-2916, 2002.